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ABSTRACT OF THE DISSERTATION

Graph Deep Learning: Methods and Applications

by

Muhan Zhang

Doctor of Philosophy in Computer Science

Washington University in St. Louis, 2019

Professor Yixin Chen, Chair

The past few years have seen the growing prevalence of deep neural networks on various

application domains including image processing, computer vision, speech recognition, machine

translation, self-driving cars, game playing, social networks, bioinformatics, and healthcare

etc. Due to the broad applications and strong performance, deep learning, a subfield of

machine learning and artificial intelligence, is changing everyone’s life.

Graph learning has been another hot field among the machine learning and data mining

communities, which learns knowledge from graph-structured data. Examples of graph

learning range from social network analysis such as community detection and link prediction,

to relational machine learning such as knowledge graph completion and recommender systems,

to mutli-graph tasks such as graph classification and graph generation etc.

An emerging new field, graph deep learning, aims at applying deep learning to graphs. To

deal with graph-structured data, graph neural networks (GNNs) are invented in recent years

which directly take graphs as input and output graph/node representations. Although GNNs

have shown superior performance than traditional methods in tasks such as semi-supervised

node classification, there still exist a wide range of other important graph learning problems
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where either GNNs’ applicabilities have not been explored or GNNs only have less satisfying

performance.

In this dissertation, we dive deeper into the field of graph deep learning. By developing new

algorithms, architectures and theories, we push graph neural networks’ boundaries to a much

wider range of graph learning problems. The problems we have explored include: 1) graph

classification; 2) medical ontology embedding; 3) link prediction; 4) recommender systems; 5)

graph generation; and 6) graph structure optimization.

We first focus on two graph representation learning problems: graph classification and medical

ontology embedding. For graph classification, we develop a novel deep GNN architecture which

aggregates node features through a novel SortPooling layer that replaces the simple summing

used in previous works. We demonstrate its state-of-the-art graph classification performance

on benchmark datasets. For medical ontology embedding, we propose a novel hierarchical

attention propagation model, which uses attention mechanism to learn embeddings of medical

concepts from hierarchically-structured medical ontologies such as ICD-9 and CCS. We

validate the learned embeddings on sequential procedure/diagnosis prediction tasks with real

patient data.

Then we investigate GNNs’ potential for predicting relations, specifically link prediction

and recommender systems. For link prediction, we first develop a theory unifying various

traditional link prediction heuristics, and then design a framework to automatically learn

suitable heuristics from a given network based on GNNs. Our model shows unprecedented

strong link prediction performance, significantly outperforming all traditional methods. For

recommender systems, we propose a novel graph-based matrix completion model, which

uses a GNN to learn graph structure features from the bipartite graph formed by user and

item interactions. Our model not only outperforms various matrix completion baselines, but

xiv



also demonstrates excellent transfer learning ability – a model trained on MovieLens can be

directly used to predict Douban movie ratings with high performance.

Finally, we explore GNNs’ applicability to graph generation and graph structure optimization.

We focus on a specific type of graphs which usually carry computations on them, namely

directed acyclic graphs (DAGs). We develop a variational autoencoder (VAE) for DAGs and

prove that it can injectively map computations into a latent space. This injectivity allows

us to perform optimization in the continuous latent space instead of the original discrete

structure space. We then apply our VAE to two types of DAGs, neural network architectures

and Bayesian networks. Experiments show that our model not only generates novel and

valid DAGs, but also finds high-quality neural architectures and Bayesian networks through

performing Bayesian optimization in its latent space.
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Chapter 1

Introduction

1.1 Graph Deep Learning

Deep learning is changing everyone’s life. One important reason for the superior performance

of deep learning over traditional algorithms is that deep learning integrates feature extraction

into the model learning itself, i.e., raw input signals (such as image pixels or audio waveforms)

are directly fed into the model without performing feature engineering beforehand. Such an

end-to-end procedure greatly improves the quality of the extracted features.

Conventional neural network architectures, such as feed-forward neural networks (FFNN),

convolutional neural networks (CNNs) and recurrent neural networks (RNNs), require input

signals to be represented in fixed-size tensor forms, where each element of a tensor corresponds

to a fixed raw input dimension. This way, neural network layers are able to hierarchically

extract features and learn patterns from the data. Although achieving great successes on

various data types, these conventional neural networks cannot directly be applied to graphs.
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Unlike images, graph-structured data do not have a tensor representation that can be readily

read by conventional neural networks, which has limited deep learning’s use cases for graphs.

Graph-structured data are abundant in the real world, e.g., social networks, citation networks,

biological networks, molecular structures, power grids, knowledge graphs, etc. Furthermore,

graph is also an important subject in machine learning, since many machine learning models,

such as neural networks and Bayesian networks, are realized as computations on graphs.

There exist a wide range of learning problems related to graphs, such as semi-supervised node

classification, graph classification, link prediction, community detection, graph clustering,

graph generation, network embedding, etc. Due to the abundance of graph data and graph

learning problems, it is very important to study how to learn from graphs.

Graph learning is a challenging problem. Firstly, the number of nodes in a graph can be

variable, which poses a great challenge for traditional machine learning models that can only

take fixed-size input. Secondly, graphs have the isomorphism problem, meaning that the

same graph can have factorially many different expressions by simply permuting the nodes,

which brings additional challenges to distinguishing graphs. Thirdly, the graph topology

contains rich information important for the learning tasks, yet is extremely hard to extract

and learn. All these difficulties make graph learning special and different from traditional

learning tasks in regular domains.

Because of the special characteristics of graphs, traditional graph learning methods typically

rely on predefined structural features such as node degrees, paths, walks, subtrees, frequent

subgraphs, etc., and then apply standard machine learning algorithms on the extracted

features. Such a two-step procedure separates feature extraction from model learning, which

is against deep learning’s end-to-end training principle, thus often having less expressive

power. Another way is to use graph kernels [15, 59, 85, 116, 142, 159], which compute
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some positive semidefinite graph similarity measures so that kernel machines such as SVM

become feasible for some graph learning tasks. However, graph kernels introduce several new

problems. Firstly, computing and storing the kernel matrices require at least quadratic time

and space complexity w.r.t. the number of graphs, which is often infeasible for large-scale

problems in practice. Secondly, the design of graph kernels is often by heuristics. There is

no principled way to measure graph similarities, introducing the need to carefully design

different graph kernels for different datasets. Thirdly, graph kernels usually lack the ability to

learn representations of graphs, which limits their use cases to only a small range of problems

such as graph classification.

To better learn from graphs, graph deep learning aims at leveraging the superior feature

learning ability of deep learning for graphs. Since conventional neural networks such as

CNNs and RNNs do not work, graph neural networks (GNNs), a new type of neural networks

designed particularly for graphs, have recently been proposed [7, 18, 39, 43, 77, 94, 121, 136].

GNNs iteratively pass messages between each node and its neighbors in order to extract

local substructure features around nodes. Then, an aggregation operation such as summing

is applied to all nodes to get a graph-level feature vector. GNNs are parametric models,

thus avoiding the need to compute and store kernel matrices. The learnable parameters in

the message passing and aggregation layers equip GNNs with excellent graph representation

learning abilities and great flexibility for different graphs. GNNs also enable end-to-end

training. Because of these advantages, GNNs gain great popularity in a short time, achieving

state-of-the-art performance on semi-supervised node classification [77], network embedding

[57], etc.

Despite the success of GNNs in certain problems, as a new tool, GNNs still either do not have

satisfying performance or do not find applicabilities in many other important graph learning

problems, mainly due to the immature architectures and the shallow understandings people
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have for GNNs. In this dissertation, with a series of innovations in algorithms, architectures

and theories, we explore GNNs’ potential and limits in three general fields, namely graph

representation learning, relation prediction, and graph structure optimization. We first focus

on graph representation learning (Chapter 2), the goal of which is to learn representations

for graphs or nodes within a graph. Leveraging innovative GNN architectures and designs,

we achieve state-of-the-art results for two graph representation learning tasks, namely graph

classification and medical ontology embedding. The second field we explore is using GNNs

to predict relations (Chapter 3), e.g., predicting links in social networks and recommending

items to users. We show that by extracting local enclosing subgraphs around relations, we

are able to automatically learn general graph structure features useful for relation prediction

based on GNNs instead of using predefined heuristics. The last field we explore is using

GNNs to generate and optimize graph structures (Chapter 4). For this problem, we train a

GNN-based variational autoencoder (VAE) for directed acyclic graphs (DAGs), and optimize

their structures in the VAE’s latent space based on Bayesian optimization. Our model not

only generates valid and novel DAG structures, but also provides promising directions to

two important DAG structure optimization problems: neural architecture search (NAS) and

Bayesian network structure learning (BNSL).

In the remaining part of this chapter, we review the development history of GNNs and

introduce the basics of GNNs, which serve as preliminaries for the following chapters of the

dissertation.

1.2 A Brief History of Graph Neural Networks

The earliest graph neural networks can date back to Gori et al. (2005) [55] and Scarselli et

al. (2009) [136]. These early attempts use recurrent architectures to learn a target node’s

4



representation by iteratively propagating neighbor information until reaching a stable fixed

point, which is computationally very expensive. Recently, encouraged by the success of

CNNs in computer vision, a great number of approaches have been developed in parallel that

generalize the notion of convolution from images to graph data, namely graph convolutions.

Based on which domain the convolution operation is performed in, these graph convolution

approaches can be categorized into spectral-based approaches and spatial-based approaches.

The first remarkable spectral-based method was developed by Bruna et al. (2013) [18], which

developed a graph convolution operation based on the spectral graph theory, where learnable

filters are applied to a graph’s frequency modes computed by graph Fourier transform [135].

From then on, many approximations of spectral-based graph convolution are proposed [39, 60,

77], which either greatly reduce the computation complexity or make the convolution filters

localized. For example, Defferrard et al. [39] parameterize the spectral filters as Chebyshev

polynomials of eigenvalues, which achieves both efficient and localized filters. One limitation

of the above spectral formulations is that they rely on the fixed spectrum of the graph

Laplacian, thus are suitable only for graphs with a single structure (but varying signals on

vertices).

Spatial-based graph convolutions, on the contrary, are not restricted to a fixed graph structure.

To extract local features, several works independently propose to propagate messages between

neighboring vertices, inheriting the ideas from early GNNs [136]. Duvenaud et al. [43]

propose differentiable Neural Graph Fingerprints, which propagate features between 1-hop

neighbors to simulate the traditional circular fingerprint for molecules. Atwood et al. [7]

propose Diffusion-CNN, which propagates neighbors with different hops to the center using

different weights. Later, Kipf and Welling (2016) [77] develop a first-order approximation

for the spectral convolution of [39] which also simplifies to propagation between neighboring

vertices. Niepert et al. [121] propose another way of spatial graph convolution by extracting
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Figure 1.1: 2D convolution (left) vs. graph convolution (right). Graph convolution can be
seen as generalizing 2D convolution on grids to arbitrary structures, where a node’s local
receptive field is no longer a fixed-size subgrid, but is defined to be its one-hop neighboring
nodes. Figure is from [166].

fixed-sized local patches from nodes’ neighborhoods and linearizing these patches with graph

labeling methods and graph canonization tools. Figure 1.1 illustrates the similarity and

difference between 2D image convolution and spatial graph convolution. Compared to

spectral approaches, spatial graph convolutions are more flexible, easier to implement, and

largely reduce the computation complexity. Therefore, they have become the mainstream

graph convolution approaches used in graph neural networks. In the remaining part of the

dissertation, without special notations, graph neural networks all refer to those using spatial

approaches.

1.3 Graph Neural Networks Basics

Graph neural networks (GNNs) have many independently developed formulations [18, 35, 39,

43, 94, 136], most of which can be unified into a message passing framework [53]. Given an

undirected graph G with node features xv (a row vector), the forward pass of a GNN typically

contains two phases: a message passing phase (a.k.a. graph convolution) used to extract
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local substructure features around nodes, and an aggregation phase (a.k.a. readout, graph

pooling, etc.) used to summarize individual node features into a graph-level feature vector.

We will consistently use this message passing form to describe our graph neural networks,

but will discuss graph neural networks’ other formulations in the next section. We give a

brief introduction to the basics of message passing graph neural networks here for readers

who want to skip the next section.

The message passing (graph convolution) phase runs for T iterations and involves message

functions Mt and vertex update functions Ut. At each message passing step, vertex hidden

states ztv are updated based on messages mt
v according to:

mt+1
v =

∑
u∈Γ(v)

Mt(ztv, ztu), (1.1)

zt+1
v = Ut(ztv,mt+1

v ), (1.2)

where Γ(v) denotes the set of neighbors of v in graph G, Mt and Ut are both differentiable

functions with learnable parameters. We omit edge features for simplicity, as edge features

are often unavailable. For z0
v, we can let them be the initial node features xv.

The message passing form above has many explanations such as first-order approximation of

graph Fourier Transform [39, 77], differentiable approximation of neural graph fingerprints

[43], CNN’s generalization from regular grids to graphs [121], etc. However, it also has a

straightforward explanation as follows: each step of message passing propagates each node’s 1-

hop neighbors’ information to itself, thus summarizing the local substructure patterns around

individual nodes; multiple steps of such propagations summarize multi-hop neighborhood

information around nodes.
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The message passing can be seen as a convolutional operator applied on nodes to extract local

features, similar to what a convolutional layer in traditional CNNs does for each pixel. Most

existing graph neural networks can be incorporated into this message passing framework.

The differences lie in the unique designs of Mt and Ut in different works. For example, Mt can

be as simple as a sum/mean [43] or concatenation [121], or use advanced neural architectures

such as the attention mechanism [158] and RNNs [57]. The update function Ut can also range

from a single linear layer to multi-layer perceptrons (MLPs) [179] and GRUs [94, 185], etc.

With the extracted hidden states of nodes, we can use them for node-level tasks such as

semi-supervised node classification and node embedding. However, we still need to get a graph

feature vector for doing graph-level tasks such as graph classification and graph generation.

The aggregation phase does this job by:

zG = R({zTv | v ∈ G}), (1.3)

where R is a readout (pooling) function that is invariant to permutations of nodes in order

for GNNs to be invariant to graph isomorphism. Most previous GNN formulations use a

simple summing/averaging over the final node states [7, 35, 43, 94]. We will discuss the

disadvantages of using such an averaging operation in the second chapter.

1.4 A Categorization of Graph Neural Networks

In this section, we give a categorization of graph neural networks with respect to the problems

they are addressing, and put our own work into the literature. In each categorization, we

introduce the most representative works, including their motivations, formulations, and

advantages/disadvantages, etc.
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There are mainly three types of problems that all graph neural networks are addressing: node-

level tasks, graph-level tasks, and edge-level tasks. Node-level tasks include all node-related

graph learning problems, such as semi-supervised node classification [77], network embedding

[57], node clustering [162], etc. In graph-level tasks, representations of the entire graphs are

learned to allow graph classification [173, 184], graph regression, graph generation [185], etc.

In edge-level tasks, representations of edges are learned to enable link prediction [78, 181] or

learning recommender systems [berg2017graph, 113, 180], etc., where the task is to predict

existence of edges or values of edges.

1.4.1 GNNs for node-level tasks

In node-level tasks, there is typically only one large graph (network) given, and the task is to

learn representations for individual nodes of the graph so that downstream node-level tasks

can be performed. The node representations can be either learned in a semi-supervised way

(i.e., train on some given node labels in an end-to-end way), or in an unsupervised way (i.e.,

node labels are unknown, and the training is performed by minimizing some auxiliary loss

such as reconstructing the graph). Currently, node-level tasks are still the most popular tasks

for graph neural networks due to their wide applicabilities in network analysis.

The first graph neural network for learning node states of general graphs is the Graph Neural

Network1 model, which uses a contractive mapping to recurrently find steady states of nodes

[136]. However, to ensure convergence, the parameters of the recurrent function has to be

constrained via a penalty term on the Jacobian matrix. The repeated use of contractive

mapping to find the steady states also poses efficiency problems to practical applications.
1It is also where the name GNN comes from. Note that, however, people now use GNN to refer to any

neural network that deals with graphs.
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Gated Graph Neural Network (GGNN) [94] uses a Gated Recurrent Unit (GRU) [26] as the

recurrent function and also no longer requires finding steady states of nodes. Instead, the

recurrence is reduced to a fixed number of steps. A node hidden state is updated with

zt+1
v = GRU(ztv,

∑
u∈Γ(v)

Wztu). (1.4)

GGNN uses the same GRU parameters across different steps (layers), which is different from

most GNNs that use different weight parameters across different layers. The advantage

is that the recurrent unit, GRU, has the ability to learn to forget and keep information

from previous steps, which could benefit long-range node propagations in graphs with large

diameters. GGNN is designed for undirected graphs, where the message passing is performed

simulateneously for all nodes for multiple rounds. In Chapter 4, we will introduce our work

on training a variational autoencoder for directed acyclic graphs (DAGs), where we also

leverage a GRU as the node update function yet only need to propagate once for each node

following a topological order of nodes.

Instead of using the same recurrent unit for different layers, the majority of graph neural

networks use convolutional operators with different parameters for different layers, which is

inspired by convolutional neural networks (CNNs) for images. The earliest convolutional

neural networks for graphs define convolutions in the spectral domain. Based on the

theories on graph signal processing [135, 144], the spectrum of a graph is given by the

eigenvalues of the normalized Laplacian matrix of the graph:

L = UΛU>, (1.5)

10



where Λ is the diagonal matrix of the eigenvalues, U is the matrix of the corresponding

eigenvectors, and L = I−D−
1
2 AD−

1
2 is the normalized Laplacian matrix with A ∈ {0, 1}n×n

denoting the adjacency matrix and D denoting the diagonal degree matrix of the graph.

The graph Fourier transform to a signal on nodes x ∈ Rn is defined as:

F (x) = U>x, (1.6)

and the inverse graph Fourier transform is defined as:

F−1(x̂) = Ux̂, (1.7)

where x̂ is the spectral-domain signal resulted from the graph Fourier transform. The

graph Fourier transform projects the graph signal x into an orthogonal space formed by the

eigenvectors of the normalized graph Laplacian matrix. In this spectral domain, we can

define graph convolution as the element-wise (Hadamard) product of a filter F (g) and the

transformed signal F (x), after which we can inversely transform the result signal back to the

spatial domain:

x ∗G g := F−1(F (x)� F (g))

= U(U>x�U>g). (1.8)

If we define gθ = diag(U>g), then the spectral graph convolution is equivalent to:

x ∗G gθ = UgθU>x. (1.9)
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All spectral-based graph convolutional neural networks follow this definition and adopt

different filters gθ. The earliest work Spectral Convolutional Neural Network (Spectral-CNN)

[18] lets gθ be a diagonal matrix of learnable parameters, and considers multiple channels of

graph signals. Let Θt
i,j be the filter between the ith channel of layer t+ 1 and the jth channel

of layer t, the graph convolution layer t is defined as:

Zt+1
:,j = f(

ct∑
i=1

UΘt
i,jU>Zt

:,i), (1.10)

where Zt
:,i ∈ Rn×1 denotes the ith channel of the graph signal Zt ∈ Rn×ct in the tth layer, and

ct is the number of channels in the tth layer. One great limitation of Spectral-CNN is its

O(n3) computation complexity with respect to the number of nodes n, due to the expensive

eigen-decomposition.

Later, two follow-up works, ChebNet [39] and GCN [77] reduce the complexity from O(n3)

to O(m) (m denotes the number of edges) by making simplifications and approximations to

(1.10).

Chebyshev Spectral CNN (ChebNet) [39] makes an approximation to gθ by using Chebyshev

polynomials of the diagonal matrix of eigenvalues:

gθ =
K−1∑
k=0

θiTk(Λ̂), where Λ̂ = 2Λ/λmax − I. (1.11)

The Chebyshev polynomials can be recursively computed by:

Tk(x) = 2xTk−1(x)− Tk−2(x), (1.12)
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with T0(x) = 1 and T1(x) = x. Then, the original spectral graph convolution (1.9) can be

written as:

x ∗G gθ = U(
K−1∑
k=0

θiTk(Λ̂))U>x (1.13)

=
K−1∑
k=0

θiTk(L̂)x, (1.14)

where L̂ = 2L/λmax − I. It is proved that (Lk)i,j = 0 for nodes i and j with dG(i, j) > K,

where dG(i, j) denotes the shortest path length between i, j. Consequently, one advantage

of ChebNet compared to Spectral-CNN is its localized convolution filters by restricting the

order of the Chebyshev polynomials K. In contrast, the filters in (1.10) are global, meaning

that even signals from distant nodes will contribute to the convolution result of a center

node. This contradicts with the principle of traditional CNNs for images which leverage

localized filters to learn translation invariant features. Thus, ChebNet is more like CNNs

than Spectral-CNN.

However, both ChebNet and Spectral-CNN have another limitation – they only work on a

single graph structure. This is because the graph Laplacian matrix they rely on is dependent

on the global graph structure – any perturbation to the graph structure can result in a change

of the eigenbasis and eigenvalues. This has no influence on node-level and edge-level tasks

with a single large graph structure given. However, it will pose problems for graph-level

tasks, since the learned structure-dependent filters cannot be applied to graphs with different

structures.

Instead of defining graph convolutions in the spectral domain, spatial methods define graph

convolutions in the spatial domain (nodes’ spatial relations with other nodes). Spatial-based

graph convolutions are motivated directly by traditional CNNs on images where a center

pixel updates its value by a weighted average of the pixel values in a (e.g., 3 × 3) patch
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around it. Spatial-based GNNs similarly convolve a center node state with its neighbors’

states to get an the updated representation of the center node.

Spatial methods are not restricted to a single graph structure, since all convolutions are done

locally within a node’s neighborhood without using the global graph structure. Thus, spatial

methods can not only be applied to node-level and edge-level tasks, but also graph-level

tasks.

The most popular spatial-based graph neural network is the Graph Convolutional Network

(GCN) model [77]. Its convolution form is derived by making a first-order approximation

of the ChebNet (1.13). In particular, by using order K = 1 and assuming λmax = 2, GCN

simplifies (1.13) to

x ∗G gθ = θ0x− θ1D−
1
2 AD−

1
2 x. (1.15)

Then, GCN makes a further simplification by assuming θ0 = −θ1 := θ, which effectively

reduces the number of parameters to only 1 between every input and output channel. The

single-channel graph convolution then becomes:

x ∗G gθ = θ(I + D−
1
2 AD−

1
2 )x. (1.16)

And the multi-channel form of GCN can be written into a matrix multiplication form as

follows:

Zt+1 = f(ÂZtΘ), (1.17)

where Â := I+D−
1
2 AD−

1
2 and f is an activation function. However, using Â = I+D−

1
2 AD−

1
2

means that the magnitude of node states in Zt cumulatively gets bigger layer by layer, which
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might cause numerical instabilities. In this regard, GCN uses a renormalization trick which

replaces Â with D̃−
1
2 ÃD̃−

1
2 where Ã := A + I and D̃ is a diagonal degree matrix of Ã

(D̃ii = ∑
j Ãij).

If we look at individual rows zi of Z, we can rewrite (1.17) into:

z′i = f( 1
D̃ii

yi +
∑
j∈Γ(i)

1√
D̃iiD̃jj

yj), (1.18)

where Γ(i) denotes the neighbor set of node i, and yj := Θ>zj. As we can see, the GCN

graph convolution reduces to a weighted sum of the transformed center node state yi and

neighbor node states yj, j ∈ Γ(i), which is in a spatial-based graph convolution form. GCN

establishes a relationship between spectral methods and spatial methods.

Diffusion Convolutional Neural Network (DCNN) [7] is another early spatial-based GNN.

It treats graph convolutions as a diffusion process. It uses a probability transition matrix

P = D−1A to propagate neighbor states from different hops:

Z(k) = f(W(k) �PkX), (1.19)

where the final node representations are given by the concatenation of Z(1),Z(2), . . . ,Z(K).

Using a diffusion matrix P automatically decreases the contribution of faraway nodes to the

center node. In contrast to GCN [77], nodes more than one hop away from the center node

directly propagate their states to the center instead of propagating to the center through

multiple layers of graph convolution.

In the previous section, we have briefly introduced message passing neural networks (MPNN)

[53], which is a uniform framework for spatial-based GNNs. The complete form of a message
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passing function is given by

mt+1
v =

∑
u∈Γ(v)

Mt(ztv, ztu,xevu), (1.20)

zt+1
v = Ut(ztv,mt+1

v ), (1.21)

where xevu is the edge feature between nodes v, u,Mt is the message function used to aggregate

neighboring node states into a message mv, and Ut is the update function used to update

center node v’s state zv based on the message mv. Edge features are not always available

in graph datasets, thus are often ignored in other works, and are more usually handled in

different formulations when edge features are discrete and countable which will be discussed

in more details in Section 3.2.

Graph Isomorphism Network (GIN) [168] studies the representative power of message passing

networks and finds that message passing networks can be at most as powerful as the Weisfeiler-

Lehman algorithm [165] by adding an irrational weight εt+1 in the update function. It uses a

graph convolution form as follows:

zt+1
v = f((1 + εt+1)ztv +

∑
u∈Γ(v)

Wtztu), (1.22)

where the irrational number εt+1 distinguishes the center node from its neighbors when they

are assembled together, thus is able to injectively encode the rooted depth-1 subtree of the

center node, the same as how the Weisfeiler-Lehman algorithm color nodes (it also uses

a perfect hashing function to give unique colors to unique rooted subtree patterns). The

Weisfeiler-Lehman algorithm is a powerful tool for distinguishing different graphs, and a

promising direction towards efficiently solving the hard graph isomorphism (GI) problem.

GIN theoretically shows the graph neural networks can be as powerful as Weisfeiler-Lehman
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algorithm which demonstrates the representative power of GNNs. In practice, GIN lets ε(t+1)

be a learnable parameter that is trained together with other parameters.

Graph Attention Network (GAT) [158] does not assume identical contributions of neighboring

nodes like previous works such as GCN [77] and GIN [168]. Instead, it leverages an attention

mechanism to learn the contribution of each neighboring node to the center node. GAT’s

graph convolution form is defined as:

zt+1
v = f(

∑
u∈Γ(v)∪v

αvuWtztu), (1.23)

where the attention weight αvu is given by:

αvu = softmax[g(a>concat(Wtztv,Wtztu))], (1.24)

where g is a LeakyReLU activation function and a is a vector of parameters that transforms

concatenated node states into a scalar raw weight. And the softmax operation calculates

normalized weights so that ∑u∈Γ(v)∪v αvu = 1. Multi-head attention can be further used to

increase the model capacity. GAT shows improvements over GCN in node classification tasks.

Right now, we have discussed many representative graph neural networks for node-level

tasks, mainly in the categories of spectral-based approaches and spatial-based approaches.

In Section 2.2, we will discuss our contribution on medical ontology embedding which falls

into node-level tasks. We propose a Hierarchical Attention Propagation (HAP) method to

learn embeddings of node concepts in a medical ontology such as ICD-9. Our HAP adopts an

attention mechanism like GAT, but uses a different propagation order to deal with the special

structure of hierarchical medical ontologies. In Section 2.1, we will discuss our contribution

to a graph-level task, graph classification, where the node representation learning parts use a

message passing form similar to GCN.
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1.4.2 GNNs for graph-level tasks

GNNs for graph-level tasks are generally less studied than GNNs for node-level tasks. However,

node-level GNNs are essential preliminary steps for a successful graph-level GNN. Concretely

speaking, a graph-level GNN is typically composed of a node-level GNN used to extract

individual node feature states and a pooling layer used to summarize node states into a graph

representation. Our main contribution for graph classification is an advanced pooling layer

that takes into account the global topology of a graph.

