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Introduction: Cancer is the second leading cause of death in the United States 

surpassed only by cardiovascular disease. However, cancer has now overtaken 

cardiovascular disease as the main cause of death in 12 countries located in Western 

Europe. The burden of cancer is posing a major challenge to health care systems 

worldwide and improvements in methods for cancer prevention, diagnosis and treatment 

are being demanded. Alternative and complementary strategies for orthodox surgery, 

radiotherapy and chemotherapy need to be developed.  

Objective: To determine the oncolytic potential of tumor cell-adapted rotavirus in terms 

of their ability to infect and lysate murine myeloma Sp2/0-Ag14 cells. 

Materials and methods: Rotaviruses Wt1-5, WMW, TRUYO, ECwt-O, and WTEW were 

inoculated in Sp2/0-Ag14 cells and their infectious effects examined by 

immunochemistry, immunofluorescence, flow cytometry, and DNA fragmentation 

assays. 

Results: Rotavirus infection involved the participation of some heat shock proteins, 

protein disulfide isomerase (PDI) and integrin β3. Accumulation of viral antigens within 

the virus-inoculated cells and in the culture medium was detected for all the rotavirus 

isolates used. The rotavirus-induced cell death mechanism in Sp2/0-Ag14 cells involved 

changes in cell membrane permeability, chromatin condensation, and DNA 

fragmentation, which were compatible with cytotoxicity and apoptosis.  

Conclusions: The ability of the rotavirus isolates Wt1-5, WMW, TRUYO, ECwt-O, and 

WTEW to infect and cause cell death of Sp2/0-Ag14 cells, through mechanisms that are 

compatible with virus-induced apoptosis, makes these rotaviruses potential candidates 

to be used as oncolytic agents. 

Keywords: Oncolytic viruses; rotavirus infections; neoplasms/therapy. 
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Introducción. El cáncer es la segunda causa de muerte en Estados Unidos, solamente 

superado por la enfermedad cardiovascular. Sin embargo, el cáncer ha tomado ventaja 

sobre la enfermedad cardiovascular como primera causa de muerte en 12 países de 

Europa Occidental. Se requieren mejores métodos de prevención, diagnóstico y 

tratamiento para afrontar el gran desafío que el cáncer presenta a los sistemas de salud 

mundialmente. Es necesario desarrollar estrategias alternativas y complementarias a la 

cirugía, radioterapia y quimioterapia convencionales. 

Objetivo. Evaluar el potencial oncolítico de rotavirus adaptados a células tumorales por 

su capacidad para infectar y lisar células Sp2/0-Ag14 de mieloma murino. 

Materiales and métodos. Los aislamientos rotavirales Wt1-5, WMW, TRUYO, ECwt-O 

y WTEW se inocularon en células Sp2/0-Ag14 y se examinaron sus efectos infecciosos 

mediante inmunoquímica, inmunofluorescencia, citometría de flujo y ensayos de 

fragmentación de DNA.  

Resultados. La infección con los rotavirus Wt1-5, WMW, TRUYO, ECwt-O y WTEW 

implicó participación de algunas proteínas de choque térmico, la proteína disulfuro 

isomerasa y la integrina β3. La acumulación de antígenos virales intra y extracelulares 

fue detectada para todos los virus utilizados. Los mecanismos de muerte inducidos por 

rotavirus en células Sp2/0-Ag14 implicaron cambios en la permeabilidad de la 

membrana celular, la condensación de cromatina y la fragmentación de DNA, los cuales 

fueron compatibles con citotoxicidad y apoptosis. 

Conclusiones. La capacidad de los rotavirus ensayados para infectar y causar la 

muerte de células Sp2/0-Ag14, a través de mecanismos compatibles con apoptosis 

inducida viralmente, hacen a estos rotavirus candidatos potenciales para ser utilizados 

como agentes oncolíticos. 
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Cancer is the second leading cause of death in the United States surpassed only by 

cardiovascular disease (CVD) (1). However, cancer has now overtaken CVD as the 

main cause of death in 12 countries located in Western Europe (2). The burden of 

cancer is posing a major challenge to health care systems worldwide. This fact is 

demanding an improvement in the tools for cancer prevention, diagnosis, and treatment. 

