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Introduction 

Geometric, kinematic, force, and material nonlinearity arise in manufactured products.          

Flexural rigidity, or relative stiffness of a beam, cannot be measured accurately for flexible,              

composite medical devices like catheters and sheaths using linear beam theory because they             

undergo high deformations when subject to relatively small loads. Surgeons depend on the             

relative stiffness of their catheters to determine the maneuverability of their devices.  

For neurovascular interventions, surgeons rely on stiffness to determine if their catheter            

can navigate arduous vasculature, especially around the aortic arch1. Navigation has become            

increasingly difficult as surgeons have adopted the transradial approach to neurovascular           

angioplasty procedures. In these procedures, surgeons must steer their guide catheter through the             

radial artery, across narrow bends through the subclavian artery, and around the aortic arch. It is                

unrealistic to consistently use particularly flexible catheters since they do not provide enough             

support to guide medical devices to the brain. To overcome this issue, surgeons pair flexible               

intermediate guide catheters with stiffer sheaths in a coaxial system. They navigate the guide              

catheter into position, run the stiff sheath over the guide catheter, and send more devices               

(microcatheters, stents, coils, etc.) through that system. Medical device companies now           

commonly design catheters with sections that vary in stiffness throughout the length of the              

catheter to help overcome these issues2. Although the relative stiffness of these devices are              

critical to the success of the procedure, stiffness values for these devices are unknown to               

surgeons. 

More generally, cardiovascular, peripheral vascular, and other general vascular surgeons          

experience similar difficulty in selecting catheters to navigate other arterial systems.           

Cardiovascular surgeons experience similar difficulty navigating bends through the aortic arch           

for different procedures. Beyond vascular surgery, flexural rigidity calculations are important           

throughout mechanical analysis, and these calculations become especially difficult for          



manufactured products with soft or composite materials. Previous studies have found flexural            

rigidity calculations of thin films for aerospace engineering3, of flat plates in mountains for              

geophysics4, of microtubules for cell biophysics5, and of jute fibers and yarns6. 

Euler-Bernoulli and Timoshenko beam theories provide relatively accurate        

approximations for beams under small deformations7. Applications of these theories are fitting to             

measure the flexural rigidity of catheters and other nonlinear systems. Beams with flexible             

materials undergoing large deformations require more complicated definitions to solve for           

flexural rigidity through deflection analysis. A nonlinear approach to beam theory does provide a              

more accurately measured flexural rigidity for high deformations than linear beam theory8. By             

applying the definition of curvature to the general equation for Euler-Bernoulli beam theory, the              

flexural rigidity can be calculated accurately. 

Other techniques have been applied to manufactured systems to measure mechanical           

properties of catheters and other medical devices9. Previous studies found the flexural rigidity of              

central venous catheters based on deflections10,11, which differs from the angle calculations used             

in this research. Another method from previous studies examines the buckling load of the device               

when the force is applied axially12,13. Yet another group compared stiffness between catheters             

based on the critical angle at which the catheter could physically bend14. These methods for               

measuring flexural rigidity are distinctly different from the technique used in this research, which              

instead measures the value based on the angle of rotation where the point load is applied.  

For measurement of manufactured products, the flexural rigidity can be calculated           

through image analysis paired with the nonlinear application of the general beam theory             

equation. Flexural rigidity can be found by examining the mechanical reaction of a fixed-free              

beam under a given load. This technique was tested using finite element analysis in COMSOL by                

measuring angles via displacements using the software applications and through image analysis            

of the deflection provided by the software. These values were compared to calculated flexural              

rigidity values, which are based on the elastic modulus and second area moment of inertia of the                 

cross section. This strategy provides researchers with an accurate means to measure the flexural              

rigidity of medical devices like catheters that undergo large deformations under applied forces.  



Methods 

To determine flexural rigidity in these experiments, linear and nonlinear beam theory            

equations were used in tandem to find values to compare to the actual value. Equation 1 below                 

shows the general static form for linear and nonlinear beam theory.  