Neural Graph Fingerprint [43] is an early attempt of graph neural networks on graph-level

tasks. It aims at learning differentiable fingerprints (sparse feature vectors) for molecules

using neural networks through end-to-end training instead of the previous approaches that

use hash functions to map certain local structures to bits. Neural Graph Fingerprint uses a

spatial graph convolution to sum node (atom) features around each center atom followed

by a linear transformation and nonlinear activation. Then, a softmax function is applied to

the further linearly transformed atom feature vector to learn a sparsified feature vector. All

the final sparse atom feature vectors are directly summed to construct the final fingerprint

for the molecule. Neural Graph Fingerprint uses a sum-based pooling module to aggregate

individual node states into a graph representation.

Using a symmetric sum/mean/max is perhaps the simplest way to pool node states. Given

final node states h1,h2, . . . ,hn, a graph representation zG is given by:

zG = sum/mean/max(h1,h2, . . . ,hn). (1.25)
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Many early graph neural networks adopt such symmetric pooling layers for graph-level tasks

[7, 35, 43]. Some other works use attention mechanisms to improve sum/mean pooling [53,

94].

However, these existing methods do not consider the ordering of nodes and treat all nodes

symmetrically. This can be problematic for nodes with a natural order, such as directed

acyclic graphs (DAGs) with a natural topological ordering of nodes. In Section 4, we will

discuss our work on graph neural networks for DAGs, which performs message passing

following a topological ordering of nodes in a DAG and uses the final node state as the graph

state. We prove that our D-VAE model [185] can injectively encode computations represented

by DAGs and thus superior than existing symmetric GNNs when modeling DAGs.

Existing sum/mean/max based pooling layers also directly pool node states into a graph

feature vector in one step, which is too large and too rough, and can lose a lot of individual

node information as well as the global graph topology. In Section 2.1, we will introduce

our work on a novel SortPooling layer for graph classification [184]. SortPooling first sorts

nodes according to their structural roles and then keep the top K node states as the graph

representation. After SortPooling, traditional 1D convolutions are applied on the node

sequences to learn from both individual node states and global graph topology within the

node ordering. The proposed SortPooling also inspired many follow-up works studying

advanced graph pooling layers, such as DiffPool [173] and SAGPooling [91].

1.4.3 GNNs for edge-level tasks

Edge-level tasks are least studied using GNNs. However, recent GNN-based link prediction

algorithms [181] and recommender systems [berg2017graph, 172] have shown GNNs’ great

potentials for this type of problems.
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Edge-level tasks have been studied using both node-level GNNs and graph-level GNNs.

Node-based methods combine the two end nodes’ states learned by a node-level GNN as an

edge’s feature vector, which is then used for edge-level tasks such as link prediction. For

example, Varitional Graph Autoencoder (VGAE) [78] first applies GCN [77] to extract node

states, and use the inner product of two node states to reconstruct the existing edge between

them. After training, a feature vector is learned for each node, which can be used to predict

unseen links. It is similar to matrix factorization techniques [82] with the difference that the

latent factors are learned through GNNs.

Later, VGAE-typed GNNs are generalized to recommender systems. For example, [113]

uses multi-graph CNN model to extract user and item latent features from their respective

networks and use the latent features to predict the ratings. [berg2017graph] proposes

graph convolutional matrix completion (GC-MC) to directly operate on user-item bipartite

graphs to extract user and item latent features using a GNN equipped with relational graph

convolution operators [138] that assign different weight matrices to different edge types.

Pinsage [172] also uses GNNs to learn node features from the rich content features provided

by each pin, and is successfully used in recommending related pins in Pinterest.

Our work is different from existing node-based approaches that use two node states to

represent an edge. Instead, we propose to use graph-level GNNs to learn edge features from

local enclosing subgraphs around edges. The advantages are: 1) We are able to learn from

the rich topological features within the neighborhood of each edge, rather than learning two

nodes’ local substructure features independently and combining them later. In link prediction,

such pure topological features are very important link predictors, and are extensively studied

in previous works known as link prediction heuristics [96]. However, previous works mainly

use manually defined heuristics. In Section 3.1, we will discuss our work SEAL [181]

that automatically learns link prediction heuristics from networks themselves. 2) Another
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advantage is that the learned topological features are inductive, in contrast to node-based

approaches that often learn transductive latent features of nodes. The inductive features

are not only generalizable to nodes unseen during training, but also transferrable to new

tasks. In Section 3.2, we will discuss our work on inductive graph-based matrix completion

(IGMC) [180], which uses a graph-level GNN to perform inductive matrix completion without

resorting to any node content (side) features.
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Chapter 2

Graph Neural Networks for Graph

Representation Learning

In this section, we introduce our work on GNN-based graph representation learning. Learning

a good graph representation is the first-step for many graph learning problems. There are two

levels of representations to learn, one is node representations (or node embeddings) within a

given graph or network; the other is representation for the entire graph.

Learning representations for entire graphs enables graph-level learning tasks, such as graph

classification. Our first contribution in the dissertation is to propose a novel graph neural

network architecture specifically designed for graph classification. The significance is that we

for the first time study advanced pooling layers rather than the simple summing/averaging

used in previous GNNs. The pooling layer we propose is called SortPooling, which sorts vertex

features in a meaningful order before feeding to the later layers. This enables learning from the

global graph topology and alleviates the great information loss occurs in summing/averaging.
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Our proposed Deep Graph Convolutional Neural Network (DGCNN) [184] achieves state-of-

the-art graph classification results.

Learning representations for nodes are equally important as learning graph representations.

Like word embedding’s importance to natural language processing, learning node represen-

tations can facilitate many network analysis problems. In this dissertation, we focus on a

particular kind of networks, medical code networks, or medical ontologies. There are many

well developed medical ontologies such as the ICD-9 and ICD-10, which hierarchically orga-

nize medical concepts into categories/subcategories, providing a valuable source of domain

knowledge that can potentially improve healthcare systems’ performance. To learn medical

ontology embeddings, we propose a Hierarchical Attention Propagation (HAP) model, which

hierarchically propagate attention across the medical ontology. We prove that HAP learns

most expressive medical concept embeddings – from any medical concept embedding we

are able to fully recover the entire ontology structure. Experimental results on sequential

procedure/diagnosis prediction tasks using real patient data demonstrate HAP’s superior

predictive performance.

2.1 Graph Neural Networks for Graph Classification

2.1.1 Traditional graph classification methods: graph kernels

Given a dataset containing graphs in the form of (G, y) where G is a graph and y is its

class, graph classification is to learn a function mapping G to its class y. For example, in

bioinformatics, we may need to classify molecules into enzymes or not. In material science, we

may need to classify whether a material has a given property. Traditional machine learning
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algorithms such as SVMs and neural networks cannot directly classify graphs, since graphs

often do not have fixed-size tensor representations as input to the algorithms.

Graph kernels make kernel machines such as kernel SVMs feasible for graph classification

by computing some positive semidefinite graph similarity measures, which have achieved

state-of-the-art classification results on many graph datasets [142, 159]. A pioneering work

was introduced as the convolution kernel in [59], which decomposes graphs into small

substructures and computes kernel functions by adding up the pair-wise similarities between

these components. Common types of substructures include walks [159], subgraphs [85], paths

[15], and subtrees [116, 142]. [123] reformulated many well-known substructure-based kernels

in a general way called graph invariant kernels. [171] proposed deep graph kernels which learn

latent representations of substructures to leverage their dependency information. Convolution

kernels compare two graphs based on all pairs of their substructures. Assignment kernels,

on the other hand, tend to find a correspondence between parts of two graphs. [8] proposed

aligned subtree kernels incorporating explicit subtree correspondences. [84] proposed the

optimal assignment kernels for a type of hierarchy-induced kernels. Most existing graph

kernels focus on comparing small local patterns. Recent studies show comparing graphs more

globally can improve the performance [81, 114]. [35] represented each graph using a latent

variable model and then explicitly embedded them into feature spaces in a way similar to

graphical model inference. The results compared favorably with standard graph kernels in

both accuracy and efficiency.

However, graph kernels require at least quadratic time and space complexity to compute and

store the kernel matrices, which is unsuitable for modern large-scale practical problems. In

addition, existing graph kernels are often designed heuristically – no principled way exists to

measure graph similarities. This motivates people to study GNNs for graph classification.
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GNNs are actually closely related to a type of graph kernels based on structure propagation,

especially the Weisfeiler-Lehman (WL) subtree kernel [142] and the propagation kernel (PK)

[116]. To encode the structural information of graphs, WL and PK iteratively update a

node’s feature based on its neighbors’ features. WL operates on hard vertex labels, while PK

operates on soft label distributions. As this operation can be efficiently implemented as a

random walk, these kernels are efficient on large graphs. Compared to WL and PK, GNNs

has additional parameters W between propagations which are trained through end-to-end

optimization. This allows supervised end-to-end feature learning from the label information,

making it different from the two-stage framework of graph kernels.

2.1.2 Limitations of existing GNNs for graph classification

To use GNNs for graph classification, a pooling (readout) operation needs to be performed

to aggregate node features extracted by message passing layers into a graph representation.

Existing GNNs simply use summing or averaging. Two great limitations of using sum-

ming/averaging to aggregate node states are that 1) it loses much information of individual

nodes, and 2) it does not allow learning from the global graph topology. A graph may

have over hundreds or thousands of nodes, yet after summing/averaging, all the node states

are reduced to one single vector, which is a too large and too rough step for learning the

graph-level feature vector. In addition, the summing-based aggregation loses the graph

topology entirely. Specifically, although the final node states summarize the local topology

patterns around nodes, the global topology such as how nodes are positioned relatively to

each other within the graph and which nodes share symmetric structural roles within the

graph, etc., are all lost. Therefore, the summing-based aggregation can only classify graphs

based on local patterns, but loses the ability to learn from the more global graph topology.
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2.1.3 Deep Graph Convolutional Neural Network (DGCNN)

To address the problems of summing-based aggregation, we propose Deep Graph Convolutional

Neural Network (DGCNN). DGCNN uses a simplified message passing form, and a novel

sorting-based aggregation named SortPooling, which sorts vertex states according to vertices’

structural roles such that individual node information and the global topology are preserved.

Then, it applies 1-D convolutions to the node sequences to learn from the global graph

topology.

Message passing layers. We first introduce the message passing (graph convolution) layers

of DGCNN. For node v, the message passing takes the following form:

mt+1
v = 1

|Γ(v)|+ 1

(
ztv +

∑
u∈Γ(v)

ztu

)
, (2.1)

zt+1
v = f(Wtmt+1

v ), (2.2)

where f is an element-wise nonlinear transformation such as tanh, Wt is a learnable parameter

matrix. The above formulation first calculates the message mt+1
v by averaging the vertex

states of v and v’s neighbors. Then, a one-layer feedforward neural network is applied to

mt+1
v to output v’s state at next time step. It is a particular realization of (1.1) and (1.2),

working pretty well in practice.

If we vertically (row-wise) stack the node states ztv into a matrix Zt, where the node order is

the same as in the adjacency matrix A of the graph, then we can have a matrix formulation

of the above message passing:

Zt+1 = f(D̃−1ÃZtWt), (2.3)
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Original image Shuffled image

Figure 2.1: A consistent input ordering is crucial for CNNs’ successes on graph classification.
If we randomly shuffle the pixels of the left image, then state-of-the-art convolutional neural
networks (CNNs) will fail to recognize it as an eagle.

where Ã = A + I, D̃ is a diagonal degree matrix with D̃ii = ∑
j Ãij . It reduces to the vector

forms (2.1) and (2.2) if we split the above calculations into rows.

After multiple message passing layers, we concatenate the outputs Zt, t = 1, . . . , T horizontally,

written as Z1:T := [Z1, . . . ,ZT ]. In the concatenated output Z1:T ∈ Rn×c where n is the

number of nodes and c is the total number of feature channels, each row can be regarded as

a “feature descriptor” of a vertex, encoding its multi-hop local substructure information.

The SortPooling layer. Next, we introduce the SortPooling layer, which is used to replace

the plain summing layer in previous work. We notice that images and many other types of

data are naturally presented with some order. For example, image pixels are arranged in a

spatial order, and document words are presented in a sequential order. Figure 2.1 gives an

example. Graphs, on the other hand, usually lack a tensor representation with fixed ordering.

Thus, can we sort graph nodes ourselves to attach an order to graphs?

The main function of the SortPooling layer is to sort the feature descriptors, each of which

represents a vertex, in a consistent order before feeding them into 1-D convolutional layers.

The question is by what order should we sort the vertices? In image classification, pixels are

naturally arranged with some spatial order. In text classification, we can use dictionary order
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to sort words. In graphs, we can sort vertices according to their structural roles within the

graph. The structural roles of nodes can be given by the Weisfeiler-Lehman (WL) algorithm

[165], which iteratively encodes nodes’ neighborhoods into integer colors, so that the same

neighborhoods are encoded into the same color and different neighborhoods are encoded into

different colors. After convergence, the WL colors can mark the relative structural positions

of the nodes within the graph.

We notice that our message passing scheme shares the same idea as WL – it also iteratively

encodes neighborhoods into vertex states, except for using continuous hidden states instead

of integer colors and using a learnable encoding function. We thus can regard the hidden

states Zt, t = 1, . . . , T as the continuous WL colors, and use these continuous WL colors to

sort the vertices.

Given the n× c input Z1:T , where each row is a vertex’s feature descriptor and each column

is a feature channel, the output of SortPooling is a k × c tensor, where k is a user-defined

integer. In the SortPooling layer, the input Z1:T is first sorted row-wise according to ZT . We

can regard these final hidden states as the vertices’ most refined continuous WL colors, and

sort all the vertices using these final colors. This way, a consistent ordering is imposed for

graph vertices, making it possible to train traditional neural networks on the sorted graph

representations. Ideally, we need the graph convolution layers to be deep enough (meaning

T is large), so that ZT is able to partition vertices into different colors/groups as finely as

possible.

The vertex order based on ZT is calculated by first sorting vertices using the last channel of

ZT in a descending order. If two vertices have the same value in the last channel, the tie is

broken by comparing their values in the second to last channel, and so on. If ties still exist,

we continue comparing their values in ZT−1
i , ZT−2

i , and so on until ties are broken. Such an
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Figure 2.2: The overall structure of DGCNN. An input graph is first passed through multiple
message passing layers where node information is propagated between neighbors. Then
the vertex features are sorted and pooled with a SortPooling layer, and passed to 1-D
convolutional layers to learn a predictive model.

order is similar to the lexicographical order, except for comparing sequences from right to left.

We can prove that such a sorting scheme ensures permutation invariance which is important

for graph isomorphism.

In addition to sorting vertex features in a consistent order, the next function of SortPooling is

to unify the sizes of the output tensors. After sorting, we truncate/extend the output tensor

in the first dimension from n to k. The intention is to unify graph sizes, making graphs with

different numbers of vertices unify their sizes to k. The unifying is done by deleting the last

n− k rows if n > k, or adding k − n zero rows if n < k.

As a bridge between graph convolution layers and traditional layers, SortPooling has another

great benefit in that it can pass loss gradients back to previous layers by remembering the

sorted order of its input, making the training of previous layers’ parameters feasible.

After SortPooling, traditional 1-D convolutions are applied to the sorted node representations,

similar to how convolutional filters move on image pixels. Figure 2.2 illustrates the overall

architecture of DGCNN.

29



2.1.4 Training through backpropagation

The whole network can be trained efficiently through backpropagation. Let L denote the loss

of a graph sample. It is standard to compute the gradients of L w.r.t. the traditional layers’

parameters and inputs. Here we show how to do it for graph convolution and SortPooling

layers.

Let P ∈ {0, 1}k×n and Zsp ∈ Rk×
∑h

1 ct be the permutation matrix and output, respectively in

the forward propagation of SortPooling, where Pij = 1 if the jth row of Z1:h is ranked ith in

Zsp and 0 otherwise. We have

Zsp = PZ1:h, and ∂L
∂Z1:h = P>

∂L
∂Zsp . (2.4)

For the first graph convolution layer, we let V := D̃−1ÃXW. Thus, Z = f(D̃−1ÃXW) =

f(V). We have

∂L
∂X

= D̃−1Ã
∂L
∂V

W>,
∂L
∂W

= X>D̃−1Ã
∂L
∂V

, and ∂L
∂V

= ∂L
∂Z
� f ′(V). (2.5)

For the stacked graph convolution layers, we also let Vt := D̃−1ÃZtWt. Thus Zt+1 =

f(D̃−1ÃZtWt) = f(Vt). Here we need to further consider the gradients from the direct

connection between Zt and Z1:h. The complete loss gradient w.r.t. Zt is

∂L
∂Zt = D̃−1Ã

∂L
∂VtW

t> +
[
∂L
∂Z1:h

]
{t}
, and ∂L

∂Vt = ∂L
∂Zt+1 � f

′(Vt), (2.6)

where we use [ ∂L
∂Z1:h ]{t} to denote the ct columns in ∂L

∂Z1:h corresponding to Zt.

30



2.1.5 Discussion

Connection with Weisfeiler-Lehman subtree kernel

The Weisfeiler-Lehman subtree kernel [142] is a state-of-the-art graph kernel, which leverages

the Weisfeiler-Lehman (WL) algorithm [165] as a subroutine to extract multi-scale subtree

features for graph classfication.

The basic idea of WL is to concatenate a vertex’s color with its 1-hop neighbors’ colors as

the vertex’s WL signature, and then sort the signature strings lexicographically to assign

new colors. Vertices with the same signature are assigned the same new color. A WL

signature characterizes the height-1 subtree rooted at a vertex. The procedure is repeated

until the colors converge or reaching some maximum iteration h. In the end, vertices with the

same converged color share the same structural role within the graph and cannot be further

distinguished. A vertex color at any iteration t uniquely corresponds to a height-t subtree

rooted at the vertex.

WL is widely used in graph isomorphism checking: if two graphs are isomorphic, they will

have the same multiset of WL colors at any iteration. The WL subtree kernel uses this idea

to measure the similarity between two graphs G and G′ as follows:

k(G,G′) =
h∑
t=0

∑
v∈V

∑
v′∈V ′

δ(ct(v), ct(v′)), (2.7)

where ct(v) is the (integer) color of vertex v in the tth iteration, and δ(x, y) = 1 if x = y and 0

otherwise. That is, it counts the common colors of two graphs in all iterations. The intuition

is that two graphs are similar if they have many common subtrees rooted at their vertices,

which are characterized by colors (same color ⇔ same WL signature ⇔ same rooted subtree).
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The WL subtree kernel counts the common colors until iteration h in order to compare two

graphs at multiple scales.

To show the relation between the graph convolution in (2.3) and the WL subtree kernel, we

rewrite Yt := XtWt, and decompose (2.3) row-wise as follows:

Zt+1
i = f([D̃−1Ã]iYt) = f(D̃−1

ii (Yt
i +∑

j∈Γ(i)Yt
j)). (2.8)

In (2.8), we can view Yt
i as a continuous color of vertex i. In analogy to WL, (2.8)

also aggregates Yt
i and its neighboring colors Yt

j into a WL signature vector D̃−1
ii (Yt

i +∑
j∈Γ(i)Yt

j). The nonlinear function f maps unique WL signature vectors to unique continuous

new colors if f is injective. Therefore, the graph convolution (2.3) may be viewed as a “soft”

version of the WL algorithm.

The soft version of WL has two benefits over the original WL. First, the convolution parameters

Wt allow hierarchical feature extraction of nodes’ original information matrix X, and are

trainable through backpropagation, enabling better expressing power than the WL subtree

kernel. Second, the soft WL is easy to compute using sparse matrix multiplication, avoiding

the need to read and sort the possibly very long WL signature strings.

Permutation invariance of the learned graph representation

One important criterion of graph neural network design is that the network should map

isomorphic graphs to the same representation and output the same prediction, otherwise

any permutation in the adjacency matrix could result in a different prediction for a same

graph. For summing-based methods, this is not an issue, as summing is invariant to vertex

permutation. However, for sorting-based methods DGCNN and Patchy-san [121], additional

care is required. To ensure that isomorphic graphs are preprocessed to the same tensor,
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Patchy-san first uses the WL algorithm and then leverages Nauty, a graph canonization

tool [109]. Although Nauty is efficient enough for small graphs, the problem of graph

canonization is theoretically at least as computationally hard as graph isomorphism checking.

In comparison, we show that such a graph canonization step can be avoided in DGCNN.

DGCNN sorts vertices using the last graph convolution layer’s outputs, which we show can be

viewed as the continuous colors output by a “soft” WL. Thus, DGCNN is able to sort vertices

as a by-product of graph convolution, which avoids explicitly running the WL algorithm

like Patchy-san. Moreover, due to the sorting scheme in SortPooling, graph canonization is

no longer needed.

Theorem 2.1. In DGCNN, if two graphs G1 and G2 are isomorphic, their graph representa-

tions after SortPooling are the same.

Proof. Notice that the first phase’s graph convolutions are invariant to vertex indexing. Thus

if G1 and G2 are isomorphic, they will have the same multiset of vertex feature descriptors

after graph convolution. Since SortPooling sorts vertices in such a way that two vertices have

a tie if and only if they have exactly the same feature descriptor, the sorted representation

is invariant to which of the two vertices is ranked higher. Hence, G1 and G2 have the same

sorted representation after SortPooling.

Therefore, DGCNN needs to explicitly run neither WL nor Nauty, which frees us from

data preprocessing and external software, and provides a pure neural network architecture

for end-to-end graph classification. We also comment that although DGCNN sorts vertices

dynamically during training, the vertex order will gradually become stable with increasing

training epochs. This is because the parameters W are shared among all vertices. The

updating of W will increase or decrease the continuous WL colors of all vertices simultaneously.
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Moreover, the learning rate of W is iteratively decayed during training, making the overall

vertex order stable over the course.

2.1.6 Experimental results

We conduct experiments on benchmark datasets to evaluate the performance of DGCNN

against state-of-the-art graph kernels and other deep learning approaches. The code and

data are available at https://github.com/muhanzhang/DGCNN.

Comparison with graph kernels

Datasets. We use five benchmark bioinformatics datasets to compare the graph classifi-

cation accuracy of DGCNN with graph kernels. The datasets are: MUTAG, PTC, NCI1,

PROTEINS, D&D. MUTAG [38] is a dataset of 188 mutagenic aromatic and heteroaromatic

nitro compounds classified according to their mutagenic effects on a bacterium. PTC [156] is

a dataset of 344 chemical compounds classified according to their carcinogenicity for male and

female rats. NCI1 [161] contains anti-cancer screens for cell lung cancer and ovarian cancer

cell lines. PROTEINS and D&D are graph collections of chemical compounds classified into

two classes: enzyme and non-enzyme [41]. Graphs in these five bioinformatics datasets all

have vertex labels. Only MUTAG and PTC contain edge labels, which are not used in this

paper.

Baselines and experimental setting. We compare DGCNN with four graph kernels: the

graphlet kernel (GK) [143], the random walk kernel (RW) [159], the propagation kernel (PK)

[117], and the Weisfeiler-Lehman subtree kernel (WL) [142]. Due to the large literature, we

could not compare to every graph kernel, but to some classical ones and those closely related

to our approach. Following the conventional settings, we performed 10-fold cross validation
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with LIBSVM [21] (9 folds for training and 1 fold for testing) using one training fold for

hyperparameter searching, and repeated the experiments for 10 times (thus 100 runs per

dataset). The average accuracies and their standard deviations are reported. We searched

the height parameter of WL and PK in {0, 1, 2, 3, 4, 5}, and set the bin width w of PK to

0.001. We set the size of the graphlets for GK to 3. We set the decay parameter λ of RW to

the largest power of 10 that is smaller than the reciprocal of the squared maximum node

degree as suggested in [142].

For the proposed DGCNN, to make a fair comparison with graph kernels, we used a single

network structure on all datasets, and ran DGCNN using exactly the same folds as used

in graph kernels in all the 100 runs of each dataset. The network has four graph convolution

layers with 32, 32, 32, 1 output channels, respectively. For convenience, we set the last graph

convolution to have one channel and only used this single channel for sorting. We set the k

of SortPooling such that 60% graphs have nodes more than k. The remaining layers consist

of two 1-D convolutional layers and one dense layer. The first 1-D convolutional layer has

16 output channels followed by a MaxPooling layer with filter size 2 and step size 2. The

second 1-D convolutional layer has 32 output channels, filter size 5 and step size 1. The dense

layer has 128 hidden units followed by a softmax layer as the output layer. A dropout layer

with dropout rate 0.5 is used after the dense layer. We used the hyperbolic tangent function

(tanh) as the nonlinear function in graph convolution layers, and rectified linear units (ReLU)

in other layers. Stochastic gradient descent (SGD) with the ADAM updating rule [76] was

used for optimization. The only hyperparameters we optimized are the learning rate and

the number of training epochs (details in the supplementary material). We implemented

SortPooling and graph convolution layers using Torch [33] as standard nn modules, which

can be seamlessly added to existing Torch architectures.
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Table 2.1: DGCNN’s comparison with graph kernels.

Dataset MUTAG PTC NCI1 PROTEINS D&D

Nodes (max) 28 109 111 620 5748
Nodes (avg.) 17.93 25.56 29.87 39.06 284.32
Graphs 188 344 4110 1113 1178

DGCNN 85.83±1.66 58.59±2.47 74.44±0.47 75.54±0.94 79.37±0.94

GK 81.39±1.74 55.65±0.46 62.49±0.27 71.39±0.31 74.38±0.69
RW 79.17±2.07 55.91±0.32 >3 days 59.57±0.09 >3 days
PK 76.00±2.69 59.50±2.44 82.54±0.47 73.68±0.68 78.25±0.51
WL 84.11±1.91 57.97±2.49 84.46±0.45 74.68±0.49 78.34±0.62

Results. Table 2.1 lists the results. As we can see, although a single structure was used for

all datasets, DGCNN achieved highly competitive results with the compared graph kernels,

including achieving the highest accuracies on MUTAG, PROTEINS, and D&D. Compared

to WL, DGCNN has higher accuracies on all datasets except for NCI1, indicating that

DGCNN is able to utilize node and structure information more effectively. Note that the

height parameters in PK and WL were tuned individually for each dataset by searching from

{0,1,2,3,4,5}, while DGCNN used a single height h=4 for all datasets. Thus, we expect

better performance if we use different structures for different datasets.

We compare the efficiency of DGCNN with one of the most efficient graph kernels, the WL

kernel, on D&D, the benchmark dataset with the largest graph size. We omit the SVM

training time of WL, since the computing time is dominated by the kernel computation.