Alternative and complementary strategies for orthodox surgery, radiation therapy, and 

chemotherapy to manage cancer need to be developed. Advances in molecular biology 

research, including knowledge about the tumoral cell, continue to have a significant 

impact in the development of new methods for treating cancer such as small interfering 

RNAs (siRNAs) (3), microRNAs (miRNAs) (4), cell signaling-based chemotherapy (5), 

and virotherapy (6), among others. Knowledge on cell signaling pathways of tumoral 

cells suggests that the tumor cell lineage diversity converges into common molecular 

pathways regulating growth and differentiation, while some atypical lineages behave in a 

unique way (7). However, tumors originating from the same cell type, but from different 

individuals, can behave differently because they start from different genetic backgrounds 

and also show a different tumor evolution process (8). This heterogeneity suggests an 

individualized approach for the management of each tumor type (9,10). In this context, 

viral oncolytic therapy as an anticancer strategy for treatment of some tumors has been 

introduced to the extent that the knowledge about molecular mechanisms of 

carcinogenesis and virus infection has undergone significant progress (11,12). This 

therapy is based on viral particles that have been selected or genetically modified to 

proliferate specifically in tumor cells, leading to their death (13). The oncolytic virus-

based therapy promotes anti-tumor responses involving selective tumor cell killing and 

induction of systemic anti-tumor immunity (14). 
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Genetic mutations occurring in tumor cells make them more susceptible to oncolytic 

viruses whose tropism for these neoplastic cells is dependent on their transcription 

machinery and signaling pathways (15,16). Oncolytic virus entry into the tumor cell 

depends on cell surface receptor-mediated binding of virus to target cell before 

penetration. Since these receptors are absent in normal cells but over-expressed in 

some tumor cells besides being oncolytic virus-specific, oncolytic viruses are an efficient 

and safe tool for cancer treatment. Owing to the ability of oncolytic viruses for replicating 

within tumor cells, they exhibit unique pharmacokinetic characteristics that differentiate 

them from conventional cancer treatment. Oncolytic viruses can relatively easily be 

genetically modified and redesigned to introduce in their genome toxin-encoding genes 

harmful for tumor cells or genes encoding for immunostimulant products (17). However, 

there is no oncolytic virus or conventional therapeutic strategy sufficient for treating all 

tumors since tumoral tissues show complex biology where individual cells within the 

same tumoral type can have different biochemistry (18,19). 

It is well documented that heat shock proteins (HSPs) are involved in a number of 

crucial events associated with tumor development including regulation of cell cycle 

progression (20-22), control of apoptotic pathways (22,23), and immune surveillance 

against cancer (24,25). HSP overexpression is observed in human, murine and canine 

neoplasms, indicating that HSPs play a role in carcinogenesis and metastasis of 

cancers of the brain, lung, breast, and prostate, as well as in sarcomas and some 

lymphomas (26). Expression of Hsc70 (27), PDI (28), integrin β3 (29), and several heat 

shock proteins (HSPs) has been associated with cell malignancy (26). Hsc70 (30) and 

PDI (31) are either expressed at very low levels or not at all on the cell surface of normal 

cells, while tumor cells expressed them, and several HSPs, at relatively high levels (32). 
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Several studies have shown the rotavirus tropism for cells expressing Hsc70 (33), PDI 

(34) and integrins such as αVβ3 (35). It has been recently shown that some reassorted 

rotavirus isolates are able to successfully replicate in some tumor cell lines (36). In the 

present study, we determined the oncolytic potential of rotaviruses using a model 

consisting of cultured murine myeloma cells. Our results demonstrate that the 

reassortant rotaviruses WTEW, Wt1-5, TRUY and WWM, and rotavirus ECwt-O were 

able to successfully infect, replicate, encapsidate and lyse murine myeloma Sp2/0-Ag14 

cells. Rotavirus-induced changes in infected cells were compatible with toxicity and 

apoptosis. The results allowed suggesting that Hsp90, Hsp70, Hsc70, PDI and integrin 

β3 participate during rotavirus entry into the target cell and that rotavirus infection result 

in expression changes of cellular proteins Hsp90, Hsp70, Hsc70. 