       Iκ M =  − E                     (1) 

Where is the applied moment [ ], E is the Young’s modulus of the material [ M      mN          

], I is second area moment of inertia of the cross section [ ], and is the definition/mN 2             g mk 2   κ     

of curvature [ ]. The combined term is defined as flexural rigidity [ ]. Equation 2  /m1     IE       cmN 2    

below shows an assumption made to determine the static form of Euler-Bernoulli beam theory              

for linear applications. 

         κ =  − dx2
d w2

        (2) 

Where is the equation describing the deformation of the beam, is the slope of (x)w           dx
dw      

the beam, and is the derivative of the slope of the beam. To then solve for the flexural   dx2
d w2

                

rigidity of the beam, the linear form of curvature is substituted into Eq. 1. The complete                

derivation for the final form of this equation can be found in Appendix A. Equation 3 shows the                  

final form used to solve for the linear approximation of the flexural rigidity of the beam. 

                I (F L )E = 1
2tanθ

2                                 (3) 

Where is the force [ ], is the length from the fixed end to the applied force [ ], F     N  L             m  

and is the angle of rotation of the beam at the point of the applied load relative to horizontal θ                    

[°]. To solve the nonlinear application of beam theory for flexural rigidity, the exact definition of                

curvature is used in Eq. 1. Equation 4 shows this definition. 

       κ =  
−

dx2
d w2

(1+( ) )dx
dw 2 2

3         (4) 

The full derivation for the nonlinear form of this equation can be found in Appendix A.                

Equation 5 shows the final nonlinear derived form for flexural rigidity. 

 I (F L )E = 2tanθ
(1+(tanθ) )2 2

1
2                     (5) 

The final forms of both Eq. 3 and Eq. 5 can be nondimensionalized and described by the                 

term . The results of this nondimensionalization are shown below in Eq. 6 and Eq. 7 for the 2EI
F L2

                 

linear and nonlinear forms, respectively. 



         anθ2EI
F L2

= t          (6) 

     2EI
F L2

= tanθ
(1+(tanθ) )2 2

1          (7) 

To show the reliability of the supporting equations, the COMSOL model was used to first               

test displacements of a 450 mm long tube-shaped structure subjected to a load applied 420 mm                

from the fixed end of the fixed-free beam. The angle deflection, , could then be derived from           θ       

trigonometry comparing the displacement at the point of the load ( ) and the          20 mmx = 4    

displacement at the end of the beam ( ). Note that gravity was not applied in this       50 mmx = 4          

simulation. The calculated angel could then be applied in Eq. 3 and Eq. 5 to solve for the flexural                   

rigidity of the beam. The ensuant value was then compared to the actual flexural rigidity, which                

was calculated using the elastic modulus and second area moment of inertia provided by the               

COMSOL software for the beam constructed. This value was calculated for the beam subject to               

different loads: , and . Table 1 below shows the  .025 N , 0.05 N , 0.1 N0    .125 N0   .15 N0       

dimensions and material properties of the tube used throughout the model. 

Table 1 Listed are the material properties and dimensions that were tested in the              

COMSOL model. 
     

ID/OD [mm] I [mm4] Material E [GPa] EI [Ncm2] 

1.778/2.1 0.4641 PTFE 0.4000 1.856 

     

 

To verify the validity of these calculations for finite element analysis, a convergence test              

was run on the data. Results were plotted for the beam designed with 9 different mesh sizes; the                  

number of degrees of freedom varied from 2238 to 423906 degrees of freedom. The force was                

applied 30 mm from the fixed end of the 35 mm fixed-free beam. These tests were run across the                   

same range of forces listed before along a beam with the same properties as were described in                 

Table 1. 