WL takes 252 seconds to construct the kernel matrix. For DGCNN, the training time

varies with the iteration number. Here we limit the iteration number to 10, under which

condition DGCNN already achieves comparable or better accuracy than WL. DGCNN

takes 156 seconds, meaning that it is able to achieve competitive efficiency with the fastest

graph kernels. Moreover, DGCNN is trained through SGD, avoiding the at least quadratic

complexity w.r.t. the number of graphs required for graph kernels. Therefore, we expect to

see a much greater advantage when applying to industrial-scale graph datasets.
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DGCNN’s comparison with other deep approaches

Datasets. We compare DGCNN with other deep learning approaches for graph classification

on six datasets, including three benchmark bioinformatics datasets: NCI1, PROTEINS, and

D&D, as well as three social network datasets: COLLAB, IMDB-B, IMDB-M [171]. Graphs

in these social network datasets do not have vertex labels, thus are pure structures. COLLAB

is a scientific collaboration dataset where ego-networks are generated for researchers and

are classified into three research fields. IMDB-B is a movie collaboration dataset where

ego-networks for actors/actresses are classified into Action or Romance genres. IMDB-M

is a multi-class version of IMDB-B containing genres Comedy, Romance, and Sci-Fi. The

COLLAB, IMDB-B, and IMDB-M are from [171]. Graphs in these social network datasets

contain neither vertex labels nor edge labels, thus are pure structures. We exclude the

two smallest bioinformatics datasets: MUTAG and PTC, which only have a few hundred

examples, since deep learning methods easily overfit them, reporting abnormally high variance

in previous works [121].

Baselines and experimental setting. We compare DGCNN with four other deep learning

approaches: including three recent neural network approaches for graph classification (PSCN,

DCNN, and ECC), and a deep graph kernel approach (DGK). Among them, Patchy-

san (PSCN) [121] is the closest to ours. Diffusion-CNN (DCNN) [7] uses diffusion graph

convolutions to extract multi-scale substructure features. ECC [145] can be viewed as a

hierarchical version of the Neural Fingerprints [43]. Both DCNN and ECC use summed node

features for graph classification. The Deep Graphlet Kernel (DGK) [171] learns substructure

similarities via word embedding techniques. For PSCN, ECC, and DGK, we report the best

results from the papers, as they were under the same setting as ours. For DCNN, since the

original experiment split the training/validation/testing data equally, we redid the experiment
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Table 2.2: Comparison with other deep learning approaches.

Dataset NCI1 PROTEINS D&D COLLAB IMDB-B IMDB-M

Nodes (max) 111 620 5748 492 136 89
Nodes (avg.) 29.87 39.06 284.32 74.49 19.77 13.00
Graphs 4110 1113 1178 5000 1000 1500

DGCNN 74.44±0.47 75.54±0.94 79.37±0.94 73.76±0.49 70.03±0.86 47.83±0.85

PSCN 76.34±1.68 75.00±2.51 76.27±2.64 72.60±2.15 71.00±2.29 45.23±2.84
DCNN 56.61±1.04 61.29±1.60 58.09±0.53 52.11±0.71 49.06±1.37 33.49±1.42
ECC 76.82 – 72.54 – – –
DGK 62.48±0.25 71.68±0.50 – 73.09±0.25 66.96±0.56 44.55±0.52

DGCNN (sum) 69.00±0.48 76.26±0.24 78.72±0.40 69.45±0.11 51.69±1.27 42.76±0.97

using the standard setting. Among these methods, PSCN and ECC can leverage additional

edge features. These augmented results are not reported here since edge features are missing

from most graph datasets and all the other compared methods do not leverage edge features.

For DGCNN, we still use the same structure as when comparing with graph kernels, in order

to show its robust performance across different datasets under a single structure. Since the

new added social network datasets do not contain node labels, we set the k of SortPooling

such that 90% graphs have nodes more than k in order to compensate the loss of node

features.

Results. Table 2.2 lists the results. DGCNN shows the highest accuracies on PROTEINS,

D&D, COLLAB, and IMDB-M. Compared to Patchy-san, the improvement of DGCNN can

be explained as follows. 1) By letting gradient information backpropagate through SortPooling,

DGCNN enables parameter training even before the sorting begins, thus achieving better

expressibility. 2) By sorting nodes on the fly, DGCNN is less likely to overfit a particular

node ordering. In comparison, Patchy-san sticks to a predefined node ordering. Another

huge advantage of DGCNN is that it provides a unified way to integrate preprocessing into a

neural network structure. This frees us from using any external software.

38



DGCNN shows significant accuracy improvement over DCNN which uses summed node

features for classification. Another summing-based method, ECC, is slightly better on NCI1,

but much worse on D&D. These results meet our expectation since summing will lose much

individual node and global topology information. Compared to DGK, DGCNN shows better

performance on all the reported datasets.

To demonstrate the advantage of SortPooling over summing, we further list the results of

DGCNN (sum), which replaces the SortPooling and later 1-D convolution layers in DGCNN

with a summing layer. As we can see, the performance worsens a lot in most cases.

Ablation studies of SortPooling

In order to better understand the effect of SortPooling, we conducted four supplementary

experiments on MUTAG. In the first experiment, we turned off SortPooling and fed graphs

into DGCNN with fixed random vertex orders. In the second experiment, we turned off

SortPooling, and fed into DGCNN graphs with vertex orders calculated by the Weisfeiler-

Lehman algorithm in a preprocessing step. In the third experiment, we replaced SortPooling

with the summed node features as the input to later layers. In the fourth experiment, we

turned on SortPooling, but did not update the weights of the previous graph convolution

layers (the weights are fixed all-one matrices).

We show the training curves of the four experiments compared to using the original SortPooling

in Figure 2.3. As we can see, the validation loss curve of using the original SortPooling is

always lower than those without SortPooling. In the first experiment, we can see that using

random vertex orders resulted in easily overfitting the training data. This is because training

and validation graphs are fed into neural networks without a consistent vertex order. This

experiment verifies the importance of the “sort” function in SortPooling, which provides a
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Figure 2.3: Training curves of SortPooling compared with 1) random order, 2) precomputed
WL order, 3) summed node features, and 4) fixed weights.

consistent vertex ordering based on soft WL colors. In the second experiment, the training

curve of SortPooling coincides well with that of using precomputed WL orders. This meets

our expectation since SortPooling is designed to use the continuous WL colors for sorting.

Interestingly, we find that the validation curve of SortPooling is lower than that of using the

precomputed WL orders. This is because SortPooling has an additional regularization effect

by dynamically sorting vertices. By dynamically sorting vertices during training, vertices are

less sensitive to the precomputed fixed orders, which leads to a lower risk of overfitting. This

experiment verifies the regularization effect of SortPooling. In the third experiment, we can

see that using summed node features have consistently higher training and validation loss

than SortPooling, meaning that it is much more difficult for summing to fit the data than
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Table 2.3: Accuracy results on MUTAG for the supplementary experiments.

Random order Precomputed
WL order

Summed node
features

Fixed weights SortPooling

Accuracy 78.72±3.04 82.56±2.71 78.50±2.43 82.50±2.74 85.83±1.66

for sorting. By summing, individual vertex features are averaged out instead of being kept,

leading to a great loss of information. This experiment verifies SortPooling’s advantages

of keep more vertex information thus achieving higher model capacity. We used the fourth

experiment to verify the usefulness of training the graph convolution parameters. As we can

see, the inclusion of trainable graph convolution parameters leads to better expressing ability.

This experiment verifies the fourth advantage of SortPooling, i.e., allowing backpropagation

training of previous graph convolution layers’ parameters.

With the same experimental settings, we further conducted 10 times 10-fold cross validations

to test each variant’s performance. The accuracies and standard deviations are shown in

Table 2.3. As we can see, using random vertex orders or summed node features have much

lower accuracies than other variants. Compared to precomputed WL orders, the network

with SortPooling increases the accuracy by 3%. Compared to using fixed weights in graph

convolutions, SortPooling which backpropagates loss gradients and updates weights also

shows about 3% accuracy improvement.

2.1.7 Conclusion

In this section, we have introduced a novel graph neural network architecture, DGCNN,

for graph classification. DGCNN has a number of advantages over existing graph neural

networks. First, it directly accepts graph data as input without the need of first transforming

graphs into tensors, making end-to-end gradient-based training possible. Second, it enables

learning from global graph topology by sorting vertex features instead of summing them up,
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which is supported by a novel SortPooling layer. Finally, it achieves better performance than

existing methods on many benchmark datasets.

2.2 Graph Neural Networks for Medical Ontology Em-

bedding

2.2.1 Introduction

In recent years, tremendous effort has been put into developing intelligent healthcare prediction

systems leveraging the power of big data and machine learning [68, 79]. Existing systems often

face one challenge: how to effectively combine power of data-driven algorithms with domain

knowledge from human experts for a better predictive performance. A pure data-driven

model often requires a huge data volume to achieve a satisfying performance, and typically

has a poor performance when predicting cases rarely present in the training data [27]. A

proper incorporation of structured domain knowledge, such as the categorization or grouping

relationships among different medical concepts might alleviate such problems. For example,

disease a and b are both subclasses of disease class c. Then, we may expect a and b to have

similar properties, so that even b rarely appears in the training data, we could still learn from

a to predict b.

Luckily, there exist many well-established ontologies of medical concepts encoding such

structured domain knowledge. Examples include International Classification of Diseases

(ICD) [122], Clinical Classifications Software (CCS) [151], Unified Medical Language System

(UMLS) [13], Systematized Nomenclature of Medicine-Clinical Terms (SNOMED-CT) [151],

and National Drug Code (NDC) etc. These ontologies often have a hierarchical top-down

structure, which systematically organize medical concepts into categories and subcategories
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Figure 2.4: Comparison between Gram and HAP. Gram only considers a node’s unordered
ancestor set to compute its embedding. HAP hierarchically propagate information across the
graph. In the bottom-up round, each parent aggregates information from its children. In the
top-down round, each child aggregates information from its parents. The final embedding of
each node effectively absorbs information from not only its ancestors, but the entire graph
(ancestors, descendants, siblings and others).

of different levels from general to specific. Such hierarchical structures make identifying

particular concepts and searching related concepts much easier. The contained structured

domain knowledge can also potentially advance the power of healthcare prediction models.

For example, nodes (medical concepts) close to each other in an ontology tend to be assigned

to similar patients.

To incorporate the domain knowledge within an ontology into a machine learning algorithm,

Gram, a graph-based attention model has been proposed recently [28]. Gram learns an

embedding for each medical concept by adaptively summing its ancestors’ embeddings via

an attention mechanism, so that the parent-child relations along a node’s paths to the root

are encoded into the node’s embedding. Further, two leaf concepts sharing many common

ancestors tend to have similar embeddings, which implicitly transfers knowledge between

concepts and augments those medical concepts with few occurrences in the training data.

As a first attempt to learn from medical ontologies, Gram has several shortcomings. Firstly,

Gram does not consider the order of a node’s ancestors – a node’s lower ancestors and

higher ancestors are symmetrically treated in the attention mechanism, which loses the

hierarchical information. Secondly, Gram only considers the ancestor information of a node.
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It oversimplifies the ontology structure by ignoring the descendants and siblings of a node

completely. Both of the shortcomings can be addressed by a more advanced graph attention

model considering the full hierarchical structure.

In this paper, we propose the Hierarchical Attention Propagation (HAP) model. HAP does

two rounds of knowledge propagation to learn embeddings of medical concepts from the

entire ontology: first a bottom-up propagation from leaves to root, and second a top-down

propagation from root to all leaves. In the bottom-up propagation, each node updates its

embedding by adaptively combining its children’s embeddings using an attention mechanism.

In the top-down propagation, nodes adaptively combine their parents’ embeddings using

the same attention mechanism. Such a two-round propagation is inspired by the Belief

Propagation algorithm [125] in graphical models, which is widely used to perform exact

inference on tree/polytree models. The two-round knowledge propagation process in HAP

effectively distributes a node’s attention across the graph, making a node’s final embedding

no longer only a combination of its ancestors but aggregate information over the entire

ontology. We prove that HAP is strictly more expressive than Gram, allowing any node

embedding to reconstruct the complete ontology. Experimental results on two sequential

procedure/diagnosis prediction tasks reveal HAP’s improved performance over Gram and

other baselines.

2.2.2 Preliminaries

Notations

We use c1, c2, . . . , c|C| ∈ C to denote the set of all leaf medical codes of a medical ontology G,

and use c|C|+1, c|C|+2, . . . , c|C|+|C′| ∈ C ′ to denote the non-leaf nodes (which are ancestors of the

leaf nodes). The ontology G is expressed as a directed acyclic graph (DAG), where nodes
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are hierarchically arranged in different levels, with the top level consisting of the single root

node and the bottom level consisting of all the leaf nodes C. Examples include the ICD-9,

ICD-10 and CCS. We use knowledge DAG to refer to the ontology G. In the knowledge DAG,

a parent represents a related but more general concept over its children, such as the class of

a disease or the category of a procedure. We use A(i) to denote the set of ci’s ancestors and

ci itself. We use P (i) and C(i) to denote the parent set and children set of ci (both including

ci itself), respectively.

We will consider sequential visit data from patients’ electronic health records (EHR) over

time. The sequential visit data of a patient is denoted by V1, V2, . . . , VT , where each visit

contains a subset of medical codes Vt ⊆ C, indicating the procedures/diagnoses that the

patient receives at the tth visit. Vt can be represented as a binary vector xt ∈ {0, 1}|C|, where

the ith element is 1 if ci ∈ Vt. For ease of presentation, we will propose our algorithms for a

single patient in the rest of the paper. The sequential procedure/diagnosis prediction task is

to predict the procedure/diagnosis codes Vt+1 given the past visits V1, V2, . . . , Vt.

Gram for medical ontology embedding

To leverage the parent-child relationships of the ontology, Gram uses an attention mechanism

to adaptively combine a node’s ancestors’ embeddings as its new embedding. More specifically,

in the knowledge DAG, every node ci is first assigned an initial basic embedding ei (can be

random embeddings or pretrained embeddings from other sources of information). Then, the

final embedding gi for ci is given by a weighted sum of {ej
∣∣∣j ∈ A(i)}:

gi =
∑
j∈A(i)

αijej, (2.9)
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where the weights are computed by the attention mechanism:

αij = exp(f(ei, ej))∑
k∈A(i) exp(f(ei, ek))

. (2.10)

Here, f(ei, ej) is a multi-layer perceptron (MLP) which outputs a scalar value representing

the raw attention between ei and ej. The Softmax normalizes the attention weights so that

they sum to 1.

The new embeddings are then used to represent the medical codes in the sequential visit data,

which are fed to a RNN to train a sequential diagnosis prediction model in an end-to-end

fashion. By leveraging the ontology, Gram has improved predictive performance, especially for

predicting medical codes less observed in the training data. However, since only the ancestors

of a node are considered, the domain knowledge within the ontology is not fully leveraged.

Further, the ancestors from lower levels and higher levels are treated symmetrically in (2.9).

Thus, the order of a node’s ancestors is completely ignored, which might lose important

information about the hierarchy.

2.2.3 Methodology

In this paper, we propose Hierarchical Attention Propagation (HAP), a novel medical ontology

embedding method which 1) fully leverages the knowledge DAG, and 2) respects the node

ordering within the hierarchy. HAP does two rounds of knowledge propagation to iteratively

update each level’s nodes’s embeddings: first a bottom-up propagation and second a top-down

propagation. A comparison between HAP and Gram is illusrated in Figure A.1.

Suppose the ontology has L levels of nodes, where level 1 consists of the single root node

and level L consists of only leaf medical codes. Level 2, 3, . . ., L − 1 can contain either

intermediate category nodes or leaf medical codes (because some medical codes do not have
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a full L levels of hierarchy). In the beginning, every node embedding gi is initialized using

a basic embedding ei. In the bottom-up propagation round, we sequentially update the

embeddings of nodes from level L− 1, level L− 2, . . ., until level 1. For node ci from level

l − 1, we update its embedding by adaptively combining its current embedding with its

children’s embeddings from level l using an attention mechanism, given by:

g(l−1)
i =

∑
j∈C(i)

αijg(l)
j , (2.11)

where g(l)
j ∈ Rdg denotes the embedding of node j before we start updating nodes from level

l − 1. We use dg to denote the embedding size. The attention weight αij is given by:

αij =
exp(f(g(l)

i ,g
(l)
j ))∑

k∈C(i) exp(f(g(l)
i ,g

(l)
k ))

, (2.12)

where f(g(l)
i ,g

(l)
j ) is an MLP to compute the scalar raw attention between g(l)

i and g(l)
j . In

this work, we use a two layer neural network following [28]:

f(g(l)
i ,g

(l)
j ) = u>a tanh(Wa · concat(g(l)

i ,g
(l)
j ) + ba), (2.13)

where Wa ∈ Rda×2dg is the weight matrix for the column concatenation of g(l)
i and g(l)

j ,

ba ∈ Rda is the bias, and ua ∈ Rda is the weight vector for generating the scalar raw attention.

Here, we use da to denote the hidden size of f .

The bottom-up propagation starts from the second-to-last level, and goes all the way up to

the root. The updating of nodes from the same level can be performed in parallel, while the

updating of an upper level of nodes must wait until all its lower levels have been updated.
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After the bottom-up propagation, HAP performs the second round of propagation in a

top-down manner. Given the embeddings computed by the bottom-up propagation, we

sequentially update the embeddings of nodes from level 2, level 3, . . ., until level L. For

node ci from level l + 1, we update its embedding using a similar attention mechanism by

adaptively combining its own embedding with its parents’ embeddings from level l:

g(l+1)
i =

∑
j∈P (i)

αijg(l)
j , (2.14)

where g(l)
j denotes the embedding of node j before we start updating nodes from level l + 1.

The attention weight αij is:

αij =
exp(f(g(l)

i ,g
(l)
j ))∑

k∈P (i) exp(f(g(l)
i ,g

(l)
k ))

, (2.15)

where f has the same form as in Equation (2.13), with a different set of parameters.

Finally, after the two rounds of propagation, each node has propagated its “attention” across

the entire knowledge DAG. Thus, the final embedding of each node effectively absorbs

knowledge from not only its ancestors, but also its descendants, siblings, and even some

distant nodes. Furthermore, as the propagation order is strictly aligned with the hierarchy,

the node ordering information is kept. For instance, in the top-down propagation phase,

the ancestors of a node sequentially pass their information down level by level, rather than

passing in one shot as in (2.9). This enables HAP to discriminate ancestors/descendants

from different levels and encode the ordering information.

The final medical code embeddings are used in the sequential procedure/diagnosis prediction

tasks. Following [28], we adopt an end-to-end RNN framework. The final embeddings

g1,g2, . . . ,g|C| are concatenated column-wise to form an embedding matrix G ∈ Rdg×|C|.
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Remember each visit record Vt can be represented as a multi-hot vector xt. To get an

embedding vector vt for all medical codes in Vt, we multiply G with xt and apply a nonlinear

transformation by:

vt = tanh(Gxt). (2.16)

Then, we sequentially feed v1,v2, . . . ,vT into a RNN, which outputs the hidden state for each

visit. The hidden state ht for vt is given by feeding the visit embeddings from all timestamps

up to t:

ht = RNN(v1,v2, . . . ,vt). (2.17)

Then the prediction for the next timestamp t+ 1 is given by:

ŷt = x̂t+1 = Softmax(Wht + b), (2.18)

where W ∈ R|C|×dh and b ∈ Rdh are the weight and bias of the final prediction network, and

dh is the dimension of the RNN’s hidden states. The prediction ŷt is a vector of dimension

|C|, indicating the probability of each medical code in visit t+ 1. Note that following Gram,

we use Softmax instead of dimension-wise sigmoid to predict multiple medical codes in the

next visit as it showed better performance.

We use batch gradient descent to minimize the prediction loss of all timestamps (except

timestamp 1). The prediction loss for a single patient is given by:

L(x1,x2, . . . ,xT ) =− 1
T − 1

T−1∑
t=1

[
x>t+1 log(ŷt)

+ (1− xt+1)> log(1− ŷt)
]
. (2.19)
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Following Gram, we not only train the model weights, but also train the basic embeddings

ei. The initialization of the basic embeddings follow the same procedure as in Gram, i.e.,

using the GloVe [126] embeddings learned from the cooccurrence matrix of augmented codes

within the visit records. See section 2.4 of [28] for more details.

2.2.4 Theoretical analysis

In this subsection, we theoretically analyze the properties of our proposed Hierarchical

Attention Propagation model, and show it has strictly higher expressive ability than Gram in

terms of encoding knowledge DAGs.

Firstly, we use a counter example to show that recovering the knowledge DAG from Gram

embeddings is not always possible due to its not encoding the order of the ancestors.

Proposition 2.1. With the embeddings g1,g2, . . . ,g|C| computed by Gram (Equation (2.9)),

we cannot always perfectly reconstruct the knowledge DAG.

Proof. Consider two DAGs, A → B → C and B → A → C. In both DAGs, the leaf node

C gets the same embedding using Equation (2.9). Thus, from C’s embedding we cannot

differentiate which is the original DAG.

This counter-example reveals the limited expressive ability of Gram due to its ignorance

of the node ordering and improper use of the hierarchy. It indicates that, after running

Gram, the ontology information is not fully kept in the medical code embeddings. Thus, the

Gram embeddings are essentially a lossy encoding of the knowledge DAG. Next, we study

the expressive ability of HAP. In contrast to Gram, we show that from the HAP embeddings

we can perfectly reconstruct the knowledge DAG.
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Theorem 2.2. Assume the basic embeddings ei are unique identifiers of the medical concepts

they represent. Then, from any embedding gi computed by HAP we can always perfectly

reconstruct the knowledge DAG, given that every update in (2.11) and (2.14) is injective.

Proof. In the bottom-up propagation, since every update in (2.11) is injective, from the

result g(l−1)
i of (2.11) we can reversely infer g(l)

i and {g(l)
j

∣∣∣j ∈ C(i)}. Consider any node i

from level L− 1. From its updated embedding g(L−1)
i we can always reconstruct the rooted

sub-DAG formed by itself and its children. Now suppose every embedding g(l)
j from level

l injectively encodes the sub-DAG formed by j and all of its descendants. Since Equation

(2.11) is injective, any embedding g(l−1)
i from level l− 1 also injectively encodes the sub-DAG

formed by i and all of its descendants. Applying structural induction, we get the conclusion

that the root embedding at the end of the bottom-up propagation injectively encodes the

entire knowledge DAG.

In the top-down propagation, since every update in (2.14) is also injective, any node embedding

will injectively encode the sub-DAG formed by itself and all of its ancestors (including the

root) represented by their new embeddings from the bottom-up propagation. Thus, after

the top-down propagation, we can reconstruct the entire knowledge DAG from any node

embedding (by recovering the root embedding).

The above theorem demonstrates that the medical code embeddings learned by HAP are

strictly more expressive than those learned by Gram. It indicates that HAP embeddings can

keep all the knowledge from the ontology – they are an lossless encoding of the knowledge

DAG. Note that Theorem 2.2 requires the update functions in (2.11) and (2.14) to be injective.

We now prove that the attention mechanism can be an injective mapping. First, we need the

following lemma.
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Lemma 2.1. Suppose a, b, a′, b′ ∈ Z+, a 6= b, a′ 6= b′. Then 2a − 2b = 2a′ − 2b′ if and only if

a = a′, b = b′.

Proof. Firstly, it is straightforward that a = a′, b = b′ ⇒ 2a − 2b = 2a′ − 2b′ . We now prove

that 2a − 2b = 2a′ − 2b′ only if a = a′, b = b′.

Since a 6= b and a′ 6= b′, if a > b and a′ < b′ or a < b and a′ > b′, the equation 2a−2b = 2a′−2b′

will not hold. Thus, w.l.o.g., we assume a > b and a′ > b′. We have

2b(2a−b − 1) = 2b′(2a′−b′ − 1). (2.20)

We will prove a = a′ and b = b′ by contradiction. Assume b 6= b′. Without loss of generality,

we let b > b′. Then,

2b−b′(2a−b − 1) = (2a′−b′ − 1). (2.21)

In the above equation, LHS is a product of an even number and an odd number which is

even, while RHS is an odd number. Thus we have reached a contradiction, which means that

b = b′. Eliminating b, b′ from 2a − 2b = 2a′ − 2b′ , we have a = a′ too.

Now we prove that the update functions in (2.11) and (2.14) can indeed be injective.

Theorem 2.3. There exists a function f such that the update function

U(gi, {gj|j ∈S}) :=
∑
j∈S∪i

αijgj, (2.22)

where αij =
exp(f(gi,gj))∑

k∈S∪i exp(f(gi,gk))
, (2.23)
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is injective w.r.t. its inputs (gi, {gj|j ∈ S}), where gi and gj are unique rational embeddings

of the knowledge DAG nodes and S 6= ∅, i /∈ S.

Proof. Since an ontology has a limited number of concepts, gi and gj are from a countable

universe. Thus, we can construct a function φ such that φ(i, j) maps every ordered (gi,gj)

pair to a unique positive integer. Assume there are n different gi choices in the countable

universe. Then, φ(i, j) has n2 possible outputs.

Having φ(i, j), we will construct f such that αij is unique for every combination of (gi,gj)

and {gk|k ∈ S ∪ i}. We let

f(gi,gj) = 2φ(i,j). (2.24)

Then, the attention weight αij becomes

αij = exp(2φ(i,j))∑
k∈S∪i exp(2φ(i,k))

= 1
1 +∑

k∈S∪i,k 6=j exp(2φ(i,k) − 2φ(i,j)) . (2.25)

According to Lemma 2.1, 2φ(i,k) − 2φ(i,j) is unique for each ordered tuple of (i, j, k) when

j 6= k. Considering the linear independence among integer powers of e, the summation in

the denominator of the above equation constitutes a unique irrational representation for

(i, j, {k|k ∈ S}). This means αij is a unique irrational number for each different (i, j, S) (the

reciprocal of an irrational number is also irrational). Under fixed i and S, a unique irrational

αij is associated with each gj. Besides, αij for different j are linearly independent using

rational coefficients (only multiplying αij by integer powers of e can we recover other αij).

Thus, the summation ∑j∈S∪i αijgj is a unique representation for (i, S, {j ∈ S ∪ i}), which
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means it is a unique representation for (i, S). Therefore, U(gi, {gj|j ∈ S}) is an injective

function.

To model such an f , we use an MLP (2.13) with trainable weights thanks to the universal

approximation theory [61]. Note that Theorem 2.3 requires the node embeddings gi to be

rational, which can be easily satisfied for the initial basic embeddings. For intermediate

embeddings, the update functions in (2.11) and (2.14) will output irrational vectors. We

can apply another MLP to the updated vectors to map them back to rational vectors. In

practice, however, we find that the current scheme without another MLP already works well.

2.2.5 Experiments

Experimental setup

Prediction tasks. We use two datasets to evaluate the performance of HAP: 1) We conduct

a sequential procedure prediction task using the ACTFAST datset, which contains procedure

codes of 14.9K patients who received surgery with anesthesia at Barnes-Jewish Hospital

between June 2012 and August 2016. Given the history visit records of a patient’s ICD9

procedure codes, we aim to predict all the procedure codes she/he will receive in the next

visit. 2) We conduct a sequential diagnosis prediction task using the open-source MIMIC-III

dataset [70], which contains the medical records of 7.5K intensive care unit (ICU) patients

over 11 years. Given the history of a patient’s ICD9 diagnosis codes in each visit, we aim to

predict all the diagnosis codes she/he will receive in the next visit. A summary of the two

datasets are provided in Table 2.4. Note that our setting is different from the setting of the

Gram paper [28], the tasks of which were to predict CCS single-level groups of medical codes

instead of the exact codes. This means that the number of possible target codes was much
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smaller than ours. In other words, our tasks are more difficult and test a method’s precise

prediction abilities. Our setting is also more natural and practical.

