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ABSTRACT OF THE DISSERTATION 
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Washington University in St. Louis, 2019 

Professor Lihong V. Wang, Co-Chair 

Professor Quing Zhu, Co-Chair 
 

Photoacoustic (PA) tomography (PAT) is a novel imaging modality that combines the fine lateral 

resolution from optical imaging and the deep penetration from ultrasonic imaging, and provides 

rich optical-absorption–based images. PAT has been widely used in extracting structural and 

functional information from both ex vivo tissue samples to in vivo animals and humans with 

different length scales by imaging various endogenous and exogenous contrasts at the ultraviolet 

to infrared spectrum. For example, hemoglobin in red blood cells is of particular interest in PAT 

since it is one of the dominant absorbers in tissue at the visible wavelength. 

The main focus of this dissertation is to develop high-speed PA microscopy (PAM) technologies. 

Novel optical scanning, ultrasonic detection, and laser source techniques are introduced in this 

dissertation to advance the performance of PAM systems. These upgrades open up new avenues 

for PAM to be applicable to address important biomedical challenges and enable fundamental 

physiological studies. 

First, we investigated the feasibility of applying high-speed PAM to the detection and imaging of 

circulating tumor cells (CTCs) in melanoma models, which can provide valuable information 
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about a tumor’s metastasis potentials. We probed the melanoma CTCs at the near-infrared 

wavelength of 1064 nm, where the melanosomes absorb more strongly than hemoglobin. Our high-

speed PA flow cytography system successfully imaged melanoma CTCs in travelling trunk 

vessels. We also developed a concurrent laser therapy device, hardware-triggered by the CTC 

signal, to photothermally lyse the CTC on the spot in an effort to inhibit metastasis. 

Next, we addressed the detection sensitivity issue in the previous study. We employed the 

stimulated Raman scattering (SRS) effect to construct a high-repetition-rate Raman laser at 658 

nm, where the contrast between a melanoma CTC and the blood background is near the highest. 

Our upgraded PA flow cytography successfully captured sequential images of CTCs in mouse 

melanoma xenograft model, with a significantly improved contrast-to-noise ratio compared to our 

previous results. This technology is readily translatable to the clinics to extract the information of 

a tumor’s metastasis risks. 

We extended the Raman laser technology to the field of brain functional studies. We developed a 

MEMS (micro-electromechanical systems) scanner for fast optical scanning, and incorporated it 

to a dual-wavelength functional PAM (fPAM) for high-speed imaging of cerebral hemodynamics 

in mouse. This fPAM system successfully imaged transient changes in blood oxygenation at 

cerebral micro-vessels in response to brief somatic stimulations. This fPAM technology is a 

powerful tool for neurological studies. 

Finally, we explored some approaches of reducing the size the PAM imaging head in an effort to 

translate our work to the field of wearable biometric monitors. To miniaturize the ultrasonic 

detection device, we fabricated a thin-film optically transparent piezoelectric detector for 

detecting PA waves. This technology could enable longitudinal studies on free-moving animals 

through a wearable version of PAM.



1 
 

Chapter 1: Introduction 
This chapter introduces the concept, implementation, and applications of photoacoustic 

tomography (PAT). In section 1.1, the physical mechanism of PAT is reviewed, followed by an 

introduction to several representative implementations of PAT. In section 1.2, an outline of this 

dissertation is given. 

1.1 Introduction to Photoacoustic Tomography 
PAT is an imaging technology based on the photoacoustic (PA) effect1, in which the short-pulsed 

laser energy absorbed by biomolecules is first converted to heat through non-radiative relaxation2. 

Subsequently, the spatially confined heat is converted to a pressure rise via thermoelastic 

expansion, and the initial pressure rise propagates in tissue as an ultrasonic wave—PA wave2. This 

PA wave is usually detected by one or a matrix of ultrasonic transducers to reconstruct the mapping 

of the optical absorption in tissue3. PAT is also a highly scalable imaging modality, capable of 

imaging objects of a broad range of length scales, from organelles to organs, with respective 

appropriate resolutions4. 

Photoacoustic microscopy (PAM) is the microscopic implementation of PAT5. In a standard PAM 

setup, a pulsed laser beam is focused onto the tissue. And a high-frequency ultrasonic transducer 

is placed co-axially with the laser beam to detect the PA waves with high sensitivity6. The acquired 

PA signal, A-line, is temporally resolved to form a one-dimensional (1D) image along the axial 

direction (depth-resolved image). A three-dimensional (3D) image is acquired by raster scanning 

(C-scan) the probing laser or the imaging object7, 8. 
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1.2 Dissertation outline 
This dissertation is focused on the development and applications of PAM. It is arranged in the 

following structure. 

Chapter 2 describes the development of a PAM technology for high-speed flow cytography of 

circulating melanoma cells in vivo, which exploits the high optical absorption contrast between 

melanoma cells and the blood background. We also developed a concurrent on-demand laser 

therapy device that works in a selective identify-then-locally-administer manner, in an effort to 

inhibit cancer metastasis. 

Based on the previous work, Chapter 3 addresses some technological limitations of Chapter 2 by 

improving the detection sensitivity of PAM. We explore a wavelength conversion technique, 

stimulated Raman scattering, to probe the circulating melanoma cells at a laser wavelength that 

gives higher contrast. It achieves a detection sensitivity at least 4 times higher than that in Chapter 

2, and successfully imaged circulating melanoma cells in a tumor xenograft model. 

Chapter 4 extends the work in Chapter 3. It introduces a dual-wavelength high-speed function 

PAM (fPAM) based on a Raman laser. Both the scanning and detection devices are significantly 

improved with novel techniques. We applied this fPAM in studies of mouse brain activity in 

response to somatic stimulations, and resolved transient hemodynamic changes on a single micro-

vessel scale. 

Chapter 5 extends the scope of Chapter 4. It explores some approaches towards wearable PAM. A 

lithium niobate-based optically transparent ultrasonic transducer is developed to minimize the 

ultrasonic detection device. Its application in PAM is demonstrated with a phantom and small 

animal experiment. 
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Chapter 6 summarizes all the works in this dissertation, and outlines some prospective studies for 

each chapter.  
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Chapter 2: In vivo label-free photoacoustic 
flow cytography and on-the-spot laser killing 

of single circulating melanoma cell 
This chapter introduces a hybrid PAM and laser therapy system for the application of flow 

cytography and destruction of circulating tumor cells (CTCs). Here we focused on the skin cancer 

melanoma. Exploiting the exquisite intrinsic optical absorption contrast of melanoma CTCs in the 

blood background, we developed dual-wavelength photoacoustic flow cytography coupled with a 

nanosecond-pulsed melanoma-specific laser therapy device. We have successfully achieved in 

vivo label-free imaging of rare single circulating melanoma cells in both arteries and veins of mice. 

Further, the photoacoustic signal from a circulating melanoma cell immediately hardware-triggers 

a lethal pinpoint laser irradiation to kill it on the spot in a thermally confined manner without 

collateral damage. A pseudo-therapy study including both in vivo and in vitro experiments 

demonstrated the performance and the potential clinical application of our technology, which can 

facilitate early treatment of metastasis in a dialysis manner by clearing circulating tumor cells from 

vasculature. The work in this chapter has been published in Scientific Reports9. 

2.1 Background 
As many as 90% of cancer-related deaths are attributed to metastases, the process of cancer cells 

spreading from a primary site to surrounding and distant sites to form new tumor colonies10-13. 

Most metastasis cases take the route of hematogenous dissemination of CTCs, including steps such 

as a tumor cell with invasive phenotypes intravasating local blood vessels, surviving in blood 

circulation, extravasating the vessel wall14. Here we focused on the deadliest type of skin cancer, 

melanoma. In United States, it has more than 87,000 new diagnoses and 10,000 deaths each year15. 

Melanoma has a high tendency to metastasize even at an early stage, after which the 5-year survival 
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rate decreases from 98.5% to less than 20%15. The presence and concentration of CTCs are closely 

correlated with tumor progression, metastases, and survival rates in patients16. Therefore, efficient 

detection and early eradication of melanoma CTCs are vital for cancer diagnosis and improving 

patient prognosis. 

Clinical ex vivo CTC detection with high sensitivity remains a challenge since it heavily depends 

on both small-volume sampling of blood and labeling of biomarkers on the cell membrane17, 18. 

Extensive in vivo CTC detection studies employing fluorescence probes or multiplex nanoparticles 

have achieved promising results17, 19-21, but the biosafety and labeling efficiency remain critical 

concerns, which limits their clinical translation. In the biological tissue background, melanoma 

cells have a high melanosome expression, providing a striking endogenous absorption contrast in 

the red to near-infrared (NIR) spectrum22, 23. Hence, PAT, having the highest possible sensitivity 

to absorption contrast, is an excellent technology for label-free imaging of melanoma cells. In 

2009, Galanzha et al. reported label-free detection of melanoma CTCs in vivo using PA cytometry, 

in which a pulsed laser was focused across a blood vessel and an ultrasonic transducer collected 

PA signals from a large voxel24. This design enables detection of melanoma CTCs in situ, but it 

lacks imaging capabilities. A recently developed optical-resolution PA imaging technique has 

acquired images of single CTCs in vivo25. However, its non-optic-acoustic-confocal configuration 

and low CTC-to-background contrast limit the applications to capillaries and require complicated 

pattern recognition to identify CTCs. High-contrast flow cytography that can reliably distinguish 

CTCs in real-time is needed for on-the-fly targeted CTC therapies. 

Traditional clinical therapies for tumor metastasis are still palliative, with many drugs not reaching 

metastasis sites26. Novel therapies based on particular metastasis features, such as angiogenesis, 

lymphangiogenesis, specific signal pathways and biomarkers, have reported good clinical 
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outcome26, 27, but they have less efficacy on initial micro-metastasis sites and typically produce 

adverse side effects28, 29. Taking another approach, therapies directly targeting CTCs can reduce 

tumor metastasis potentials and may even prevent metastasis from occurring if administered in 

early tumor stages13. Nanosecond-pulsed lasers at 680–1064 nm wavelengths have long enabled 

physicians to treat melanocytic skin lesions with a high degree of selectivity and a low risk of 

postoperative complications30, 31. For laser pulses shorter than the thermal relaxation time, radiant 

energy is largely confined in the absorber, which can achieve efficient energy delivery and 

selective photothermolysis of the absorbing cells32. When a nanosecond laser pulse with sufficient 

energy irradiates a melanoma CTC, the melanosomes inside are heated beyond the threshold 

temperature for explosive vaporization, photomechanically killing the CTC without damaging any 

adjacent tissue components32, 33. 

Here we report high-resolution CTC imaging, using our new dual-wavelength PA flow cytography 

technology, in combination with real-time CTC destruction at the single-cell scale by pinpoint 

nanosecond-pulsed lethal irradiation from a therapy laser. We obtained images of single CTCs 

flowing in both arteries and veins on the fly, and performed real-time CTC destruction in vivo in 

small animals. The performance of this system was demonstrated by a study mimicking treatment 

of melanoma metastasis. 

2.2 Methods 

2.2.1 Dual-wavelength PA flow cytography 
To induce PA signals, we employed a high-repetition-rate picosecond laser (APL-4000-1064, 

Attodyne, Inc.; maximum pulse repetition rate: 500 kHz) to provide 6-ps laser pulses at 1064 nm 

and 532 nm wavelengths. After traveling a 25-meter delay line, the 532 nm laser beam was 

combined with the 1064 nm laser beam through a longpass dichroic mirror. Melanosome absorbs 
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similarly to Hb at 532 nm, but >10 times more strongly than Hb at 1064 nm, which provides a high 

CTC contrast against the RBC background. The combined laser beams were focused by a focusing 

lens, reflected by an optical-acoustic combiner (OAC), and directed to the target by a water-

immersible MEMS (micro-electro-mechanical system) scanner for 1D fast scanning. The target 

was mounted on a stepper-motor-driven translational stage to facilitate orthogonal slow axis 

scanning. The OAC comprised of an aluminum-coated prism and an uncoated prism, and the thin 

aluminum coating on the first prism reflected light but transmitted sound. A correction lens was 

attached to the top surface of the OAC to correct the optical aberration due to the prisms. Excited 

PA waves were also reflected by this MEMS mirror, collected by an acoustic lens, transmitted 

through the OAC, and detected by an ultrasonic transducer (V214-BB-RM, Olympus-NDT, Inc.). 

Since the 532 nm laser pulse traveled through the ~80-ns delay line, the PA wave induced by the 

532 nm laser pulse arrived ~80 ns later than that by the 1064 nm laser pulse (Figure 2.1a). PA 

signals were then amplified by two radio-frequency amplifiers (ZX60-3018G-S+ and ZFL-

500LN+, Mini-circuits, Inc.) and acquired by a high-speed digitizer (ATS9350, Alazar Tech, Inc.). 

