
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

All Computer Science and Engineering 
Research Computer Science and Engineering 

Report Number: 

2019-12-04 

Static Taint Analysis of Binary Executables Using Architecture-Static Taint Analysis of Binary Executables Using Architecture-

Neutral Intermediate Representation Neutral Intermediate Representation 

Elaine Cole 

Ghidra, National Security Agency’s powerful reverse engineering framework, was recently 

released open-source in April 2019 and is capable of lifting instructions from a wide variety of 

processor architectures into its own register transfer language called p-code. In this project, we 

present a new tool which leverages Ghidra’s specific architecture-neutral intermediate 

representation to construct a control flow graph modeling all program executions of a given 

binary and apply static taint analysis. This technique is capable of identifying the information 

flow of malicious input from untrusted sources that may interact with key sinks or parts of the 

system without needing access... Read complete abstract on page 2. Read complete abstract on page 2. 

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research 

 Part of the Computer Engineering Commons, and the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Cole, Elaine, "Static Taint Analysis of Binary Executables Using Architecture-Neutral Intermediate 
Representation" Report Number: (2019). All Computer Science and Engineering Research. 
https://openscholarship.wustl.edu/cse_research/1177 

Department of Computer Science & Engineering - Washington University in St. Louis 
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/287159478?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1177&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1177&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1177&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1177&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1177&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1177&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1177&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1177?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1177&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx


This ms project report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1177 

Static Taint Analysis of Binary Executables Using Architecture-Neutral Static Taint Analysis of Binary Executables Using Architecture-Neutral 
Intermediate Representation Intermediate Representation 

Elaine Cole 

Complete Abstract: Complete Abstract: 

Ghidra, National Security Agency’s powerful reverse engineering framework, was recently released open-
source in April 2019 and is capable of lifting instructions from a wide variety of processor architectures 
into its own register transfer language called p-code. In this project, we present a new tool which 
leverages Ghidra’s specific architecture-neutral intermediate representation to construct a control flow 
graph modeling all program executions of a given binary and apply static taint analysis. This technique is 
capable of identifying the information flow of malicious input from untrusted sources that may interact 
with key sinks or parts of the system without needing access to the source code itself and can be 
retargetable to analyze the behavior of a given program across many different processors. 

https://openscholarship.wustl.edu/cse_research/1177?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1177&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1177?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1177&utm_medium=PDF&utm_campaign=PDFCoverPages


Static Taint Analysis of Binary Executables Using
Architecture-Neutral Intermediate Representation

Elaine Cole
McKelvey School of Engineering

Washington University in St. Louis
elainemcole@wustl.edu

Abstract—Ghidra, National Security Agency’s powerful re-
verse engineering framework, was recently released open-source
in April 2019 and is capable of lifting instructions from a
wide variety of processor architectures into its own register
transfer language called p-code. In this project, we present a
new tool which leverages Ghidra’s specific architecture-neutral
intermediate representation to construct a control flow graph
modeling all program executions of a given binary and apply
static taint analysis. This technique is capable of identifying
the information flow of malicious input from untrusted sources
that may interact with key sinks or parts of the system without
needing access to the source code itself and can be retargetable
to analyze the behavior of a given program across many different
processors.

Index Terms—control flow, , intermediate representation, pro-
gram analysis, security

I. INTRODUCTION

Whether someone is seeking to defend their own program or
attack another’s target program, program analysis in security
seeks to identify vulnerabilities. There exist a wide variety
of forms of program analysis, and we can categorize many
into either static analysis, dynamic analysis, or a hybrid of the
two. Static analysis itself focuses on the program as is, while
dynamic analysis is done during the runtime of the program.
A common issue that arises is a limitation of information
regarding a target program: how might one analyze a program
if they do not have all of the information that they might need
or want in order to do certain types of analysis? Specifically,
this project utilizes reverse engineering to execute analysis on
a target program given only an executable, rather than the
complete source code.