Table 2.4: Statistics of ACTFAST and MIMIC-III datasets.

Dataset ACTFAST MIMIC-III

# of patients 14,878 7,499
# of visits 39,803 19,911
Avg. # of visits per patient 2.68 2.66
# of unique ICD9 codes 2,034 4,893
Avg. # of codes per visit 2.32 13.1
Max # of codes per visit 3 39

For both datasets, we filter out patients with less than two visits.

We calculate Accuracy@k for each medical code. For each visit Vt, we get a 1 if the target

medical code appears in the top k predictions and 0 otherwise. Then, we report the overall

Accuracy@k for all medical codes as well as Accuracy@k for grouped medical codes. To

calculate grouped Accuracy@k, we first sort all possible target codes by their counts in the

training data. Then, we divide all target codes into four groups [0, 25], [25, 50], [50, 75], [75, 100]

with each group’s codes having the same summed counts. That is, group [0, 25] contains the

the rarest medical codes which constitute 25% of the code counts in the training data. Group

[75, 100], on the other hand, contains the most frequent codes which in total constitute 25%

of the training codes. For the ACTFAST data, we calculate Accuracy@5. For the MIMIC-III

data, we calculate Accuracy@20 considering the large average number of ICD9 codes per

visit.

We use the CCS multi-level procedure hierarchy2 (L = 5) as our knowledge DAG for the

ACTFAST dataset, and use the CCS multi-level diagnosis hierarchy3 (L = 6) as our knowledge

DAG for the MIMIC-III dataset.
2https://www.hcup-us.ahrq.gov/toolssoftware/ccs/AppendixDMultiPR.txt
3https://www.hcup-us.ahrq.gov/toolssoftware/ccs/AppendixCMultiDX.txt
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We randomly split each dataset into the training, validation and test sets using 0.7:0.1:0.2

ratio. We train a model with the training set for 50 epochs, and use the model parameters

at the epoch with the smallest validation loss to evaluate on the test set. We repeat each

experiment for five times with different random seeds (thus using five different data splits in

total). The average test accuracies and standard deviations are reported in the paper.

Models for comparison. We include the following models for comparison.

• HAP: The proposed Hierarchical Attention Propagation model. All levels of the

hierarchy are used.

• HAP (lv3): The proposed HAP model using only the lowest three levels of the hierarchy.

That is, the bottom-up propagation stops in level L-2, and the top-down propagation

begins in level L-2 too. Using only lower levels of the hierarchy can sometimes provide

sufficient domain knowledge while reducing the computation complexity.

• HAP (lv2): The proposed HAP model using only the lowest two levels of the hierarchy.

• Gram: The Graph-based Attention Model described in Preliminaries. A leaf code’s

embedding gi is a weighted sum of the basic embeddings of itself and its ancestors.

• Gram (lv3): The Gram model using only the lowest three levels of the hierarchy. A

leaf code’s embedding gi is a weighted sum of the basic embeddings of itself and its

ancestors within the lowest three levels.

• Gram (lv2): The Gram model using only the lowest two levels of the hierarchy.

• RNN: A leaf embedding gi takes its own basic embedding without considering the

hierarchy. The basic embeddings are initialized using the GloVe embeddings learned

from the cooccurrence matrix of leaf concepts, and are trained together with the RNN.
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Table 2.5: Grouped and overall Accuracy@5 of sequential procedure prediction on ACTFAST
data.

Model 0-25 25-50 50-75 75-100 Overall

HAP 0.2036±0.0178 0.5064±0.0143 0.6284±0.0030 0.7325±0.0194 0.5169±0.0126
HAP (lv3) 0.1824±0.0107 0.4837±0.0107 0.6253±0.0026 0.7380±0.0179 0.5066±0.0094
HAP (lv2) 0.2098±0.0120 0.5143±0.0079 0.6353±0.0112 0.7359±0.0221 0.5229±0.0123

Gram 0.1553±0.0187 0.4619±0.0181 0.6209±0.0021 0.7326±0.0207 0.4921±0.0126
Gram (lv3) 0.0926±0.0120 0.3516±0.0167 0.5577±0.0065 0.7230±0.0148 0.4308±0.0116
Gram (lv2) 0.2081±0.0035 0.5113±0.0143 0.6323±0.0051 0.7357±0.0245 0.5210±0.0081
RNN 0.1967±0.0055 0.5124±0.0162 0.6336±0.0011 0.7365±0.0179 0.5189±0.0084
Random 0.1984±0.0137 0.5001±0.0113 0.6215±0.0057 0.7298±0.0160 0.5114±0.0105
Rollup 0.1020±0.0068 0.3880±0.0172 0.5646±0.0093 0.7158±0.0155 0.4419±0.0078

• Random: Each leaf concept is assigned a fixed random embedding gi. This is to

compare HAP with a naive baseline with no embedding learning.

• Rollup: Each leaf concept is assigned a fixed random embedding which is the same as

its parent’s embedding. This is to compare HAP with a common grouping scheme.

All models are implemented with Theano and optimized using Adadelta with a mini-batch

size of 100 patients. We ensure the common hyperparameters are the same for all models:

All models use the same GRU-based RNN with a hidden size dh = 400 and a dropout rate of

0.4. The embedding size dg is 400 for all models. For HAP and Gram, the attention weights

Wa,ba,ua have a dimension da = 100.

Prediction performance

We present the sequential procedure prediction results on ACTFAST in Table 2.5, and present

the sequential diagnosis prediction results on MIMIC-III in Table 2.6. In both tasks, HAP

and its variants show advantages over other models. The gain is greater for less frequent

codes. For example, in MIMIC-III, the HAP (lv3) is nearly twice more accurate than the

Random baseline in the 0-25 percentile range, and is 3 percent more accurate than Random
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Table 2.6: Grouped and overall Accuracy@20 of sequential diagnosis prediction on MIMIC-III
data.

Model 0-25 25-50 50-75 75-100 Overall

HAP 0.0414±0.0062 0.2179±0.0103 0.3813±0.0119 0.7983±0.0171 0.3619±0.0027
HAP (lv3) 0.0434±0.0033 0.2119±0.0070 0.3884±0.0102 0.8006±0.0118 0.3633±0.0020
HAP (lv2) 0.0428±0.0062 0.2168±0.0091 0.3905±0.0128 0.7970±0.0128 0.3640±0.0027

Gram 0.0426±0.0055 0.2042±0.0081 0.3733±0.0118 0.8084±0.0045 0.3591±0.0044
Gram (lv3) 0.0417±0.0058 0.2127±0.0130 0.3858±0.0148 0.7965±0.0167 0.3614±0.0029
Gram (lv2) 0.0399±0.0058 0.2082±0.0124 0.3838±0.0188 0.8031±0.0116 0.3609±0.0031
RNN 0.0399±0.0064 0.2167±0.0147 0.3806±0.0112 0.8044±0.0160 0.3625±0.0028
Random 0.0244±0.0018 0.1828±0.0121 0.3745±0.0096 0.8097±0.0120 0.3500±0.0031
Rollup 0.0304±0.0040 0.1804±0.0067 0.3659±0.0163 0.8013±0.0141 0.3466±0.0028

in the 25-50 percentile range, indicating that learning embeddings from ontology structures

benefits the prediction of rare codes.

Both HAP and Gram leverage the ontology structure, yet Gram seems to be much more

sensitive to the number of hierarchy levels used. By varying the number of hierarchy levels,

Gram shows much larger performance variances. Especially for ACTFAST, we observe that

Gram (lv3) has a large drop of accuracies compared to Gram (lv2). This indicates that Gram

is not robust to the number of hierarchy levels used and requires carefully selecting this

number. In contrast, HAP shows robust performance consistently. One possible explanation

is that the use of the level L− 2 hierarchy makes a Gram’s leaf embedding confused about

its parent and grandparent (since the attention scheme in Gram is order-unaware). Thus,

adding this additional hierarchy level on the contrary loses some performance. On the other

hand, HAP is order-aware. It always first does bottom-up propagation for level L− 1 and

then for level L− 2, respecting the ordering within the hierarchy. With the further increase

of the number of hierarchy levels used, Gram’s performance recovers a little as the adding of

more hierarchical information compensates for the loss of ordering.

We also find that HAP and Gram do not perform the best using the full hierarchy. This

indicates that lower levels of the hierarchy provide the most important domain knowledge for
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Figure 2.5: t-SNE scatterplots of diagnosis code embeddings learned by HAP.

predicting leaf codes, which is reasonable since the higher levels correspond to very broad

categories of procedures or diseases that might not be as useful as those fine categories in

lower levels. Compared to RNN, Gram and its variants show some advantages in predicting

rare medical codes, often at the cost of slight drops in overall accuracies. In comparison,

HAP and its variants have gains for rare medical codes too, but do not sacrifice the overall

performance by showing the highest overall accuracies in both tasks.

Visualization

We qualitatively evaluate HAP by visualizing the embeddings learned by HAP from MIMIC-

III. We choose all 1,120 level-6 leaf codes and show their t-SNE [107] embeddings in a 2-D
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Figure 2.6: t-SNE scatterplots of diagnosis code embeddings learned by Gram (left) and
RNN (right).

space (Figure 2.5). We color all dots by their level-5 categories (if two dots belong to the

same level-5 category, they will have the same color). Then, we manually label some clear

clusters in the 2-D space with their level-5 category descriptions. For comparison, we also

show the t-SNE visualizations of the embeddings learned by Gram (Figure 2.6 left) and RNN

(Figure 2.6 right). The t-SNE hyperparameters are the same for all models. As we can see,

both HAP and Gram give more interpretable embeddings than RNN by demonstrating more

structured code distributions. This verifies that the learned embeddings well incorporate the

domain knowledge from the ontology structure. In contrast, RNN’s code distribution seems

completely random without showing any clear patterns.

2.2.6 Related work

Attention mechanism is a widely used framework in neural networks to adaptively learn the

importance of each component w.r.t. the target component. It has been successfully used in
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computer vision [167], machine translation [157], speech recognition [31], semi-supervised node

classification [158] etc. There has been work that applies attention mechanism to healthcare

problems [28, 29]. Our work is closely related to the Gram model [28] by generalizing the

attention mechanism used to aggregate ancestor information to a hierarchical mulit-level

propagation framework that learns from the entire DAG.

Our method is related to recent graph representation learning works such as network em-

bedding [56, 127, 155] and graph neural networks (GNNs) [18, 39, 77, 94, 136]. Our work

is more related to GNNs as both of them are supervised. GNNs iteratively pass messages

between each node and its neighbors to extract local substructure features around nodes. The

learnable parameters in the message passing layers equip GNNs with excellent node/graph

representation learning abilities and great flexibility. GNNs have gained great popularity in

recent years, achieving state-of-the-art performance on semi-supervised node classification

[77], graph classification [184], network embedding [57], link prediction [181] etc. Despite the

success, little work has been done to apply GNNs to healthcare. Our model can be seen as

combining an attention-based graph convolution layer [158] with a particular message passing

order respecting the multi-level hierarchy of the medical ontology, where the design is inspired

by the Belief Propagation algorithm and ensures incorporating structural information of the

entire knowledge DAG. There is also recent work studying GNNs for trees/DAGs [69, 185]

with a focus on generating DAGs instead of learning embeddings of DAG nodes.

2.2.7 Conclusion

In this section, we have proposed Hierarchical Attention Propagation (HAP), a graph attention-

based method to learn medical concept embeddings based on medical ontologies. HAP learns

highly expressive embeddings by learning from the full ontology hierarchy, addressing previous

work Gram’s limited expressibility. We have theoretically proved that from any embedding
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learned by HAP we can recover the entire knowledge DAG. Experiments on one sequential

procedure prediction task on ACTFAST and one sequential diagnosis prediction task on

MIMIC-III verified the superior medical concept embedding ability of HAP.
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Chapter 3

Graph Neural Networks for Relation

Prediction

In this chapter, we study GNNs for relation prediction. We focus on two problems, link

prediction and recommender systems. Link prediction refers to predicting whether two

nodes in a network are likely to have a link. Example applications include predicting

friendship relations in social networks and predicting protein interactions in biological

networks. Recommender systems aims to recommend items to users, which can also be cast

as a link prediction problem if we treat user-item interactions as a bipartite graph. Because

the rating a user gives to an item is often not simply 1 or 0, recommender systems is actually

predicting real values on the links instead of predicting existence of links as in link prediction.

For link prediction, we first thoroughly study traditional link prediction heuristics, such

as common neighbors [96] and Katz index [74], and develop a γ-decaying theory that

unifies existing heuristics into a single framework. Our theory not only shows that a

wide range of heuristics share the same intrinsic γ-decaying form, but also demonstrates
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their approximability from local subgraphs around links. This motivates us to use graph

neural networks to automatically learn suitable heuristics for given networks instead of using

predefined ones, the framework of which we call SEAL [181]. Experiments show that our SEAL

framework achieves unprecedented strong performance for link prediction, outperforming all

existing representative methods.

For recommender systems, we formulate the matrix completion problem as a labeled link

prediction problem in bipartite graphs, where graph edges can have multiple types (correspond

to different ratings), and also apply GNNs to learn structural features from local subgraphs.

Our model achieves state-of-the-art performance on benchmark matrix completion datasets.

Compared to traditional matrix completion baselines, we further show that our method is

inductive and transferrable. That is, our model can be applied to user-item pairs unseen

during the training, and can even be tranferred to completely new tasks. Experiments show

that our model trained on MovieLens can be directly used to predict the movie ratings of

Douban, and even achieve better performance than some baselines trained exclusively on

Douban.

3.1 Link Prediction Based on Graph Neural Networks

3.1.1 A brief review of link prediction methods

Link prediction is to predict whether two nodes in a network are likely to have a link [96],

which is a key problem for network structured data. It has many applications, such as

friend recommendation in social networks [2], product recommendation in e-commerce [82],

knowledge graph completion [120], finding interactions between proteins [5], and recovering

missing reactions in metabolic networks [124, 183]. One class of simple yet effective approaches
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for link prediction is called heuristic methods. Heuristic methods compute some heuristic

node similarity scores as the likelihood of links [96, 102]. Existing heuristics can be categorized

based on the maximum hop of neighbors needed to calculate the score. For example, common

neighbors (CN) and preferential attachment (PA) [9] are first-order heuristics, since they

only involve the one-hop neighbors of two target nodes. Adamic-Adar (AA) and resource

allocation (RA) [188] are second-order heuristics, as they are calculated from up to two-

hop neighborhood of the target nodes. We define h-order heuristics to be those heuristics

which require knowing up to h-hop neighborhood of the target nodes. There are also some

high-order heuristics which require knowing the entire network. Examples include Katz,

rooted PageRank (PR) [17], and SimRank (SR) [66]. Table 3.1 summarizes eight popular

heuristics.

Table 3.1: Popular heuristics for link prediction, see [96] for details.

Name Formula Order

common neighbors |Γ(x) ∩ Γ(y)| first

Jaccard |Γ(x)∩Γ(y)|
|Γ(x)∪Γ(y)| first

preferential attachment |Γ(x)| · |Γ(y)| first

Adamic-Adar
∑
z∈Γ(x)∩Γ(y)

1
log |Γ(z)| second

resource allocation
∑
z∈Γ(x)∩Γ(y)

1
|Γ(z)| second

Katz
∑∞
l=1 β

l|walks〈l〉(x, y)| high

PageRank [πx]y + [πy]x high

SimRank γ

∑
a∈Γ(x)

∑
b∈Γ(y)score(a,b)

|Γ(x)|·|Γ(y)| high

Notes: Γ(x) denotes the neighbor set of vertex x. β < 1 is a damping factor. |walks〈l〉(x, y)| counts the
number of length-l walks between x and y. [πx]y is the stationary distribution probability of y under the
random walk from x with restart, see [17]. SimRank score is a recursive definition. We exclude those
heuristics which are simple variants of the above or are proven to be meaningless for large graphs (e.g.,
commute time [104]).
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In fact, the heuristics belong to a more generic class, namely graph structure features. Graph

structure features are those features located inside the observed node and edge structures

of the network, which can be calculated directly from the graph. Besides graph structure

features, latent features and explicit features are also studied for link prediction. Latent

feature methods [5, 56, 82, 127] factorize some matrix representations of the network to

learn a low-dimensional latent representation/embedding for each node. Examples include

matrix factorization [82] and stochastic block model [5] etc. Recently, a number of network

embedding techniques have been proposed, such as DeepWalk [127], LINE [155] and node2vec

[56], which are also latent feature methods since they implicitly factorize some matrices

too [129]. Compared to graph structure features, latent features cannot be directly seen

from the graph (requires training), and sometimes need an extremely large dimension to

express some simple heuristics [119]. Explicit features are often available in the form of node

attributes, describing all kinds of side information about individual nodes. It is shown that

combining graph structure features with latent features and explicit features can improve the

performance [119, 186].

3.1.2 Limitations of existing methods

Among the three types of link prediction features, heuristic methods have the best scalability

and are widely used in practice. Although working well in practice, heuristic methods have

strong assumptions on when links may exist. For example, the common neighbor heuristic

assumes that two nodes are more likely to connect if they have many common neighbors.

This assumption may be correct in social networks, but is shown to fail in protein-protein

interaction (PPI) networks – two proteins sharing many common neighbors are actually less

likely to interact [83]. On the other hand, rooted PageRank [17] has exceptional performance
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on predicting biological networks, but shows worse performance on power grids and router-

level Internets [102]. This suggests a significant limitation of heuristic methods – they lack

universal applicability to different kinds of networks. A survey paper compared over 20

different heuristics and found that none of them performs consistently well across all networks

[102]. This implies the need to manually choose different heuristics for different networks

based on prior beliefs or expensive trial and error.

Given that heuristics can be viewed as predefined graph structure features, can we automati-

cally learn such features from the network? The answer is yes, and we will introduce how

we apply GNNs to learn general graph structure features for link prediction in the following.

The learned features are based on existing node connection patterns of the network, thus are

network-specific, which avoids the need to manually select predefined heuristics.

Another limitation of existing methods is that there are no principled way to unify all three

types of features for link prediction. Most existing combination methods simply add several

heuristic terms in the optimization objective of latent feature methods – although improving

the performance, the graph structure features are still restricted to fixed forms [119, 186].

To address this limitation, we propose SEAL (learning from Subgraphs, Embeddings and

Attributes for Link prediction), which is able to jointly learn from all three types of features

(graph structure features, latent features and explicit features) for link prediction based on a

graph neural network.

3.1.3 A theory for unifying link prediction heuristics

In this subsection, we aim to understand deeper the mechanisms behind various link prediction

heuristics, and thus motivating the idea of learning heuristics from local subgraphs. Due

to the large number of graph learning techniques, note that we are not concerned with the
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Figure 3.1: The SEAL framework. For each target link, SEAL extracts a local enclosing
subgraph around it, and uses a GNN to learn general graph structure features for link
prediction. Note that the heuristics listed inside the box are just for illustration – the learned
features may be completely different from existing heuristics.

generalization error of a particular method, but focus on the information reserved in the

subgraphs for calculating existing heuristics.

Definition 3.1. (Enclosing subgraph) For a graph G = (V,E), given two nodes x, y ∈ V ,

the h-hop enclosing subgraph for (x, y) is the subgraph Gh
x,y induced from G by the set of

nodes { i | d(i, x) ≤ h or d(i, y) ≤ h }.

The enclosing subgraph describes the “h-hop surrounding environment" of (x, y). Since Gh
x,y

contains all h-hop neighbors of x and y, we naturally have the following theorem.

Theorem 3.1. Any h-order heuristic for (x, y) can be accurately calculated from Gh
x,y.

For example, a 2-hop enclosing subgraph will contain all the information needed to calculate

any first and second-order heuristics. However, although first and second-order heuristics

are well covered by local enclosing subgraphs, an extremely large h seems to be still needed

for learning high-order heuristics. Surprisingly, our following analysis shows that learning

high-order heuristics is also feasible with a small h. We support this first by defining

the γ-decaying heuristic. We will show that under certain conditions, a γ-decaying heuristic
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can be very well approximated from the h-hop enclosing subgraph. Moreover, we will show

that almost all well-known high-order heuristics can be unified into this γ-decaying heuristic

framework.

Definition 3.2. (γ-decaying heuristic) A γ-decaying heuristic for (x, y) has the following

form:

H(x, y) = η
∞∑
l=1

γlf(x, y, l), (3.1)

where γ is a decaying factor between 0 and 1, η is a positive constant or a positive function

of γ that is upper bounded by a constant, f is a nonnegative function of x, y, l under the the

given network.

Next, we will show that under certain conditions, a γ-decaying heuristic can be approximated

from an h-hop enclosing subgraph, and the approximation error decreases at least exponentially

with h.

Theorem 3.2. Given a γ-decaying heuristic H(x, y) = η
∑∞
l=1 γ

lf(x, y, l), if f(x, y, l) satisfies:

• (property 1) f(x, y, l) ≤ λl where λ < 1
γ
; and

• (property 2) f(x, y, l) is calculable from Gh
x,y for l = 1, 2, · · · , g(h), where g(h) = ah+b

with a, b ∈ N and a > 0,

then H(x, y) can be approximated from Gh
x,y and the approximation error decreases at least

exponentially with h.

Proof. We can approximate such a γ-decaying heuristic by summing over its first g(h) terms.

H̃(x, y) := η
g(h)∑
l=1

γlf(x, y, l). (3.2)
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The approximation error can be bounded as follows.

|H(x, y)− H̃(x, y)| = η
∞∑

l=g(h)+1
γlf(x, y, l) ≤ η

∞∑
l=ah+b+1

γlλl = η(γλ)ah+b+1(1− γλ)−1.

In practice, a small γλ and a large a lead to a faster decreasing speed. Next we will prove that

three popular high-order heuristics: Katz, rooted PageRank and SimRank, are all γ-decaying

heuristics which satisfy the properties in Theorem 3.2. First, we need the following lemma.

Lemma 3.1. Any walk between x and y with length l ≤ 2h+ 1 is included in Gh
x,y.

Proof. Given any walk w = 〈x, v1, · · · , vl−1, y〉 with length l, we will show that every node vi

is included in Gh
x,y. Consider any vi. Assume d(vi, x) ≥ h + 1 and d(vi, y) ≥ h + 1. Then,

2h+ 1 ≥ l = |〈x, v1, · · · , vi〉|+ |〈vi, · · · , vl−1, y〉| ≥ d(vi, x) + d(vi, y) ≥ 2h+ 2, a contradiction.

Thus, d(vi, x) ≤ h or d(vi, y) ≤ h. By the definition of Gh
x,y, vi must be included in Gh

x,y.

Next we will analyze Katz, rooted PageRank and SimRank one by one.

Katz index

The Katz index [74] for (x, y) is defined as

Katzx,y =
∞∑
l=1

βl|walks〈l〉(x, y)| =
∞∑
l=1

βl[Al]x,y, (3.3)

where walks〈l〉(x, y) is the set of length-l walks between x and y, and Al is the lth power of the

adjacency matrix of the network. Katz index sums over the collection of all walks between x

and y where a walk of length l is damped by βl (0 < β < 1), giving more weight to shorter

walks.
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Katz index is directly defined in the form of a γ-decaying heuristic with η = 1, γ = β, and

f(x, y, l) = |walks〈l〉(x, y)|. According to Lemma 3.1, |walks〈l〉(x, y)| is calculable from Gh
x,y

for l ≤ 2h+ 1, thus property 2 in Theorem 3.2 is satisfied. Now we show when property 1 is

satisfied.

Proposition 3.1. For any nodes i, j, [Al]i,j is bounded by dl, where d is the maximum node

degree of the network.

Proof. We prove it by induction. When l = 1, Ai,j ≤ d for any (i, j). Thus the base case is

correct. Now, assume by induction that [Al]i,j ≤ dl for any (i, j), we have

[Al+1]i,j =
|V |∑
k=1

[Al]i,kAk,j ≤ dl
|V |∑
k=1

Ak,j ≤ dld = dl+1.

Taking λ = d, we can see that whenever d < 1/β, the Katz index will satisfy property 1 in

Theorem 3.2. In practice, the damping factor β is often set to very small values like 5E-4 [96],

which implies that Katz can be very well approximated from the h-hop enclosing subgraph.

PageRank

The rooted PageRank for node x calculates the stationary distribution of a random walker

starting at x, who iteratively moves to a random neighbor of its current position with

probability α or returns to x with probability 1−α. Let πx denote the stationary distribution

vector. Let [πx]i denote the probability that the random walker is at node i under the

stationary distribution.

Let P be the transition matrix with Pi,j = 1
|Γ(vj)| if (i, j) ∈ E and Pi,j = 0 otherwise. Let ex

be a vector with the xth element being 1 and others being 0. The stationary distribution
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satisfies

πx = αPπx + (1− α)ex. (3.4)

When used for link prediction, the score for (x, y) is given by [πx]y (or [πx]y + [πy]x for

symmetry). To show that rooted PageRank is a γ-decaying heuristic, we introduce the inverse

P-distance theory [65], which states that [πx]y can be equivalently written as follows:

[πx]y = (1− α)
∑

w:x y
P [w]αlen(w), (3.5)

where the summation is taken over all walks w starting at x and ending at y (possibly

touching x and y multiple times). For a walk w = 〈v0, v1, · · · , vk〉, len(w) := |〈v0, v1, · · · , vk〉|

is the length of the walk. The term P [w] is defined as ∏k−1
i=0

1
|Γ(vi)| , which can be interpreted

as the probability of traveling w. Now we have the following theorem.

Theorem 3.3. The rooted PageRank heuristic is a γ-decaying heuristic which satisfies the

properties in Theorem 3.2.

Proof. We first write [πx]y in the following form.

[πx]y = (1− α)
∞∑
l=1

∑
w:x y

len(w)=l

P [w]αl. (3.6)

Defining f(x, y, l) := ∑
w:x y

len(w)=l
P [w] leads to the form of a γ-decaying heuristic. Note that

f(x, y, l) is the probability that a random walker starting at x stops at y with exactly l

steps, which satisfies ∑z∈V f(x, z, l) = 1. Thus, f(x, y, l) ≤ 1 < 1
α
(property 1). According to

Lemma 3.1, f(x, y, l) is also calculable from Gh
x,y for l ≤ 2h+ 1 (property 2).
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SimRank

The SimRank score [66] is motivated by the intuition that two nodes are similar if their

neighbors are also similar. It is defined in the following recursive way: if x = y, then

s(x, y) := 1; otherwise,

s(x, y) := γ

∑
a∈Γ(x)

∑
b∈Γ(y) s(a, b)

|Γ(x)| · |Γ(y)| (3.7)

where γ is a constant between 0 and 1. According to [66], SimRank has an equivalent

definition:

s(x, y) =
∑

w:(x,y)((z,z)
P [w]γlen(w), (3.8)

where w : (x, y) ( (z, z) denotes all simultaneous walks such that one walk starts at x,

the other walk starts at y, and they first meet at any vertex z. For a simultaneous walk

w = 〈(v0, u0), · · · , (vk, uk)〉, len(w) = k is the length of the walk. The term P [w] is similarly

defined as ∏k−1
i=0

1
|Γ(vi)||Γ(ui)| , describing the probability of this walk. Now we have the following

theorem.