By steering both the optical and acoustic axes simultaneously, the system maintained confocal 

alignment over the entire FOV, providing high detection sensitivity. This flow cytography was 

capable of volumetric (3D) imaging at 10 Hz over a FOV of 3 × 0.25 mm2 at a depth up to ~0.7 

mm, with a 3 µm lateral resolution for the 532 nm flow cytography images, 7 µm for the 1064 nm 

flow cytography images, and ~26 µm axial (depth) resolution for both. The length and width of 

the FOV can be tuned by varying the driving voltage of the MEMS mirror and by adjusting the 

scanning range of the stepper motor, respectively. It is also possible to achieve a higher frame rate 

at the expense of a larger scanning step size, as in Figure 2.3, or of a shorter range for the stepper 

motor. 
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Figure 2.1 CTC imaging and destruction by dual-wavelength PA flow cytography combined with laser therapy. 
(a) Schematic of selected components of the experimental system. DM, dichroic mirror; MEMS, micro-electro-
mechanical-system scanning mirror; OAC, optical-acoustic combiner; PBS, polarizing beamsplitter; UT, ultrasonic 
transducer. The 1064 nm and 532 nm imaging lasers are employed to image CTCs and vasculature, respectively. (b-
e) Scheme of real-time detection and laser killing of CTCs. The CTC detector compares the earlier 1064 nm laser-
induced CTC-specific PA signal against an optimized threshold level (purple dashed line in (b) and (c)) above the Hb 
signal, and thus can reliably distinguish CTCs and trigger the therapy laser (c). Within ~10 µs, the therapy laser is 
fired and focused to the detected CTC location to photomechanically kill the CTC (e). 

2.2.2 On-the-fly CTC detection 
PA signals were concurrently analyzed for melanoma CTC detection based on the melanosome-

specific 1064 nm absorption induced PA signals (Figure 2.2). The specially built CTC detector 

consisted of an ultrafast analog switch and a comparator (Figure 2.2). Based on the fixed 80-ns 
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time interval between the 1064 nm and 532 nm laser pulses, a time window signal controlled the 

analog switch as a gate to selectively transmit the earlier 1064 nm laser-induced PA signal. The 

comparator compared this gated PA signal with an optimized preset threshold voltage. A signal 

above the threshold indicated the presence of a melanoma CTC, and immediately triggered a 

high-pulse-energy therapy laser (INNOSLAB, EdgeWave, Inc.) to lethally irradiate the same 

CTC on the spot (Figure 2.1c-d). Following a successful CTC detection, the detector was 

disabled for 1 ms to prevent double triggering by the much-higher-amplitude therapy laser-

induced PA signal. 

 

Figure 2.2 Circuit diagram and performance of the lab-made CTC detector. (a) Circuit diagram. The time gate 
signal (TTL logic) controls an ultrafast analog switch (SN74LVC1G3157, Texas Instruments Inc.) as a gate. Based 
on the fixed 80-ns time interval between the 1064 nm and 532 nm laser pulses in the dual-wavelength flow cytography, 
the time gate signal is employed to selectively gate the PA signals, allowing only the earlier PA signal induced by the 
1064 nm laser pulse to pass through to the comparator. The voltage comparator (TLV3502, Texas Instruments Inc.; 
4.5 ns propagation time) compares the gated PA signal to distinguish CTCs from RBCs and other blood cells. Once 
the signal peak is above the optimized preset threshold voltage (80 mV), a trigger signal is generated for the therapy 
laser. The high-speed characteristics of the analog switch and comparator guarantee real-time CTC detection and 
therapy-laser triggering. (b) Time sequence plot of the PA signal, time gate control signal, gated PA signal, and output 
trigger. The time interval from the 1064 nm laser-induced PA signal from a CTC to the output trigger is ~30 ns. 

2.2.3 Real-time CTC destruction 
Melanoma CTCs were irradiated by a high-pulse-energy 1064 nm laser pulse (7 ns) that could 

mechanically destroy the CTCs by explosive vaporization of the melanosomes inside (Figure 
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2.1de)32-34. The thermal diffusion distance during 7-ns laser exposure is ~30 nm, which means the 

thermal damage is confined to melanosomes, ~500 nm in diameter32. The therapy laser beam was 

coaxially aligned with the imaging laser beams by a polarizing beamsplitter and focused onto the 

CTC location. In order to maximize combining efficiency, a half-wave plate was used to adjust 

the polarization of the therapy laser beam. We optimized the focal spot size of the therapy laser 

based on the scanning speed of the MEMS mirror, the signal propagation and processing time, the 

CTC flow speed, and the therapy laser’s trigger-to-emission delay. The maximum scanning speed 

of the laser focal spot on the target was ~1 m/s. The acoustic flight time from the absorber to the 

ultrasonic transducer was ~10 µs, while the signal processing time in the CTC detector circuits 

was ~30 ns and the trigger-delay time of the therapy laser was ~300 ns. Based on the blood flow 

speed, the CTC movement in blood vessel during the ~10 µs response time was negligible. In 

conclusion, the center of the therapy laser’s focal spot could be ~10 µm (1 m/s × 10 µs) away from 

the original imaged CTC location. Therefore, the focal spot of the therapy laser, with 25 J/cm2 

fluence, was adjusted to be 50 µm in diameter to ensure coverage of the entire CTC with a 

sufficient local radiant intensity. 

2.2.4 Experimental animals 
Adult female ND4 Swiss Webster mice (Hsd: ND4, Envigo, Inc.; 20-25 g, 10-12 weeks old) were 

used for the in vivo CTC imaging and laser killing experiment. The laboratory animal protocols 

were approved by the Animal Studies Committee of Washington University in St. Louis. Three 

days before the experiment, cannulation was performed to safely insert a catheter into the jugular 

vein or carotid artery of the mouse, and the hair on the mouse ear was removed with human hair-

removing lotion. During the experiment, the mouse was maintained under anesthesia with 1.5% 

vaporized isoflurane, and taped to a lab-made animal holder, which was mounted on the stepper-
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motor-driven translation stage. Ultrasound gel was then applied to the imaging area to retain 

moisture and couple acoustic signals. A water tank filled with deionized water was then placed on 

top of the mouse ear. The membrane at the bottom of the water tank was in gentle contact with the 

ultrasound gel. During imaging, a 0.1-ml suspension containing ~106 B16F10 melanoma cells was 

injected through the cannulation catheter. The cells were cultured in DMEM supplemented with 

10% fetal bovine serum at 37 ºC in a humidified atmosphere with 5% CO2. 

Female athymic nude mice (Hsd:Athymic Nude-Foxn1, Envigo, Inc.; 12-15 g, 3-4 weeks old) were 

used for the pseudo-therapy study. The laboratory animal protocols were approved by the Animal 

Studies Committee of Washington University in St. Louis. Before the study, the mice were 

randomly assigned into either the therapy group or the control group. In one experiment, a mixture 

was first prepared by diffusing cultured B16F10 melanoma cells into bovine blood (Defibrinated 

Bovine Blood, Quad Five, Inc.). Next, this mixture was pumped in a translucent silicone tube (300 

µm inner diameter and 640 µm outer diameter)—mimicking a blood vessel—through our system 

with the therapy laser turned on. The flow rate was set at ~80µL/hr, with ~20 CTCs passing 

through the system every second. Afterwards, the cell mixture was reduced in volume by 

centrifugation to make a 50 µL dose (containing ~105 cells) that was subcutaneously inoculated 

into the dorsal area of a nude mouse in the therapy group. Then, another vial of mixture was 

acquired in a similar manner but with the therapy laser turned off, and a 50 µL dose of this imaged 

(but not treated) mixture was inoculated into a nude mouse in the control group. Afterwards, all 

the mice were imaged by acoustic resolution PAM to detect tumor formation and to measure the 

volume of flat tumors, and raised tumors were measured using a caliper35. Mice were euthanized 

when the tumor dimension exceeded 2 cm or the tumor began to ulcerate. 
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2.3 Results 

2.3.1 Imaging results 
To exploit the NIR absorption contrast between melanosome and hemoglobin (Hb) in red blood 

cells (RBCs), and to image CTCs on the fly, we developed a fast scanning PA flow cytography 

system for high-speed imaging at both 532 nm and 1064 nm wavelengths with single-cell 

resolution coupled with real-time selective CTC destruction by nanosecond-pulsed NIR laser-

induced photothermolysis (Figure 2.1). The therapy laser beam is coaxially aligned with the two 

imaging laser beams, and is triggered, using real-time hardware, immediately after flow 

cytography detects a CTC (Figure 2.1b-e, Figure 2.2). We first validated the system’s ability to 

image single CTCs with the therapy laser turned off. To simulate CTCs, ~106 cultured B16F10 

melanoma cells were administrated into the mouse’s blood circulation system through jugular vein 

cannulation, and a portion of these cells survived in circulation as CTCs. A 1.2 × 0.3 mm2 area of 

an artery-vein pair in the mouse ear was imaged by flow cytography at a 16.6 Hz volumetric (3D) 

rate. Figure 2.3 shows some snapshots of single CTCs flowing through the field of view (FOV) in 

the artery and the vein. As shown in Figure 2.3a, the vascular structure was imaged with high 

contrast by the 532 nm laser owing to the strong light absorption by Hb in RBCs at this wavelength. 

However, CTCs can hardly be distinguished from RBCs in these images, mainly due to the similar 

absorption coefficients for melanosome and Hb at 532 nm. In comparison, the 1064 nm laser pulse 

excitation of a CTC produced a PA signal with ~5 times greater amplitude than the background, 

while RBC signals were below the noise level. We performed control studies for 20 minutes before 

cell injection and recorded no PA signals of a similar amplitude level, which verified that the high-

amplitude 1064 nm laser-induced PA signals indeed originated only from CTC absorption. The 
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arterial and venous flow speeds of the CTC were calculated to be 0.33 mm/s and 0.20 mm/s, 

respectively, which are in general accordance with previously reported values. 

 

Figure 2.3 Snapshots showing single CTCs travelling in vasculature. (a) 532 nm laser-induced (Top), 1064 nm 
laser-induced (Middle), and fused (Bottom) flow cytography images. In the 1064 nm laser-induced image, the white 
arrow and yellow square indicate the detected CTC; the red and blue dashed lines delineate the artery and vein 
boundaries, respectively. (b) Three fused snapshots spanning ~1 s, showing a single CTC traveling in the artery. (c) 
Three fused snapshots spanning ~2 s, showing a single CTC traveling in the vein. The times labeled in (b) and (c) are 
relative to CTC injection. 

A CTC cluster flowing in an artery was also imaged in vivo in a carotid artery cell injection 

experiment (Figure 2.4). No return of this CTC cluster was observed, which indicated that it might 

have been clogged at a vascular branching point, seeding a secondary tumor. 
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Figure 2.4 Sequential flow cytography images of a CTC cluster flowing through an artery in a mouse ear. About 
106 cultured B16F10 cells were administered through carotid artery cannulation. Some of the cells were naturally 
bound together by cell adhesion as clusters. A 2.0 × 0.5 mm2 area of vasculature over a depth of ~150 µm in the mouse 
ear was imaged by flow cytography at a 5 Hz volumetric (3D) rate. As it flowed through the FOV, a CTC cluster in 
the artery was imaged in four successive frames. The size of the cluster was estimated to be 25-40 µm. Since the 
dynamics of CTC clusters may be turbulent inside the blood vessel and the scanning step size is ~5 µm, the PA signal 
of the CTC cluster fluctuated. 

2.3.2 Therapy results 
To investigate the radiant energy required to kill a CTC, we used a single-shot 1064 nm laser 

pulse to irradiate cultured B16F10 melanoma cells in vitro. Different areas of a monolayer of 

melanoma cells were irradiated with increasing levels of laser fluence, and then the cells were 

stained with trypan blue to test cell viability (Figure 2.5). The results indicated that a 1064 nm 

laser pulse with 8.8 J/cm2 fluence was sufficient to guarantee cell death. 
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Figure 2.5 Irradiation of melanoma cells in vitro. (a) B16 cells on glass slides were irradiated by increasing levels 
of laser fluence and stained with trypan blue to test cell viability. (b) Plot of cell death percentage versus laser fluence. 

Potential tissue damage by the therapy laser was also carefully investigated. A monolayer of RBCs 

was imaged by phase contrast microscopy before and after 30 J/cm2 laser irradiation (Figure 2.6). 

Comparison of the two images indicated no apparent change, with both showing donut-shaped 

morphology. 

