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E37 MEMS 500 09 Independent Study Report: Fall 2019 
Application of Quadratic Constitutive Relation to One-

Equation k-kL Turbulence Model 
 

Hanfeng Zhang1 and Ramesh K. Agarwal2 
Washington University in St. Louis, St. Louis, MO 63130 

This paper analyzes the accuracy of the recently developed one-equation k-kL turbulence 
model with Quadratic Constitutive Relation (QCR) compared to the linear Boussinesq 
relation and Algebraic Reynolds Stress Model (ARSM). The computational results in several 
benchmark cases from NASA TMR are compared to other widely used one equation 
turbulence models with QCR, such as Spalart-Allmaras model (SA), Wray-Agarwal model 
(WA) and SST k-ω model. In particular, one-equation k-kL-QCR model shows good 
accuracy with experimental data for supersonic flow in a square duct where the effect of 
QCR is clearly visible in capturing the secondary flow vortices which is not feasible with the 
any standard model without QCR. In addition, both one-equation k-kL and one-equation k-
kL-QCR models show better accuracy for subsonic separated flow in 3D NASA Glenn S-
duct compared to other one-equation models. Other test cases show little difference in the 
results obtained without and with QCR.  

Nomenclature 
 

𝐶𝐶𝑓𝑓  =    skin friction coefficient 
𝐶𝐶𝑝𝑝  =    pressure coefficient 
𝑃𝑃  =  production of turbulent kinetic energy 
𝐿𝐿𝑣𝑣𝑣𝑣  =  von Kármán length scale 
Re  =    Reynolds number 
Reτ  =  friction Reynolds number 
S  =    mean strain rate magnitude 
W  =  vorticity magnitude 
d  =  distance normal to the nearest wall 
k   =     turbulent kinetic energy 
kL  =     turbulent kinetic energy x length scale 
t =  time 
y  =     Cartesian coordinate 
κ  =     Karman constant 
ν  =     kinematic viscosity 
𝜇𝜇𝑡𝑡  =     turbulent eddy viscosity 
ρ          =    density 
 

I. Introduction 
olving the Reynolds Averaged Navier-Stokes (RANS) equations with a turbulence model is still the standard 
practice in industry for prediction of turbulent flows. Considering with both the cost and accuracy of simulations,  

one-equation and two-equation turbulence models are most frequently used. The wide application of Spalart-
Allmaras model (SA) found in most commercial CFD codes has illustrated the potential of one-equation models for 
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computing wide variety of flows in many industries. Among the one-equation models, the recently proposed Wray-
Agarwal model has shown some improvement over the SA model in large number of applications with mildly 
separated wall bounded flows, flows with rotation and curvature and high temperature effects [1]. Recently proposed 
one-equation k-kL model [2] is based on the two-equation k-kL model [3] following the method of derivation for 
one-equation k-ε model from Menter et al [4]. Shuai and Agarwal [2] have shown that one-equation k-kL model has 
the ability to predict the separation and reattachment charateristcs of flow over a backward-facing step and flow past 
a 2D NASA hump, but did not verify its ability in computing 3D flows with small regions of separation.  
 When applying linear eddy viscosity models with Boussineq assumption, these models appears to lack capability 
for prediction of vortical flows and wall bounded flows with mild separation. To improve on some shortcomings of 
linear Boussineq relation, the use of nonlinear Quadratic Constitutive Relation for turbulent eddy viscosity [5] and 
Explicit Algebraic Reynolds Stress Modeling (ARSM) have been proposed [6]. Nagapetyan et al. have implemented 
QCR with WA model and has shown that WA-QCR can accurately compute the supersonic flow in a square duct 
which is not feasible without QCR [7]. Following the development of two–equation k-kL-ARSM model by Abdol- 
Hamid [8], Wen and Agarwal [9] proposed the one-equation k-kL-ARSM model and showed that the inclusion of 
higher order Reynolds stress terms can improve the for prediction of many wall bounded flows in several cases 
except for supersonic flow in a square duct. 