Theorem 3.4. SimRank is a γ-decaying heuristic which satisfies the properties in Theorem

3.2.

Proof. We write s(x, y) as follows.

s(x, y) =
∞∑
l=1

∑
w:(x,y)((z,z)

len(w)=l

P [w]γl, (3.9)

Defining f(x, y, l) := ∑
w:(x,y)((z,z)

len(w)=l
P [w] reveals that SimRank is a γ-decaying heuristic. Note

that f(x, y, l) ≤ 1 < 1
γ
. It is easy to see that f(x, y, l) is also calculable from Gh

x,y for

l ≤ h.
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Discussion. There exist several other high-order heuristics based on path counting or

random walk [102] which can be as well incorporated into the γ-decaying heuristic framework.

We omit the analysis here. Our results reveal that most high-order heuristics inherently share

the same γ-decaying heuristic form, and thus can be effectively approximated from an h-hop

enclosing subgraph with exponentially smaller approximation error. We believe the ubiquity

of γ-decaying heuristics is not by accident – it implies that a successful link prediction

heuristic is better to put exponentially smaller weight on structures far away from the target,

as remote parts of the network intuitively make little contribution to link existence. Our

results build the foundation for learning heuristics from local subgraphs, as they imply that

local enclosing subgraphs already contain enough information to learn good graph

structure features for link prediction which is much desired considering learning from

the entire network is often infeasible. To summarize, from the small enclosing subgraphs

extracted around links, we are able to accurately calculate first and second-order heuristics,

and approximate a wide range of high-order heuristics with small errors. Therefore, given

adequate feature learning ability of the model used, learning from such enclosing subgraphs

is expected to achieve performance at least as good as a wide range of heuristics. There is

some related work which empirically verifies that local methods can often estimate PageRank

and SimRank well [23, 67]. Another related theoretical work [10] establishes a condition of h

to achieve some fixed approximation error for ordinary PageRank.

3.1.4 SEAL: An implementation of the theory using GNN

In this subsection, we describe our SEAL framework for link prediction. SEAL does not

restrict the learned features to be in some particular forms such as γ-decaying heuristics, but

instead learns general graph structure features for link prediction. It contains three steps: 1)

enclosing subgraph extraction, 2) node information matrix construction, and 3) GNN learning.
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Given a network, we aim to learn automatically a “heuristic” that best explains the link

formations. Motivated by the theoretical results, this function takes local enclosing subgraphs

around links as input, and output how likely the links exist. To learn such a function, we

train a graph neural network (GNN) over the enclosing subgraphs. Thus, the first step in

SEAL is to extract enclosing subgraphs for a set of sampled positive links (observed) and a

set of sampled negative links (unobserved) to construct the training data.

A GNN typically takes (A,X) as input, where A (with slight abuse of notation) is the

adjacency matrix of the input enclosing subgraph, X is the node information matrix each

row of which corresponds to a node’s feature vector. The second step in SEAL is to construct

the node information matrix X for each enclosing subgraph. This step is crucial for training

a successful GNN link prediction model. In the following, we discuss this key step. The

node information matrix X in SEAL has three components: structural node labels, node

embeddings and node attributes.

Node labeling

The first component in X is each node’s structural label. A node labeling is function

fl : V → N which assigns an integer label fl(i) to every node i in the enclosing subgraph. The

purpose is to use different labels to mark nodes’ different roles in an enclosing subgraph:

1) The center nodes x and y are the target nodes between which the link is located. 2)

Nodes with different relative positions to the center have different structural importance

to the link. A proper node labeling should mark such differences. If we do not mark such

differences, GNNs will not be able to tell where are the target nodes between which

a link existence should be predicted, and lose structural information.
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Our node labeling method is derived from the following criteria: 1) The two target nodes

x and y always have the distinctive label “1”. 2) Nodes i and j have the same label if

d(i, x) = d(j, x) and d(i, y) = d(j, y). The second criterion is because, intuitively, a node i’s

topological position within an enclosing subgraph can be described by its radius with respect

to the two center nodes, namely (d(i, x), d(i, y)). Thus, we let nodes on the same orbit have

the same label, so that the node labels can reflect nodes’ relative positions and structural

importance within subgraphs.

Based on the above criteria, we propose a Double-Radius Node Labeling (DRNL) as follows.

First, assign label 1 to x and y. Then, for any node i with (d(i, x), d(i, y)) = (1, 1), assign

label fl(i) = 2. Nodes with radius (1, 2) or (2, 1) get label 3. Nodes with radius (1, 3) or

(3, 1) get 4. Nodes with (2, 2) get 5. Nodes with (1, 4) or (4, 1) get 6. Nodes with (2, 3) or

(3, 2) get 7. So on and so forth. In other words, we iteratively assign larger labels to nodes

with a larger radius w.r.t. both center nodes, where the label fl(i) and the double-radius

(d(i, x), d(i, y)) satisfy

1) if d(i, x) + d(i, y) 6= d(j, x) + d(j, y), then d(i, x) + d(i, y) < d(j, x) + d(j, y)⇔ fl(i) < fl(j);

2) if d(i, x) + d(i, y) = d(j, x) + d(j, y), then d(i, x)d(i, y) < d(j, x)d(j, y)⇔ fl(i) < fl(j).

One advantage of DRNL is that it has a perfect hashing function

fl(i) = 1 +min(dx, dy) + (d/2)[(d/2) + (d%2)− 1], (3.10)

where dx := d(i, x), dy := d(i, y), d := dx + dy, (d/2) and (d%2) are the integer quotient

and remainder of d divided by 2, respectively. This perfect hashing allows fast closed-form

computations.
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For nodes with d(i, x) =∞ or d(i, y) =∞, we give them a null label 0. Note that DRNL is

not the only possible way of node labeling, but we empirically verified its better performance

than no labeling and other naive labelings. After getting the labels, we use their one-hot

encoding vectors to construct X.

Incorporating latent and explicit features

Other than the structural node labels, the node information matrix X also provides an

opportunity to include latent and explicit features. By concatenating each node’s embed-

ding/attribute vector to its corresponding row in X, we can make SEAL simultaneously learn

from all three types of features.

Generating the node embeddings for SEAL is nontrivial. Suppose we are given the observed

network G = (V,E), a set of sampled positive training links Ep ⊆ E, and a set of sampled

negative training links En with En ∩ E = ∅. If we directly generate node embeddings on G,

the node embeddings will record the link existence information of the training links (since

Ep ⊆ E). We observed that GNNs can quickly find out such link existence information

and optimize by only fitting this part of information. This results in bad generalization

performance in our experiments. Our trick is to temporally add En into E, and generate the

embeddings on G′ = (V,E ∪En). This way, the positive and negative training links will have

the same link existence information recorded in the embeddings, so that GNN cannot classify

links by only fitting this part of information. We empirically verified the much improved

performance of this trick to SEAL. We name this trick negative injection.

We name our proposed framework SEAL (learning from Subgraphs, Embeddings and At-

tributes for Link prediction), emphasizing its ability to jointly learn from three types of

features.
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3.1.5 Experimental results

We conduct extensive experiments to evaluate SEAL. Our results show that SEAL is a superb

and robust framework for link prediction, achieving unprecedentedly strong performance

on various networks. We use AUC as our evaluation metric. We run all experiments for 10

times and report the average results and standard deviations. SEAL is flexible with what

GNN or node embeddings to use. Thus, we choose our own GNN architecture, DGCNN

[184] (introduced in the last chapter), as the default GNN, and node2vec [56] as the default

embeddings. The code and data are available at https://github.com/muhanzhang/SEAL.

Datasets. The eight datasets used are: USAir, NS, PB, Yeast, C.ele, Power, Router, and

E.coli. USAir [11] is a network of US Air lines with 332 nodes and 2,126 edges. The average

node degree is 12.81. NS [118] is a collaboration network of researchers in network science

with 1,589 nodes and 2,742 edges. The average node degree is 3.45. PB [1] is a network

of US political blogs with 1,222 nodes and 16,714 edges. The average node degree is 27.36.

Yeast [160] is a protein-protein interaction network in yeast with 2,375 nodes and 11,693

edges. The average node degree is 9.85. C.ele [163] is a neural network of C. elegans with 297

nodes and 2,148 edges. The average node degree is 14.46. Power [163] is an electrical grid

of western US with 4,941 nodes and 6,594 edges. The average node degree is 2.67. Router

[149] is a router-level Internet with 5,022 nodes and 6,258 edges. The average node degree is

2.49. E.coli [183] is a pairwise reaction network of metabolites in E. coli with 1,805 nodes

and 14,660 edges. The average node degree is 12.55.

We randomly remove 10% existing links from each dataset as positive testing data. Following

a standard manner of learning-based link prediction, we randomly sample the same number

of nonexistent links (unconnected node pairs) as negative testing data. We use the remaining

90% existing links as well as the same number of additionally sampled nonexistent links
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to construct the training data. We ensure all the methods compared use exactly the same

training and testing data in every run to ensure a very fair empirical comparison.

Comparison to heuristic methods. We first compare SEAL with methods that only

use graph structure features. We include eight popular heuristics (shown in Table 3.1):

common neighbors (CN), Jaccard, preferential attachment (PA), Adamic-Adar (AA), resource

allocation (RA), Katz, PageRank (PR), and SimRank (SR). We additionally include Ensemble

(ENS) which trains a logistic regression classifier on the eight heuristic scores. We also include

two heuristic learning methods: Weisfeiler-Lehman graph kernel (WLK) [142] and WLNM

[182], which also learn from (truncated) enclosing subgraphs. We omit path ranking methods

[89] as well as other recent methods which are specifically designed for knowledge graphs

or recommender systems [113, 119]. As all the baselines only use graph structure features,

we restrict SEAL to not include any latent or explicit features. In SEAL, the hop number

h is an important hyperparameter. Here, we select h only from {1, 2}, since on one hand

we empirically verified that the performance typically does not increase after h ≥ 3, which

validates our theoretical results that the most useful information is within local structures.

On the other hand, even h = 3 sometimes results in very large subgraphs if a hub node

is included. This raises the idea of sampling nodes in subgraphs, which we leave to future

work. The selection principle is very simple: If the second-order heuristic AA outperforms

the first-order heuristic CN on 10% validation data, then we choose h = 2; otherwise we

choose h = 1. For datasets PB and E.coli, we consistently use h = 1 to fit into the memory.

We include more details about the baselines and hyperparameters in Appendix A.1.

Table 3.2 shows the results. Firstly, we observe that methods which learn from enclos-

ing subgraphs (WLK, WLNM and SEAL) generally perform much better than predefined

heuristics. This indicates that the learned “heuristics” are better at capturing the network

properties than manually designed ones. Among learning-based methods, SEAL has the best
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Table 3.2: Comparing SEAL with heuristic methods (AUC).

Data USAir NS PB Yeast C.ele Power Router E.coli
CN 93.80±1.22 94.42±0.95 92.04±0.35 89.37±0.61 85.13±1.61 58.80±0.88 56.43±0.52 93.71±0.39
Jaccard 89.79±1.61 94.43±0.93 87.41±0.39 89.32±0.60 80.19±1.64 58.79±0.88 56.40±0.52 81.31±0.61
PA 88.84±1.45 68.65±2.03 90.14±0.45 82.20±1.02 74.79±2.04 44.33±1.02 47.58±1.47 91.82±0.58
AA 95.06±1.03 94.45±0.93 92.36±0.34 89.43±0.62 86.95±1.40 58.79±0.88 56.43±0.51 95.36±0.34
RA 95.77±0.92 94.45±0.93 92.46±0.37 89.45±0.62 87.49±1.41 58.79±0.88 56.43±0.51 95.95±0.35
Katz 92.88±1.42 94.85±1.10 92.92±0.35 92.24±0.61 86.34±1.89 65.39±1.59 38.62±1.35 93.50±0.44
PR 94.67±1.08 94.89±1.08 93.54±0.41 92.76±0.55 90.32±1.49 66.00±1.59 38.76±1.39 95.57±0.44
SR 78.89±2.31 94.79±1.08 77.08±0.80 91.49±0.57 77.07±2.00 76.15±1.06 37.40±1.27 62.49±1.43
ENS 88.96±1.44 97.64±0.25 90.15±0.45 82.36±1.02 74.94±2.04 79.52±1.78 47.58±1.48 91.89±0.58
WLK 96.63±0.73 98.57±0.51 93.83±0.59 95.86±0.54 89.72±1.67 82.41±3.43 87.42±2.08 96.94±0.29
WLNM 95.95±1.10 98.61±0.49 93.49±0.47 95.62±0.52 86.18±1.72 84.76±0.98 94.41±0.88 97.21±0.27
SEAL 96.62±0.72 98.85±0.47 94.72±0.46 97.91±0.52 90.30±1.35 87.61±1.57 96.38±1.45 97.64±0.22

Table 3.3: Comparing SEAL with latent feature methods (AUC).

Data MF SBM N2V LINE SPC VGAE SEAL

USAir 94.08±0.80 94.85±1.14 91.44±1.78 81.47±10.71 74.22±3.11 89.28±1.99 97.09±0.70
NS 74.55±4.34 92.30±2.26 91.52±1.28 80.63±1.90 89.94±2.39 94.04±1.64 97.71±0.93
PB 94.30±0.53 93.90±0.42 85.79±0.78 76.95±2.76 83.96±0.86 90.70±0.53 95.01±0.34
Yeast 90.28±0.69 91.41±0.60 93.67±0.46 87.45±3.33 93.25±0.40 93.88±0.21 97.20±0.64
C.ele 85.90±1.74 86.48±2.60 84.11±1.27 69.21±3.14 51.90±2.57 81.80±2.18 89.54±2.04
Power 50.63±1.10 66.57±2.05 76.22±0.92 55.63±1.47 91.78±0.61 71.20±1.65 84.18±1.82
Router 78.03±1.63 85.65±1.93 65.46±0.86 67.15±2.10 68.79±2.42 61.51±1.22 95.68±1.22
E.coli 93.76±0.56 93.82±0.41 90.82±1.49 82.38±2.19 94.92±0.32 90.81±0.63 97.22±0.28

performance, demonstrating GNN’s superior graph feature learning ability over graph kernels

and fully-connected neural networks. From the results on Power and Router, we can see that

although existing heuristics perform similarly to random guess, learning-based methods still

maintain high performance. This suggests that we can even discover new “heuristics” for

networks where no existing heuristics work.

Comparison to latent feature methods. Next we compare SEAL with six state-of-the-

art latent feature methods: matrix factorization (MF), stochastic block model (SBM) [5],

node2vec (N2V) [56], LINE [155], spectral clustering (SPC), and variational graph auto-

encoder (VGAE) [78]. Among them, VGAE uses a GNN too. Please note the difference

between VGAE and SEAL: VGAE uses a node-level GNN to learn node embeddings that best

reconstruct the network, while SEAL uses a graph-level GNN to classify enclosing subgraphs.
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Therefore, VGAE still belongs to latent feature methods. For SEAL, we additionally include

the 128-dimensional node2vec embeddings in the node information matrix X. Since the

datasets do not have node attributes, explicit features are not included.

Table 3.3 shows the results. As we can see, SEAL shows significant improvement over latent

feature methods. One reason is that SEAL learns from both graph structures and latent

features simultaneously, thus augmenting those methods that only use latent features. We

observe that SEAL with node2vec embeddings outperforms pure node2vec by large margins.

This implies that network embeddings alone may not be able to capture the most useful link

prediction information located in the local structures. It is also interesting that compared to

SEAL without node2vec embeddings (Table 3.2), joint learning does not always improve the

performance.

To evaluate SEAL’s scalability, we show its single-GPU inference time performance in Table

3.4. As we can see, SEAL has good scalability. For networks with over 1E7 potential links,

SEAL took less than an hour to make all the predictions. One possible way to further scale

SEAL to social networks with millions of users is to first use some simple heuristics such

as common neighbors to filter out most unlikely links and then use SEAL to make further

recommendations. Another way is to restrict the candidate friend recommendations to be

those who are at most 2 or 3 hops away from the target user, which will vastly reduce the

number of candidate links to infer for each user and thus further increase the scalability.

Table 3.4: Inference time of SEAL.

USAir NS PB Yeast C.ele Power Router E.coli
Number of potential links 5.49E+04 1.26E+06 7.46E+05 2.82E+06 4.40E+04 1.22E+07 1.26E+07 1.39E+06
Inference time per link (s) 6.05E-04 2.55E-04 2.04E-04 3.96E-04 4.13E-04 1.35E-04 2.13E-04 2.40E-04
Inference time for all potential links (s) 31 321 146 1106 16 1640 2681 328
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Table 3.5: Comparing SEAL with network embedding methods (AUC) on larger networks,
OOM: out of memory).

N2V LINE SPC VGAE WLNM SEAL
arXiv 96.18±0.40 84.64±0.03 87.00±0.14 OOM 99.19±0.03 99.40±0.14
Facebook 99.05±0.07 89.63±0.06 98.59±0.11 98.21±0.22 99.24±0.03 99.40±0.08
BlogCatalog 85.97±1.56 90.92±2.05 96.74±0.31 OOM 96.55±0.08 98.10±0.60
Wikipedia 76.59±2.06 74.44±0.66 99.54±0.04 89.74±0.18 99.05±0.03 99.63±0.05
PPI 70.31±0.79 72.82±1.53 92.27±0.22 85.86±0.43 88.79±0.38 93.52±0.37

We further conduct experiments with the setting of the node2vec paper [56] on five networks:

arXiv (18,722 nodes and 198,110 edges) [92], Facebook (4,039 nodes and 88,234 edges) [92],

BlogCatalog (10,312 nodes, 333,983 edges and 39 attributes) [178], Wikipedia (4,777 nodes,

184,812 edges and 40 attributes) [108], and Protein-Protein Interactions (PPI) (3,890 nodes,

76,584 edges and 50 attributes) [150]. For each network, 50% of random links are removed

and used as testing data, while keeping the remaining network connected. For Facebook

and arXiv, all remained links are used as positive training data. For PPI, BlogCatalog and

Wikipedia, we sample 10,000 remained links as positive training data. We compare SEAL

(h = 1, 10 training epochs) with node2vec, LINE, SPC, VGAE, and WLNM (K = 10). For

node2vec, we use the parameters provided in [56] if available. For SEAL and VGAE, the

node attributes are used since only these two methods support explicit features.

Table 3.5 shows the results. As we can see, SEAL consistently outperforms all embedding

methods. Especially on the last three networks, SEAL (with node2vec embeddings) outper-

forms pure node2vec by large margins. These results indicate that in many cases, embedding

methods alone cannot capture the most useful link prediction information, while effectively

combining the power of different types of features results in much better performance. SEAL

also consistently outperforms WLNM.
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3.1.6 Conclusion

Learning link prediction heuristics automatically is a new field. In this sectio, we presented

theoretical justifications for learning from local enclosing subgraphs. In particular, we

proposed a γ-decaying theory to unify a wide range of high-order heuristics and prove

their approximability from local subgraphs. Motivated by the theory, we proposed a novel

link prediction framework, SEAL, to simultaneously learn from local enclosing subgraphs,

embeddings and attributes based on graph neural networks. Experimentally we showed

that SEAL achieved unprecedentedly strong performance by comparing to various heuristics,

latent feature methods, and network embedding algorithms. We hope SEAL can not only

inspire link prediction research, but also open up new directions for other relational machine

learning problems such as knowledge graph completion and recommender systems.

3.2 Inductive Matrix Completion Based on Graph Neu-

ral Networks

3.2.1 Introduction

Collaborative filtering (CF) for recommender systems leverages collected ratings of items by

users to make new recommendations. These collected ratings can be written as entries of an

m× n rating matrix, where m is the number of users and n is the number of items. Many

modern CF-based recommender systems try to solve the matrix completion problem through

matrix factorization techniques. By assuming a low-rank rating matrix, matrix factorization

decomposes the rating rij that user i gives to item j into rij = w>i hj, the product of user
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i’s and item j’s low-dimensional latent feature vectors wi and hj, respectively, which has

achieved great successes [3, 12, 82, 137]

However, matrix factorization is intrinsically transductive, meaning that the learned latent

features (embeddings) for users/items are not generalizable to users/items unseen during the

training. When the rating matrix has changed values or has new rows/columns added, it

often requires a complete retraining to get the new embeddings. To make matrix completion

inductive, Inductive Matrix Completion (IMC) has been invented, which leverages content

(side information) of users and items [63, 169]. In IMC, a rating is decomposed by rij = x>i Qyj ,

where xi and yj are content feature vectors of user i and item j, respectively, and Q is a

learnable matrix modeling the interactions between feature dimensions. To accurately predict

the missing entries, IMC methods have strong constraints on the quality of the content, which

often leads to inferior performance. Other content-based recommender systems [101] face

similar problems, such as the lack of high-quality content and the inferior performance than

transductive methods.

In this paper, we propose a novel inductive matrix completion method for recommender

systems without using any side information, while achieving state-of-the-art performance.

The key that frees us from using any side information is the graph pattern. If for each

existing rating we add an edge between the corresponding user and item, we can build a

bipartite graph, where nodes are either users or items and an edge only exists between a user

and an item. Subsequently, predicting unknown ratings corresponds to predicting labeled

links in this bipartite graph. This transforms the matrix completion problem into a link

prediction problem [96], where graph patterns play a major role in determining link existences.

A major class of link prediction methods are heuristic methods, which compute some node

similarity scores as the likelihood of links. For example, the common neighbors heuristic [96]
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count the common neighbors between two nodes to predict links, while the Katz index [74]

uses a weighted sum of all the paths between two nodes. These heuristics can be seen as some

predefined graph structure features calculated based on the local or global graph patterns

around links, which have achieved great successes due to their simplicity, interpretability and

for some of them, scalability.

However, most existing heuristics only work for simple graphs where nodes are of the same

type. Can we find some heuristics for bipartite graph link prediction? Intuitively, such

heuristics should exist. For example, if a user u0 likes an item v0, we may expect to see very

often that v0 is also liked by some other user u1 who shares a similar taste to u0. By similar

taste, we mean u1 and u0 have together both liked some other item v1. In the bipartite graph,

such a pattern is realized as a “like” path (u0 →like v1 →liked by u1 →like v0). If there are many

such paths between u0 and v0, we may infer that u0 is highly likely to like v0. Therefore, we

may count the number of such paths as an indicator of how likely u0 likes v0. In fact, many

neighborhood-based recommender systems [40] rely on such heuristics.

Of course we can try to manually define many such intuitive heuristics and test their

effectiveness for recommender systems. In this work, however, we take a different approach

by automatically learn suitable heuristics from the given bipartite graph. To do so, we

first extract an h-hop enclosing subgraph for each training (user, item) pair (u, v), which is

defined to be the subgraph induced from the bipartite graph by nodes u, v and the neighbors

of u and v within h hops. Such local subgraphs contain rich information about the rating

that u may give to v. For example, the number of (u0 →like v1 →liked by u1 →like v0) paths

can just be computed from the 1-hop enclosing subgraph around (u0, v0). By feeding these

enclosing subgraphs to a graph neural network (GNN) [39, 77, 136, 184], we train a graph

regression model that maps each subgraph to the rating that its center user gives to its center

item.
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Figure 3.2: An illustration of our IGMC framework. We extract a local enclosing subgraph
around each training rating, and use a GNN to learn graph patterns that are useful for rating
prediction. Note that the features listed inside the box are only for illustration – the learned
features can be much more complex. We use the trained GNN to complete other missing
entries of the matrix.

Due to the superior graph learning ability, a GNN can learn highly expressive graph structure

features useful for rating prediction instead of only using predefined heuristics. Figure 3.2

illustrates the overall framework. Our Inductive Graph-based Matrix Completion (IGMC)

model does not rely on any latent features associated with the training users/items. Thus,

we can freely apply our trained model on unseen (user, item) pairs’ enclosing subgraphs

without retraining. We can even transfer the model to other similar tasks. We evaluate our

model on five benchmark matrix completion datasets, and show that it is highly competitive

with state-of-the-art transductive methods. Without using any content, IGMC achieves the

smallest RMSEs on four out of five datasets, beating those baselines using side information.

Our model is also equipped with excellent transfer learning ability. We show that an IGMC

model trained on the MovieLens-100k dataset can be directly used to predict Douban movie

ratings and even outperform baselines trained specifically on Douban. We further demonstrate

that our model is robust to sparse rating matrices. Our model outpeforms transductive

matrix factorization by a large margin under extremely sparse cases.
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3.2.2 Related work

GNNs for matrix completion The matrix completion problem has been studied from

a graph point of view. [113] develops a multi-graph CNN (MGCNN) model to extract

user and item latent features from their respective networks and use the latent features to

predict the ratings. Later, [berg2017graph] proposes graph convolutional matrix completion

(GC-MC) to directly operate on user-item bipartite graphs to extract user and item latent

features using a GNN. Although using GNNs for matrix completion, both the two models are

still transductive – the MGCNN model requires graph Laplacians which do not generalize

to new tasks, while the GC-MC model uses one-hot encoding of node IDs as their initial

features input to the GNN, thus cannot generalize to unseen users/items. A recent inductive

graph-based recommender system, PinSage [172], replaces the one-hot encoding features in

GC-MC with node content features, and is successfully used in recommending related pins in

Pinterest. Although being inductive, PinSage relies heavily on the rich visual and text content

information associated with the pins, which is rarely accessible in other recommendation

tasks, especially for those tasks where user features are hard to collect. In comparison, our

IGMC model is inductive and does not rely on any content information.

Link prediction based on graph patterns Learning supervised heuristics (graph

patterns) has been studied for link prediction in simple graphs. [182] propose Weisfeiler-

Lehman Neural Machine (WLNM), which learns graph structure features using a fully-

connected neural network on the subgraphs’ adjacency matrices. Later, they improve this

work by replacing the fully-connected neural network with a GNN and achieves state-of-the-

art link prediction results [181]. Our work generalizes this line of research from predicting

link existence in simple graphs to predicting values on links in bipartite graphs (i.e., matrix

completion), where multiple deep customized innovations are made in order to learn patterns
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from bipartite graphs. In [22, 189], traditional link prediction heuristics are adapted to

bipartite graphs and show promising performance for recommender systems. Our work differs

in that we do not use any predefined heuristics, but learn general graph structure features

using a GNN. Another similar work to ours is [93], where graph kernels are used to learn graph

structure features. However, graph kernels require quadratic time and space complexity to

compute and store the kernel matrices thus are unsuitable for modern recommender systems.

3.2.3 Inductive Graph-based Matrix Completion (IGMC)

We now present our Inductive Graph-based Matrix Completion (IGMC) framework. We use

G to denote the undirected bipartite graph constructed from the given rating matrix R. In G,

a node is either a user (denoted by u, corresponding to a row in R) or an item (denoted by v,

corresponding to a column in R). Edges only exist between user and item, but cannot exist

between two users or two items. Each edge (u, v) has a value r, corresponding to the rating

that u gives to v, i.e., the (u, v)th entry of R. We use R to denote the set of all possible

ratings. We use Nr(u) to denote the set of u’s neighbors that connect to u with edge type r.