 

Figure 2.6 Phase-contrast images of RBCs acquired before and after exposure to single-shot 1064 nm laser 
irradiation with 30 J/cm2 fluence. Close-ups of the same region (enclosed by the red rectangles) before and after 
exposure, placed at the bottom right corners of the two images, indicate no apparent morphological change. 

In addition, measuring the optical absorbance of the supernatant showed no RBC hemolysis in 

blood samples exposed to 30 J/cm2 laser irradiation (Figure 2.7). 
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Figure 2.7 RBC hemolysis study results. (a) Potential RBC hemolysis by an energetic 1064 nm laser was studied 
by irradiating flowing blood samples at a 30 J/cm2 fluence level. Bovine blood was washed three times with saline 
before the experiment, then it was pumped through a glass tube (100 µm inner diameter) at a 0.15 mm/s flow speed. 
Laser light (5 kHz repetition rate) was focused across the tube by a cylindrical lens with a 30 µm focal width. An 
inverted microscope was used to help position the tube in the focal zone of the lens. (b) The optical absorbance of the 
supernatants at 532 nm indicates no detectable hemolysis was caused by the therapy laser irradiation. For the two 
control groups, the therapy laser was turned off during pumping. Blood samples from the negative control and the 
study groups were diluted 20 times with saline, while that of the positive control group was diluted 20 times with pure 
water to induce total hemolysis. All blood samples are centrifuged at 3000 rpm for 10 min, and the supernatants 
(photos shown at the top right corner of each group) were extracted to measure their optical absorbance at 532 nm. 
Equation 𝑅 ൌ ሺ𝐴௦ െ 𝐴଴ሻ/𝐴ଵ଴଴ is used to calculate the hemolysis ratio R, where 𝐴௦ is the absorbance of the supernatant 
from the study group; 𝐴଴ and 𝐴ଵ଴଴ are that from blood samples with no hemolysis (negative control) and 100% 
hemolysis (positive control), respectively. 

Therapy experiments were conducted in a similar manner to the imaging experiments. Figure 2.8 

shows an event of single-CTC detection and real-time destruction. The CTC signal induced by the 

1064 nm laser pulse immediately hardware-triggered a therapy laser pulse to irradiate the detected 

CTC with a 50 µm focal diameter and a 25 J/cm2 fluence, above the lethal level. This lethal 

irradiation produced a PA signal with a much greater amplitude, ~14 times higher than the maximal 

imaging signal (Figure 2.8c), and its peak location indicated that the CTC was within the focal 

spot of the therapy laser. 
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Figure 2.8 In vivo detection and expected photothermal killing of a CTC. The CTC was first detected in the 1064 
nm laser-induced flow cytography image (a) and then lethally irradiated by a therapy laser pulse, also at 1064 nm, 
with a 50-µm focal diameter (b). In (b), The much-higher-amplitude PA signal induced by the therapy laser pulse is 
illustrated by the filled yellow circle. (c) Profile of the PA signals from the region across the CTC, indicated by the 
dashed cyan line in (a). The x axis, parallel with the imaging laser’s scanning direction (from right to left), was centered 
at the CTC location. In the 1064 nm imaging laser-induced signals (red solid line), the CTC signal (shown in detail 
by the inset) had a contrast-to-noise-ratio (CNR) of ~25. The therapy laser-induced PA signal’s peak location (dashed 
orange line) was only ~10 µm away from the detected CTC location, which indicated that the CTC position (white 
cross in (b)) was within the therapy laser’s focal spot (circle in (b)). 

This PA signal amplitude, measured in another experiment, was far higher than that of a regular 

blood vessel with the same irradiation (Figure 2.9). Therefore, we concluded that this PA signal 

mainly originated from light absorption by the CTC, and that this CTC was destroyed by the 

therapy laser irradiation. In total, four events of real-time expected photothermal killing of CTCs 

at different locations were recorded during 5 minutes in the experiment. Flow cytography 

confirmed no disturbance to blood flow during 30 min of observation after this experiment. In 

addition, there were no visible damages on the mouse ear. 
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Figure 2.9 Therapy laser-induced PA signals. Therapy laser-induced PA signals from a blood vessel containing a 
CTC within the laser’s focal spot (black), and that from the same blood vessel when it does not contain a CTC (red). 
Data are averaged over ten measurements; error bars show the standard deviations. 

We also conducted a pseudo-therapy study to evaluate the performance of the system and 

demonstrate the value of this therapy scheme. Experiments were designed to mimic treating 

melanoma metastasis by impeding CTC dissemination (Figure 2.10a). First, cultured B16F10 cells 

were mixed with bovine blood and pumped into a translucent silicone tube to simulate CTCs. Then 

this mixture was pumped through our system to specifically detect and kill the CTCs. For the 

control experiment, the therapy laser was turned off during the experiment, leaving the CTCs only 

imaged by our system. Next, the treated and untreated mixtures were subcutaneously inoculated 

into two groups of nude mice, respectively, simulating hematogenous metastases. 
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Figure 2.10 Scheme and results of the pseudo-therapy study. (a) The control experiment (bottom) was conducted 
after the therapy experiment (top) by simply switching off the therapy laser. The flow rate was set at ~80 µL/hr with 
~20 CTCs flowing through the system every second. (b) Only 1 out of 6 therapy experiments had a tumor detected at 
week 3, compared to 100% tumor formation by week 1 in the control group. (c) Representative photos of the mice 
after experiments. (Left) No tumor was detected around the inoculation site (blue arrow) in 30 days following a therapy 
experiment. (Right) A raised tumor (blue arrow) was observed 10 days after a control experiment. 

Afterwards, the area around each inoculation site was imaged every week by acoustic resolution 

(AR) PAM36, 37 at 750 nm wavelength, to monitor tumor formation (Figure 2.11). 

 
Figure 2.11 Tumor size measurement. (a) Photograph of a flat tumor (blue arrow) in the control group taken 5 days 
after experiment. (b) Three-dimensional AR-PAM image of this tumor. Its volume is calculated to be 2.01 mm3. 
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After 30 days, only one of the six therapy experiments resulted in a tumor formation, and that 

tumor had a significantly slower growth, in comparison to the rapid tumor formation and growth 

following every control experiment (Figure 2.10bc, Figure 2.12). This only tumor from the therapy 

experiment could be attributed to the fact that the therapy laser (1 kHz maximum repetition rate) 

missed some CTCs that were detected within 1 ms after the last therapy laser shot, which should 

not present a real problem since CTCs are rarer in vivo and the repetition rate of the therapy laser 

can be increased. The results indicated that our technique is capable of destroying CTCs with a 

high success rate, and that this therapy scheme is a promising way to impede metastasis for cancer 

therapy. 

 
Figure 2.12 Comparison of tumor growth in the pseudo-therapy study. No tumor was detected using AR-PAM 
from five out of six therapy experiments by week 5 (green dashed line), and the only other therapy experiment resulted 
with a tumor that had a significantly slower growth (red dashed line), compared with that of the control experiments 
(blue solid line). Tumor volume was measured by AR-PAM (for flat tumors) or estimated by the formula π/6 × L × 
W × H (for raised tumors), where L, W, and H represent length, width, and height, respectively. Asterisk: mouse 
euthanasia; error bar: standard deviation. 

2.4 Discussion 
We report both in vivo label-free imaging of melanoma CTCs using dual-wavelength PA flow 

cytography and on-the-spot pinpoint CTC destruction by nanosecond-pulsed NIR therapy laser 

irradiation. CTCs are important indicators of the severity of a tumor and the efficacy of tumor 

therapies, making their reliable detection clinically significant. Because some CTCs are cloaked 
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by platelets or coagulation factors, they are shielded from many CTC detection agents as well as 

from the immune system12, 18. However, our method does not suffer from this limitation because 

light can penetrate CTCs. This technique may be used clinically for non-invasive in vivo CTC 

assays without labeling. In addition, many details about the process of tumor metastasis through 

CTCs are still unclear, and this high-resolution real-time CTC imaging technique can enable in 

vivo studies of CTC dynamics, such as monitoring tumor cells shedding from a primary tumor, 

invading nearby blood vessels, circulating in the vasculature, and extravasating from vascular 

walls. 

Unlike therapeutics that use metastasis-specific features re-distribute the administered medication, 

the reported method works on a more selective “identify-then-locally-administer” basis. Because 

the radiant energy from the therapy laser is highly confined to the melanosomes within CTCs, 

other molecules in the CTCs, as well as adjacent RBCs, do not sustain damage. Moreover, our 

technology may have extra benefits in immunotherapy because it can help release viable tumor-

specific antigens from lysed CTCs into vasculature, which can stimulate immune attacks on 

remaining CTCs as well as metastases, enhancing treatment efficacy38. Drug resistance from CTCs 

is also not an issue in our study because the destruction mechanism is completely physical. 

Melanoma patients at all stages would potentially benefit from this technology if it were translated 

into the clinic successfully. For stages I and II, measuring CTC count could yield a more accurate 

diagnosis of a melanoma’s recurrence risks. For stage III, when there are CTCs in the bloodstream 

but no existing metastases, and stage IV, when there are CTCs in the bloodstream and existing 

metastases, the clearance of CTCs would potentially prevent metastasis. The immunoresponse 

induced by antigens released by lysed CTCs could potentially further treat any residual primary 

tumor as well as existing metastases. 
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In summary, using endogenous contrast, our system dynamically imaged rare single CTCs and 

CTC clusters with single-cell resolution in vivo and performed real-time pinpoint photothermolysis 

of CTCs. The pseudo-therapy experiment demonstrated that our method can effectively kill CTCs 

in vasculature. This technology works in a convenient reflection mode, and is translatable to 

clinics. It can serve as a bedside therapy device for cancer patients, which can improve their 

prognosis by early detection and destruction of CTCs. The technology can also be applied for 

studying fundamental mechanisms of tumor metastasis through CTC dissemination. 
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Chapter 3: High-sensitivity photoacoustic 
flow cytography of circulating melanoma 

cells enabled by a 1 MHz Raman laser 
Following the work in Chapter 2, this chapter continues the work on in vivo detection of CTCs. 

CTC is one of the key indicators of metastasis, which is responsible for the majority of cancer-

related mortalities. Detection and characterization of CTCs in vivo can provide valuable 

information for cancer patients’ diagnoses. Exploiting the intrinsic optical absorption contrast of 

melanin, we present a Raman-laser–based dual-wavelength high-speed photoacoustic (PA) flow 

cytography for imaging melanoma CTCs in vivo. Via the stimulated Raman scattering effect, a 

KGd(WO4)2 crystal works as a Raman shifter to convert 532 nm pump laser to 658 nm, at up to a 

1 MHz repetition rate. Since melanin absorbs more than 100 times more strongly than hemoglobin 

at this wavelength, PA flow cytography can easily detect rare melanoma CTCs in the blood 

background, quantify their contrast-to-noise ratio, and measure their flow speeds. In mouse 

melanoma xenograft models, we have sequentially imaged the flow of rare CTCs in vivo. This PA 

flow cytography holds great promise for both tumor metastasis studies and clinical disease 

monitoring. 

3.1 Background 
Metastasis, the spreading of cancer cells from a primary tumor to distant sites, accounts for up to 

90% of cancer-associated mortalities10-12. Most metastases involve the hematogenous 

dissemination of circulating tumor cells (CTCs)11, 39, involving steps including cancer cells 

acquiring an invasive phenotype via mutations, entering the local blood vessels by intravasation, 

surviving in the blood circulation, extravasating through the vessel wall, and colonizing a new 

tumor11, 21. In this complicated process, rare CTCs, acting as cancer seeds, are key indicators of a 
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tumor’s metastatic propensity13, 40. Thus, efficient detection and characterization of CTCs can 

provide critical information for cancer diagnosis and staging, and for assessing the efficacy of 

therapy41-44. 

Many recent studies employing various contrast mechanisms have enabled reliable CTC 

detection17, 45. However, the accuracy of ex vivo CTC assays is open to question because they 

depend on a small sample volume of blood18. In vivo CTC detection can improve sensitivity and 

reliability by accessing a larger portion of the total blood volume17. Many in vivo CTC detection 

studies that employ exogenous agents, such as fluorophore-labeled antibodies, have achieved 

promising results21, but biosafety concerns impede their clinical translation17, 45. Thus, label-free 

detection of CTCs in vivo has attracted great interest. 

In this work, we focus on CTC detection in melanoma, the deadliest type of skin cancer with a 

high propensity for metastasis at even an early stage15, 29, 46. Due to their high melanin expression, 

melanoma cells have a striking endogenous optical absorption contrast against the blood 

background in the red to near-infrared spectrum22. Hence, photoacoustic (PA) imaging, offering 

the highest possible sensitivity to absorption contrast and complying with the ANSI (American 

National Standards Institute) safety standard of skin exposure to laser, is a promising tool for in 

vivo detection and characterization of melanoma CTCs6, 19. 