Materials and methods 

Cell lines 

Sp2/0-Ag14 cells (mouse B cell myeloma) were obtained from American Type Culture 

Collection (ATCC® - CRL-1581). L929 cells (L cell, L-929, derivative of Strain L, ATCC1 

CCL-1™) were kindly donated by Dr. C. Parra, Faculty of Medicine, Universidad 

Nacional de Colombia. Peripheral blood mononuclear cells (PBMC) were isolated from a 

human donor using Ficoll-Paque™. The present study had prior approval of the Ethics 

Committee of the Faculty of Medicine, Universidad Nacional de Colombia.  All cell lines 

were cultured in Corning® cell culture flasks (Sigma-Aldrich, St. Louis, MO, USA) in 

Dulbecco´s Modified Eagle Medium (DMEM) or RPMI 1640 (Sigma-Aldrich, St. Louis, 

MO, USA) supplemented with 10% fetal bovine serum (FBS) (Eurobio, Les Ulis, 

France), 100 μg/ml streptomycin and penicillin (Eurobio, Les Ulis, France). All cells were 

cultured at 37 °C in a humidified atmosphere with 5% CO2. The culture medium was 
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changed every 3 days. To assess population doubling time (PDT), the culture medium 

was discarded and the cells washed 3 times with PBS containing 0.03% EDTA before 

incubation with PBS-EDTA containing trypsin (1 µg/ml) for 5 min at 37 °C. The detached 

cells were immediately dispersed in culture medium supplemented with FBS and 

subcultured in a new flask for estimating PDT. 

Antibodies and reagents 

Goat antibodies against Hsp90 (SC-1055), Hsp70 (SC-1060), Hsp60 (SC-1052), Hsp40 

(SC-1801), Hsc70 (SC-1059), integrin β3 (SC-6626), PDI (SC-17222), Cox-2 (SC-1747) 

and cleaved PARP-1 (SC-56196) were obtained from Santa Cruz Biotechnology Inc. 

(Santa Cruz, CA, USA). Rabbit antibodies against NF-kB p65 (phospho S536) 

(ab86299) were purchased from Cambridge Science Park (Cambridge, UK). Donkey 

anti-goat Alexa Fluor 594-conjugated secondary antibodies (SC- 362275) and donkey 

anti-rabbit-Alexa Fluor 594- conjugated secondary antibodies (SC-362281) were 

obtained from Santa Cruz Biotechnology Inc. (Santa Cruz, CA, USA). Donkey anti-goat 

or anti-rabbit antibodies conjugated with FITC (SC-362255 and SC-362261, 

respectively) or HRP (SC-2020 and SC-2313, respectively) were also obtained from 

Santa Cruz Biotechnology Inc. 7-aminoactinomicin D (7-AAD), propidium iodide, and 

4',6-diamidino-2-phenylindole (DAPI) were purchased from Invitrogen (Carlsbad, CA, 

USA). Annexin V-Alexa 568 kit, Apoptotic DNA Ladder kit, In Situ Cell Death Detection 

kit and poly(ADP-ribose) polymerase (PARP) were obtained from Roche Laboratories, 

Inc. (Nutley, NJ, USA) and Hoechst 33342 from Thermo Scientific (Waltham, MA, USA). 

Rotavirus isolates 

Rotavirus isolates Wt1-5, WMW, TRUYO, ECwt-O and WTEW, selected as previously 

reported (36), were trypsin-activated (10 mg/ml) and separately inoculated (MOI of 2) in 
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Sp2/0-Ag14 cells (1 X107) in DMEM (10 ml) without FBS. The cells were cultured at 37 

°C until their lysis (about 24 h). Infection cycle was repeated four times in new cells and 

subsequent infections were performed with virus isolates without trypsin treatment.  

Synthetic peptides 

Synthetic peptides derived from HSPs were prepared using a solid-phase method as 

previously described (37). The peptide sequences were as follows: Hsp90 (620-

RDNSTMGYMAAKKHLEINPDHS-641); Hsp70 (374) (705-

QIQQYMKIISSFKNKEDQYDHLD-727); Hsp70 (375) (646-

NSFTLKLEDTENWLYEDGDQPKQ-668); Hsp70 (376) (741-

AMEWMNNKLNLQNKQSLTMDP-761); Hsp60 (393-RLAKLSDGVAVLKVGGTSDVEVN-

415); Hsp40 (251-GSDVIYPARISLREALCGCTVNV-273). 

Antisera preparation 

New Zealand rabbits were subcutaneously immunized with 1 ml of a Freund’s complete 

adjuvant emulsion containing the respective specific HSP peptides (0.5 mg/ml) mixed 

with FIS (FISEAAIIHVLHSR) peptide (0.5mg/ml) as an immunomodulatory agent (38). 

The same amount of each antigen emulsified in Freund’s incomplete adjuvant was 

inoculated to rabbits twenty and forty days later. Bleeding of rabbits was performed on 

day 60 after the first injection. Sera containing sodium azide (0.04%) and diluted two-

fold with glycerol were kept at -20 C until use. Control pre-immune sera were collected 

before immunization. 