The linear and nonlinear results from the initial COMSOL displacement test were then             

converted to a dimensionless graph to show the relationship between the dimensionless            



quantities derived in Eqs. 6 and 7. This graph is designed to show the relationship between the                 

linear, nonlinear, and actual calculations relating  and .2EI
F L2

θ  

Next, another dimensionless study was run to show how the nonlinear formulation stands             

based on the length of the beam ( ) relative to the diameter ( ). The resulting nonlinear       L      D     

calculations were performed using the same displacements tests for beams with quantities            

and . These beams had the same parameters as were described in Table 1, but5L
D = .   005L

D = .               

the loads were applied at 4.2 mm and 420 mm from the fixed end on 4.5 mm and 450 mm                    

fixed-free beams, respectively. The results, along with the correct values calculated from the             

material and geometric properties of the beam, were compared on another dimensionless graph             

comparing  and .2EI
F L2

θ  

After testing the reliability of the governing equations and software in this model, an              

image analysis technique was used to show how effective this derivation applies to calculating              

flexural rigidity of manufactured products. The image analysis was performed on images taken             

from the COMSOL modelling software and compared to the calculated value. Once the beam              

was designed and a fixed boundary condition was applied, a point force was applied to the free                 

end of the beam. Figure 1 below shows a sample beam under deflection from the applied load. 

Fig. 1 Sample image for a 35 mm beam deflection in COMSOL 

This was repeated under , and loads applied 30 mm    .025 N , 0.05 N , 0.1 N0     .125 N0      

from the fixed end of a 35 mm beam. Images resembling Fig. 1 under each load were then                  

analyzed using ImageJ software to find .θ   



Results 

The initial test in COMSOL was completed by finding the difference in displacements on              

two points of the beam subject to , and forces.       .25 mN , 0.5 mN , 1 mN0    .25 mN1   .5 mN1   

Figure 2 below displays the resulting flexural rigidity values based on the angle, , of deflection.             θ    

These measured values are compared to the line that describes the actual flexural rigidity of the                

beam, which was calculated in Table 1 as . The beam was tested under finite        .856 Ncm1 2        

element analysis using 5744973 degrees of freedom. 

Fig. 2 Linear and nonlinear flexural rigidity calculations using COMSOL displacements to          

measure angles based on forces applied 420 mm from the fixed end of a 450 mm                

fixed-free beam 

  



Following the initial COMSOL displacement test, a convergence test was conducted for            

different mesh sizes. Figure 3 shows the resulting flexural rigidity calculations based on the              

number of degrees of freedom constructed in the design. 

Fig. 3 Convergence test based on nonlinear calculations from a point force applied 30 mm             

from the fixed end of a 35 mm fixed-free beam 

  



A dimensionless graph was then extracted from the data collected in Fig. 1 comparing the               

linear and nonlinear beam theory calculations to the actual values based on the geometry and               

material properties of the beam. Figure 4 below shows the results of this comparison, which also                

relates the nondimensionalized quantities described in Eqs. 6 and 7. 

Fig. 4 Nondimensionalized comparison of linear to nonlinear calculations based where         

point forces are applied 420 mm from the fixed end of a 420 mm fixed-free beam 

  



Another dimensionless graph was derived to show how the nonlinear formulations apply            

to beams based on their diameter to length ratio. Figure 5 below shows this relation, which                

compares these changing ratios to the actual dimensionless angle calculations of the beam             

derived from its inherent material and geometric properties. 

Fig. 5 Nondimensionalized comparison of nonlinear calculations of beams with diameter         

(D) to length (L) ratios of .5 and .005 

  



For the image analysis technique, the tube designed in COMSOL was subjected to loads              

of , and . Figure 6 below displays the resulting flexural rigidity .025 N , 0.05 N , 0.1 N0     .125 N0          

values based on the angle, , of deflection. These measured values are compared to the line     θ            

representing the actual flexural rigidity of the beam, which was calculated in Table 1 as               

..856 Ncm1 2  

Fig. 6 Linear and nonlinear flexural rigidity calculations using image analysis to measure           

the angles from forces applied 30 mm from the fixed end of a 35 mm fixed-free                

beam 

Table 2 shows the resulting flexural rigidity values measured for each force using both              

the image analysis and COMSOL displacement test of loads applied 30 mm from the fixed end                

of a 35 mm fixed-free beam. The linear values were calculated using Eq. 3, and the nonlinear                 

values were calculated using Eq. 5. 