In our previous work9 (Chapter 2), we employed a non-optimal wavelength of 1064 nm for 

melanoma CTC detection, which was dictated by the wavelength availability of commercial high-

repetition–rate lasers47. Within this constraint, stimulated Raman scattering (SRS) provides a 

convenient and efficient approach to implement multi-wavelength imaging48, 49. Through inelastic 

scattering of photons, this nonlinear process converts the pump laser into multiple discrete output 

wavelengths—Stokes lines50. As described in this letter, we employed a potassium gadolinium 
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tungstate crystal (KGd(WO4)2, or KGW), with a Raman shift at 901.5 cm–1, to partially convert 

the 532 nm pump laser light to KGW’s fourth Stokes line at 658 nm. At 658 nm, the ratio of the 

molar absorption coefficients of melanin to hemoglobin is at least 10 times higher than that at 1064 

nm22, significantly improving detection sensitivity. In addition, we achieved a laser pulse repetition 

rate of up to 1 MHz, owing to KGW’s excellent thermal properties, including its high thermal 

conductivity, high damage threshold, and low thermal lensing49. Employing such a fast laser 

source, we report the development of high-speed dual-wavelength PA flow cytography that has 

successfully imaged the flow of rare single CTCs shed from melanoma xenografts in trunk blood 

vessels. 

3.2 Methods 
In our dual-wavelength PA flow cytography system (Figure 3.1), a 532 nm picosecond-pulsed 

laser (Olive-1064-4 BW, Huaray Precision Laser) was used both to pump the Raman laser and to 

provide the 532 nm imaging laser. In the Raman laser’s path, the pump laser was loosely focused 

into the 30-mm-long KGW crystal (KGW-702, EKSMA OPTICS), and the SRS effect generated 

a series of Stokes lines (Figure 3.2a), described by 𝑁Δ𝜈෤ ൌ ሺ1/𝜆௣ െ 1/𝜆௦ಿ
ሻ. Here, Δ𝜈෤ is the Raman 

shift of the material, while 𝜆௣ and 𝜆௦ಿ
 are the wavelengths of the pump laser and the 𝑁th order 

Stokes line. Since KGW’s Raman gain coefficient is dependent on the polarization of the pump 

laser, a half-wave plate (WPH05M-532, Thorlabs) was placed in front of the KGW to align the 

pump laser’s polarization with the crystal’s a-axis. The output beam was collimated and filtered 

by a band-pass filter (FBH660-10, Thorlabs) to selectively pass the fourth Stokes line at 658 nm. 

Since this high-order Stokes line had relatively large energy fluctuations (Figure 3.2b), it was 

sampled by a fast photodiode (PDA36A, Thorlabs) for pulse-to-pulse energy calibration. In the 

532 nm path, the laser was sent through a 25-m long delay line, then combined with the 658 nm 
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laser by a dichroic mirror (Dichroic Laser Beam Combiner #86-393, Edmund Optics). The 

combined laser beams were focused by an achromatic convex lens (AC127-025-A, Thorlabs), and 

reflected to the tissue by a lab-made MEMS (micro-electro-mechanical systems) scanner. The laser 

energy was converted to acoustic waves through the optical absorption of endogenous absorbers 

and the subsequent thermoelastic expansion. The emitted PA waves were also reflected by the 

MEMS scanner, and then acquired by a polyvinylidene difluoride (PVDF) ultrasonic transducer 

(custom made by CAPISTRANO LABS: 40 MHz central frequency) which has a central hole for 

passing the laser beams. The MEMS scanner angularly steered both the laser beams and the PA 

wave in a confocal configuration during oscillation. Both the MEMS scanner and the PVDF 

transducer were immersed in a tank of deionized water for acoustic coupling. 

The PA signals were amplified by a pair of radio-frequency amplifiers (ZFL-500LN+, Mini-

circuits) and digitized by a data acquisition unit (ATS9350, Alazar Tech) at a 250-MHz sampling 

rate. For raster scanning, fast line scans were performed by the MEMS scanner at a 1 kHz rate 

(round-trip scanning at the 500 Hz resonance frequency), while slow orthogonal scans were 

provided by the motor stage (PLS-85 Precision Linear Stage, PI miCos GmbH) supporting the 

mouse. The 25-m delay line resulted in the 532 nm laser-induced PA signal arriving ~80 ns later 

than that from the 658 nm laser, which was sufficient to temporally resolve the two PA signals. 

The whole system was automated through a reconfigurable input/output module (NI PCI-7830R, 

National Instruments), and operated through an interface programed in LabVIEW. The maximal 

amplitude projection of the volumetric PA data was displayed in real time. 
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Figure 3.1 Schematic of the dual-wavelength high-speed PA flow cytography system. The 532 nm and 658 nm 
lasers are employed to image the vasculature and the melanoma CTCs, respectively. BPF, band-pass filter; DAQ, data 
acquisition unit; UT, PVDF ultrasonic transducer; λ/2, half-wave plate. 

To quantify the performance of our Raman laser, first we used a spectrometer (AvaSpec-

ULS2048XL-EVO, AVANTES) to measure its output spectrum (Figure 3.2a). The linewidth of 

the fourth Stokes line at 658 nm was 2.34 nm when producing ~100 nJ pulse energy at the 1 MHz 

repetition rate. After filtering the laser output with the band-pass filter, we measured the 658 nm 

energy output over 20 min (Figure 3.2b). The result indicated a relative standard deviation of 

7.62% RMS (root mean square), which could be corrected by sampling every pulse with the 

photodiode. The beam profile captured with a CMOS (Complementary metal-oxide-

semiconductor) camera (Grasshopper3 GS3-U3-23S6M, Point Grey) is shown in Figure 3.2c. 

 

Figure 3.2 Performance of the Raman laser. (a) Optical spectrum of the multi-wavelength Raman laser output after 
filtering out the pump laser, plotted on a background of the oxy-hemoglobin (HbO2), deoxy- hemoglobin (HbR), and 
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melanin absorption spectra. AS, the anti-Stokes line; S1–S4, the first to fourth Stokes lines. (b) Long-term stability 
measurement of the 658 nm Raman laser pulse energy. (c) Beam profile of the 658 nm Raman laser. 

3.3 Results 
To demonstrate our Raman laser-based PA flow cytography’s capability to image melanoma CTCs 

on the fly, we imaged areas near a xenograft tumor in the mouse ear. Experiments were carried out 

in compliance with the laboratory animal protocols approved by the Institutional Animal Care and 

Use Committee of California Institute of Technology. A dose of ~104 B16F10 mouse melanoma 

cells was inoculated into the ear of an athymic nude mouse (Hsd:Athymic Nude-Foxn1nu, Envigo) 

through intradermal injection (Figure 3.3ab). The B16F10 cell line was obtained from American 

Type Culture Collection, and was cultured in Dulbecco’s Modified Eagle Medium, supplemented 

with 10% fetal bovine serum, at 37 °C in a humidified atmosphere with 5% CO2. PA flow 

cytography first imaged the vasculature of the area near the tumor two weeks after inoculation 

(Figure 3.3c), and a region of interest (ROI) was further monitored for over 2 hours at a 20 Hz 

frame rate with a 2.7 µm lateral resolution. Owing to the strong absorption by the hemoglobin in 

red blood cells, the vascular structure was clearly imaged by the 532 nm laser. Exploiting the 

striking absorption contrast between melanin and hemoglobin, the 658 nm laser excitation of a 

single CTC produced a PA signal ~20 times stronger than blood, appearing as a hot spot in the 

dark background (Figure 3.3d). Figure 3.3e shows more snapshots of this CTC flowing in the 

artery. We performed control studies on normal mice and recorded no PA signals of a similar 

amplitude level, which verified that these PA signals indeed originated only from CTC absorption. 

The entire time course of this CTC flowing through the ROI was captured in a video. The arterial 

flow speed of this CTC was calculated to be 0.5 mm/s, which is in general accordance with 

previous reports. 
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Figure 3.3 PA flow cytography of a melanoma CTC. (a) A photo of the melanoma model on the mouse ear at two 
weeks post inoculation. (b) PA image of the inoculated melanoma and its vascular environment at four days post 
inoculation. Scale bars in (a) and (b) represent 100 μm. (c) Flow cytography image of the vasculature near the tumor. 
The blue box indicates the ROI imaged at 20 Hz in the subsequent frames. (d) 532 nm laser-induced (top), 658 nm 
laser-induced (middle), and fused (bottom) flow cytography images showing a melanoma CTC flowing in the artery, 
as indicated by the yellow arrows. The CTC has a typical contrast-to-noise ratio of ~60. The trunk artery’s and vein’s 
boundaries are delineated by the red and blue dashed lines, respectively. (e) Three fused snapshots showing this CTC, 
illustrated by the yellow arrows, traveling in the artery. The labeled times are relative to the first frame containing this 
CTC. 

3.4 Discussion 
In summary, we report high-speed PA flow cytography based on a 1 MHz repetition rate Raman 

laser. Compared to our previous work in Chapter 2, we achieved a 4-fold improvement in the 

contrast-to-noise ratio, and a 5-times increase in imaging speed. This improvement enabled us to 

continuously monitor the flow of rare CTCs shed from tumor xenograft models in vivo, instead of 

coincidentally imaging CTCs only when they completely overlapped with the probing laser. This 
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PA flow cytography system complies with the ANSI safety standard, and is readily translatable to 

clinics. It can provide valuable information for predicting a melanoma’s recurrence risk The 

Raman laser approach overcomes the wavelength limitation of the commercially available laser 

sources for high-speed multi-wavelength imaging. Compared to previously reported fiber-based 

Raman lasers, our free-space approach offers convenient system operation, adjustment, and 

upgrading. For example, by simply switching the 532 nm pump laser output to its fundamental 

mode at 1064 nm, this system can also perform multi-wavelength imaging in the near-infrared 

region, such as imaging lipid-rich neuron networks at 1177 nm and 1726 nm (the 1st and 4th Stokes 

lines of KGW when pumped at 1064 nm, respectively). It is also very easy to switch to other 

Raman materials with different wavelength outputs, such as barium nitrite (Ba(NO3)2, with a 

Raman shift at 1048.6 cm–1), further extending the scope of this study. At present, we can achieve 

a sufficient imaging speed over only a relatively small field of view, so further work should address 

this limitation by employing techniques such as multi-focal imaging. 
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Chapter 4: Fast initial dip in mouse brains 
from a single stimulus imaged in single 

vessels by Raman-laser–based dual-
wavelength high-speed functional 

photoacoustic microscopy 
This chapter describes a new application of the wavelength conversion technique introduced in 

Chapter 3, stimulated Raman scattering, in the field of high-speed functional PAM. Considered as 

a spatiotemporally confined indicator for poststimulus neural activities, the initial dip holds great 

promise for neurological studies51-53. However, existing technologies still cannot fully reveal its 

detailed mechanism or profile, mainly because they failed to directly probe it at its microvascular 

origins54. Here we present Raman-laser–based dual-wavelength high-resolution functional 

photoacoustic microscopy (fPAM) that can image capillary-level hemodynamics at a 1 MHz one-

dimensional imaging rate. We investigated the mouse brain vascular response to impulse forepaw 

stimulations, revealing a transient initial dip of blood oxygenation (sO2) in cerebral micro-vessels 

starting as early as 0.13 s poststimulusly, preceding the total hemoglobin changes. The recovery 

from the initial dip and the subsequent sO2 overshoot manifested a spatiotemporal pattern similar 

to the stimulation-activated hyperemic response, suggesting their close relations. Our fPAM sheds 

new light on this elusive initial dip phenomenon, and it is a valuable tool for functional studies 

requiring high spatiotemporal resolution. 

4.1 Background 
In the ongoing effort to decode our brain, functional imaging of small animals has been a hot topic 

in various biomedical imaging fields. Label-free imaging technologies often non-invasively probe 



32 
 

neural activities in an indirect manner3, 55, such as measuring the stimulation-induced hyperemic 

response, which undergoes spatiotemporal broadening from neuronal activation sites56, 57. The 

initial dip, thought to be caused by increased oxygen consumption from activated neurons51, 52, 58, 

59, is considered to be a both spatially and temporally more confined localizer for the neural activity 

than the hyperemic response57, 58, 60-62, and has attracted profound interest63-67 since its discovery 

by diffuse optical spectroscopy68. Two label-free imaging techniques, functional magnetic 

resonance imaging52, 65, 66 (fMRI) and wide-field optical microscopy59, 60, 63, have both made 

valuable contributions to the understanding of the initial dip. However, small-animal fMRI lacks 

the spatial resolution to discern the dynamics of cerebral micro-vessels with diameters less than 

50 µm54, where the initial dip is thought to originate57, 58. Wide-field optical microscopy, in theory, 

has sufficient spatial resolution, but suffers from heavy round-trip optical scattering and low 

sensitivity when resolving deep vessels, because it relies on back-scattered photons from red blood 

cells69 (RBCs). It also lacks the depth resolution70. As a result, the initial dip phenomenon is still 

not fully understood52, 61, 64. 