Enclosing subgraph extraction

The first part of the IGMC framework is enclosing subgraph extraction. For each training

(user, item, rating) tuple, we extract an h-hop enclosing subgraph around the (user, item)

pair from G. We will feed these enclosing subgraphs to a GNN and regress on their ratings.

Then, for each testing (user, item) pair, we again extract its h-hop enclosing subgraph, and

use the trained GNN model to predict its rating. Algorithm 1 describes how we extract h-hop

enclosing subgraphs. Note that after extracting a training enclosing subgraph for (u, v), we

must remove the target edge (u, v) from it. This is because the rating on (u, v) is what we

want our model to predict, thus must be excluded from the subgraph.
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Algorithm 1 Enclosing Subgraph Extraction
1: input: h, target (user, item) (u, v), the bipartite graph G
2: output: enclosing subgraph Gh

u,v for (u, v)
3: U = Ufringe = {u}, V = Vfringe = {v}
4: for i = 1, 2, . . . , h do
5: U ′fringe = {ui : ui ∼ Vfringe} \ U
6: V ′fringe = {vi : vi ∼ Ufringe} \ V
7: Ufringe = U ′fringe, Vfringe = V ′fringe
8: U = U ∪ Ufringe, V = V ∪ Vfringe
9: Let Gh

u,v be the vertex-induced subgraph from G using vertices U, V
10: Remove edge (u, v) from Gh

u,v.
11: end for
12: return Gh

u,v

Notes: {ui : ui∼Vfringe} is the set of nodes that are adjacent to at least one node in Vfringe with any edge
type.

Node labeling

The second part of IGMC is node labeling. Before we feed enclosing subgraphs to a GNN, we

need to apply a node labeling to each enclosing subgraph. A node labeling is a function that

returns an integer label for every node in the subgraph. The purpose is to use different labels

to mark nodes’ different roles in a subgraph. Specifically, we need to: 1) distinguish the target

user and the target item between which the target rating is located, and 2) differentiate

user-type nodes from item-type nodes. To achieve these goals, we propose a node labeling

scheme as follows: We first give label 0 to the target user and label 1 to the target item.

Then for other nodes, we determine their labels according to at which hop they are included

in the subgraph in Algorithm 1. If a user-type node is included at the ith hop (i = 1, . . . , h),

we will give it a label 2i. If an item-type node is included at the ith hop, we will give it 2i+ 1.

Such a node labeling can sufficiently discriminate: 1) target nodes from “context” nodes,

2) users from items (users always have even labels), and 3) nodes of different distances to

the target user/item. Note that this is not the only possible way of node labeling, but we
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empirically verified its excellent performance. The one-hot encoding of these node labels will

be treated as the initial node features of a subgraph fed to the GNN. Note that our node

labels are determined completely inside each enclosing subgraph, thus are independent of the

global bipartite graph. Given a new enclosing subgraph, we can as well predict its rating

even if all of its nodes are from a different bipartite graph. That is, we are using pure graph

patterns for matrix completion instead of learning transductive latent feature models.

Our node labeling is also different from using global node IDs as in GC-MC [berg2017graph].

Using global IDs allows transforming the first GNN layer’s parameters into node embeddings

associated with each particular ID. However, such a model cannot generalize to node IDs

that are unseen during the training, thus is transductive. In PinSage [172], node content

features are used as initial features. Our model does not use any content, thus is applicable

to scenarios where content information is unavailable.

Graph neural network architecture

The third part of IGMC is to train a graph neural network (GNN) model predicting ratings

from the enclosing subgraphs. That is, we use GNN as a function mapper mapping each

enclosing subgraph to its target rating. There are two components in our GNN: 1) message

passing layers which aggregate neighboring nodes’ features to the center to extract a feature

vector for each node in the subgraph, and 2) a pooling layer to summarize a graph represen-

tation from node features. In our implementation, we use mini-batch training which feeds

multiple enclosing subgraphs together to the GNN. For simplicity, here we introduce our

GNN using a single subgraph as an example.
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To handle different edge types, we adopt the relational graph convolutional operator (R-GCN)

[138] as our GNN’s message passing layers. The R-GCN layer has the following form:

xl+1
i = Wl

0xli +
∑
r∈R

∑
j∈Nr(i)

1
|Nr(i)|

Wl
rxlj, (3.11)

where xli denotes node i’s feature vector at layer l, xl+1
i denotes its feature vector at layer

l + 1, Wl
0 and {Wl

r, r ∈ R} are learnable parameter matrices. Since neighbors j connected

to i with edge type r are processed by the parameter matrix Wl
r associated particularly with

r, we are able to learn rich graph patterns inside the edge types, such as the average rating

the target user gives to items, the average rating the target item receives, and how two target

nodes are connected by different paths etc. We apply L R-GCN layers with tanh activations

between two layers. The node feature vectors from different layers are concatenated for node

i as its final representation hi:

hi = concat(x1
i ,x2

i , . . . ,xLi ). (3.12)

Next, we pool the node representations into a graph-level feature vector. There are many

choices such as the simple summing, or some advanced pooling layers such as SortPooling [184]

and DiffPooling [173] etc. In this work, we use a different pooling layer which concatenates

the final representations of only the target user and item as the graph representation:

g = concat(hu,hv), (3.13)

where we use hu and hv to denote the final representations of the target user and the target

item, respectively. Our particular choice is due to the extra importance that the these

two center nodes carry compared to other context nodes. Although being very simple, we
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empirically verified its better performance than summing and other advanced pooling layers

for our tasks.

After getting the final graph representation, we use an MLP to output the predicted rating:

r̂ = w>σ(Wg), (3.14)

where W and w are parameters of the MLP which map the graph representation g to a

scalar rating r̂, and σ is an activation function (we take ReLU in this paper).

Model training

Loss function We minimize the mean squared error (MSE) between the predictions and

the ground truth rating:

L = 1
|{(u, v)|Ωu,v = 1}|

∑
(u,v):Ωu,v=1

(ru,v − r̂u,v)2, (3.15)

where we use ru,v and r̂u,v to denote the true rating and predicted rating of (u, v), repsectively,

and Ωu,v is a 0/1 mask matrix indicating the observed entries of the rating matrix R.

Continuous rating regularization The R-GCN layer (3.11) used in our GNN has different

parameters Wr for different ratings. One drawback here is that it fails to to take the continuity

of ratings into consideration. For instance, a rating of 4 and a rating of 5 in MovieLens both

indicate that the user likes the movie, while a rating of 1 indicates that the user does not like

the movie. Thus, we would like our model to be aware of the fact that a rating of 4 is more

similar to 5 than 1 is. In R-GCN, however, ratings 1, 4 and 5 are all treated as discrete edge

types associated with their own parameter matrices. The continuity information of the ratings

are completely lost. To fix that, we propose a continuous rating regularization technique,
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which encourages neighboring ratings to have similar parameter matrices. Assume the ratings

in R exhibit an ordering {r1, r2, . . . , r|R|} which shows increasingly higher preference that

users give to items. Then, the regularization loss is:

Lreg =
∑

i=1,2,...,|R|−1
‖Wri+1 −Wri‖2

F , (3.16)

where ‖·‖F denotes the Frobenius norm of a matrix. The above regularization restrain the

parameter matrices of adjacent ratings from having too much differences, which not only

embeds the continuity of ratings into the continuity of Wr, but also helps the optimization

of those infrequent ratings by transferring knowledge from their nearby ratings. The final

loss function is given by:

L+ λLreg, (3.17)

where λ trades-off the importance of the MSE loss and the regularization.

3.2.4 Experiments

We conduct experiments on five common matrix completion datasets: Flixster [64], Douban

[105], YahooMusic [42], MovieLens-100K and MovieLens-1M [111]. For ML-100K, we train

and evaluate on the canonical u1.base/u1.test train/test split. For ML-1M, we randomly

split it into 90% and 10% train/test sets. For Flixster, Douban and YahooMusic we use

the preprocessed subsets and splits provided by [113]. Dataset statistics are summarized

in Table 3.6. We implemented IGMC using PyTorch_Geometric [47]. We tuned model

hyperparameters based on cross validation results on ML-100K, and use them across all

datasets. The final architecture uses 4 R-GCN layers with 32, 32, 32, 32 hidden dimensions.

Basis decomposition with 4 bases is used to reduce the number of parameters in Wr [138].
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The final MLP has 128 hidden units and a dropout rate 0.5. We use 1-hop enclosing subgraphs

for all datasets, and find them sufficiently good. We find using 2 or more hops can slightly

increase the performance but take much longer training time. For each enclosing subgraph,

we randomly dropout its adjacency matrix entries with a rate 0.2 during the training. We

train our model using the Adam optimizer [76] with a batch size of 50 and an initial learning

rate of 0.001, and multiply the learning rate by 0.1 every 20 epochs for ML-1M, and every 50

epochs for all other datasets. We will make all the code publicly available.

Table 3.6: Statistics of each dataset.

Dataset Users Items Ratings Density Rating types

Flixster 3,000 3,000 26,173 0.0029 0.5, 1, 1.5, ..., 5
Douban 3,000 3,000 136,891 0.0152 1, 2, 3, 4, 5
YahooMusic 3,000 3,000 5,335 0.0006 1, 2, 3, ..., 100
MovieLens 943 1,682 100,000 0.0630 1, 2, 3, 4, 5

Flixster, Douban and YahooMusic

For these three datasets, we compare our IGMC with GRALS [130], sRGCNN [113], GC-

MC [berg2017graph], F-EAE [58], and PinSage [172]. Among them, GRALS is a graph

regularized matrix completion algorithm. GC-MC and sRGCNN are GNN-assisted matrix

completion methods, where GNNs are used to learn better user/item latent features to

reconstruct the rating matrix. Thus, they are still transductive models. F-EAE uses

a factorized exchangeable autoencoder to perform permutation-equivariant operations to

reconstruct the rating matrix, which is an inductive model without using content, similar to

our IGMC. PinSage is an inductive GNN-based model which relies on node content features.

We further implemented an inductive GC-MC model (IGC-MC) which replaces the one-hot
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Table 3.7: RMSE test results on Flixster, Douban and YahooMusic.

Model Inductive Content Flixster Douban YahooMusic

GRALS no yes 1.245 0.833 38.0
sRGCNN no yes 0.926 0.801 22.4
GC-MC no yes 0.917 0.734 20.5
IGC-MC yes yes 0.999±0.062 0.990±0.082 21.3±0.989
F-EAE yes no 0.908 0.738 20.0
PinSage yes yes 0.954±0.005 0.739±0.002 22.9±0.629
IGMC (ours) yes no 0.872±0.001 0.721±0.001 19.1±0.138

encoding of node IDs with the content features, in order to show the advantages of learning

subgraph features compared to learning subtree features.

We train our model for 40 epochs, and save the model parameters every 10 epochs. The

final predictions are given by averaging the predictions from epochs 10, 20, 30 and 40. We

repeat the experiment five times and report the average RMSEs. Table 3.7 shows the results.

The baseline results are taken from [58]. Our model achieves state-of-the-art RMSE results

on all three datasets, significantly outperforming the compared transductive and inductive

baselines. Note that all baselines here except F-EAE use side information such as user-user

or item-item graphs, while IGMC and F-EAE do not use any side information. This further

highlights IGMC’s great performance advantages even using less information.

ML-100K and ML-1M

We further conduct experiments on MovieLens datasets. For ML-100K, we compare against

matrix completion (MC) [20], inductive matrix completion (IMC) [63], and geometric ma-

trix completion (GMC) [72], as well as GRALS, sRGCNN, GC-MC, F-EAE and PinSage.

User/item side information are used in baselines if possible. For IGMC, we train our model

95



Table 3.8: RMSE test results on MovieLens-100K.

Model Inductive Content ML-100K

MC no no 0.973
IMC no yes 1.653
GMC no yes 0.996
GRALS no yes 0.945
sRGCNN no yes 0.929
GC-MC no yes 0.905
IGC-MC yes yes 1.142
F-EAE yes no 0.920
PinSage yes yes 0.951
IGMC yes no 0.904

for 80 epochs and report the ensemble performance of epochs 50, 60, 70 and 80. Results are

summarized in Table 3.8. For ML-1M, besides the baselines GC-MC, F-EAE and PinSage,

we further include many other state-of-the-art algorithms including PMF [112], I-RBM [134],

NNMF [44], I-AutoRec [141] and CF-NADE [187]. We train IGCM for 40 epochs and report

the ensemble performance of epochs 25, 30, 35 and 40. Results are summarized in Table 3.9.

As we can see, IGMC achieves the best performance on ML-100K, which beats state-of-the-art

methods such as GC-MC. Note also that our model uses purely local subgraph structure

features and is inductive, while GC-MC is transductive and additionally uses content features.

For ML-1M, IGMC cannot catch up with state-of-the-art models such as CF-NADE and

GC-MC, but outperforms all other inductive models.

Transfer learning

To verify the transferability of the learned IGMC model, we conduct a transfer learning

experiment by applying the model trained on ML-100K to Flixster, Douban and YahooMusic.

Among the three datasets, only Douban has exactly the same rating types as ML-100K
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Table 3.9: RMSE test results on MovieLens-1M.

Model Inductive Content ML-1M

PMF no no 0.883
I-RBM no no 0.854
NNMF no no 0.843
I-AutoRec no no 0.831
CF-NADE no no 0.829
GC-MC no no 0.832
IGC-MC yes yes 1.259
F-EAE yes no 0.860
PinSage yes yes 0.906
IGMC yes no 0.857

Table 3.10: RMSE of transferring models trained on ML-100K to Flixster, Douban and
YahooMusic.

Model Inductive Content Flixster Douban YahooMusic

IGC-MC yes no 1.290 1.144 25.7
F-EAE yes no 0.987 0.766 23.3
IGMC (ours) yes no 0.906 0.759 20.1

(1,2,3,4,5). For Flixster and YahooMusic, we bin their edge types into 1-5 before feeding

into the ML-100K model, and multiply the YahooMusic predictions by 20 to account for

the different scales. Despite all the compromises, the transferred ML-100K model achieves

excellent performance on the three datasets (Table 3.10), even outperforming many transduc-

tive baselines trained especially on each dataset (Table 3.7). We further show the transfer

learning results of other two inductive models, IGC-MC and F-EAE, in Table 3.10. Note

that an inductive model using content features (such as PinSage) is not transferrable, due to

the different feature dimensions between the source and target domains. Thus, we replace
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the content features in IGC-MC with node degrees here. As we can see, IGMC outperforms

the other two models by large margins in terms of transfer learning ability.

3.2.5 Conclusion

In this section, we have proposed Inductive Graph-based Matrix Completion (IGMC) for

recommender systems. Instead of learning transductive latent features, IGMC learns local

graph patterns related to ratings inductively based on graph neural networks. IGMC shows

highly competitive performance compared with traditional matrix completion baselines. In

addition, the inductive model is transferrable to new tasks without any retraining, a property

much desired in those recommendation tasks that have few training data. We believe IGMC

will open a new direction for matrix completion and recommender systems.
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Chapter 4

Graph Neural Networks for Graph

Structure Optimization

In this chapter, we describe our final contribution of the dissertation – exploring graph neural

networks’ use cases for graph structure optimization. We focus on one specific types of graphs,

directed acyclic graphs (DAGs), since DAG structure optimization is most common in the

real world. DAGs are often used to represent computations. For example, neural networks,

Bayesian networks and electronic circuit blocks are all DAGs representing some computation

tasks. The optimization of their structures for better performance or efficiency is a nontrivial

and very important problem.

To optimize DAG structures, we propose a variational autoencoder (VAE) model for DAGs,

named D-VAE [185]. Our D-VAE model can not only generate DAGs from its latent space,

but also optimize DAG structures by performing Bayesian optimization in the latent space.

To encode DAGs, we use a graph neural network based on a novel asynchronous message

passing scheme which specifically works for DAGs. Instead of performing message passing

99



simultaneously for all nodes like in most GNNs, we perform message passing asynchronously

respecting the partial order of a DAG. This is similar to the hierarchical attention propagation

model proposed in Chapter 2, which is designed for embedding medical knowledge DAGs. In

addition, here we prove our proposed asynchronous message passing can injectively encode

computations defined on DAGs. The theorem ensures that every computation can be uniquely

embedded into the latent space, so that instead of performing discrete optimization in graph

space, we can equivalently perform continuous optimization in the VAE latent space. The

computation encoding property also promotes the smoothness of the learned latent space w.r.t.

computation graph’s performance, facilitating the optimization. We apply our model to two

types of DAGs: neural network architectures and Bayesian networks. Experimental results

show that our model not only generates valid and novel DAGs, but also achieves promising

results in neural architecture search (NAS) and Bayesian network structure learning (BNSL),

two important DAG optimization tasks.

4.1 Introduction

Many real-world problems can be posed as optimizing of a directed acyclic graph (DAG)

representing some computational task. For example, the architecture of a neural network is a

DAG. The problem of searching optimal neural architectures is essentially a DAG optimization

task. Similarly, one critical problem in learning graphical models – optimizing the connection

structures of Bayesian networks [80], is also a DAG optimization task. DAG optimization

is pervasive in other fields as well. In electronic circuit design, engineers need to optimize

DAG circuit blocks not only to realize target functions, but also to meet specifications such

as power usage and operating temperature.
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DAG optimization is a hard problem. Firstly, the evaluation of a DAG’s performance is

often time-consuming (e.g., training a neural network). Secondly, state-of-the-art black-box

optimization techniques such as simulated annealing and Bayesian optimization primarily

operate in a continuous space, thus are not directly applicable to DAG optimization due to

the discrete nature of DAGs. In particular, to make Bayesian optimization work for discrete

structures, we need a kernel to measure the similarity between discrete structures as well as

a method to explore the design space and extrapolate to new points. Principled solutions to

these problems are still lacking.

Is there a way to circumvent the trouble from discreteness? The answer is yes. If we can

embed all DAGs to a continuous space and make the space relatively smooth, we might

be able to directly use principled black-box optimization algorithms to optimize DAGs in

this space, or even use gradient methods if gradients are available. Recently, there has been

increased interest in training generative models for discrete data types such as molecules [54,

88], arithmetic expressions [87], source code [52], undirected graphs [95], etc. In particular,

[88] developed a grammar variational autoencoder (GVAE) for molecules, which is able to

encode and decode molecules into and from a continuous latent space, allowing one to

optimize molecule properties by searching in this well-behaved space instead of a discrete

space. Inspired by this work, we propose to also train a variational autoencoder for DAGs,

and optimize DAG structures in the latent space via Bayesian optimization.

To encode DAGs, we leverage graph neural networks (GNNs) [166]. Traditionally, a GNN

treats all nodes symmetrically, and extracts local features around nodes by simultaneously

passing all nodes’ neighbors’ messages to themselves. However, such a simultaneous message

passing scheme is designed to learn local structure features. It might not be suitable for

DAGs, since in a DAG: 1) nodes are not symmetric, but intrinsically have some ordering
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based on its dependency structure; and 2) we are more concerned about the computation

represented by the entire graph, not the local structures.

In this chapter, we propose an asynchronous message passing scheme to encode the

computations on DAGs. The message passing no longer happens at all nodes simultaneously,

but respects the computation dependencies (the partial order) among the nodes. For example,

suppose node A has two predecessors, B and C, in a DAG. Our scheme does not perform

feature learning for A until the feature learning on B and C are both finished. Then,

the aggregated message from B and C is passed to A to trigger A’s feature learning. We

incorporate this feature learning scheme in both our encoder and decoder, and propose the

DAG variational autoencoder (D-VAE). D-VAE has an excellent theoretical property for

modeling DAGs – we prove that D-VAE can injectively encode computations on DAGs.

This means, we can build a mapping from the discrete space to a continuous latent space so

that every DAG computation has its unique embedding in the latent space, which justifies

performing optimization in the latent space instead of the original design space.

Our contributions in this chapter are: 1) We propose D-VAE, a variational autoencoder for

DAGs using a novel asynchronous message passing scheme, which is able to injectively encode

computations. 2) Based on D-VAE, we propose a new DAG optimization framework which

performs Bayesian optimization in a continuous latent space. 3) We apply D-VAE to two

problems, neural architecture search and Bayesian network structure learning. Experiments

show that D-VAE not only generates novel and valid DAGs, but also learns smooth latent

spaces effective for optimizing DAG structures.
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4.2 Related Work

Variational autoencoder (VAE) [75, 133] provides a framework to learn both a probabilis-

tic generative model pθ(x|z) (the decoder) as well as an approximated posterior distribution

qφ(z|x) (the encoder). VAE is trained through maximizing the evidence lower bound

L(φ, θ; x) = Ez∼qφ(z|x)[log pθ(x|z)]−KL[qφ(z|x)‖p(z)]. (4.1)

The posterior approximation qφ(z|x) and the generative model pθ(x|z) can in principle take

arbitrary parametric forms whose parameters φ and θ are output by the encoder and decoder

networks. After learning pθ(x|z), we can generate new data by decoding latent space vectors

z sampled from the prior p(z). For generating discrete data, pθ(x|z) is often decomposed into

a series of decision steps.

Deep graph generative models use neural networks to learn distributions over graphs.

There are mainly three types: token-based, adjacency-matrix-based, and graph-based. Token-

based models [36, 54, 88] represent a graph as a sequence of tokens (e.g., characters, grammar

rules) and model these sequences using RNNs. They are less general since task-specific graph

grammars such as SMILES for molecules [164] are required. Adjacency-matrix-based models

[14, 37, 106, 146, 175] leverage the proxy adjacency matrix representation of a graph, and

generate the matrix in one shot or generate the columns/entries sequentially. In contrast,

graph-based models [69, 95, 100, 174] seem more natural, since they operate directly on graph

structures (instead of proxy matrix representations) by iteratively adding new nodes/edges

to a graph based on the the existing graph and node states. In addition, the graph and node

states are learned by graph neural networks (GNNs), which have already shown their

powerful graph representation learning ability on various tasks [43, 57, 77, 94, 121, 181, 184].
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Neural architecture search (NAS) aims at automating the design of neural network

architectures. It has seen major advances in recent years [45, 99, 128, 131, 191, 192].

See [62] for an overview. NAS methods can be mainly categorized into: 1) reinforcement

learning methods [128, 191, 192] which train controllers to generate architectures with high

rewards in terms of validation accuracy, 2) Bayesian optimization based methods [73] which

define kernels to measure architecture similarity and extrapolate the architecture space

heuristically, 3) evolutionary approaches [98, 110, 131] which use evolutionary algorithms

to optimize neural architectures, and 4) differentiable methods [19, 99, 103] which use

continuous relaxation/mapping of neural architectures to enable gradient-based optimization.

In Appendix A.2, we include more discussion on several most related works.

Bayesian network structure learning (BNSL) is to learn the structure of the underlying

Bayesian network from observed data [32, 50, 51, 97]. Bayesian network is a probabilistic

graphical model which represents conditional dependencies among variables via a DAG [80].

One main approach for BNSL is score-based search, i.e., we define some “goodness-of-fit”

score for network structures, and search for one with the optimal score in the discrete design

space. Commonly used scores include BIC and BDeu, mostly based on marginal likelihood

[80]. Due to the NP-hardness [24], however, exact algorithms such as dynamic programming

[147] or shortest path approaches [176, 177] can only solve small-scale problems. Thus, people

have to resort to heuristic methods such as local search and simulated annealing, etc. [25].

In general, BNSL is still a hard problem with much research ongoing.

4.3 DAG Variational Autoencoder (D-VAE)

In this section, we describe our proposed DAG variational autoencoder (D-VAE). D-VAE

uses an asynchronous message passing scheme to encode and decode DAGs. In contrast to
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the simultaneous message passing in traditional GNNs, D-VAE allows encoding computations

rather than structures.

Definition 4.1. (Computation) Given a set of elementary operations O, a computation

C is the composition of a finite number of operations o ∈ O applied to an input signal x, with

the output of each operation being the input to its succeeding operations.
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Figure 4.1: Computations can be represented by DAGs. Note that the left and right DAGs
represent the same computation.

The set of elementary operations O depends on specific applications. For example, when we

are interested in computations given by a calculator, O will be the set of all the operations

defined on the functional buttons, such as +, −, ×, ÷, etc. When modeling neural networks,

O can be a predefined set of basic layers, such as 3×3 convolution, 5×5 convolution, 2×2

max pooling, etc. A computation can be represented as a directed acyclic graph (DAG), with

directed edges representing signal flow directions among node operations. The graph must be

acyclic, since otherwise the input signal will go through an infinite number of operations so

that the computation never stops. Figure 4.1 shows two examples. Note that the two DAGs

in Figure 4.1 represent the same computation, as the input signal goes through exactly the

same operations.

Computation vs. Function. Have defined what is a computation, it is worth discussing

the difference between a computation and a function. A computation C1 := x+ 1− 1 defines
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a function f(x) = x. However, computations C2 := x − 1 + 1 and C3 := x also define the

same function f(x) = x, but C1, C2 and C3 are different computations. In other words, a

computation is (informally speaking) a process which focuses on the course of how the input

is processed into the output, while a function is a mapping which cares about the results.

Different computations can define the same function.

Sometimes, the same computation can also define different functions, e.g., two identical

neural architectures will represent different functions given they are trained differently (since

the weights of their layers will be different). In D-VAE, we model computations instead of

functions, since 1) modeling functions is much harder than modeling computations (requires

understanding the semantic meaning of each operation, such as the cancelling out of + and −),

and 2) modeling functions additionally requires knowing the parameters of some operations,

which are unknown before training.

Note also that in Definition 4.1, we only allow one single input signal. But in real world a

computation sometimes has multiple initial input signals. However, the case of multiple input

signals can be reduced to the single input case by adding an initial assignment operation

that assigns the combined input signal to their corresponding next-level operations. For ease

of presentation, we uniformly assume single input throughout this chapter.

4.3.1 Encoding

We first introduce D-VAE’s encoder. The D-VAE encoder can be seen as a graph neural

network (GNN) using an asynchronous message passing scheme. Given a DAG, we assume

there is a single starting node which does not have any predecessors (e.g., the input layer

of a neural architecture). If there are multiple such nodes, we add a virtual starting node

connecting to all of them.
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Similar to standard GNNs, we use an update function U to compute the hidden state of each

node based on its neighbors’ incoming message. The hidden state of node v is given by:

hv = U(xv,hin
v ), (4.2)

where xv is the one-hot encoding of v’s type, and hin
v represents the incoming message to v.

hin
v is given by aggregating the hidden states of v’s predecessors using an aggregation function

A:

hin
v = A(

{
hu : u→ v

}
), (4.3)

where u → v denotes there is a directed edge from u to v, and
{
hu : u → v

}
represents a

multiset of v’s predecessors’ hidden states. If an empty set is input to A (corresponding to

the case for the starting node without any predecessors), we let A output an all-zero vector.

Compared to the traditional simultaneous message passing, in D-VAE the message passing

for a node must wait until all of its predecessors’ hidden states have already been computed.