All procedures involving rabbits were performed according with the Ethics Committee 

approval. 
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Cell infection 

Culture medium was removed from cells (Sp2/0-Ag14, L929 or PBMCs) and DMEM 

without FBS was added to wash twice the cells. Sp2/0-Ag14 cells (1.5 x 106) were 

incubated in DMEM without FBS (1.0 ml) in 12-well plastic plates at 37 °C with 5% CO2 

and then separately infected with cesium chloride-purified isolates Wt1-5, ECwt-O, 

TRUYO, WWM or WTEW at an MOI of 0.8 each (39). Cells were harvested at 0, 2, 4, 6, 

8, 10, 12 and 24 h.p.i. and fixed with 4% paraformaldehyde in PBS for 30 min at room 

temperature (RT). In the case of non-tumoral cells L929 and PBMCs, increasing MOIs 

(0.5, 1, 1.5, 2, 3, and 6) were tested. The fixed cells were washed twice with PBS for 5 

min each wash and resuspended in PBS containing 0.02% sodium azide before being 

stored at 4 °C until use. Infection was assessed by immunocytochemistry as indicated 

below. 

Effect of antibodies against HSPs, PDI and integrin β3 on rotavirus infection was tested 

by incubation of Sp2/0-Ag14 cells with hyperimmune antiserum against Hsp90, Hsp70, 

Hsp60, Hsp40, Hsc70, PDI or integrin β3 diluted (1:25, 1:50, 1:100, 1:200, 1:400 or 

1:800) in PBS containing 1% BSA. The antisera were generated in rabbits that had been 

immunized with human synthetic peptides derived from active sites of Hsp90, Hsp70, 

Hsp60, and Hsp40, or complete rHsc70 (40) and integrin β3 isolated from platelets. 

Cells were incubated for 1 h at 37 °C, washed 3 times with PBS, placed on ice for 15 

min and then inoculated with rotavirus isolates (MOI of 0.8) and incubated for 45 min at 

4 °C. The cells were further incubated at 37 °C for 12 h and subjected to 

immunochemistry assay for detection of rotavirus structural antigens. The percentage of 

infection was determined relative to infection in the absence of antibody treatment. Cells 

treated with the unrelated antibodies against potato virus Y (Agdia® AUG96 Lot # 0427) 
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and then infected with rotavirus isolates were used as a control. Hyperimmune antisera 

were tested for the absence of anti-rotavirus antibodies using immunofluorescence, 

Western blotting, and ELISA. 

Immunocytochemistry 

Fixed Sp2/0-Ag14 cells were applied onto coverslips previously washed with xylol, dried 

at 50 °C for about 30 min and slightly flamed. The cells were permeabilized with 0.5% 

Triton X-100 for 5 min at RT and washed twice with PBS for 5 min each. Rabbit 

antibodies (1:2000) against rotavirus structural proteins (Triple layer particles - TLPs) 

and against non-structural proteins (Recombinant versions of NSP-4 and NSP-5) were 

added and incubated from 1 h at 37 °C. After washing twice with PBS, donkey anti-

rabbit HRP-conjugated secondary antibody (0.133 µg/ml) was added and incubated for 

1 h at 37 °C. After washing with PBS twice, the reaction was visualized with 3-amino-9-

ethylcarbazole (AEC) (0.64 mg/ml) in 50 mM sodium acetate buffer, pH 5.5, containing 

0.03% H2O2. Rotavirus-infected Sp2/0-Ag14 cells treated with unrelated isotype –

matched antibodies and non-infected Sp2/0-Ag14 cells were used as a control. The 

percentage of viral antigen-positive cells was determined and representative 

photographs were taken. The viral titer was estimated from the number of rotavirus-

positive cells after 12 h.p.i., taking into account the serial dilutions of the concentrated 

viral stock. 