In this paper, the influence of QCR is investigated by implementing it in one-equation k-kL model. The one-
equation k-kL-QCR, one-equation k-kL-ARSM and  one-equation k-kL model are employed to compute supersonic 
flow in a square duct. The computed results from one-equation k-kL-QCR, one-equation k-kL-ARSM and one-
equation k-kL model are compared with the experimental data from from the paper of Davis and Gessner [10]. In 
addition, the results from one-equation k-kL-QCR are also compared with results from other one-equation QCR 
models namely the WA-QCR and SA-QCR models. The computations show that the application of QCR in one-
equation k-kL model accurately predicts the supersonic flow in square duct and improves the accuracy of results 
compared to the results from one-equation k-kL and other one-equation and two-equation models without QCR. One 
equation k-kL-QCR does produce results of comparable accuracy as SA-QCR and WA-QCR. In addition in this 
paper one-equation k-kL and one-equation k-kL-QCR models are implemented to predict the flow in 3D NASA 
Glenn S-Duct and the results are compared with the experimental data from Ref. [12] and computations using other 
models namely the WA, SA and SST k-ω models. The results for S-Duct flow field show that both one-equation k-
kL and one-equation k-kL-QCR model have the best agreement with experimental data compared to all other 
models except WA model. Also, one equation k-kL QCR shows slightly better improvement in prediction of S-Duct 
flow field compared to one equation k-kL model. Several other benchmark test cases from NASA TMR [11] e.g. 
flow over a hump, flow in an asymmetric diffuser and flow over a backward facing steps were also calculated but 
they showed little difference between reults without and with QCR. 
  

II. One-Equation k-kL Turbulence Model 
The one-equation k-kL turbulence model was recently proposed by Shuai and Agarwal [4]. This model has basic 

underlying characteristics of two-equation k-kL model but has been shown to be more accurate than SA model and 
at least as accurate as the two-equation k-kL model and SST k-ω model for many bemchmark test cases from NASA 
TMR [11]. Details of the derivation of one-equation k-kL model are given by Shuai and Agarwal [4]. It results into 
the following equation for kinematic turbulent eddy viscosity: 
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III. Quadratic Constitutive Relation (QCR) 
The Quadratic Constitutive Relation (QCR) has been proposed by Spalart et al[5] to introduce nonlinear 

turbulent stress/strain relation in existing turbulence models.. The QCR relation employed in this paper has no effect 
on how one-equation k-kL turbulence model solves for the turbulent eddy viscosity, but alters the way turbulent 
stresses are calculated in the model. The traditional linear Boussinesq relation between stress and strain tensor is 
given by: 
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where constant 𝐶𝐶𝑐𝑐𝑐𝑐1 = 0.3.  

IV. Test Cases and Results 
 To verify the improved accuracy of the one-equation k-kL-QCR model compared to one-equation k-kL model , 
several benchmark cases from NASA TMR are computed. They are flow over a hump, flow over a backward facing 
step, flow inside an asymmetric plane diffuser , and supersonic flow in a square duct. It turns out that there is very 
small difference in computed results with and without QCR except in case of supersonic flow in a square duct where 
the details of the secondary flow vortices in the corners cannot be captured by any one and two equation turbulence 
model without QCR. For the supersonic flow in square duct, the predictions of one equation k-kL-QCR model are 
not only compared with one-equation k-kL model, one-equation k-kL-ARSM model [9] and experimental data [11] 
but are also compared with other QCR turbulence models, namely the WA-QCR model and SA-QCR model from 
Ref. [7]. In addition, one-equation k-kL and one-equation k-kL-QCR models are implemented to predict the flow in 
3D NASA Glenn S-Duct and the results are compared with the experimental data from Ref. [12] and computations 
using other models namely the WA, SA and SST k-ω models. The results for S-Duct flow field show that both one-
equation k-kL and one-equation k-kL-QCR model have the best agreement with experimental data compared to all 
other models except WA model. Also, one equation k-kL QCR model shows slightly better improvement in 
prediction of S-Duct flow field compared to one equation k-kL model. The results for other test cases will be 
presented in the complete paper to be presented at the conference. The open source CFD software OpenFOAM was 
used for flow simulations. 