This simulates how a computation is really performed – to execute some operation, we also

need to wait until all its input signals are ready. To make sure the required hidden states are

available when a new node comes, we can perform message passing for nodes sequentially

following a topological ordering of the DAG.

In Figure 4.2, we use a real neural architecture to illustrate the encoding process. After

all nodes’ hidden states are computed, we use hvn , the hidden state of the ending node vn

without any successors, as the output of the encoder. Then we feed hvn to two multi-layer

perceptrons (MLPs) to get the mean and variance parameters of qφ in (4.1) which is a normal

distribution in our experiments. If there are multiple nodes without successors, we again add

a virtual ending node connecting from all of them.
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Figure 4.2: An illustration of the encoding procedure for a neural architecture. Following a
topological ordering, we iteratively compute the hidden state for each node (red) by feeding
in its predecessors’ hidden states (blue). This simulates how an input signal goes through
the DAG, with hv simulating the output signal at node v.

Note that although topological orderings are usually not unique for a DAG, we can take any

one of them as the message passing order while ensuring the encoder output is always the

same, formalized by the following theorem.

Theorem 4.1. The D-VAE encoder is invariant to node permutations of the input DAG if

the aggregation function A is invariant to the order of its inputs (e.g., summing, averaging,

etc.).

Proof. Let v1 be the starting node with no predecessors. By assumption, v1 is the single

starting node no matter how we permute the nodes of the input DAG. For v1, the aggregation

function A always outputs a zero vector. Thus, hin
v1 is invariant to node permutations.

Subsequently, the hidden state hv1 = U(xv1 ,h
in
v1) is also invariant to node permutations.

Now we prove the theorem by structural induction. Consider node v. Suppose for every

predecessor u of v, the hidden state hu is invariant to node permutations. We will show

that hv is also invariant to node permutations. Notice that in (4.3), the output hin
v by A is

invariant to node permutations, since A is invariant to the order of its inputs hu, and all hu

are invariant to node permutations. Subsequently, node v’s hidden state hv = U(xv,hin
v ) is

invariant to node permutations. By induction, we know that every node’s hidden state is
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invariant to node permutations, including the ending node’s hidden state. Thus, the D-VAE

encoder is invariant to node permutations.

Theorem 4.1 means isomorphic DAGs will have the same encoding result, no matter how

we reorder/reindex the nodes. It also indicates that so long as we encode a DAG complying

with its partial order, the real message passing order and node order do not influence the

encoding result.

The next theorem shows another property of D-VAE that is crucial for its success in modeling

DAGs, i.e., it is able to injectively encode computations on DAGs.

Theorem 4.2. Let G be any DAG representing some computation C. Let v1, . . . , vn be its

nodes following a topological order each representing some operation oi, 1 ≤ i ≤ n, where vn

is the ending node. Then, the encoder of D-VAE maps C to hvn injectively if A is injective

and U is injective.

Proof. Suppose there is an arbitrary input signal x fed to the starting node v1. For convenience,

we will use Ci(x) to denote the output signal at vertex vi, where Ci represents the composition

of all the operations along the paths from v1 to vi.

For the starting node v1, remember we feed a fixed hin
v1 = 0 to (4.2), thus hv1 is also fixed.

Since C1 also represents a fixed input operation, we know that the mapping from C1 to hv1

is injective. Now we prove the theorem by induction. Assume the mapping from Cj to hvj is

injective for all 1 ≤ j < i. We will prove that the mapping from Ci to hvi is also injective.
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Let φj(Cj) = hvj where φj is injective. Consider the output signal Ci(x), which is given by

feeding
{
Cj(x) : vj → vi

}
to oi. Thus,

Ci(x) = oi(
{
Cj(x) : vj → vi

}
). (4.4)

In other words, we can write Ci as

Ci = ψ(oi,
{
Cj : vj → vi

}
), (4.5)

where ψ is an injective function used for defining the composite computation Ci based upon oi

and
{
Cj : vj → vi

}
. Note that

{
Cj : vj → vi

}
can be either unordered or ordered depending

on the operation oi. For example, if oi is some symmetric operations such as adding or

multiplication, then
{
Cj : vj → vi

}
can be unordered. If oi is some operation like subtraction

or division, then
{
Cj : vj → vi

}
must be ordered.

With (4.2) and (4.3), we can write the hidden state hvi as follows:

hvi = U(xvi ,A(
{
hvj : vj → vi

}
))

= U(O(oi),A(
{
φj(Cj) : vj → vi

}
)), (4.6)

where O is the injective one-hot encoding function mapping oi to xvi . In the above equation,

U , O,A, φj are all injective. Since the composition of injective functions is injective, there

exists an injective function ϕ so that

hvi = ϕ(oi,
{
Cj : vj → vi

}
). (4.7)
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Then combining (4.5) we have:

hvi = ϕ ◦ ψ−1ψ(oi,
{
Cj : vj → vi

}
)

= ϕ ◦ ψ−1(Ci). (4.8)

ϕ ◦ ψ−1 is injective since the composition of injective functions is injective. Thus, we have

proved that the mapping from Ci to hvi is injective.

The significance of Theorem 4.2 is that it provides a way to injectively encode computations

on DAGs, so that every computation has a unique embedding in the latent space. Therefore,

instead of performing optimization in the original discrete space, we may equivalently

perform optimization in the continuous latent space. In this well-behaved Euclidean

space, distance is well defined, and principled Bayesian optimization can be applied to search

for latent points with high performance scores, which transforms the discrete optimization

problem into an easier continuous problem.

Note that Theorem 4.2 states D-VAE injectively encodes computations on graph structures,

rather than graph structures themselves. Being able to injectively encode graph structures is

a very strong condition, as it might provide an efficient algorithm to solve the challenging

graph isomorphism (GI) problem. Luckily, here what we really want to injectively encode

are computations instead of structures, since we do not need to differentiate two different

structures G1 and G2 as long as they represent the same computation. Figure 4.1 shows

such an example. Our D-VAE can identify that the two DAGs in Figure 4.1 actually represent

the same computation by encoding them to the same vector, while those encoders focusing

on encoding structures might fail to capture the underlying computation and output different

vectors.
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To model and learn the injective functions A and U , we resort to neural networks thanks to

the universal approximation theorem [61]. For example, we can let A be a gated sum:

hin
v =

∑
u→v

g(hu)�m(hu), (4.9)

where m is a mapping network and g is a gating network. Such a gated sum can model

injective multiset functions [168], and is invariant to input order. To model the injective

update function U , we can use a gated recurrent unit (GRU) [26], with hin
v treated as the

input hidden state:

hv = GRUe(xv,hin
v ). (4.10)

Here the subscript e denotes “encoding”. Using a GRU also allows reducing our framework

to traditional sequence to sequence modeling frameworks [153], as discussed in 4.3.3.

The above aggregation and update functions can be used to encode general computation

graphs. For neural architectures, depending on how the outputs of multiple previous layers

are aggregated as the input to a next layer, we will make a modification to (4.9), which is

discussed in section 4.3.4. For Bayesian networks, we also make some modifications to their

encoding due to the special d-separation properties of Bayesian networks, which is discussed

in section 4.3.5.

4.3.2 Decoding

We now describe how D-VAE decodes latent vectors to DAGs (the generative part). The

D-VAE decoder uses the same asynchronous message passing scheme as in the encoder to

learn intermediate node and graph states. Similar to (4.10), the decoder uses another GRU,
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Figure 4.3: An illustration of the steps for generating a new node.

denoted by GRUd, to update node hidden states during the generation. Given the latent

vector z to decode, we first use an MLP to map z to h0 as the initial hidden state to be fed

to GRUd. Then, the decoder constructs a DAG node by node. For the ith generated node vi,

the following steps are performed:

1. Compute vi’s type distribution using an MLP fadd_vertex (followed by a softmax) based on

the current graph state hG := hvi−1 .

2. Sample vi’s type. If the sampled type is the ending type, stop the decoding, connect all

loose ends (nodes without successors) to vi, and output the DAG; otherwise, continue the

generation.

3. Update vi’s hidden state by hvi = GRUd(xvi ,hin
vi

), where hin
vi

= h0 if i = 1; otherwise, hin
vi

is the aggregated message from its predecessors’ hidden states given by equation (4.9).

4. For j= i−1, i−2, . . . , 1: (a) compute the edge probability of (vj, vi) using an MLP fadd_edge

based on hvj and hvi ; (b) sample the edge; and (c) if a new edge is added, update hvi

using step 3.

The above steps are iteratively applied to each new generated node, until step 2 samples the

ending type. For every new node, we first predict its node type based on the current graph

state, and then sequentially predict whether each existing node has a directed edge to it based

on the existing and current nodes’ hidden states. Figure 4.3 illustrates this process. Since

edges always point to new nodes, the generated graph is guaranteed to be acyclic. Note that
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we maintain hidden states for both the current node and existing nodes, and keep updating

them during the generation. For example, whenever step 4 samples a new edge between vj

and vi, we will update hvi to reflect the change of its predecessors and thus the change of the

computation so far. Then, we will use the new hvi for the next prediction. Such a dynamic

updating scheme is flexible, computation-aware, and always uses the up-to-date state of each

node to predict next steps. In contrast, methods based on RNNs [88, 175] do not maintain

states for old nodes, and only use the current RNN state to predict the next step.

In step 4, when sequentially predicting incoming edges from previous nodes, we choose the

reversed order i− 1, . . . , 1 instead of 1, . . . , i− 1 or any other order. This is based on the prior

knowledge that a new node vi is more likely to firstly connect from the node vi−1 immediately

before it. For example, in neural architecture design, when adding a new layer, we often

first connect it from the last added layer, and then decide whether there should be skip

connections from other previous layers. Note that however, such an order is not fixed and

can be flexible according to specific applications.

4.3.3 Model extensions

Relation with RNNs. The D-VAE encoder and decoder can be reduced to ordinary RNNs

when the input DAGs are reduced to linked lists. Although we propose D-VAE from a GNN’s

perspective, our model can also be seen as a generalization of traditional sequence modeling

frameworks [16, 153] where a timestamp depends only on the timestamp immediately before

it, to the DAG case where a timestamp has multiple previous dependencies. As special DAGs,

similar ideas have been explored for trees [69, 154], where a node can have multiple incoming

edges yet only one outgoing edge.
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Bidirectional encoding. D-VAE’s encoding process can be seen as simulating how an input

signal goes through a DAG, with hv simulating the output signal at each node v. This is also

known as forward propagation in neural networks. Inspired by the bidirectional RNN [139],

we can also use another GRU to reversely encode a DAG (i.e., reverse all edge directions

and encode the DAG again), thus simulating the backward propagation too. After reverse

encoding, we get two ending states, which are concatenated and linearly mapped to their

original size as the final output state. We find this bidirectional encoding can increase the

performance and convergence speed on neural architectures.

Incorporating vertex semantics. Note that D-VAE currently uses one-hot encoding of

node types as xv, which does not consider the semantic meanings of different node types. For

example, a 3× 3 convolution layer might be functionally very similar to a 5× 5 convolution

layer, while being functionally distinct from a max pooling layer. We expect incorporating

such semantic meanings of node types to be able to further improve D-VAE’s performance.

For example, we can use pretrained embeddings of node types to replace the one-hot encoding.

We leave it for future work.

4.3.4 Encoding neural architectures

According to Theorem 2.2, to ensure D-VAE injectively encodes computations, we need the

aggregation function A to be injective. Remember A takes the multiset
{
hu : u → v

}
) as

input. If the order of its elements does not matter, then the gated sum in (4.9) can model this

injective multiset function without issues. However, if the order matters (i.e., permuting the

elements of
{
hu : u→ v

}
makes A output different results), we need a different aggregation

function that can encode such orders.
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Whether the order should matter for A depends on whether the input order matters for

the operations o (see the proof for Theorem 2.2 for more details). For example, if multiple

previous layers’ outputs are summed or averaged as the input to a next layer in the neural

networks, then A can be modeled by the gated sum in (4.9) as the order of inputs does not

matter. However, if these outputs are concatenated as the next layer’s input, then the order

does matter. In our experiments, the neural architectures use the second way to aggregate

outputs from previous layers. The order of concatenation depends on a global order of the

layers in a neural architecture. For example, if layer-2 and layer-4’s outputs are input to

layer-5, then layer-2’s output will be before layer-4’s output in their concatenation.

Since the gated sum in (4.9) can only handle the unordered case, we can slightly modify (4.9)

in order to make it order-aware thus more suitable for our neural architectures. Our scheme

is as follows:

hin
v =

∑
u→v

g(Concat(hu,xuid))�m(Concat(hu,xuid)), (4.11)

where xuid is the one-hot encoding of layer u’s global ID (1,2,3,. . .). Such an aggregation

function respects the concatenation order of the layers. We empirically observed that this

aggregation function can increase D-VAE’s performance on neural architectures compared

to the plain aggregation function (4.9). However, even using (4.9) still outperformed all

baselines.
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4.3.5 Encoding Bayesian networks

We also make some modifications when encoding Bayesian networks. One modification is

that the aggregation function (4.9) is changed to:

hin
v =

∑
u→v

g(xu)�m(xu). (4.12)

Compared to (4.9), we replace hu with the node type feature xu. This is due to the differences

between computations on a neural architecture and on a Bayesian network. In a neural

network, the signal flow follows the network architecture, where the output signal of a

layer is fed as the input signals to its succeeding layers. Also in a neural network, what

we are interested in is the result output by the final layer. In contrast, for a Bayesian

network, the graph represents a set of conditional dependencies among variables instead

of a computational flow. In particular, for Bayesian network structure learning, we are

often concerned about computing the (log) marginal likelihood score of a dataset given a

graph structure, which is often decomposed into individual variables given their parents (see

Definition 18.2 in [80]). For example, in Figure 4.4, the overall score can be decomposed into

s(X1)+s(X2)+s(X3 | X1, X2)+s(X4)+s(X5 | X3, X4). To compute the score s(X5 | X3, X4)

for X5, we only need the values of X3 and X4; its grandparents X1 and X2 should have no

influence on X5. Based on this intuition, when computing the hidden state of a node, we
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Figure 4.4: An example Bayesian network and its encoding.
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use the features xu of its parents u instead of hu, which “d-separates” the node from its

grandparents. For the update function, we still use (4.10).

Also based on the decomposibility of the score, we make another modification for encoding

Bayesian networks by using the sum of all node states as the final output state instead of

only using the ending node state. Similarly, when decoding Bayesian networks, the graph

state hG := ∑
j=1,...,i−1 hvj .

Note that the combination of (4.12) and (4.10) can injectively model the conditional de-

pendence between v and its parents u. In addition, using summing can model injective

set functions [168, Lemma 5]. Therefore, the above encoding scheme is able to injectively

encode the complete conditional dependencies of a Bayesian network, thus also the

overall score function s of the network.

4.3.6 Advantages of Encoding Computations for DAG Optimiza-

tion

Here we discuss why D-VAE’s ability to injectively encode computations (Theorem 2.2) is

of great benefit to performing DAG optimization in the latent space. Firstly, our target is

to find a DAG that achieves high performance (e.g., accuracy of neural network, BIC score

of Bayesian network) on a given dataset. The performance of a DAG is directly related to

its computation. For example, given the same set of layer parameters, two neural networks

with the same computation will have the same performance on a given test set. Since D-VAE

encodes computations instead of structures, it allows embedding DAGs with similar

performances to the same regions in the latent space, rather than embedding DAGs

with merely similar structure patterns to the same regions. Subsequently, the latent space can

be smooth w.r.t. performance instead of structure. Such smoothness can greatly facilitate
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searching for high-performance DAGs in the latent space, since similar-performance DAGs

tend to locate near each other in the latent space instead of locating randomly, and modeling

a smoothly-changing performance surface is much easier.

Note that Theorem 2.2 is a necessary condition for the latent space to be smooth w.r.t.

performance, because if D-VAE cannot injectively encode computations, it might map two

DAGs representing completely different computations to the same encoding, making this

point of the latent space arbitrarily unsmooth. Although there yet is no theoretical guarantee

that the latent space must be smooth w.r.t. DAGs’ performances, we do empirically observe

that the predictive performance and Bayesian optimization performance of D-VAE’s latent

space are significantly better than those of baselines, which is indirect evidence that D-VAE’s

latent space is smoother w.r.t. performance. Our visualization results also confirm the

smoothness. See Section 4.4.2, 4.4.3, 4.4.4 for details.

4.4 Experiments

We validate the proposed DAG variational autoencoder (D-VAE) on two DAG optimization

tasks:

• Neural architecture search. Our neural network dataset contains 19,020 neural archi-

tectures from the ENAS software [128]. Each neural architecture has 6 layers (excluding

input and output layers) sampled from: 3 × 3 and 5 × 5 convolutions, 3 × 3 and 5 × 5

depthwise-separable convolutions [30], 3× 3 max pooling, and 3× 3 average pooling. We

evaluate each neural architecture’s weight-sharing accuracy [128] (a proxy of the true

accuracy) on CIFAR-10 [86] as its performance measure. We split the dataset into 90%

training and 10% held-out test sets. We use the training set for VAE training, and use

the test set only for evaluation. More details are in Appendix A.3.
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• Bayesian network structure learning. Our Bayesian network dataset contains 200,000

random 8-node Bayesian networks from the bnlearn package [140] in R. For each network,

we compute the Bayesian Information Criterion (BIC) score to measure the performance

of the network structure for fitting the Asia dataset [90]. We split the Bayesian networks

into 90% training and 10% test sets. For more details, please refer to Appendix A.4.

Following [88], we do four experiments for each task:

• Basic abilities of VAE models. In this experiment, we perform standard tests to

evaluate the reconstructive and generative abilities of a VAE model for DAGs, including

reconstruction accuracy, prior validity, uniqueness and novelty.

• Predictive performance of latent representation. We test how well we can use

the latent embeddings of neural architectures and Bayesian networks to predict their

performances.

• Bayesian optimization. This is the motivating application of D-VAE. We test how well

the learned latent space can be used for searching for high-performance DAGs through

Bayesian optimization.

• Latent space visualization. We visualize the latent space to qualitatively evaluate its

smoothness.

Since there is little previous work on DAG generation, we compare D-VAE with three

generative baselines adapted for DAGs: S-VAE, GraphRNN and GCN. Among them, S-

VAE [16] and GraphRNN [175] are adjacency-matrix-based methods, and GCN [77] uses

simultaneous message passing to encode DAGs. We include more details about these baselines

and discuss D-VAE’s advantages over them in Appendix A.5. The training details are in

Appendix A.6. The link to our code is https://github.com/muhanzhang/D-VAE.
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4.4.1 Reconstruction accuracy, prior validity, uniqueness and nov-

elty

Being able to accurately reconstruct input examples and generate valid new examples are

basic requirements for VAE models. In this experiment, we evaluate the models by measuring

1) how often they can reconstruct input DAGs perfectly (Accuracy), 2) how often they can

generate valid neural architectures or Bayesian networks from the prior distribution (Validity),

3) the portion of unique DAGs out of the valid generations (Uniqueness), and 4) the portion

of valid generations that are never seen in the training set (Novelty).

We first evaluate each model’s reconstruction accuracy on the test sets. Following previous

work [69, 88], we regard the encoding as a stochastic process. That is, after getting the mean

and variance parameters of the posterior approximation qφ(z|G), we sample a z from it as

G’s latent vector. To estimate the reconstruction accuracy, we sample z 10 times for each

G, and decode each z 10 times too. Then we report the average portion of the 100 decoded

DAGs that are identical to the input.

To calculate prior validity, we sample 1,000 latent vectors z from the prior distribution p(z)

and decode each latent vector 10 times. Then we report the portion of these 10,000 generated

DAGs that are valid. A generated DAG is valid if it can be read by the original software which

generated the training data. More details about the validity experiment are in Appendix A.7.

We show the results in Table 4.1. Among all the models, D-VAE and S-VAE generally have

the highest performance. We find that D-VAE, S-VAE and GraphRNN all have near perfect

reconstruction accuracy, prior validity and novelty. However, D-VAE and S-VAE show higher

uniqueness, meaning that they generate more diverse examples. We find that GCN is not

suitable for modeling neural architectures as it only reconstructs 5.42% unseen inputs. This
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Table 4.1: Reconstruction accuracy, prior validity, uniqueness and novelty (%).

Neural architectures Bayesian networks
Methods Accuracy Validity Uniqueness Novelty Accuracy Validity Uniqueness Novelty
D-VAE 99.96 100.00 37.26 100.00 99.94 98.84 38.98 98.01
S-VAE 99.98 100.00 37.03 99.99 99.99 100.00 35.51 99.70

GraphRNN 99.85 99.84 29.77 100.00 96.71 100.00 27.30 98.57
GCN 5.42 99.37 41.18 100.00 99.07 99.89 30.53 98.26

is not surprising, since the simultaneous message passing scheme in GCN focuses on learning

local graph structures, but fails to encode the computation represented by the entire neural

network. Besides, the sum pooling after the message passing might also lose some global

topology information which is important for the reconstruction.

4.4.2 Predictive performance of latent representation.

In this experiment, we evaluate how well the learned latent embeddings can predict the

corresponding DAGs’ performances, which tests a VAE’s unsupervised representation learning

ability. Being able to accurately predict a latent point’s performance also makes it much

easier to search for high-performance points in this latent space. Thus, the experiment is also

an indirect way to evaluate a VAE latent space’s suitability for DAG optimization. Following

[88], we train a sparse Gaussian Process (SGP) regression model [148] with 500 inducing

points on the training data’s embeddings to predict the unseen test data’s performances. We

include the SGP training details in Appendix A.8.

We use two metrics to evaluate the predictive performance of the latent embeddings (given by

the mean of the posterior approximations). One is the RMSE between the SGP predictions

and the true performances. The other is the Pearson correlation coefficient (or Pearson’s r),

measuring how well the prediction and real performance tend to go up and down together.

A small RMSE and a large Pearson’s r indicate a better predictive performance. Table 4.2
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Table 4.2: Predictive performance of encoded means.

Neural architectures Bayesian networks
Methods RMSE Pearson’s r RMSE Pearson’s r
D-VAE 0.384±0.002 0.920±0.001 0.300±0.004 0.959±0.001
S-VAE 0.478±0.002 0.873±0.001 0.369±0.003 0.933±0.001

GraphRNN 0.726±0.002 0.669±0.001 0.774±0.007 0.641±0.002
GCN 0.832±0.001 0.527±0.001 0.421±0.004 0.914±0.001

shows the results. All the experiments are repeated 10 times and the means and standard

deviations are reported.

From Table 4.2, we find that both the RMSE and Pearson’s r of D-VAE are significantly better

than those of the other models. A possible explanation is D-VAE encodes the computation,

which is directly related to a DAG’s performance. S-VAE follows closely by achieving the

second best performance. GraphRNN and GCN have less satisfying performances in this

experiment. The better predictive power of D-VAE’s latent space means performing Bayesian

optimization in it may be more likely to find high-performance points.

4.4.3 Bayesian optimization

We perform Bayesian optimization using the two best models, D-VAE and S-VAE, validated

by previous experiments. Based on the SGP model from the last experiment, we perform 10

iterations of batch Bayesian optimization, and average results across 10 trials. A batch size

of 50 and the expected improvement (EI) heuristic [71] are used, following [88]. Concretely

speaking, we start from the training data’s embeddings, and iteratively propose new points

from the latent space that maximize the EI acquisition function. For each batch of selected

points, we evaluate their decoded DAGs’ real performances and add them back to the SGP
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Figure 4.5: Top 5 neural architectures found by each model and their true test accuracies.

to select the next batch. Finally, we check the best-performing DAGs found by each model

to evaluate its DAG optimization performance.

Neural architectures . For neural architectures, we select the top 15 found architectures

in terms of their weight-sharing accuracies, and fully train them on CIFAR-10’s train set to

evaluate their true test accuracies. More details can be found in Appendix A.3. We show the

5 architectures with the highest true test accuracies in Figure 4.5. As we can see, D-VAE in

general found much better neural architectures than S-VAE. Among the selected architectures,

D-VAE achieved a highest accuracy of 94.80%, while S-VAE’s highest accuracy was only

92.79%. In addition, all the 5 architectures of D-VAE have accuracies higher than 94%,

indicating that D-VAE’s latent space can stably find many high-performance architectures.

Although not outperforming state-of-the-art NAS techniques such as NAONet [103] (2.11%

error rate on CIFAR-10), our search space was much smaller, and we did not apply any data

augmentation techniques nor did we copy multiple folds or add more filters after finding

the architecture. We emphasize that in this chapter, we mainly focus on idea illustration

rather than record breaking, since achieving state-of-the-art NAS results typically requires

enormous computation resources beyond our capability. Nevertheless, D-VAE does provide a

promising new direction for neural architecture search based on graph generation, alternative

to existing approaches.
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Figure 4.6: Top 5 Bayesian networks found by each model and their BIC scores (higher the
better).

Bayesian networks .We similarly report the top 5 Bayesian networks found by each model

ranked by their BIC scores in Figure 4.6. D-VAE generally found better Bayesian networks

than S-VAE. The best Bayesian network found by D-VAE achieved a BIC of -11125.75, which

is better than the best network in the training set with a BIC of -11141.89 (a higher BIC

score is better). Considering BIC is in log scale, the probability of our found network to

explain the data is actually 1E7 times larger than that of the best training network. For

reference, the true Bayesian network used to generate the Asia data has a BIC of -11109.74.

Although we did not exactly find the true network, our found network is close to it and

outperforms all training data. Our experiments show that searching in an embedding space

is a promising direction for Bayesian network structure learning.

Bayesian optimization vs. random search. To validate that Bayesian optimization

(BO) in the latent space does provide guidance in searching better DAGs, we compare BO

with Random (which randomly samples points from the latent space of D-VAE). Figure 4.7

and 4.8 show the results (averaged across 10 trials). In each figure, the left plot shows the

average performance of all the points found in each BO round, and the right plot shows

the highest performance of all the points found so far. As we can see, BO consistently

selects points with better average performance in each round than random search, which is

expected. However, for the highest performance results, BO tends to fall behind Random

in the initial few rounds. This might be because our batch expected improvement heuristic

aims to take advantage of the currently most promising regions by selecting most points of

the batch in the same region (exploitation), while Random more evenly explores the entire
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Figure 4.7: Comparing BO with random search on neural architectures. Left: average
weight-sharing accuracy of the selected points in each iteration. Right: highest weight-sharing
accuracy of the selected points over time.

space (exploration). Nevertheless, BO seems to quickly catch up after a few rounds and

shows long-term advantages.

4.4.4 Latent space visualization

In this experiment, we visualize the latent spaces of the VAE models to get a sense of their

smoothness.

For neural architectures, we visualize the decoded architectures from points along a great

circle in the latent space. We start from the latent embedding of a straight network without

skip connections. Imagine this point as a point on the surface of a sphere (visualize the earth).

We randomly pick a great circle starting from this point and returning to itself around the

sphere. Along this circle, we evenly pick 35 points and visualize their decoded nets in Figure

4.9. As we can see, both D-VAE and S-VAE show relatively smooth interpolations by changing

only a few node types or edges each time. Visually speaking, S-VAE’s structural changes are

even more smooth. This is because S-VAE treats DAGs purely as strings, thus tending to

embed DAGs with few differences in string representations to similar regions of the latent
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Figure 4.8: Comparing BO with random search on Bayesian networks. Left: average BIC
score of the selected points in each iteration. Right: highest BIC score of the selected points
over time.