Label-free functional photoacoustic microscopy (fPAM), with optical diffraction-limited spatial 

resolution, offers unique advantages to overcome these bottlenecks71, such as rich optical 

absorption contrast and volumetric imaging capability from single-plane scanning3. Through the 

photoacoustic (PA) effect3, fPAM ultrasonically detects photons absorbed by endogenous 

absorbers, like hemoglobin in RBCs, thus making it more sensitive to hemodynamics than pure 

optical imaging because hemoglobin’s optical absorption is much stronger than scattering. Also, 

since ultrasonic scattering in biological tissues is 2–3 orders of magnitude weaker than optical 

scattering72, fPAM can achieve greater penetration depth than wide-field optical microscopy, 

enabling imaging the dynamics of deep cortical micro-vessels3. 
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Here we report Raman-laser–based dual-wavelength fPAM employing the spectroscopic method 

for blood oxygen saturation (sO2) measurement73. Conforming to the American National Standards 

Institute’s (ANSI) safety standard, our fPAM has achieved high-sensitivity volumetric imaging at 

a 1 MHz one-dimensional (1D) rate with 2.7 µm lateral and 30 µm axial resolutions, revealing 

capillary-level cerebral vascular dynamics. We imaged the somatosensory area of mouse brains, 

and clearly observed a transient initial sO2 dip from micro-vessels shortly after stimulating the 

forepaw. To the best of our knowledge, this is the first time that the initial dip has been directly 

imaged at the single-capillary scale, and our data provide new insights on this elusive phenomenon. 

4.2 Methods 

4.2.1 Raman laser 
This section details the Raman laser technique first introduced in section 3.2. A Raman laser 

utilizes the SRS effect as the mechanism of light amplification. Stokes lines are generated by the 

pump laser through inelastic scattering. The energy difference between the pump photons and the 

scattered photons is fixed and related to a vibrational frequency of the Raman medium. Equation 

(4.1) is used to calculate the wavelength of the 𝑁th order Stokes line50. Since the Raman shift, Δ𝜈෤, 

is generally reported in wavenumbers (cm–1), unit conversion is explicitly expressed here: 

 𝑁Δ𝜈෤ሺcmିଵሻ ൌ ሺ1/𝜆௣ ሺnmሻ െ 1/𝜆௦ಿ
ሺnmሻሻ ൈ ሺ10଻nm/cmሻ 4.1 

where 𝜆௣ and 𝜆௦ಿ
 are the wavelengths of the pump laser and the 𝑁th order Stokes line, respectively. 

For a Raman crystal of a length of L and a Raman gain coefficient of 𝑔ோ, the output power 𝑃௦ of 

the first Stokes line is described as 
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 𝑃௦ ൌ 𝜂𝑃௣ exp ൬
𝑃௣

𝐴ୣ୤୤
𝑔ோ𝐿ୣ୤୤ െ 𝛼௦𝐿൰ 4.2 

where 𝑃௣ is the power of the pump laser; 𝐴ୣ୤୤ is the effective area of the pump light incident on the 

crystal; 𝐿ୣ୤୤ ൌ ሺ1 െ exp ሺ𝛼௣𝐿ሻሻ/𝛼௣ is the effective length of the crystal; and 𝛼௣ and 𝛼௦ are the 

crystal’s attenuation coefficients for the pump laser and the first Stokes line, respectively. The term 

𝜂𝑃௣ represents the initial spontaneous Raman scattering at the input end of the crystal functioning 

as the seed for SRS, with 𝜂 denoting the conversion rate. To achieve the SRS effect, the exponential 

term must be greater than 1, requiring a threshold of pump power at 𝑃୲୦ ൌ 𝛼௦𝐿𝐴ୣ୤୤/𝑔ோ𝐿ୣ୤୤. As 

seen in Equation (4.1), the energy conversion efficiency exponentially increases with pump 

intensity 𝑃௣/𝐴ୣ୤୤. However, for maximizing the output power and stability at the first Stokes line 

of 558 nm, its power should not exceed the threshold for generating the second Stokes line. 

Therefore, the pump intensity should be controlled within the following range74: 

 
𝑃௣

𝐴ୣ୤୤
∈ ൤

𝛼௦𝐿
𝑔ோ𝐿ୣ୤୤

,
30

𝑔ோ𝐿ୣ୤୤
൨ 4.3 

where the upper limit is calculated by using a typical value of 10–7 for 𝜂. 

4.2.2 MEMS scanner 
This section describes the design and fabrication of a new MEMS scanner that has a better 

performance and smaller size than that in Chapter 2. This new torsional MEMS scanner consists 

of five major components: a 5 × 7 mm2 mirror (custom made by Biomedical-Optics, silver coating 

and SiO2 overcoating), a frame cut from a thin sheet of spring-tempered stainless steel (material 

and laser cutting provided by Potomac-laser), a permanent magnet (B222G-N52, K&J Magnetics), 

an inductor coil wrapped from 32 gauge magnet wires (Guasti Wire), and a hollow stainless steel 

mount for the assembly (custom made by eMachineShop) (Figure 4.1a). The frame consists of a 
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rectangular center plate of the same size as the mirror, two outer wings, and two hinges connecting 

the wings to the central plate. To assemble the scanner (Figure 4.1b), first, the mirror and the 

magnet were glued to the front and back sides of the frame’s center plate, forming the scanning 

part. Second, the inductor coil was glued to the inner surface of the mount, forming the stationary 

part. Finally, the scanning part was fixed on the mount by fastening the frame’s wings to the front 

surface of the mount. For underwater usage, marine grade epoxy was used to glue the components 

together. All components were centrally aligned during assembly, and the magnet's direction was 

aligned with the long side of the rectangular mirror. 

The movement of the mirror is controlled by driving a sinusoid electrical current (provided through 

a differential amplifier: TDA7266 audio amplifier module, Shenzhen LC Technology) through the 

inductor coil (Figure 4.1c). In Newtonian mechanics, the resonance frequency 𝑓 of the MEMS 

scanner can be calculated by solving a second-order differential equation obtained by Newton’s 

second law and Hooke’s law75: 

 𝐾௦𝜃 ൌ െ𝐼௠dଶ𝜃/d𝑡ଶ  4.4 

where 𝜃 is the deflection angle of the hinge; 𝐾௦ is the spring constant of the hinge, which is related 

to the hinge’s structure and the torsional modulus of its material; and 𝐼௠ is the moment of inertia 

of the scanning part, which is determined by its distribution of mass relative to the hinge. The 

solution of 𝜃 gives the scanner’s resonance frequency 𝑓 as 

 𝑓 ൌ
1

2𝜋
ඥ𝐾௦/𝐼௠  4.5 

Equation (4.5) assumes a friction-free operation. When the scanner works underwater, the 

resonance frequency 𝑓୵ is described by 
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 𝑓୵ ൌ 𝑓√1 െ 𝛿  4.6 

where 𝛿 is a damping factor related to the shape of the scanning part and the properties of water. 

 

Figure 4.1 Schematic of the MEMS scanner. (a) Breakdown of the MEMS scanner. The scanning part of the scanner 
is comprised of the mirror, the center plate of the frame, and the permanent magnet. The stationary part is comprised 
of the two wings of the frame, the inductor coil, and the mount. The scanning part is connected to the stationary part 
via the two hinges of the frame. (b) Assembly view of the MEMS scanner. (c) Top and sectional views of the finished 
MEMS scanner. The actuation force is generated by the electromagnetic interaction between the electrical current 
through the inductor coil and the permanent magnet. 

To achieve a desired resonance frequency, one may either adjust 𝐼௠ by grinding the magnet to a 

certain thickness or adjust 𝐾௦ by varying the structure of the hinge. 

4.2.3 fPAM 
The high-speed PAM system here employs a novel detection scheme with superior sensitivity 

compared to that in section 2.2. The details are described here. Two 532 nm picosecond-pulsed 

lasers (laser 1 in Figure 4.2a: Olive-1064-4 BW, Huaray Precision Laser; laser 2 in Figure 4.2a: 

APL-4000-1064, Attodyne Lasers) were employed in this dual-wavelength fPAM system, one 
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each for the 558 nm path and the 532 nm path, respectively. In the 558 nm path, the pump laser 

beam was loosely focused into the 30-mm-long KGW crystal (KGW-702, EKSMA OPTICS; b-

cut), and the SRS effect partially converted the 532 nm pump photons to the first Stokes line at 

558 nm. Since the Raman gain coefficient of KGW is dependent on the polarization of the pump 

laser, a zero-order half-wave plate (WPH05M-532, Thorlabs) was used to align the pump laser’s 

polarization with the a-axis of the KGW crystal. The output beam was collimated by another lens 

and filtered by a band-pass filter (575/25 nm BrightLine, Semrock) to selectively pass the first 

Stokes line. In the 532 nm path, the laser beam was expanded and collimated by a pair of convex 

lenses. The 558 nm and 532 nm laser beams were combined by a dichroic mirror (Dichroic Laser 

Beam Combiner #86-393, Edmund Optics), focused by an achromatic lens (AC127-025-A-ML, 

Thorlabs), and reflected into the tissue by the lab-made MEMS scanner. PA waves excited by the 

laser pulses were also reflected by the MEMS scanner, and converted to electrical signals by a 

PVDF ultrasonic transducer (custom made by CAPISTRANO LABS: 40 MHz central frequency, 

110% –6 dB bandwidth). Instead of using a complex optical-acoustic splitter, which has a low 

acoustic transmission efficiency, as in previous PAMs9, 71, 76, we maintained the confocal 

configuration of the laser beams and the PA waves by passing the laser beams directly through the 

central hole of this ring-shaped PVDF transducer. Both the MEMS scanner and the transducer 

were immersed under deionized water in a water tank for acoustic coupling. The water tank, which 

had transparent windows on its side and bottom for light and acoustic wave transmission, was 

placed on top of the tissue with its bottom window in gentle contact with the acoustic gels applied 

on the tissue surface. The PA signals acquired by the transducer were then amplified by a pair of 

radio frequency amplifiers (ZFL-500LN+, Mini-circuits), and digitized by a fast data acquisition 

unit (ATS9350, Alazar Tech) at a 250-MHz sampling rate. For laser pulse energy calibration, a 
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photodiode (PDA36A, Thorlabs) was used to sample the laser beams, which were split by a 

wedged optical window (34-245, Edmunds Optics). The MEMS scanner was connected to a 

stepper motor, and the mouse was also supported by a motor-driven translation stage. For raster 

scanning, fast line scans were performed by the MEMS scanner at a 1 kHz rate (500 Hz resonance 

frequency), while slow orthogonal scans were provided by one of the two motors. The motor stage 

supporting the mouse was used for the wide-field-of-view (FOV) scanning (Figure 4.2e), and the 

stepper motor supporting the MEMS scanner was used for the narrow-FOV scanning. The system 

was automated by a field programmable gate array (NI PCI-7830R, National Instruments), and 

operated through an interface programmed in LabVIEW. 
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Figure 4.2 fPAM of the mouse brain. (a) Schematic of the fPAM system. λ/2: half-wave plate; BPF: band-pass 
filter; DAQ: data acquisition unit; UT: ultrasonic transducer. (b) Spectrum of the Raman laser plotted on the 
background of hemoglobin absorption spectra. HbO2 and HbR: oxy- and deoxy-hemoglobin, respectively. (c) Scheme 
for the functional study. Imaging is performed continuously over an area in the somatosensory region enclosed by the 
blue square in d, while the mouse receives impulse stimulation to either one of its forepaws alternatingly. The 
stimulation-induced sO2 response starts with a sharp decrease, the initial dip, followed by an overshoot (inset in c). 
(e) A representative MAP image of the somatosensory region. (f) The depth-encoded image of e. 
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In order to separate the two PA signals from the 532 nm and 558 nm laser pulses, Laser 2 was 

triggered 0.5 µs later than Laser 1. This 0.5-µs interval allowed the earlier PA wave to travel ~0.75 

mm (greater than the maximum penetration depth of this fPAM system), and such a short interval 

also ensured that the two laser beams sufficiently overlapped in the focal plane during scanning. 

The system’s lateral resolution was optically defined at 2.7 µm. The axial resolution (along the 

acoustic axis) was ~30 µm, which was jointly determined by the laser pulse width, the frequency-

dependent acoustic attenuation in tissue, and the frequency response of the ultrasonic transducer77. 