 
A. 3D Flow in a Supersonic Square Duct 

The numerical simulation for this case was run to match the experiment of Davis and Gessner from NASA TMR 
[11]. The square duct has a width and height of D = 25.4 mm and a length x/D = 50. The Reynolds number, ReD, 
based on channel height or width is 508,000, and the Mach number upstream of the duct is 3.9 with a reference 
temperature T = 520 R. In this case, the dimensionless velocity profile is compared at two different cuts of duct 
cross-section (diagonal and vertical) at x/D =40. Figure 1 shows the geometry and boundary conditions of the square 
duct and two different cuts of duct cross section.  

Figure 2 shows the comparions of computed dimensionless velocity profiles, u/uCL (where uCL is the centerline 
velocity) at cross section x/D = 40 using the one-equation k-kL model, one-equation k-kL-ARSM model and one-
equation k-kL-QCR model with experimental data along the diagonal cut and the vertical cut. It is clear that the one 
equation k-kL-QCR model has the best predition with the experimental data. Figure 3 shows the comparison of  
computaions using the one-equation k-kL-QCR, WA-QCR, SA-QCR and one-equation k-kL-ARSM model with 
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experimental data along the diagonal cut and vertical cut. All models show good match with the experimental data 
except the k-kL-ARSM model along the diagonal cut; however none of the models agree well with experimental 
data except WA-QCR.  

Figure 4 shows the contour plots of secondary flow at x/D = 50 using the one-equation k-kL [4]. One-equation k-
kL-ARSM [9], and one-equation k-kL-QCR model; it is clear that both one-equation k-kL and k-kL-ARSM models 
cannot capture the secondary flow while one-equation k-kL QCR can. Figure 5 shows the contour plots of secondary 
flow at x/D = 50 using the one-euqation WA-QCR and one-euqation SA-QCR model; it is clear that both WA-QCR 
and SA-QCR can capture the secondary flow. Secondary flow plots in Fig. 4 and Fig. 5 were created using the 
following equation: 

 
 �𝑣𝑣2 + 𝑤𝑤2/𝑢𝑢𝑖𝑖𝐶𝐶   (5) 

 
where v is the y-component of velocity and w is the z-component of velocity. For linear eddy viscosity turbulence 
models, it  is known that they cannot capture the corner vortices in the duct, however the QCR correction to the 
models can calculate the flow field with good accuracy. This test case is one of the few test cases where the 
usefulness of the QCR correction is clearly demonstrated.  

 
Fig. 1: Geometry and boundary conditions of the square duct (left) and diagonal/vertical cuts (right) [10]. 

 
Fig. 2: Comparison of dimensionless velocity profiles on diagonal cut (left) and vertical cut (right) at x/D = 40 computed 

with one-equation k-kL, one-equation k-kL-ARSM and one-equation k-kL-QCR models with the experimental data.  
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Fig. 3: Comparison of dimensionless velocity profiles on diagonal cut (left) and vertical cut (right) at x/D = 40 computed 

with one-equation k-kL-QCR, SA-QCR, WA-QCR and one-equation k-kL-ARSM with the experimental data.  

 

 
 
Fig. 4: Contour plots of secondary flow at x/D = 50 using one-equation k-kL (left), one-equation k-kL-ARSM (middle) and 

one-equation k-kL-QCR (right) models. 