Software reverse engineering is a process of recovering key
information of a program by working from the bottom up.
Through this, we can apply program analysis. This allows
threat intelligence researchers among others to work back-
wards on malware that they encounter in order to discover
how and what the program is capable of attacking and even
where it came from. There are various components of reverse
engineering, and we leverage a decompiler to retrieve our
desired program information.

A decompiler works in reverse as a compiler, taking in an
executable file as input and attempting to create a high-level
source file which can be recompiled successfully. Oftentimes,
the re-created source file is not the same as the original
program file which was used to compile the input executable;

regardless, the decompiler extracts key program processes into
human-readable structures.

We leverage Ghidra, a leading reverse engineering frame-
work, and its provided decompiler to lift given executable files
into higher-level intermediate representations (IRs) and then
apply static analysis onto these IRs to identify vulnerabilities.

II. GHIDRA

Ghidra [1] was developed by National Security Agency
(NSA) and marks the first time that a tool of its caliber will be
available for free to the public. Its existence was first revealed
to the public through in March 2017 [2] and the source code
was published to GitHub on April 4 2019 [3].

Ghidra is a customizable environment, that supports mul-
tiple platforms and instruction sets and is capable of disas-
sembly, assembly, decompilation, graphing and scripting, and
many other features. It uses its own IR language known as p-
code [4] which is machine independent and designed to model
general purpose processors. We can apply analysis to this
middle ground between low-level machine-specific assembly
and high-level programming languages in order to discover
meaningful information and vulnerabilities of a given program
without having been provided access to the original source
code.

Within p-code representation, all data is manipulated explic-
itly, meaning that instructions have no indirect effects. This is
vital for ease of use of p-code, as it avoids excess complexities
of additional data manipulation that might not be considered
intentionally. We use this representation of the target program
to recover its control flow graph (CFG), a requirement of many
forms of static analysis.

Our intent with this project was to recover the control
flow and provide an extendible structure for future work of
analysis to be built upon it. Much of the time spent required
development of our knowledge of p-code itself, as there are
multiple categories of operations. The list of categories is as
follows:

• Data Moving
• Arithmetic
• Logical
• Integer Comparison
• Boolean
• Floating Point
• Floating Point Compare



• Floating Point Conversion
• Branching
• Extension and Truncation
• Managed Code
One of the requirements were to determine which categories

were of use in the reconstruction of the CFG, which we discuss
in the following section.

III. CONTROL FLOW

A control flow graph (CFG) is a directed graph which
represents the computation and flow of control within a given
program. Within it, a node represents a basic block, a segment
of consecutive statements that has no branching in or out
except at its beginning and end. This handles the computations.
Edges represent possible flow of control between nodes. There
may be more than one incoming or outgoing edge for each
node.

Specific to p-code, a branch operation is a control flow out
of a node, and a label is a flow into a node. At a high level, a
node begins at a label instruction or after a jump instruction.
Likewise, a node ends at a jump instruction or before a label
instruction.

In the example below shown in “Fig. 1”, we offer a simple
C program with a conditional branch.

Fig. 1. Example C program with conditional branch.

As shown, the condition a determines the subsequent state-
ment to be executed. The created CFG for this C program
example is shown in “Fig. 2”.

Here, the validity of the condition a decides which node to
continue to. Where the flow of control travels to (or doesn’t
travel to) will affect the value of variable z in this example
program. This is only a small demonstration of the importance
of control flow.

IV. IMPLEMENTATION

Ghidra provides many useful tools within its own UI.
However, Ghidra can also be run in headless mode from the
command line, which allows for batch processing and is more
extensible for larger target scopes. While Ghidra provides a

Fig. 2. CFG for Example C program.

graph view of control flow, we instead choose to develop our
own structure to track the flow of control for easier use using
Ghidra as a headless analyzer. We build our project as a Java
script, which can be run in both the UI and via the command
line with Ghidra.