Immunofluorescence 

An immunofluorescence assay was conducted to assess expression changes for Hsp40, 

HSP60, HSP70, HSP90, Hsc70, integrin β3, and PDI. Cells were infected with Wt1-5, 

ECwt-O, TRUYO, WWM or WTEW as indicated above. Cells were fixed, dried and 

permeabilized as indicated for immunochemistry. Cells were treated with 50 mM NH4Cl 
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and 100 mM glycine in PBS for 30 min at RT to quench auto-immunofluorescence. Cells 

were stained with DAPI (0.1 µg/ml) for 30 min in a dark humid chamber at 37 °C and 

then washed twice with PBS for 5 min each time. Cells were incubated with goat 

antibodies (0.2 µg/ml in PBS containing 1% BSA) against HSP40, HSP60, HSP70, 

HSP90, Hsc70, integrin β3 or PDI for 1 h in a dark humid chamber at 37 °C. After 2 

washes with PBS, donkey anti-goat antibodies conjugated to Alexa Fluor 568 (5.7 µg/ml) 

in 1% BSA in PBS were added and maintained for 1 h in a dark humid chamber at 37 

°C. Coverslips were washed twice with PBS and mounted inverted on glass microscope 

slides using 70% glycerol in PBS and resin. Non-infected cells subjected to the same 

procedures were used as a control. 

Flow cytometry and epifluorescence  

Expression of Hsp40, HSP60, HSP70, HSP90, Hsc70, integrin β3 and PDI “on cell 

surface” was assessed by flow cytometry and epifluorescence. Cells at logarithmic 

growth phase were collected, fixed with 4% glutaraldehyde and washed twice with PBS 

before addition of goat antibodies (0.2 µg/ml) to Hsp40, HSP60, HSP70, HSP90, Hsc70, 

integrin β3 or PDI. Alternatively, rabbit hyperimmune antisera (1:2000) raised against 

synthetic peptides (20 aa) spanning the active site of HSP40, HSP60, HSP70, and 

HSP90, or against a recombinant version of complete Hsc70 and PDI, or integrin β3 

purified from platelets were also used as primary antibodies. Following incubation for 1 h 

at 37 °C, cells were washed 3 times with PBS and incubated with secondary donkey 

anti-goat or anti-rabbit antibodies conjugated to FITC (0.88 µg/ml) in PBS containing 1% 

BSA. Cell analysis was performed using a Becton Dickinson FACS Canto II flow 

cytometer. Cells were also analyzed by epifluorescence using a Nikon C1 Eclipse 
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confocal laser microscope equipped with the Acquisition Software Nikon EZ-C1 version 

3.90. 

Cytotoxic, genotoxic and apoptotic effects  

To determine cell viability following virus infection, cells collected at the logarithmic 

phase of growth were tested for their viability using the Trypan blue exclusion test. Cells 

were then infected with rotavirus isolates Wt1-5, ECwt-O, TRUYO, WWM or WTEW at 

MOI of 0.8 and cell viability recorded at 0, 2, 4, 8, 12 and 24 h after virus infection. 

Viability of L-929 cell monolayers was observed in an inverted microscope (Euromex) 

whereas that of Sp2/O-Ag14 cell suspensions was observed using a Neubauer chamber 

using a conventional microscope. 

Genotoxic damage induced by rotavirus infection was assessed by the detection of poly 

(ADP-ribose) polymerase-1 (PARP-1) as an indicative of repair process of fragmented 

DNA. Procedures were conducted following the manufacturer’s instructions. Briefly, cells 

fixed on coverslips were washed twice with PBS-T (PBS containing 1% BSA and 1% 

Tween 20) before addition of cleaved PARP-1 antibody (194C1439) (0,2 μg/ml, SC 

56196) in PBS-T and incubation for 1 h at RT. Cells were washed twice with PBS-T and 

incubated with goat anti-mouse IgG conjugated to FITC (0.88 µg/ml) for 30 min at 4 °C. 

Coverslips were washed twice with PBS and mounted inverted onto glass slides using 

glycerol and resin as indicated above. 

In situ DNA fragmentation in Sp2/0-Ag14-Ag14 cells separately infected (MOI of 0.8) 

with the different rotavirus isolates indicated above was also assessed using TUNEL 

assay (Invitrogen). Infected cells (1.5 x 106) were harvested after 12 h incubation at 37 

°C and fixed with 4% of paraformaldehyde in PBS, pH 7.4, freshly prepared. The 

samples were washed 3 times in PBS and adjust to 2 x 107 cells/ml. The cells were 
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resuspended in 100 μl/well of permeabilization solution (0.1% Triton X-100 in 0.1% 

sodium citrate, pH 7.0, freshly prepared) for 2 min on ice (2-8 °C) and then rinsed twice 

with PBS. The cells were placed onto coverslips and dried at 50 C for 1 h before adding 

50 ul of TUNEL reaction mixture. The coverslips were incubated in a humidified 

atmosphere for 60 min at 37 °C in the dark. After this incubation, the cells were rinsed 

three times with PBS. The samples were observed directly under a fluorescence 

microscopy using an excitation wavelength in the range of 450-500 nm. Emission was 

recorded in the range of 515-565 nm. Non-infected and H2O2-treated cells were used as 

a control. 