  



Table 2 Flexural rigidity values are calculated linearly and nonlinearly based on the force              

applied 30 mm from the free end of the 35 mm fixed-free beam 
      

Force [N] Image Analysis Technique COMSOL Displacement Test EI [Ncm2] 

 Linear [Ncm2] Nonlinear [Ncm2] Linear [Ncm2] Nonlinear [Ncm2]  

.025 1.845 1.848 1.859 1.862 1.856 

.050 1.843 1.857 1.848 1.862 1.856 

.075 1.825 1.855 1.831 1.862 1.856 

.100 1.799 1.849 1.807 1.862 1.856 

.125 1.761 1.849 1.775 1.862 1.856 
      

 

Discussion 

The calculated flexural rigidity values using linear and nonlinear beam theory reflect the             

expected trend based on the analysis performed. Since linear beam theory makes approximations             

for small angles, it does not account for nonlinearity that arises once the beam bends at a high                  

angle. Therefore, when measuring the flexural rigidity using linear beam theory, it is expected              

that the value would become more inaccurate as the angle increases. This is shown in the                

COMSOL displacement data, which displays consistently accurate nonlinear terms and shows           

linear terms that become less accurate with higher angle changes. It is noteworthy that the linear                

terms did stay within 7 percent of the expected outcome when subjected to an angle change of                 

20.9°; however, the nonlinear values were consistently within .1 percent error throughout the             

displacement test. 

The convergence test showed that the accuracy of the displacement test improves with an              

increase in the number of degrees of freedom used in the finite element analysis, which was                

expected. There were noticeable inconsistencies between the lower degrees of freedom, which            

can be attributed to the variation in finite element composition as the size of the elements                

changed. The convergence test showed that the accuracy of the calculations significantly            

improves as a function of the number of degrees of freedom of the design in COMSOL. 



The dimensionless results shown in Fig. 5 show the expected importance of beam length              

when calculating deflections using beam theory. It is expected that a beam with a large diameter                

to length ratio would not follow the trends of the theory since this technique does not account for                  

the shear effects that dominate in relatively short beams. These results show that a small               

diameter to length ratio provides a more accurate measurement. 

The results of the initial COMSOL displacement test are also shown in the image analysis               

data. Under , and forces, the calculated linear flexural rigidity values  .025 N0  .05 N0   075 N.         

were and , , respectively. These values are within two .845 Ncm1 2  .843 Ncm1 2  .825 Ncm1 2        

percent of the actual flexural rigidity, which is . However, under the larger        .856 Ncm1 2      .1 N0  

and forces, the calculated flexural rigidity values were significantly lower. They .125 N0           

measured and , respectively. The nonlinear beam theory accounts for .799 Ncm1 2  .761 Ncm1 2         

the high angle changes. Therefore, when measuring flexural rigidity using nonlinear beam            

theory, it is expected that the flexural rigidity calculations will remain consistently accurate at              

high deflection angles. The data does show that this is consistent. When subject to ,              .025 N0  

, , and forces, the calculated nonlinear flexural rigidity values.05 N0 .075 N0  .1 N0   .125 N0         

were , , , , and , respectively. .848 Ncm1 2  .857 Ncm1 2  .855 Ncm1 2  .855 Ncm1 2   .849 Ncm1 2   

These values remain consistently under one percent error from the actual flexural rigidity value              

of . This shows that the nonlinear beam theory application provides a more accurate .856 Ncm1 2              

flexural rigidity value than linear beam theory. This method is preferable to using linear beam               

theory for image analysis. 

These results are subject to error due to the software capabilities and human measurement              

error. For the COMSOL modeling software, there are errors associated with modeling a complex              

system as a series of finite elements. The convergence test performed in the study (shown in Fig.                 

3) provides insight into how accurately the software approximates with increasing degrees of             

freedom. Also, the image analysis technique does provide another source of error in pixelation.              

Exact angles can only be approximated from the image due to limitations of the images and the                 

image analysis technology. This source of error did not significantly change the outcome of the               

experiments, which showed the the nonlinear calculations were consistent with actual outcomes. 
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Appendix A 

Derivations 

To determine the flexural rigidity, the linear and nonlinear beam theory equations were used in               

tandem to find values to compare to the actual value. First, the nonlinear beam theory               

calculations were derived. Equation A1 below shows the general static form for linear and              

nonlinear beam theory. 