In our previous fPAM, the confocal alignment of the laser beams and the PA waves was achieved 

through an optical-acoustic splitter, which had a low efficiency for both optical and acoustic 

transmissions. Here, we circumvent this issue by employing a PVDF transducer with a hollow core 

for direct laser passage. The acoustic impedance of PVDF matches better with the tissue-coupling 

water than the piezoelectric ceramic transducer used in the previous version, which improves 

acoustic transmission efficiency. Further, PVDF transducers often offer a broader bandwidth than 

ceramic transducers, improving the axial resolution of PAM. 

The sO2 measurement in the previous work was based on optical absorption saturation, thus 

requiring a laser exposure exceeding the ANSI safety limit. Here, we employ the more established 

spectroscopic method for measuring sO2. For in vivo brain imaging, the laser exposure on the tissue 

surface is 18 mJ/cm2, within the ANSI standard, making it safe for future human imaging. Unlike 

several previously reported systems in which the scanners were made of proprietary materials or 

required expensive machining equipment, the MEMS scanner we developed here was fabricated 
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entirely from commercially available parts using common engineering tools, facilitating 

replication. We also achieved a 5-fold increase in imaging speed. 

In summary, compared to the previous fPAM, our system’s detection sensitivity is improved due 

to the low acoustic signal loss, despite the PVDF transducer being less sensitive than traditional 

ceramic transducers. The spectroscopic method employed here for the sO2 measurement does not 

require optical absorption saturation. Therefore, our sO2 mapping is also more robust, especially 

for deep vessels where the light attenuation is too strong to safely satisfy optical absorption 

saturation. 

4.2.4 Data processing 
We employed the Hessian-based vasculature enhancement filter to extract the blood vessels from 

our fPAM images78. The enhanced image was used to create a binary mask of vessels, which was 

applied to the raw images to remove non-vessel structures, such as residual blood stains on the 

brain. 

The PA signal amplitude is linearly proportional to the local concentrations of oxy- and deoxy-

hemoglobins, as described here73: 

൤
PAହଷଶ ୬୫/Fହଷଶ ୬୫
PAହହ଼ ୬୫/Fହହ଼ ୬୫

൨ 𝐾 ൌ ቈ
𝜀ୌୠୖሺ532 nmሻ 𝜀ୌୠ୓మ

ሺ532 nmሻ
𝜀ୌୠୖሺ558 nmሻ 𝜀ୌୠ୓మ

ሺ558 nmሻ቉ ቂ
𝑐ୌୠୖ
𝑐ୌୠ୓మ

ቃ , 4.7 

where PA represents the PA signal amplitude; F denotes the local optical fluence; 𝜀 is the molar 

absorption coefficient; 𝑐 represents the local molar concentration; K is the system’s proportionality 

coefficient relating the normalized PA signal to the absorption coefficient; and the subscript 

denotes the wavelength or the form of hemoglobin. Since 𝐾 is unknown, only relative 

concentrations can be obtained. Least-squares fitting gives the solution as 
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ቂ
𝑐ୌୠୖ
𝑐ୌୠ୓మ

ቃ ൌ ሺ𝑀்𝑀ሻିଵ𝑀் ൤
PAହଷଶ ୬୫/Fହଷଶ ୬୫
PAହହ଼ ୬୫/Fହହ଼ ୬୫

൨ 𝐾, sOଶ ൌ
௖ౄౘోమ

௖ౄౘోమା௖ౄౘ౎
, 4.8 

where 𝑀 is the matrix in Equation (4.7). 

The total hemoglobin concentration change was extracted from the 532 nm images, because this 

wavelength is an isosbestic point for the two forms of hemoglobin. Because dynamics caused by 

heartbeat were clearly evident from the PA traces, hemodynamic responses were extracted after 

low-pass filtering (Figure 4.3). Vessel diameters were measured as the shortest line across a vessel 

at different angles, with vessel boundaries identified using the 3σ threshold. 

 

Figure 4.3 Extraction of total hemoglobin concentration changes. The blue line is the raw signal from line 
scans with the 532 nm laser. The fractional change, shown by the dashed line, is obtained by filtering out 
the heartbeat dynamics with low-pass filters. The red bar on the horizontal axis denotes the stimulus 
instant. 

4.2.5 Experimental animals 
Female ND4 Swiss Webster mice (Hsd:ND4, Envigo; 6–8 weeks old) were used for the animal 

experiment. The laboratory animal protocols were approved by the Institutional Animal Care and 

Use Committee of California Institute of Technology. First, the mouse was anesthetized with 

isoflurane, then taped to an animal holder with its head tightly fixed by a stereotaxic frame. Its 

body temperature was kept at 37 °C by a heating pad. Second, the scalp was surgically removed, 
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and the skull above the area roughly corresponding to the forepaw of the somatosensory cortex 

(S1FL region) was carefully thinned to a thickness of ~50 µm. Ultrasound gel was then applied on 

the brain to retain moisture and couple the acoustic waves. After the surgery, anesthesia was 

transferred to α-chloralose by an intraperitoneal injection of a dosage at 50 mg per kg body weight 

every two hours. Anesthesia depth was carefully controlled by monitoring the heart rate, 

respiration rate, and hindpaw pinch reflex. Next, a water tank filled with deionized water was 

placed on top of the mouse head. The plastic membrane at the bottom of the water tank was in 

gentle contact with the ultrasound gel applied on the brain. Finally, the mouse was placed under 

the fPAM for imaging. For high-frame-rate narrow-FOV imaging, as in Figure 4.8c, raster 

scanning was provided by the MEMS scanner and the stepper motor connected to the MEMS 

scanner. Therefore, the mouse remained in a natural motionless state. 

4.2.6 Electrical stimulation protocol 
Electrical stimulations were introduced by two pairs of needle electrodes inserted under the skin 

of the right and left forepaws. The electrodes were connected to a stimulator (Isolated Pulse 

Stimulator Model 2100, A-M Systems) for providing the electrical stimuli. A stimulation sequence 

consisted of a 60-s rest period, a single strong but brief electrical pulse to one of the forepaws, and 

a 50-s rest period. This electrical stimulus had an amplitude of ~2 mA and a pulse width of 40 ms. 

Next, the same stimulation was applied to the other forepaw (Figure 4.2c). This sequence was 

repeated five times, with a 1.0–1.5 min gap in between. The stimulation period and intensity were 

controlled without inducing noticeable motions. We employed a single brief stimulus instead of a 

pulse train since the initial dip is a fast response that can be confounded by multiple stimuli. 

Moreover, this stimulation scheme is also used in some other initial dip studies59, 79. 
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4.3 Results  

4.3.1 Imaging results 
Our fPAM employs two laser wavelengths, 532 nm and 558 nm, to measure the vascular sO2 in 

mouse brains (Figure 4.2a). We utilize a Raman crystal, potassium gadolinium tungstate 

(KGd(WO4)2, or KGW; Raman shift: 901.5 cm-1), to convert a 532 nm picosecond-pulsed pump 

laser to KGW’s first Stokes line at 558 nm through the SRS effect, with ~40% efficiency. The 

resulting 558 nm Raman laser has a linewidth of ~0.5 nm (Figure 4.2b) and a relative pulse energy 

deviation of 1.64% RMS (root mean square) when producing ~150 nJ pulses at a 1 MHz pulse 

repetition rate (Figure 4.4), indicating good monochromaticity and stability. A second 532 nm 

picosecond-pulsed laser provides the 532 nm laser beam. The two laser beams are combined and 

focused into the tissue to excite PA waves from hemoglobin in RBCs. 

 

Figure 4.4 Stability test of the 558 nm first Stokes line output. The laser pulse energy was sampled by a high-speed 
photodiode (DET10A, Thorlabs). 

To acquire the PA waves, we employ a ring-shaped piezoelectric polyvinylidene fluoride (PVDF) 

transducer that has a central hole for laser passage. During raster scanning, both the laser beams 
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and PA waves are confocally steered at up to a 1 kHz line scan rate by a lab-made MEMS 

(microelectromechanical system) scanner, assembled entirely from commercially available 

components (Figure 4.1). The PA signals acquired by the transducer are amplified by a pair of 

radio frequency amplifiers, then digitized by a data acquisition unit at up to a 1 MHz A-line rate. 

Maximum amplitude projection (MAP) images are displayed in real time. 

 

Figure 4.5 Lateral resolution measurement of fPAM. (a) PA image of a blade. (b) The edge spread function (ESF) 
is extracted by fitting the blade image data with an error function. The line spread function (LSF) is computed as the 
first derivative of the ESF. Lateral resolution is defined as the full width at half maximum of the LSF. 

Our fPAM has achieved a lateral resolution of 2.7 µm (Figure 4.5) and a signal-to-noise ratio of 

33.2 dB while imaging single RBCs in the cerebral vasculature through a thinned skull (Figure 

4.6). The relative concentrations of oxy- and deoxy-hemoglobin are calculated by spectral analysis 

of the PA images acquired at 532 nm, a near isosbestic wavelength of hemoglobin, and at 558 nm, 

a nonisosbestic wavelength. Fractional changes in total hemoglobin concentration (HbT) are 

extracted from the images acquired at 532 nm (Figure 4.3). 
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Figure 4.6 Imaging of cerebral blood vessels, showing individual RBCs. In this experiment, the mouse brain was 
pressed firmly against the membrane at the bottom of the water tank to facilitate discontinuous flows of RBCs. 

Using our fPAM, we studied the mouse brain hemodynamic response to electrical stimulations by 

monitoring both sO2 and HbT simultaneously (Figure 4.2c). First, we imaged over an area of the 

somatosensory cortex through a thinned skull (Figure 4.2de). We acquired 3D images with an 

imaging depth of up to 0.5 mm in a single raster scan (Figure 4.2f, and Figure 4.7). 

 

Figure 4.7 Representative PA image of cerebral vasculature projected onto the coronal plane. Volumetric data 
is obtained by single-plane scanning with the depth axis resolved by the times of flight of PA signals. 

By fixing the optical focus at ~300 µm below the skull, the structure and oxygenation of capillaries 

as deep as Layer III of the cortex were clearly mapped (Figure 4.8a). In the resting state, the sO2 

in the micro-vessels decreased by ~15% per 100 µm along the vessel (Figure 4.8b), consistent with 

literature reports6. Next, a region of interest, illustrated by the blue square in Figure 4.8a, was 

monitored at a 6 Hz imaging rate while the mouse received brief electrical stimuli at its forepaws. 
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Our high-sensitivity and high-speed fPAM successfully resolved subtle and transient responses 

from micro-vessels. 

 

Figure 4.8 fPAM of cerebral vascular response to electrical stimulations. (a) sO2 mapping of the somatosensory 
area in the resting state. The blue rectangle illustrates the region of interest for the subsequent functional imaging 
studies. (b) Oxygen release along a cerebral vessel marked with the white dashed line in a. A plateau, indicated by the 
arrow, is the site where the blood from another capillary flows into this vessel. (c) Timing of the initial dip onset 
(defined by 3σ) superimposed onto the grayscale structure image. (d) Timing of the initial dip trough. (e) Fractional 
change of the trough of the initial dip. (f) Timing of the hyperemic response onset. Data in (c–f) are averaged over 
five trials. 

Upon contralateral stimulation, the sO2 from capillaries, venules and small arterioles exhibited a 

two-phase response: a sharp and short decrease, then a recovery and a small overshoot. The 

hypoxic phase, the initial dip, started shortly after the stimulus nearly simultaneously across all 
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micro-vessels in the core response area (Figure 4.8c and Figure 4.9), but the trough of the initial 

dip demonstrated a propagation pattern from upstream arterioles to capillaries and further down to 

venules (Figure 4.8d). Similarly, the hyperoxic phase from upstream arterioles and capillaries 

notably preceded that of the downstream venules. Both the hypoxic and hyperoxic phases from 

capillaries had a greater fractional change than those from larger vessels (Figure 4.8e). The trough 

of the initial dip was followed by the hyperemia resulted from neurovascular coupling (Figure 

4.8f), and its spatiotemporal distribution closely mirrored that of the hyperoxic phase. We also 

observed some arteriole dilation co-localized with the hyperemia. 

 
Figure 4.9 Statistical analysis of the hemodynamics in four vessel segments representative of the different 
microvascular compartments. Venule 1 and venule 2 denote postcapillary and second-stage venules, respectively. 
Data are averaged over five trials on each of the five mice; error bar, standard error; statistics, paired Student’s t-test; 
P values, *** < 0.001; ** < 0.05. 