Early apoptotic signals were assessed in Sp2/0-Ag14 cells that had separately been 

infected with the different rotavirus isolates (MOI of 0.8). Non-infected or H2O2-treated 

cells were used as a control. After 12 h of culture, cells (1 x 106) were harvested and 

washed twice with PBS before suspension and incubation for 15 min at RT in 100 ml 

HEPES buffer, pH 7.4, containing 140 mM NaCl, 5 mM CaCl2 and Annexin V-Alexa 

Fluor 568 (ROCHE®) (20 µl/ml). Cellular membrane integrity was tested for its 

permeability to 7-AAD in rotavirus infected cells (MOI of 0.8) that had been incubated for 

12 h at 37 °C. Cells (1 x 106) were washed twice with PBS, collected by centrifugation 

(600 g) and suspended in 1ml PBS containing 0.3 mM CaCl2, 0.3 mM MgCl2, 2% BSA, 

and 1 mg/ml 7-AAD for 20 min at 4 °C in the darkness. Cells were washed twice with 

PBS before observation using a fluorescence microscope. 

Apoptotic effects in terms of nuclear condensation and fragmentation were estimated 

using Hoechst 33342/propidium iodide staining. After infection with rotavirus isolates, 

cells were collected at 2, 4, 6, 8, 10, 12, 24 and 36 h.p.i. and fixed with 4% 
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paraformaldehyde and washed twice with PBS. Cells (1 x 106) were suspended in PBS 

(100 µl) containing 0.02% sodium azide 0.25 ug/ml Hoechst, 0.20 µg/ml and propidium 

iodide for 10 min at RT. Coverslips were washed twice with PBS and mounted inverted 

onto glass slides using glycerol and resin as indicated above. 

Apoptotic effects were further analyzed using Apoptotic DNA Ladder kit (Roche®) and 

following the manufacturer’s instructions. Briefly, cells (1 x 107) were infected with 

rotavirus isolates at an MOI of 2 and incubated for 12 h at 37 °C. Cells were harvested 

and added with 0.5 mM PMSF before storage and – 20 °C. Cells (2 x 106) in PBS (200 

µl) were mixed with lysis buffer (200 µl) (6 M guanidine-HCl, 10 mM urea, 10 mM Tris-

HCl, pH 4.4, 20% Triton X-100) for 10 min at RT. DNA was eluted twice from the filter 

using preheated (70 °C) elution buffer (200 µl) (10 mM Tris-HCl, pH 8.5). After elution 

buffer addition, the filter tube was centrifuged at 6.200 x g for 1 min and the eluted DNA 

stored at – 20 °C. DNA quantity and purity were assessed using a NanoDrop 2000c 

(Thermo Scientific). DNA from non-infected cells was used as a negative control. Cells 

treated with H2O2 were used as a positive control. DNA samples were analyzed by 

electrophoresis on a 1% agarose gel at 5 V/cm for 1.5 h. Gels were stained with SYBR-

Safe DNA gel stain (Thermo Scientific, Waltham, MA, USA) diluted 1:10.000 in TBE 

buffer (89 mM tris-borate, pH 8.3, and 2 mM EDTA), visualized with UV excitation and 

photographed using a 10-megapixel Canon camera. 

All fluorescence analyses were conducted using a Nikon C1 confocal laser scanning 

microscope. Images were acquired using EZ-C1 Nikon software. DAPI staining was 

visualized using laser excitation at 408 nm and detection at 450/35 nm. Fluorescence 

from Alexa Fluor 568 was observed using laser excitation at 543 nm and detection at 
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605/75 nm. Images were analyzed using the ImageJ 1.44p Java 1.6.0_20 (32-bit) 

software. 

ELISA 

ELISA analyses were conducted as previously described (Guerrero et al., 2010). Briefly, 

Sp2/0-Ag14 cells were separately infected with the rotavirus isolates described above. 