 
 

Fig. 5: Contour plots of secondary flow at x/D = 50 using SA-QCR (left) and WA-QCR (right) models. 
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B. Flow in 3D NASA Glenn S-Duct 
 The subsonic flow in NASA S-duct is a complex three-dimensional flow consisting of small region of boundary 

layer separation and secondary flow; it is also sometimes used to test the accuracy of RANS turbulence models. The 
centerline of S-duct was created by the union of two identical circular arcs, both of the same radius R = 1.02m and 
located in the same plane as shown in Fig. 6. The area ratio of S-duct (ratio between the outlet and inlet sections) is 
equal to 1.52. The inlet diameter D1 is 0.2042m and the outlet diameter D2 is 0.2514m. The offset of the intake 
resulting from the centerline curvature is 1.34 times the inlet diameter. 

Inflow conditions in the computation are matched using the NASA Glenn’s experimental conditions [12]. Figure 
6 shows the NASA Glenn’s S-Duct with planes of interests in analyzing the flow field. Figure 7 shows the S duct 
computational domain as well as the cross-section including the grid structure [13]. In order to compare the 
experimental and computational results, the non-dimensional ratio of centerline curve length to inlet diameter (s/D1) 
is used. The ‘reference inlet’ flow conditions in the experiment are the centerline Mach number M = 0.6 and 
Reynolds number Re = 2.6 million at the position s/D1 = -0.5 (Plane A in Fig. 6). At the reference inlet plane, the 
flow is considered turbulent and fully developed since it has not reached the curved portion of the duct yet. The 
outlet of the duct is at s/D1 = 5.23. 

Figures 8-11 show the comparison of the calculated coefficient of pressure along the duct walls at three different 
circumferential angles (ϕ = 10o, 90o, and 170o). The results of one-equation k-kL and one-equation k-kL-QCR 
models are compared for each angle, which are also compared with the reults using WA, SA, and SST k-ω models 
and their QCR extensions from Ref. [14]. These figures indicate that there is little difference with the application of 
QCR compared to standard models. The one-equation k-kL and one-equation k-kL-QCR results show the closest 
agreement with the experimental results, which demonstrate the strong potential of bolth one-equation k-kL and k-
kL-QCR models; WA and WA-QCR results are the second closest. The SA-QCR model seems to show the most 
improvement over the SA model. 

 
Fig. 6: S-Duct geometry with planes of interest [12]. 

  
Fig. 7: S-duct full view (left) and cross-section (right) with grid structure [13]. 
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Fig. 8: Experimental and computed Cp using one-equation k-kL and one-equation k-kL-QCR model along the duct walls 

at ϕ = 10o, 90o and 170o . 

 
Fig. 9: Experimental and computed Cp using WA and WA-QCR model along the duct walls at ϕ = 10o, 90o and 170o . 
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Fig. 10: Experimental and computed Cp using SA and SA-QCR model along the duct walls at ϕ = 10o, 90o and 170o . 

 
Fig. 11: Experimental and computed Cp using SST and SST-QCR model along the duct walls at ϕ = 10o, 90o and 170o . 
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V. Conclusions 
 It In this paper, the Quadratic Constitutive Relation (QCR) was successfully implemented in OpenFOAM with 
one-equation k-kL model. The accuracy of one-equation k-kL-QCR model was compared to the standard one-
equation k-kL model and one-equation k-kL-ARSM model, as well as other turbulence models namely the WA, SA 
and SST k-ω models. The computation of 3D supersonic flow in a square duct showed substantial improvement in 
accuracy when QCR was used instead of ARSM in one-equation k-kL model. The computation of 3D subsonic flow 
in NASA Glenn S-Duct also showed good potential of both one-equation k-kL and k-kL-QCR models. Also, 
compared to SA-QCR model and WA-QCR model, the new one-equation k-kL-QCR was found to be slightly more 
accurate for some other test cases from NASA TMR not reported in this abstract. They will be reported in the 
complete paper at the time of the conference. Based on the results presented in this paper, one-equation k-kL 
turbulence model with QCR has enormous potential waiting for computing complex vertical flows and wall bounded 
flows with small regions of separation.  
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