4.3.2 Line scan results 
Next, we performed fast line scans for 2D imaging across representative vessel segments from 

different microvascular compartments (arrows in Figure 4.8a) to acquire finer temporal profiles of 

the impulse response (Figure 4.10). Figure 4.10a shows a representative single-trial sO2 response 

to an impulse somatic stimulation. The initial dip started first in capillaries (Figure 4.10b), with 

the onset time averaged over five mice being 0.13 ± 0.01 s (all time points are relative to the 
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beginning of the stimulus). The initial dip onset in other microvascular compartments occurred 

only up to 0.05 s later than that in capillaries, and it reached the trough at 0.4–0.7 s, with the trough 

from venules arriving ~0.3 s later than that from precapillary arterioles (Figure 4.10c). The 

capillary has a trough fractional change of up to 8%, which is more than twice that of the arteriole 

but only ~20% greater than that of the postcapillary venules (Figure 4.10d). Second-stage venules, 

the venules joined by postcapillary venules, also had an initial dip with a significantly longer 

duration than capillaries and arterioles, probably due to the out-of-phase influx of deoxygenated 

blood from different capillaries. Following the trough, the sO2 levels quickly recovered, and 

capillaries and venules manifested a weak and flat overshoot, which was insignificant in arterioles 

(Figure 4.10c). 

 
Figure 4.10 Temporal profiles of vascular response. (a) A representative single-trial capillary sO2 time course in 
response to an impulse stimulus. The raw data (blue line) is filtered with a Bessel low-pass filter (25 Hz cutoff 
frequency) to produce the orange curve. We chose the Bessel filter because it preserves the wave shape of the filtered 
signal in the passband and therefore maintains causality. (b) Comparison of the time courses of sO2 and HbT of the 
capillaries. By applying the threshold of 3σ, the onset times of the sO2 and HbT responses are calculated as 0.13 and 
0.46 s, respectively. (c) Time courses of the sO2 fractional changes in four vessel segments representative of the 



50 
 

different microvascular compartments. An example of these representative segments is illustrated by the color-coded 
arrows in Figure 4.8a. (d) Initial dip amplitude versus vessel diameter for precapillary arterioles, capillaries, and 
postcapillary venules. Data in (b and c) are averaged over five trials on each of the five mice; data in (d) are averaged 
over five trials; the stimulus is illustrated by the small red bar on the horizontal axis; venule 1 and venule 2 denote 
postcapillary and second-stage venules, respectively; error bar shows standard error. 

This overshoot phase lasted up to 2 s in venules. The hyperemia started first at the arteriole around 

0.4 s, slightly ahead of the trough of the initial sO2 dip in all compartments of the vessel (Figure 

4.10b and Figure 4.11). Its peak amplitudes at the arteriole and capillary were similar, while 

venules had a weaker response but of a longer duration. The tail of hyperemia closely coincided 

with that of the overshoot phase of sO2 response (Figure 4.10b), indicating a strong relation 

between them. 

 

Figure 4.11 Time courses of the HbT fractional changes in four vessel segments representative of the different 
microvascular compartments. An example of these four stages is illustrated by the arrows in Figure 4.8a. Data are 
averaged over five trials on each of the five mice; the stimulus is illustrated by the small red bar on the horizontal axis; 
error bars show standard errors. 

Meanwhile, the ipsilateral stimulation resulted in only a hyperoxic response in sO2 and a 

hyperemia of a smaller amplitude, which occurred at a time point similar to that resulting from 

contralateral stimulations (Figure 4.12). 
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Figure 4.12 Comparison of vascular responses in the core response areas. (a) Trough amplitude of initial dips 
from contralateral and ipsilateral stimulations. (b) Peak value of the sO2 overshoot. (c) Peak value of the hyperemic 
response. Data are averaged over five trials on each of the five mice; error bar, standard error; statistics, paired 
Student’s t-test; P values, *** < 0.001. 

4.4 Discussion 
Since functional imaging often indirectly probes neural activities through measurements of 

hemodynamics, correct interpretation of the imaging data is crucial. Considerable research has 

been devoted to the initial dip, which is thought to be directly related to the local neural 

metabolism. However, despite being frequently observed and extensively studied by various 

imaging/spectroscopy modalities, its details remain inconclusive. Our experimental results provide 

a new and unique perspective on this initial dip phenomenon at high spatial and temporal 

resolutions. fPAM data showed that the initial sO2 dip started as early as 0.13 s after the stimulus. 

Considering a typical value of ~4 × 10–5 cm2/s for the oxygen diffusion constant in tissue80, an 

extra-vascular hypoxic gradient would travel ~33 µm in 0.13 s, which is consistent with the general 

capillary density81. Excluding large venules that collect hypoxic blood, only vessels smaller than 

~30 µm in diameter demonstrated a first-time initial dip, likely due to the ability to release oxygen. 

These two findings support the theory that the initial dip is the result of increased oxygen 
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consumption from activated neurons. Poststimulus hyperemia started slightly ahead of the trough 

of the initial dip, and propagated like the hyperoxic phase of the sO2 response, likely contributing 

to the sO2 recovery and overshoot. 

Our motivation for developing a Raman laser was the limited choices of wavelengths for high-

repetition-rate lasers47, 82. SRS effectively shifts the laser wavelength, with a conversion efficiency 

usually one order of magnitude higher than commercial optical parametric oscillator systems83. 

Compared to other popular Raman materials, KGW possesses many desirable features49, such as 

convenient operation, a high Raman gain coefficient, a high thermal damage threshold, high 

thermal conductivity, and low thermal lensing, of which the last two factors are most critical for 

developing stable high-repetition-rate Raman lasers. Our free-space Raman laser also achieves 

better monochromaticity than fiber-based versions84, 85. The ultralow threshold of KGW enables 

the system to conduct simultaneous imaging at more than two wavelengths by employing 

additional higher-order Stokes and anti-Stokes lines. For example, melanoma progression and its 

hypoxia environment can be monitored by our fPAM working simultaneously at 532 nm, 558 nm, 

and 658 nm (4th Stokes line), further extending the scope of this study. 

In summary, we developed a dual-wavelength fPAM based on a Raman laser at a 1 MHz 1D 

imaging rate. Through direct imaging of oxygenation in individual vessels with optical absorption-

based contrast and high spatiotemporal resolution, fPAM achieved sensitivity and specificity 

superior to other imaging/spectroscopy modalities. We acquired detailed mapping of the 

hemodynamics at the micro-vessel level, which is unattainable for traditional optical imaging or 

fMRI. In vivo experiments quantified the transient initial dip from cerebral micro-vessels, 

providing new insights on this elusive phenomenon. Its multi-wavelength imaging capability may 

benefit many preclinical and clinical applications, such as tumor microenvironment studies. 
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Although advances in fPAM have opened avenues for in vivo biomedical studies, at present, our 

fPAM has a lower imaging speed than fMRI or optical microscopy for wide-field imaging, and 

future studies should address this issue by exploiting techniques like multi-focal imaging. Imaging 

awake animals with a wearable version of fPAM can be another important avenue of exploration. 
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Chapter 5: Transparent high-frequency 
ultrasonic transducer for photoacoustic 

microscopy application 
Chapter 4 introduces a high-speed dual-wavelength fPAM system for functional imaging of the 

mouse brain. This system successfully resolved transient hemodynamic changes on a single micro-

vessel level. However, limited by its sizable optical scanning and ultrasonic detection devices, its 

applications are limited to imaging anesthetized animals. Moreover, anesthetics are found to have 

some profound effect on brain activities86, 87. Thus, there is a need for microscopy technologies 

capable of imaging hemodynamics in awake animals in order to study the natural brain activities. 

Among potential solutions, wearable microscopes present a promising approach. In this work, we 

report development of a thin-film optically transparent high-frequency ultrasonic transducer using 

lithium niobate single-crystal and indium-tin-oxide electrodes, presenting an excellent optical 

transparency of up to 90% in the visible to near infrared spectrum. The center frequency of the 

transducer was at 36.9 MHz with 33.9% –6 dB fractional bandwidth. Imaging capability of the 

fabricated transducer for photoacoustic microscopy was also demonstrated by successfully 

imaging a resolution target and mouse ear vasculature in vivo, which were irradiated by a 532 nm 

pulsed laser transmitted through the transducer. This transparent transducer holds great promise 

for wearable PAM applications. This work was done in collaboration with Dr Qifa Zhou’s lab in 

University of Southern California. 

5.1 Background 
Photoacoustic tomography (PAT) remains the prime choice for label-free imaging of the optical 

absorption contrast in tissue3, 4, 88. It can extract the three-dimensional information of a wide range 

of endogenous absorbers, such as hemoglobin, melanin and cytochrome4. To construct the 
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absorption-based images, PAT detects the ultrasonic waves converted from absorbed optical 

energy through thermoelastic expansion2, 3. Photoacoustic microscopy (PAM), the microscopic 

version of PAT, usually employs a single high-frequency ultrasonic transducer to acquire the 

photoacoustic waves2. So far, the most widely used PAMs for in vivo animal and human imaging 

utilize a reflection-mode setup: both the optical illumination and ultrasonic detection placed on the 

same side of the imaging object6, 7, 9, 71. However, this setup imposes certain constraints on PAM’s 

performance. A long working distance is required to accommodate the sizeable piezoelectric 

detector and the optical-acoustic splitter, thus limiting the PAM’s numerical aperture and resulting 

in a poor lateral resolution76, 89. Transmission-mode PAMs have achieved finer lateral resolutions, 

but they are mainly limited to imaging ex vivo samples90, 91. Further, the complexed optical-

acoustic splitter, two prisms sandwiching a thin layer of silicon oil, is very difficult to make and 

maintain76, 89. 

To address this problem, doughnut-shaped transducers with a central opening for light passage 

have been introduced to reduce the obstruction in the optical path7, 92. But its size is still too big 

for PAM to achieve a resolution comparable to optical microscopy92. Taking another approach, 

thin-film transducers that are optically transparent offer a desirable solution. One type of these 

transducer is the optic-based ultrasonic detectors, including Fabry-Perot etalons93, 94, micro-ring 

resonators, and others95. However, they require additional optical instruments such as probe lasers 

and detectors. Further, it is difficult to integrate these optical-based detection techniques with 

conventional ultrasound excitation device for combined ultrasound/photoacoustic dual-modality 

imaging. Although transparent piezoelectric transducers with indium-tin-oxide (ITO) coated 

polyvinylidene fluoride (PVDF) film were already introduced96, 97, they demonstrated only 70% ~ 

80% transparency in the visible spectrum. Also, PVDF’s coupling coefficient (kt) is not 
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comparable with other popular piezoelectric materials. Another alternative was developed using 

the capacitive micromachined ultrasonic transducer (CMUT) technique98. This device has 

limitation on operating frequency and complex configuration that utilizes specialized micro-

electro-mechanical systems (MEMS) fabrication techniques. 

Moreover, transducers operating at the range of 30-50 MHz are favorable for PAM imaging, since 

the frequency spectrum of PA waves after propagating through tissue is dominant in this range71. 

Therefore, there is a need to find a suitable piezoelectric material to develop optically transparent 

high-frequency ultrasonic transducers for PAM application. 

Among known piezoelectric materials, lithium niobate (LiNbO3) possesses several properties ideal 

for fabricating transparent high-frequency ultrasonic transducers: It is a single-crystal material 

with excellent transparency at wavelength from 350 to 5200 nm99, good electromechanical 

coupling, a low dielectric constant, and high longitudinal sound speed, ideal for designing sensitive 

large-aperture high-frequency transducers. A brief list of the material properties for LiNbO3 can 

be found in 100. Beard et al. developed an optically transparent piezoelectric transducer with ITO 

coated LiNbO3 for ultrasonic particle manipulation101. Recently, Dangi et al. reported a promising 

LiNbO3-based transparent ultrasonic transducer operating at 14.5 MHz for PA imaging102. 

The purpose of this study is to develop a transducer for PAM applications with a high optical 

transmission (> 80 %) and a high frequency (> 30 MHz) response. The high transmission of 

LiNbO3 single-crystal substrate coated with ITO thin films on both sides is demonstrated over a 

broad range of wavelengths (450-1064 nm). PAM imaging performance of the transparent 

transducer is evaluated by imaging a carbon nanotube-based resolution target and mouse ear 

vasculatures in vivo. 
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5.2 Materials and methods 

5.2.1 Transducer design 
A Krimboltz, Leedom, and Mattaei (KLM) transducer equivalent circuit model-based modeling 

software (PiezoCAD, Sonic Concepts, Woodinville, WA, USA) was used to simulate and optimize 

the transducer design. Parylene thin-film (Parylene C, Specialty Coating Systems, Indianapolis, 

IN, USA) with an acoustic impedance of 2.5 MRayl was selected as the material for the matching 

layer because it exhibits very little absorption in the visible region and is, therefore, transparent 

and colorless. To facilitate transducer transparency, an insulating and optically transparent epoxy 

(EPO-TEK 301, Epoxy Technology, Inc., Billerica, MA, USA) with an acoustic impedance of 

3.05 MRayl was chosen as the material for backing. 

Table 5.1 Design parameters of the transparent high-frequency ultrasonic transducer 

Specifications Values 

Designed center frequency 37 MHz 

Aperture size 1 cm × 1 cm 

Thickness of piezoelectric material (LiNbO3) 100 μm 

Thickness of matching layer (parylene) 16 μm 

Thickness of backing (EPO-TEK 301) 1 mm 

 
Design parameters of the transducer are summarized in Table 5.1. The inner structure cross section 

schematic of the transducer is shown in Figure 5.1a. 
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Figure 5.1 Schematic and photo of the transparent transducer. (a) Design cross section of the transparent 
ultrasonic transducer (not to scale). (b) photograph of a fabricated transparent ultrasonic transducer. 