Infected cells were harvested after incubation for 12 h at 37 °C and collected by 

centrifugation at 600 g for 5 min. The supernatant was added with RIPA buffer (150 mM 

NaCl, 1% NP-40, 0.5% DOC, 0.1% SDS, 50 mM Tris-HCl, pH 8.0, final concentrations) 

and centrifuged at 10000 g for 10 min at 4°C. The resultant supernatant was applied into 

ELISA plate wells coated with guinea pig polyclonal antibodies against rotavirus 

structural proteins and incubated for 1 h at 37 °C. Plates were washed three times with 

washing buffer (PBS-T) (PBS containing 0.05% Tween 20) and incubated with rabbit 

polyclonal antibodies against rotavirus structural proteins. After PBS-T washing three 

times, plate wells were added with HRP-conjugated goat anti-rabbit IgG (0.08 µg/ml, 

Santa Cruz SC-2313) and incubated for 1 h at 37 °C. The reaction was revealed with 

OPD (o-phenylenediamine dihydrochloride) diluted in stable peroxide substrate buffer. 

Purified ECwt-O particles were used as a positive control whereas supernatants from 

non-infected cells were used as a negative control. ELISA plates were read at 492 nm 

on an FLx800TM Multi-Detection microplate reader (Biotek) and the results were 

expressed as delta optical density (OD). 

Results 

Rotavirus infection of Sp2/0-Ag14 cells 

Previous experiments demonstrated that after multiple passages in human tumor cell 

lines, tumor cell-adapted rotavirus isolates can be obtained (36). Rotavirus isolates 
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TRUYO, WWM, and WTEW, derived from different combinations of parental rotavirus 

strains, isolate Wt1-5, derived from a combination of several patient-derived rotavirus 

isolates, and multiple-passaged murine ECwt-O were able to successfully infect several 

human tumor cell lines (36). To gain further insight into the viral life cycle leading to 

tumor cell death, we made use of human tumor cell line Sp2/O-Ag14.  

Stock preparations of the rotavirus isolates Wt1-5, ECwt-O, TRUYO, WWM or WTEW 

were diluted with MEM to reach inocula that were able to infect about 50% 

(approximately 0.8 MOI) of the Sp2/0-Ag14 cells according to the immunochemistry and 

immunofluorescence images obtained after 12 h.p.i. at 37 °C (figure 1A). When the 

separately infected cells were tested every 2 h.p.i. for the appearance of viral antigens, 

positive signals for these antigens were detected by immunochemistry assay as early as 

2 h.p.i. However, a progressive increase in the proportion of cells being positive to viral 

antigen was observed between 2 and 12 h.p.i. At the end of this period, the mean 

percentage of cells showing viral antigens was about 59%. The percentage of infected 

cells was determined in terms of structural (figure 1B), and non-structural proteins NSP4 

(figure 1C) and NSP5 (figure 1D). Assays of infection with the same rotavirus isolates 

(MOI of 0.5, 1, 1.5, 2, 3 and 6) using non-tumor cells L929 (figure 1E) and human 

peripheral blood mononuclear cells (PBMCs) (figure 1F) showed negative results for 

viral antigens assessed by immunochemistry assay. To assess the presence of 

extracellular viral antigens released into the culture medium, the 600- x g supernatant of 

Sp2/0-Ag14 cells that had been separately infected with rotavirus isolates Wt1-5, ECwt-

O, TRUYO, WWM or WTEW was tested for the presence of viral antigens using ELISA. 

The results showed that the infection produced viral antigens that were released into the 
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culture medium and were easily detectable at 12 h.p.i. for all the rotavirus isolates tested 

(Data not shown). 

To determine whether the virus inoculated was able to replicate and produce new 

mature and infectious virions, Sp2/0-Ag14 cells were separately infected with the same 

rotavirus isolates (MOI of 0.8).  Lysates from infected cells taken every 2 h.p.i. were able 

to successfully infect fresh cells as judged by the detection of rotavirus structural 

antigens (figure 1G) and non-structural antigens NSP4 (figure 1H) and NSP5 (figure 1I) 

by immunochemistry assay at 12 h.p.i. The results showed that all the rotavirus isolates 

studied generated infectious virions which were easily detected for their infectious 

capacity first at 4 h.p.i. for WTEW and WT1-5, at 6 h.p.i. for WWM and ECwt-O, and at 8 

h.p.i. for TRUYO (figure1G-I). 