Figure 4.9: Great circle interpolation starting from a point and returning to itself. Upper:
D-VAE. Lower: S-VAE.

space without considering their computational differences (see Appendix A.5). In contrast,

D-VAE models computations, and focuses more on the smoothness w.r.t. computation rather

than structure.

For Bayesian networks, we aim to directly visualize the BIC score distribution of the latent

space. To do so, we reduce its dimensionality by choosing a 2-D subspace of the latent space

spanned by the first two principal components of the training data’s embeddings. In this

low-dimensional subspace, we compute the BIC scores of all the points evenly spaced within

a [−0.3, 0.3] grid and visualize the scores using a colormap in Figure 4.10. As we can see,

D-VAE seems to better differentiate high-score points from low-score ones and shows more
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Figure 4.10: Visualizing a principal 2-D subspace of the latent space.

smoothly changing of BIC scores, while S-VAE shows sharp boundaries and seems to mix

high-score and low-score points more severely. We suspect this helps Bayesian optimization

find high-performance Bayesian networks more easily in D-VAE.

We include more visualization results of the generated neural architectures and Bayesian

networks in appendix A.9 and A.10.

4.5 Conclusion

In this chapter, we have proposed D-VAE, a deep generative model for DAGs. D-VAE

uses a novel asynchronous message passing scheme to explicitly model computations on

DAGs. By performing Bayesian optimization in D-VAE’s latent spaces, we offer promising

new directions to two important problems, neural architecture search and Bayesian network

structure learning. We hope D-VAE can inspire more research on extending graph generative

models’ applications on structure optimization.
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Chapter 5

Conclusions

Graph learning has received much attention among the machine learning and data mining

communities due to the abundance and importance of graph structured data in the real world.

Deep neural networks, on the other hand, have achieved remarkable performance on numerous

machine learning tasks and are continuously changing people’s lives. In this dissertation, we

study an emerging new field, graph deep learning, which aims at applying deep learning, in

particular graph neural networks (GNNs), to a series of graph learning problems. Through

innovations in algorithms, architectures, theories, and applications, we have greatly extended

GNNs’ boundary to a broad range of graph learning problems, including graph classification,

medical ontology embedding, link prediction, recommender systems, graph generation, and

graph structure optimization.

For graph classification, we identify that existing GNNs’ less satisfying performance results

from the summing-based pooling operation that aggregates node features into a graph

representation in one step. To address this issue, we have proposed an end-to-end GNN

architecture with a novel SortPooling layer to replace the summing in previous works. Inspired
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by CNN’s successes on images, we designed to also give nodes an order and apply convolutional

filters on the ordered node sequences like convolutional filters on image pixels. Our SortPooling

layer sorts node features using the soft WL colors extracted by previous graph convolution

layers. With this meaningful and consistent order, we are able to apply 1-D convolutional

filters to the sorted node sequences and hierarchically extract graph representations in a

more refined way. Experimental results have demonstrated the superior graph classification

performance compared to existing methods. Our work has since inspired many follow-up

works studying how to better aggregate node features into graph representations [49, 91, 173],

and has become a common baseline for graph classification.

For medical ontology embedding, we have proposed a novel hierarchical attention propagation

model to absorb structural information from the entire medical ontology into the node

embeddings. We have proved our medical concept embeddings’ superior expressive power

in terms of encoding and recovering the ontology. We have successfully used the learned

embeddings on two sequential procedure/diagnosis prediction tasks using real patient data

and achieved superior prediction performance. Our work on medical ontology embedding

has extended GNNs’ applications to healthcare domains. We expect it will encourage more

research on studying the various types of graph-structured data in medical domains, such as

medical ontologies and patient networks.

For link prediction, we have developed a γ-decaying theory, which unifies existing link

prediction heuristics into a single framework and proves their local approximability. In

particular, we have proved that three most popular high-order heuristics, Katz index, rooted

PageRank and SimRank, intrinsically share the same form, and can all be approximated from

local enclosing subgraphs with the approximation error decreasing exponentially with the

hop number. The theory inspired us to develop SEAL, a framework to learn general graph

structure features for link prediction from local enclosing subgraphs around links based on a
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GNN, instead of using predefined heuristics. The learned graph structure features outperform

traditional heuristics dramatically. Our ground-breaking work has been gradually shifting

the trend of designing link prediction heuristics manually towards learning graph structural

features automatically from graphs.

For recommender systems, we have leveraged a similar framework to SEAL to formulate

matrix completion as predicting labeled links in a bipartite network. Through a novel GNN

architecture and an effective regularization technique, our model achieved highly competitive

results with traditional matrix factorization baselines. Further, we have demonstrated that

our model is inductive and transferrable without using any content information, a property

which previous inductive matrix completion methods do not have. Experiments have shown

that our model trained on MovieLens can be directly used to predict Douban movie ratings

with performance even superior than many baseline methods trained exclusively for Douban.

This transfer learning ability has great potential for recommendation tasks lack of enough

training data. We expect to see our work make more impact and encourage more new ideas

for recommender systems in the future.

Lastly, we have explored GNNs’ applicability for graph generation and graph structure

optimization. Focusing on directed acyclic graphs (DAGs), we have proposed a DAG

variational autoencoder (D-VAE) model that can encode and decode DAGs to and from a

latent space based on GNNs. To better encode the computations on DAGs, we have designed

a novel asynchronous message passing scheme that can injectively map computations to the

latent space, which transforms the hard discrete structure optimization problem into an easier

continuous space optimization problem. We have tested D-VAE on two types of common

DAGs in machine learning, neural architectures and Bayesian networks. Experimental results

show that our D-VAE not only generates novel and valid DAGs, but also produces a smooth

latent space effective for performing Bayesian optimization to optimize DAG structures on.
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Our model has achieved very promising results on two important DAG optimization tasks,

neural architecture search and Bayesian network structure learning. We hope our work can

provide an orthogonal idea to existing algorithms of both problems and inspire more research

on studying graph generative models based on GNNs.

We believe graphs are a very important type of data to study, not only because there exist

various interesting and important graph learning problems, but also because graphs naturally

model our densely connected, competitive and collaborative world. We also believe studying

graph neural networks is a crucial step towards strong AI, as our human brain is also a

connected graph which can leverage related memories to learn new things quickly. In the

future, we plan to keep investigating graphs and GNNs. In particular, we plan to apply

GNNs to model brain activities, which could potentially help us understand brains better,

and perhaps eventually, simulate human brains.
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Appendix A

A.1 Additional details about link prediction baselines

Hyperparameters of heuristic and latent feature methods Most hyperparameters

are inherited from the original paper of each method. For Katz, we set the damping factor β

to 0.001. For PageRank, we set the damping factor α to 0.85. For SimRank, we set γ to 0.8.

For stochastic block model (SBM), we use the implementation of [4] using a latent group

number 12. For matrix factorization (MF), we use the libFM [132] software with the default

parameters. For node2vec, LINE, and spectral clustering, we first generate 128-dimensional

embeddings from the observed networks with default parameters of each software. Then, we

use the Hadamard product of two nodes’ embeddings as a link’s embedding as suggested in

[56], and train a logistic regression model with Liblinear [46] using automatic hyperparameter

selection. For VGAE, we use its default setting.

WLNM. Weisfeiler-Lehman Neural Machine (WLNM) [182] is our previously proposed link

prediction method that learns general graph structure features. It achieves state-of-the-art

performance on various networks, outperforming all handcrafted heuristics. WLNM has

three steps: enclosing subgraph extraction, subgraph pattern encoding, and neural network
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training. In the enclosing subgraph extraction step: for each node pair (x, y), WLNM

iteratively extracts x and y’s one-hop neighbors, two-hop neighbors, and so on, until the

enclosing subgraph has more than K vertices, where K is a user-defined integer. In the

subgraph pattern encoding step, WLNM uses the Weisfeiler-Lehman algorithm to define

an order for nodes within each enclosing subgraph, so that the neural network can read

different subgraphs’ nodes in a consistent order and learn meaningful patterns. To unify

the sizes of the enclosing subgraphs, after getting the vertex order, the last few vertices are

deleted so that all the truncated enclosing subgraphs have the same size K. These truncated

enclosing subgraphs are reordered and their fixed-size adjacency matrices are fed into the

fully-connected neural network to train a link prediction model. Due to the truncation,

WLNM cannot consistently learn from each link’s full h-hop neighborhood. The loss of

structural information limits WLNM’s performance and restrict it from learning complete

h-order graph structure features. Following [182], we use K = 10 (the best performing K) in

our experiments.

WLK. Weisfeiler-Lehman graph kernel (WLK) [142] is a state-of-the-art graph kernel.

Graph kernels make kernel machines feasible for graph classification by defining some posi-

tive semidefinite graph similarity scores. Most graph kernels measure graph similarity by

decomposing graphs into small substructures and adding up the pair-wise similarities between

these components. Common types of substructures include walks [152, 159], subgraphs [34,

85], paths [15], and subtrees [116, 142]. WLK is based on counting common rooted subtrees

between two graphs. In our experiments, we train a SVM on the WL kernel matrix. We

feed the same enclosing subgraphs as in SEAL to WLK. We search the subtree depth from

{0, 1, 2, 3, 4, 5} on 10% validation links. WLK does not support continuous node information,

but supports integer node labels. Thus, we feed the same structural node labels from (3.10)

to WLK too.
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We compare the characteristics of different link prediction methods in Table A.1.

Table A.1: Comparison of different link prediction methods

Heuristics Latent features WLK WLNM SEAL
Graph structure features Yes No Yes Yes Yes
Learn from full h-hop No n/a Yes No Yes
Latent/explicit features No Yes No No Yes

Model n/a LR/inner product SVM NN GNN

A.2 More related work on neural architecture search

and Bayesian network structure learning

Both neural architecture search (NAS) and Bayesian network structure learning (BNSL) are

subfields of AutoML. See [190] for a survey. We have given a brief overview of NAS and

BNSL in section 4.2. Below we discuss several works most related to our work in detail.

[103] proposed a novel NAS approach called Neural Architecture Optimization (NAO). The

basic idea is to jointly learn an encoder-decoder between networks and a continuous space,

and also a performance predictor f that maps the continuous representation of a network

to its performance on a given dataset; then they perform two or three iterations of gradient

descent on f to find better architectures in the continuous space, which are then decoded to

real networks to evaluate. This methodology is similar to that of [54] and [69] for molecule

optimization; also similar to [115] for slightly revising a sentence.

There are several key differences comparing to our approach. First, they use strings (e.g.

“node-2 conv 3x3 node1 max-pooling 3x3”) to represent neural architectures, whereas we

directly use graph representations, which is more natural, and generally applicable to other
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graphs such as Bayesian network structures. Second, they use supervised learning instead

of unsupervised learning. That means they need to first evaluate a considerable amount of

randomly sampled graphs on a typically large dataset (e.g. train many neural networks),

and use these results to supervise the training of the autoencoder. Given a new dataset,

the autoencoder needs to be completely retrained. In contrast, we train our variational

autoencoder in a fully unsupervised manner, so the model is of general purposes.

[48] proposed a novel AutoML algorithm also using model embedding, but with a matrix

factorization approach. They first construct a matrix of performances of thousands of ML

pipelines on hundreds of datasets; then they use a probabilistic matrix factorization to get

the latent representations of the pipelines. Given a new dataset, Bayesian optimization with

the expected improvement heuristic is used to find the best pipeline. This approach only

allows us to choose from predefined off-the-shelf ML models, hence its flexibility is somewhat

limited.

[73] use Bayesian optimization for NAS; they define a kernel that measures the similarities

between networks by solving an optimal transport problem, and in each iteration, they use

some evolutionary heuristics to generate a set of candidate networks based on making small

modifications to existing networks, and use expected improvement to choose the next one to

evaluate. This work is similar to ours in the application of Bayesian optimization. However,

defining a kernel to measure the similarities between discrete structures is a non-trivial

problem. In addition, the discrete search space is heuristically extrapolated near existing

architectures, which makes the search essentially local. In contrast, we directly fit a Gaussian

process over the entire continuous latent space, enabling more global optimization.

Using Gaussian process (GP) for Bayesian network structure learning has also been studied

before. [170] analyzed the smoothness of BDe score, showing that a local change (e.g. adding
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an edge) can change the score by at most O(log n), where n is the number of training points.

They proposed to use GP as a proxy for the score to accelerate the search. [6] used GP to

model the BDe score, and showed that the probability of improvement is higher than that

of using hill climbing to guide the local search. However, these methods still heuristically

and locally operate in the discrete space, whereas our latent space makes both local and

global methods such as gradient descent and Bayesian optimization applicable in a principled

manner.

A.3 More details about neural architecture search

We use the efficient neural architecture search (ENAS)’s software [128] to generate the training

and testing neural architectures. With these seed architectures, we can train a VAE model

and thus search for new high-performance architectures in the latent space.

ENAS alternately trains two components: 1) a RNN-based controller which is used to propose

new architectures, and 2) the shared weights of the proposed architectures. It uses a weight-

sharing (WS) scheme to obtain a quick but rough estimate of how good an architecture is.

That is, it forces all the proposed architectures to use the same set of shared weights, instead

of fully training each neural network individually. It assumes that an architecture with a

high validation accuracy using the shared weights (i.e., the weight-sharing accuracy) is more

likely to have a high test accuracy after fully retraining its weights from scratch.

We first run ENAS in the macro space (section 2.3 of [128]) for 1000 epochs with 20

architectures proposed in each epoch. For all the proposed architectures excluding the first

1000 burn-in ones, we evaluate their weight-sharing accuracies using the shared weights from

the last epoch. We further split the data into 90% training and 10% held-out test sets. Then

our task becomes to train a VAE on the training neural architectures, and then generate
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new high-performance architectures from the latent space based on Bayesian optimization.

Note that our target performance measure here is the weight-sharing accuracy, not the

true validation/test accuracy after fully retraining the architecture. This is because the

weight-sharing accuracy takes around 0.5 second to evaluate, while fully training a network

takes over 12 hours. In consideration of our limited computational resources, we choose the

weight-sharing accuracy as our optimization target in the Bayesian optimization experiments.

After the Bayesian optimization finds a final set of architectures with high weight-sharing

accuracies, we will fully train them to evaluate their true test accuracies on CIFAR-10. To

fully train an architecture, we follow the original setting of ENAS to train each architecture

on CIFAR-10’s training set for 310 epochs, and report the last epoch’s net’s test accuracy.

See [128, section 3.2] for details.

Due to our constrained computational resources, we choose not to perform Bayesian optimiza-

tion to optimize the true validation accuracy (after fully training), which would be a more

principled way for searching neural architectures. Nevertheless, we describe its procedure

here for future explorations: After training the D-VAE, we have no architectures at all to

initialize a Gaussian process regression on the true validation accuracy. Thus, we need to

randomly pick up some points in the latent space, decode them into neural architectures, and

get their true validation accuracies after full training. Then with these initial points, we start

the Bayesian optimization similarly to section 4.4.3, with the optimization target replaced by

the true validation accuracy. Finally, we will find a set of architectures with the highest true

validation accuracies, and report their true test accuracies. This experiment will take much

longer time (months of GPU time). Thus, making the training parallel is very necessary.

One might wonder why we train another generative model after we already have ENAS.

Firstly, ENAS is not general-purpose, but task specific. It leverages the validation accuracy
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signals to train the controller based on reinforcement learning. For any new NAS tasks,

ENAS needs to be completely retrained. In contrast, D-VAE is unsupervised. It only needs

to be trained once, and can be applied to other NAS tasks. Secondly, D-VAE also provides a

way to learn neural architecture embeddings, which can be used for downstream tasks such

as visualization, classification, clustering etc.

In the Bayesian optimization experiments (section 4.4.3), the best architecture found by

D-VAE achieves a test accuracy of 94.80% on CIFAR-10. Although not outperforming

state-of-the-art NAS techniques which has an error rate of 2.11%, our architecture only

contains 3 million parameters compared to the state-of-the-art NAONet + Cutout which

has 128 million parameters [103]. In addition, NAONet used 200 GPUs to fully train 1,000

architectures for 1 day, and stacked the final found cell for 6 times as well as adding 4

times more filters after optimization. In comparison, we only used 1 GPU to evaluate the

weight-sharing accuracy, and never used any data augmentation techniques or architecture

stacking to boost the performance, since achieving new state-of-the-art NAS results (through

using great resources and heavy engineering) are beyond the main purpose of our paper.

A.4 More details about Bayesian network structure

learning

We consider a small synthetic problem called Asia [90] as our target Bayesian network

structure learning problem. The Asia dataset is composed of 5,000 samples, each is generated

by a true network with 8 binary variables4. Bayesian Information Criteria (BIC) score is used

to evaluate how well a Bayesian network fits the 5,000 samples. To train a VAE model to

generate Bayesian network structures, we sample 200,000 random 8-node Bayesian networks
4http://www.bnlearn.com/documentation/man/asia.html
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from the bnlearn package [140] in R, which are split into 90% training and 10% testing

sets. Our task is to train a VAE model on the training Bayesian networks, and search in

the latent space for Bayesian networks with high BIC scores using Bayesian optimization.

In this task, we consider a simplified case where the topological order of the true network

is known – we let the sampled training and test Bayesian networks have topological orders

consistent with the true network of Asia. This is a reasonable assumption for many practical

applications, e.g., when the variables have a temporal order [80]. When sampling a network,

the probability of a node having an edge with a previous node (as specified by the order)

is set to the default option 2/(k − 1), where k = 8 is the number of nodes, which results in

sparse graphs where the number of edges is in the same order of the number of nodes.

A.5 Baselines for D-VAE

As discussed in the related work, there are other types of graph generative models that can

potentially work for DAGs. We explore three possible approaches and contrast them with

D-VAE.

S-VAE. The S-VAE baseline treats a DAG as a sequence of node strings, which we call

string-based variational autoencoder (S-VAE). In S-VAE, each node is represented as the

one-hot encoding of its type number concatenated with a 0/1 indicator vector indicating

which previous nodes have directed edges to it (i.e., a column of the adjacency matrix). For

example, suppose there are two node types and five nodes, then node 4’s string “0 1, 0 1 1 0

0” means this node has type 2, and has directed edges from previous nodes 2 and 3. S-VAE

leverages a standard GRU-based RNN variational autoencoder [16] on the topologically sorted

node sequences, with each node’s string treated as its input bit vector.
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GraphRNN. One similar generative model is GraphRNN [175]. Different from S-VAE, it

further decomposes an adjacency column into entries and generates the entries one by one

using another edge-level GRU. GraphRNN is a pure generative model which does not have

an encoder, thus cannot optimize DAG performance in a latent space. To compare with

GraphRNN, we equip it with S-VAE’s encoder and use it as another baseline. Note that the

original GraphRNN feeds nodes using a BFS order (for undirected graphs), yet we find that

it is much worse than using a topological order here. Note also that although GraphRNN

seems more expressive than S-VAE, we find that in our applications GraphRNN tends to

have more severe overfitting and generates less diverse DAGs.

x

sin

cos

(")$

(")$
+

1

2

3 5

4

6

1 2

x

sin

cos

(")$

(")$
+

1

2

3 5

4

6

Figure A.1: Two bits of change in the string representations can completely change the computational
purpose.

Both GraphRNN and S-VAE treat DAGs as bit strings and use RNNs to model them. This

representation has several drawbacks. Firstly, since the topological ordering is often not

unique for a DAG, there might be multiple string representations for the same DAG, which

all result in different encoded representations. This will violate the permutation invariance in

Theorem 4.1. Secondly, the string representations can be very brittle in terms of modeling

DAGs’ computational purposes. In Figure A.1, the left and right DAGs’ string representations

are only different by two bits, i.e., the edge (2,3) in the left is changed to the edge (1,3)

in the right. However, the two bits of change in structure greatly changes the signal flow,

which makes the right DAG always output 1. In S-VAE and GraphRNN, since the bit

representations of the left and right DAGs are very similar, they are highly likely to be
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encoded to similar latent vectors. In particular, the only difference between encoding the left

and right DAGs is that, for node 3, the encoder RNN will read an adjacency column of [0, 1,

0, 0, 0, 0] in the left, and read [1, 0, 0, 0, 0, 0] in the right, while all the remaining encoding

is exactly the same. By embedding two DAGs serving very different computational purposes

to the same region of the latent space, S-VAE and GraphRNN tend to have less smooth

latent spaces which make optimization on them more difficult. In contrast, D-VAE can better

differentiate such subtle differences, as the change of edge (2,3) to (1,3) completely changes

what aggregated message node 3 receives in D-VAE (hidden state of node 2 vs. hidden state

of node 1), which greatly affects node 3 and all its successors’ feature learning.

GCN. The graph convolutional network (GCN) [77] is one representative graph neural

network with a simultaneous message passing scheme. In GCN, all the nodes take their

neighbors’ incoming messages to update their own states simultaneously instead of following

an order. After message passing, the summed node states is used as the graph state. We

include GCN as the third baseline. Since GCN can only encode graphs, we equip GCN with

D-VAE’s decoder to make it a VAE model.

Using GCN as the encoder can ensure permutation invariance, since node ordering does not

matter in GCN. However, GCN’s message passing focuses on propagating the neighboring

nodes’ features to each center node to encode the local substructure pattern around each

node. In comparison, D-VAE’s message passing simulates how the computation is performed

along the directed paths of a DAG and focuses on encoding the computation. Although

learning local substructure features is essential for GCN’s successes in node classification

and graph classification, here in our tasks, modeling the entire computation is much more

important than modeling the local features. Encoding only local substructures may also

lose important information about the global DAG topology, thus making it more difficult to

reconstruct the DAG.
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We omit other possible approaches such as GraphVAE [146], GraphSAGE [57], and other

graph-based models [69, 95, 100, 174] etc., either because they share similar characteristics

to the compared baselines, or because they lack official code or target specific graphs (such

as molecules).

A.6 VAE training details

We use the same settings and hyperparameters (where applicable) for all the four models to

be as pair as possible. Many hyperparameters are inherited from [88]. Single-layer GRUs

are used in all models requiring recurrent units, with the same hidden state size of 501. We

set the dimension of the latent space to be 56 for all models. All VAE models use N (0, I)

as the prior distribution p(z), and take qφ(z|G) (G denotes the input DAG) to be a normal

distribution with a diagonal covariance matrix, whose mean and variance parameters are

output by the encoder. The two MLPs used to output the mean and variance parameters are

all implemented as single linear layer networks.

For the decoder network of D-VAE, we let fadd_vertex and fadd_edge be two-layer MLPs with

ReLU nonlinearities, where the hidden layer sizes are set to two times of the input sizes.

Softmax activation is used after fadd_vertex, and sigmoid activation is used after fadd_edge.

For the gating network g, we use a single linear layer with sigmoid activation. For the

mapping function m, we use a linear mapping without activation. The bidirectional encoding

discussed in section 4.3.3 is enabled for D-VAE on neural architectures, and disabled for

D-VAE on Bayesian networks and other models where it gets no better results. To measure

the reconstruction loss, we use teacher forcing [69]: following the topological order with which

the input DAG’s nodes are consumed, we sum the negative log-likelihood of each decoding

step by forcing them to generate the ground truth node type or edge at each step. This
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ensures that the model makes predictions based on the correct histories. Then, we optimize

the VAE loss (the negative of (4.1)) using gradient descent following [69].

When optimizing the VAE loss, we use ReconstructLoss+αKLDivergence as the loss function.

In original VAE framework, α is set to 1. However, we found that it led to poor reconstruction

accuracies, similar to the findings of previous work [36, 69, 88]. Following the implementation

of [69], we set α = 0.005. Mini-batch SGD with Adam optimizer [76] is used for all models.

For neural architectures, we use a batch size of 32 and train all models for 300 epochs. For

Bayesian networks, we use a batch size of 128 and train all models for 100 epochs. We use an

initial learning rate of 1E-4, and multiply the learning rate by 0.1 whenever the training loss

does not decrease for 10 epochs. We use PyTorch to implement all the models.

A.7 More details of the piror validity experiment

Since different models can have different levels of convergence w.r.t. the KLD loss in (4.1),

their posterior distribution qφ(z | x) may have different degrees of alignment with the prior

distribution p(z) = N (0, I). If we evaluate prior validity by sampling from p(z) for all

models, we will favor those models that have a higher-level of KLD convergence. To remove

such effects and focus purely on models’ intrinsic ability to generate valid DAGs, when

evaluating prior validity, we apply z = z� std(Ztrain) + mean(Ztrain) for each model (where

Ztrain are encoded means of the training data by the model), so that the latent vectors are

scaled and shifted to the center of the training data’s embeddings. If we do not apply such

transformations, we find that we can easily control the prior validity results by optimizing

for more or less epochs or putting more or less weight on the KLD loss.

For a generated neural architecture to be read by ENAS, it has to pass the following validity

checks: 1) It has one and only one starting node (the input layer); 2) It has one and only
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one ending type (the output layer); 3) Other than the input node, there are no nodes which

do not have any predecessors (no isolated paths); 4) Other than the output node, there are

no nodes which do not have any successors (no blocked paths); 5) Each node must have a

directed edge from the node immediately before it (the constraint of ENAS), i.e., there is

always a main path connecting all the nodes; and 6) It is a DAG.

For a generated Bayesian network to be read by bnlearn and evaluated on the Asia dataset,

it has to pass the following validity checks: 1) It has exactly 8 nodes; 2) Each type in

"ASTLBEXD" appears exactly once; and 3) It is a DAG.

Note that the training graphs generated by the original software all satisfy these validity

constraints.

A.8 SGP training details

We use sparse Gaussian process (SGP) regression as the predictive model. We use the open

sourced SGP implementation in [88]. Both the training and testing data’s performances

are standardized according to the mean and std of the training data’s performances before

feeding to the SGP. And the RMSE and Pearson’s r in Table 4.2 are also calculated on the

standardized performances. We use the default Adam optimizer to train the SGP for 100

epochs constantly with a mini-batch size of 1,000 and learning rate of 5E-4.

For neural architectures, we use all the training data to train the SGP. For Bayesian networks,

we randomly sample 5,000 training examples each time, due to two reasons: 1) using all

the 180,000 examples to train the SGP might not be realistic for a typical scenario where

network/dataset is large and evaluating a network is expensive; and 2) we found using

a smaller sample of training data results in more stable BO performance due to the less
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probability of duplicate rows which might result in ill conditioned matrices. Note also that,

when training the variational autoencoders, all the training data are used, since the VAE

training is purely unsupervised.

A.9 The generated neural architectures

We randomly pick a neural architecture and use its encoded mean as the starting point. We

then generate two random orthogonal directions, and move in the combination of these two

directions from the starting point to render a 2-D visualization of the decoded architectures

in Figure A.2.

Figure A.2: 2-D visualization of decoded neural architectures. Left: D-VAE. Right: S-VAE.
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A.10 The generated Bayesian networks

We similarly show the 2-D visualization of decoded Bayesian networks in Figure A.3. Both

D-VAE and S-VAE show smooth latent spaces.

Figure A.3: 2-D visualization of decoded Bayesian networks. Left: D-VAE. Right: S-VAE.
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