5.2.2 Transducer fabrication 
A 36◦ rotated Y-cut LiNbO3 (Boston Piezo-optics, Bellingham, MA) wafer with a dimension of 1 

cm × 1 cm and a thickness of 100 μm (λ/2) was acquired to make transducer operating at 37 MHz. 

Transparency of the LiNbO3 wafer was achieved by chemical surface finish technique. Both top 

and bottom sides of the LiNbO3 wafer were electroded by sputtering an ITO layer of approximately 

108 nm in total thickness. ITO was DC magnetron sputtered from a 50 mm diameter ITO target 

(In2O3/SnO2 90/10 wt %, Kurt J. Lesker Company, Jefferson Hills, PA, USA) at 20 W, 933 Pa (7 

mTorr, Argon flow ≈ 30 sccm) for 80 minutes. The deposition rate was monitored using a quartz 

crystal microbalance (QCM) with a measured rate of 0.03 nm/s (density = 7.14 g/cm3, z-ratio = 1, 

tooling = 100 %). For an accurate measure of on-sample deposition rate (LiNbO3 crystals and 

QCM are at differing heights), ITO was sputtered on a silicon substrate under similar conditions 

for 20 min and measured using a white light spectrometer (Filmetrics F40, KLA, Milpitas, CA, 

USA). The 20 min sputtered film yielded a refractive index of 1.89 and a thickness of 27 nm. 

Extrapolating these values, we estimate the thickness of the ITO film on the LiNbO3 to be 108 nm. 

A hook-up wire (Gauge 24, McMaster-Carr Supply Company, Santa Fe Springs, CA, USA) 

consisting of stranded copper wires was connected to the bottom ITO electrode on the edge of the 

LiNbO3 wafer with a small amount of conductive epoxy (E-SOLDER 3022, Von Roll Isola Inc., 

New Haven, CT, USA). A home-made brass housing with an inner opening of 15 mm in diameter 
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and a subminiature version A (SMA) connector on the side was placed concentrically with the 

LiNbO3 wafer. The other end of the stranded copper wire was connected to the SMA connector. 

Degassed EPO-TEK 301 with a total weight of 0.2 g was then poured into the brass housing. 

Therefore, the thickness of EPO-TEK 301 was controlled to be approximately 1 mm after curing. 

A small amount of E-SOLDER 3022 was applied at the four corners on the front surface of the 

LiNbO3 wafer to connect the top ITO electrode with brass housing as a ground connection. Finally, 

a 16 μm thick (λ/4) parylene thin-film (Parylene C, Specialty Coating Systems, Indianapolis, IN, 

USA) layer was vapor-deposited onto the external surface of the transducer by a parylene coater 

(PDS 2010, Specialty Coating Systems, Indianapolis, IN, USA). Photograph of the fabricated 

transducer is shown in Figure 5.1b. The transducer was not focused by either press-focusing or 

lens focusing techniques. 

5.2.3 PAM imaging 
To demonstrate applications in PAM, we conducted phantom and animal imaging with a 

reflection-mode PAM (Figure 5.2a). The laser beam from a pulsed laser (APL-4000-1064, 

Attodyne Inc., Toronto, ON, Canada) was focused onto the imaging object by an aspherical lens 

(AL2550-A, Thorlabs Inc., Newton, NJ, USA), through the transparent transducer. Excited PA 

waves were detected by the transparent transducer, which was placed in a tank of deionized water 

for acoustic coupling. Maximum amplitude projection (MAP) images were produced in post-

processing by taking the peak-to-peak amplitude of each PA A-line signal. 
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Figure 5.2 Schematic of the PAM setup and transparency measurement of the transducer. (a) Schematic of the 
reflection-mode PAM. The transparent transducer, directly in the optical path, is placed on the top of the imaging 
object to acquire the excited PA waves. The imaging object was mounted on a motorized stage for raster scans; (b) 
Measurement of optical transmission through the fabricated transducer. 

5.3 Results 

5.3.1 Transducer performance evaluations 
First, we evaluated the transducer’s optical transmission efficiency. An optical parametric 

oscillator laser (NT242, EKSPLA, Vilnius, Lithuania) provided the laser beams at a broad 

spectrum, and the ratio of the laser light transmitted through the transducer was measured with a 

laser power meter (Vega, Ophir Optronics Solutions Ltd., Jerusalem, Israel). It can be seen that 

our transducer has a transmission efficiency greater than 80% in the 450 nm to 1064 nm range 

(Figure 5.2b). 

Electrical impedance of the transducer was measured by an impedance analyzer (HP 4294A, 

Agilent Technologies, Santa Clara, CA, USA). Electrical impedance and phase angle of the 

transducer as a function of frequency were measured and shown in Figure 5.3b. The resonance 

frequency (fr) and anti-resonance frequency (fa) of the transducer were measured to be 33.9 and 

40.3 MHz, respectively. According to the IEEE standard on piezoelectricity103, the effective 

electromechanical coupling coefficient (keff) of the transducer was calculated to be 0.54. It was 
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observed that the measured results are very close to the PiezoCAD simulation results (fr = 31.0 

MHz, fa = 37.8 MHz, and keff = 0.57) as shown in Figure 5.3a. The electrical impedance of the 

transducer was measured in the range of 161 to 258 Ω around the resonance frequency of the 

transducer, while the PiezoCAD simulation shown 7 to 22 Ω. 

 

Figure 5.3 Data of the transducer impedance. (a) PiezoCAD simulated and (b) measured electrical impedance 
(blue) and phase angle (red) of a transparent transducer. 

Pulse-echo response of the transducer was measured and analyzed by a pulse-echo method 

described in104: The transducer was mounted on a holder and immersed in a tank filled with 

deionized water. An X-cut quartz plate was placed about 5 mm away from the transducer as a 

reflector. The transducer was excited by a pulser-receiver (Panametrics 5900PR, Olympus NDT 

Inc., Waltham, MA, USA) with 1 μJ energy per pulse, 200 Hz pulse repetition rate, and 50 Ω 

damping factor. The received pulse-echo response and its computed frequency spectrum are shown 

in Figure 5.4b. The center frequency of the transducer was calculated to be 36.9 MHz, and the -6 

dB bandwidth was 33.9%. Peak-to-peak received voltage (Vp-p) of the unamplified pulse-echo 

signal was about 0.45 V, indicating the transducer has quite high sensitivity. The measured pulse-

echo results are in good agreement with the PiezoCAD simulation Figure 5.4a. 
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Figure 5.4 Data of the transducer’s impulse response. (a) PiezoCAD simulated and (b) measured pulse-echo 
response waveform (blue) and its frequency spectrum (red) of a transparent transducer. 

5.3.2 PAM imaging 
Figure 5.5a shows the PAM image of the resolution target, carbon-nanotube patterns grown on a 

polydimethylsiloxane substrate. The smallest pattern, periodic lines of 10 μm width, 100 μm long, 

and 40 μm pitch were clearly resolved. The laser pulse energy irradiated on the target was 

measured to be ~200 nJ, resulting a signal-to-noise ratio of ~41.5. Further, we demonstrated the 

transparent transducer’s in vivo imaging capability by imaging the mouse ear at the optical 

wavelength of 532 nm. At this wavelength, the hemoglobin in red blood cells (RBCs) is the 

primary absorber in tissue, thus enabling imaging the vascular anatomy. The laboratory animal 

protocols were approved by the Institutional Animal Care and Use Committee of California 

Institute of Technology. Figure 5.4b shows the MAP image of a 1 × 0.8 mm2 area of the mouse 

ear. It can be seen that vessels of a diameter as small as 30 µm were clearly imaged. 
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Figure 5.5 Results of the transparent-transducer–based PAM imaging. (a) MAP image of the carbon-nanotube 
pattern. (b) MAP image, averaged over 16 times, of an area in the mouse ear showing the vasculature by exciting the 
hemoglobin in RBCs. 

5.4 Discussion 
In this work, a thin-film optically transparent high-frequency ultrasonic transducer using ITO 

coated LiNbO3 single-crystal was developed for PAM application. The fabricated transducer 

exhibited an effective electromechanical coupling coefficient keff of 0.54, a center frequency of 

36.9 MHz, a –6 dB bandwidth of 33.9 %, a high sensitivity of 0.45 V peak-to-peak received voltage 

(Vp-p), as well as an excellent transparency of up to 90 % in the visible range. Imaging capability 

of the transducer for PAM was also demonstrated by successfully imaging a resolution target and 

mouse ear vasculature in vivo, with the laser beam transmitting directly through the transducer. 

These results will inspire further development of high-frequency ultrasonic transducers in 

transparent form, which will enable PAM with finer resolution. Moreover, the size of the 

transducer can be further reduced, making it possessing an enormous potential for developing 

wearable or hand-held PAM devices. 
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Chapter 6: Summary and outlook 
In this dissertation, we have developed new technologies in the field of high-speed PAM. We 

applied these new technologies to translational medicine and brain functional studies, including 

CTC detection and therapy, and imaging cerebral hemodynamics in response to brief somatic 

stimulations. 

In Chapter 2, we advanced previous PAM to high-speed dual-wavelength PA flow cytography for 

the application of CTC imaging. A concurrent on-demand laser therapy device was also developed 

to photothermally lyse the CTC in pinpoint manner immediately upon CTC detection. This 

technology is readily translatable to clinics for better cancer diagnosis, therapy efficacy 

assessment, and inhibiting metastasis. 

In Chapter 3, we implement a novel wavelength conversion technique to address the limitation of 

detection sensitivity in Chapter 2. SRS was implemented to convert the pump laser to the 

wavelength of 658 nm. This wavelength choice resulted in an order of magnitude improvement in 

CNR, which facilitated reliable CTC imaging. 

In Chapter 4, we further extended the SRS wavelength conversion technique to the field of high-

speed functional imaging. A dual-wavelength high-speed functional PAM was developed for the 

studies of mouse brain hemodynamics. We successfully imaging transient micro-vascular 

hemodynamic changes in response to brief somatic stimulations. This technology has great 

promise for studies of brain functions and vascular environment. 

In Chapter 5, we explored a new ultrasonic transducer technique in an effort to extend the fPAM 

in Chapter 4 to studies of awake animals. We sought to miniaturize the detection device by 

developing a thin-film optically transparent piezoelectric transducer. An ITO coated LiNbO3 
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ultrasonic transducer was developed and its application in PAM was demonstrated with phantom 

and animal imaging. 

There are potentially broader applications for this dissertation work with certain technological 

advancements. The Raman laser in Chapter 3 and Chapter 4 has a relatively large pulse energy 

fluctuation compared to commercial lasers. The natural solution is to implement a cooling device 

on the Raman crystal KGW to enable a stable thermal environment. A more stable laser can 

facilitate more reliable and accurate measurement of the biometric parameters. 

The transparent transducer in Chapter 5 has a low detection sensitivity compared to commercial 

transducers. A potential solution is to find better materials for the matching layer and the electrode, 

as both the parylene and the ITO electrode do not match the acoustic impedance of the LiNbO3. 

The next step for fPAM is to integrate it to a wearable version for longitudinal studies on free-

moving animals. To achieve that, both the optical scanning and ultrasonic detection devices need 

to be miniaturized. For the ultrasonic detection part, we explored a thin-film piezoelectric 

transducer, whose PAM application was demonstrated in Section 5.3. Other approaches include 

optical-based ultrasound detection of the PA wave using technologies such as integrated 

interferometer. For the optical scanning part, technologies used in laser-scanning confocally 

microscopy can be readily translated to wearable PAM. Other approaches include wavefront-

engineering–based optical focusing. 

The wavelength conversion capability of the Raman laser can also enable more applications in 

multi-wavelength imaging. By simultaneously employing more Stokes lines and employing pump 

lasers of different wavelengths, it can be applied to work with more endogenous and exogenous 
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contrast mechanisms, such as lipid in the near infrared region for nerve imaging, genetically 

encoded ion indicators, like GCaMP, for functional imaging. 
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