       Iκ M =  − E                  (A1) 

Equation A2 below shows an assumption made to determine the static form of             

Euler-Bernoulli beam theory for linear applications. 

         κ =  − dx2
d w2

      (A2) 

To then solve for the flexural rigidity of the beam, the linear form of curvature is                

substituted into equation and rearranged in Eq. A3 below. 

    I (x)dx E dx
dw = ∫

x

0
M                   (A3) 

Equation A4 shows simplifications made to Eq. A3 based on geometry and the location              

of the applied force. 

               I(tanθ) xdx E = ∫
L

0
F       (A4) 

Equation A5 shows the final linear form for flexural rigidity after further simplification. 

                 I (F L )E = 1
2tanθ

2                              (A5) 

To solve the nonlinear application of beam theory for flexural rigidity, the same process              

is followed with the exception of the curvature, which is replaced with the term shown in Eq. A6. 

           κ =  
−

dx2
d w2

(1+( ) )dx
dw 2 2

3 = w′′

(1+(w ) )′
2 2

3       (A6) 

Note that and represent and , respectively. By substituting the curvature  w′  w′′   dx
dw   dx2

d w2
      

term ( ) into Eq. A1, each side can be integrated to solve for flexural rigidity, as shown in Eq. κ                   

A7. 

    dx Iκdx∫
L

0
M = ∫

L

0
E       (A7) 



By substituting for the moment, the integral can be solved as a function of the length,  xF                

. Assuming the flexural rigidity ( ) is constant along the measured length of the beam, it canL      IE             

be removed from the second integral. Equation A8 shows these results and substitutes the              

definition of curvature for .κ  

          F L I dx2
1 2 = E ∫

L

0

w′′

(1+(w ) )′
2 2

3                   (A8) 

Equations A9 through A12 show the remaining steps to solve the remaining integral. This              

integral can be solved using u-substitution. The substitution terms for this integral are defined in               

Eq. 8 below. 

      w ) , du w w dxu = 1 + ( ′ 2  = 2 ′ ′′                  (A9) 

Equation A10 shows the remaining integral once the substitution terms are applied. The             

equation is then simplified. 

    I du I duE ∫
 

 

w′′
2w w (u)′ ′′ 2

3 = E ∫
 

 

1
2w (u)′ 2

3   (A10) 

The remaining term can be replaced by , which is derived from Eq. A9. The  w′       ± √u − 1         

remaining integral is solved in Eq. A11. 

     I duE ∫
 

 

1
2 (u)√u−1 2

3   (A11) 

Through u-substitution (setting ), and trigonometric substitution, the   v = √1 − u      

remaining integral can be solved. Equation A12 shows the solution to that integral. 

        I  E √u
√u−1 = EI[ √(w ) +1′ 2

√(w ) +1−1′ 2 ]
x=L

  (A12) 

The remaining solution can be set back equal to the integral of the moment, which was                

solved in Eq. A8. This is shown in Eq. A13. 

 F L I2
1 2 = E w (L)′

√1+(w (L))′ 2   (A13) 

By defining as the angle that the free end (at ) is making relative to horizontal,  θ          x = L       

can be substituted into Eq. A12. By rearranging Eq. A12 to solve for flexural rigidity ( ),anθt                 IE  

Eq. A14 shows the final nonlinear definition of flexural rigidity for a bending beam. 

I (F L )E = 2tanθ
(1+(tanθ) )2 2

1
2                (A14) 



The final forms of both Eq. A5 and Eq. A14 can be nondimensionalized and described by                

the term . These results of this nondimensionalization are shown below in Eq. A15 and Eq.  2EI
F L2

              

A16 for the linear and nonlinear forms, respectively. 

        anθ2EI
F L2

= t      (A15) 

    2EI
F L2

= tanθ
(1+(tanθ) )2 2

1     (A16) 
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