Specifically, we develop an adjacency list structure for the
CFG. In this, we design a data structure to hold nodes,
which holds HashSets of both incoming and outgoing flows.
Additionally, it holds a CodeBlock structure, the sequence
of statements within the specific node. The edges are referred
to as flows and have structures which hold both a startNode
and an endNode, as each edge may only have one start and
one end.

The process of development included two major steps: first,
we partition the code into basic blocs of p-code instructions.
Then, we mark the branches within the p-code as flows of
control. From here, we develop a structure for pulling the
control flow of a given executable file.

V. TAINT ANALYSIS PROOF-OF-CONCEPT

Taint analysis is the analysis process of tracking infor-
mation flow between untrusted (tainted) sources and trusted
(untainted) sinks. These sources may be user inputs or network
incoming sources in which we cannot trust that these are
secure. Sinks, on the other hand, may refer to function calls to
malloc in which malicious or tainted data may cause harm to
the program or the environment. Taint analysis may be done
dynamically, but for the purposes of proof-of-concept in this
project, we implement static taint analysis.

We first define a taint policy. A taint policy defines how
new taint is introduced, how taint propagates as instructions
execute, and how taint is checked. We also define the sources
and sinks, as well as the granularity of our taint analysis: is
this byte-level or bit-level?

Using Ghidra’s scripting tool, we build a script in Java that
takes in two .txt files which list, line by line, the sources and
sinks, respectively. The script marks our specified sources as
tainted and then uses our control flow structure to track and
propagate taint through the nodes. In this sense, our script



is extendible for different categories of sources and sinks. We
also include a command line option to turn off script messages
for usability.

VI. USAGE

Our code repository can be found at https://gitlab.com/
shellb34r/ghidraaa [5]. Ghidra’s headless analyzer can be used
through the command line using the format found in “Fig. 3”
with further details found online in their readme [6].

Fig. 3. Example usage of Ghidra’s Headless Analyzer.

Additionally, our control flow Java script can be imported
as an extension into other scripts [7]. Our hope is that future
work will be implemented and built upon this tool.

VII. LEARNINGS AND FUTURE WORK

Within our proof-of-concept taint analysis, we did not apply
any taint sanitization in which we would remove taint. Because
of this, our taint policy overtaints, marking untainted safe
values as tainted. Future work would involve extending our
taint policy to include additional sources and sinks as well as
a more fine-grained taint level.

In addition, we hope that our control flow adjacency list can
be extended upon in future work to include forms of program
analysis beyond taint analysis. These may include symbolic
execution and fuzzing integration.

VIII. CONCLUSION

Using Ghidra, we demonstrated the viability and value of
extracting the control flow through Ghidra’s IR language, p-
code, to apply static analysis to a given target program. Ghidra
is still a new tool, having been publicly released only this year.
The deep and extensive object-oriented API provide a strong
and powerful framework for reverse engineering, but a steep
learning curve during the first months since its release.

We successfully build an extensible program that handles
the groundwork control flow for further program analysis, and
it is our hope that others will use this to further develop within
the realm of IR-based vulnerability evaluation.

ACKNOWLEDGMENT

I send my special thanks to Professor Ning Zhang for his
guidance.

REFERENCES

[1] Ghidra, https://ghidra-sre.org/.
[2] Website, “Wikileaks,” https://wikileaks.org/ciav7p1/cms/page

51183656.html, online.
[3] Website, “Ghidra,” https://github.com/NationalSecurityAgency/ghidra,

online.
[4] Website, “P-Code Reference Manual,” https://ghidra.re/courses/

languages/html/pcoderef.html, online.
[5] Website, https://gitlab.com/shellb34r/ghidraaa/tree/control-flow/, online.
[6] Website, “Headless Analyzer README,” https://ghidra.re/ghidra docs/

analyzeHeadlessREADME.html, online.

[7] Website https://github.com/NationalSecurityAgency/ghidra/issues/243,
online.


	Static Taint Analysis of Binary Executables Using Architecture-Neutral Intermediate Representation
	Recommended Citation
	Static Taint Analysis of Binary Executables Using Architecture-Neutral Intermediate Representation

	final_paper