Effects of rotavirus infection on cell viability and membrane integrity 

In order to determine the effects of rotavirus infection on cell viability and integrity of the 

cell membrane, Sp2/0-Ag14 cells were separately infected with the rotavirus isolates 

WT1-5, ECwt-O, TRUYO, WWM or WTEW (MOI of 0.8). The results obtained by testing 

cells every 2 h.p.i until 12 h.p.i. for their ability to exclude Trypan blue revealed that cell 

viability started to decrease continuously from 6 h.p.i. until reaching its lowest value 

(20%) at 12 h.p.i. In addition, the proportion of cells remaining viable at 24 h.p.i. was 

less than 3% (figure 2A), when the percentage of observable cells was reduced to 45% 

– 50% compared with the number of control cells at 0 h.p.i. (figure 2B). These results 

suggest that the decreased number of cells was caused by rotavirus-induced lysis of 

infected cells.  

The exclusion test using 7-AAD, a membrane impermeant dye, confirmed that rotavirus-

infected cells lost their ability to exclude this DNA-intercalating agent as 56% to 76% of 
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infected cells, depending on the virus isolated used, showed fluorescent signals at 12 

h.p.i. About 18% of non-infected control cells were positive to 7-AAD test while about 

90% of the H2O2-treated cells were found to be positive for this test (figure 2C). The 

pattern of fluorescent signals in infected cells was similar to that of control cells treated 

with H2O2, except that fluorescence intensity was higher in infected cells. Changes in 

nuclear morphology such as nuclear fragmentation and nuclear condensation were also 

observed (figure 2D). These results suggest that rotavirus infection induced changes in 

cell membrane permeability of Sp2/0-Ag14 cells. 

To further study the changes induced in the cell membrane by rotavirus infection, 

annexin V conjugated to Alexa Fluor 568 was used for detection of phosphatidylserine 

externalization to the plasma membrane, an early apoptotic signal. Sp2/0-Ag14 cells 

were separately infected with the 5 rotavirus isolates indicated above using an MOI of 

0.8. After 12 h.p.i., cells were found to be positive to annexin V fluorescence signals at 

percentages of 67.5%, 59.5%, 49%, 41.5% and 36.5 % for rotavirus isolates WTEW, 

ECwt-O, WWM, TRUYO and Wt1-5, respectively (figure 2E). The fluorescence pattern 

of rotavirus-infected cells was similar to that exhibited by H2O2-treated cells, except that 

a higher percentage of fluorescent cells were observed in the control counterpart (figure 

2F). These images suggest that rotavirus infection is able to induce apoptotic signals in 

Sp2/0-Ag14 cells. 

Genotoxic and apoptotic effects induced by rotavirus infection 

To investigate further apoptotic signals induced by rotavirus infection in Sp2/0-Ag14 

cells, assays for testing DNA changes after infection were conducted using Hoechst or 

propidium iodide (PI) staining. The results showed that infected cells examined every 2 

h until 24 h.p.i. underwent progressive chromatin condensation and nuclear 
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fragmentation throughout the period examined. In cells assayed with PI, signals of 

chromatin condensation and nuclear fragmentation were observed from 6 h.p.i. and 

were clearly detected in 20% to 40% of the cells, where higher percentages 

corresponded to cells infected with rotavirus isolates WTEW, WWM, and Wt1-5.  After 

10 h.p.i., percentages of cells showing chromatin condensation and nuclear 

fragmentation reached 75% to 80% for all rotavirus isolates tested (figure 3A). Staining 

assays using propidium iodide showed both chromatin condensation and nuclear 

fragmentation in rotavirus infected cells and in positive control cells that had been 

treated with H2O2. In contrast, these signals were absent in non-infected control cells 

(figure 3B). These results were confirmed after Hoechst staining (figure 3D). 

Representative images shown in figure 3B and 3D are from assays with the isolate 

WTEW recorded at 24 h.p.i. In assays conducted using Hoechst, chromatin 

condensation and nuclear fragmentation were observed at 24 h.p.i. in 90%, 88%, 82%, 

78% and 70% of cells infected with rotavirus isolates WTEW, TRUYO, WT1-5, WWM, 

and ECwt, respectively (figure 3C). In assays conducted with Hoechst, chromatin 

condensation and nuclear fragmentation affecting 18 % to 32% of the cells were 

visualized from 4 h.p.i. At this time, slightly higher percentages of chromatin 

condensation and nuclear fragmentation were observed in cells infected with rotavirus 

isolates WTEW, WWM, and Wt1-5. The proportion of cells exhibiting chromatin 

condensation and nuclear fragmentation was increased from 6 h.p.i. for WTEW and 

TRUYO-infected cells, reaching their highest percentages (75% and 88%, respectively) 

after 10 h.p.i. The percentages of cells showing chromatin condensation and nuclear 

fragmentation for the remaining rotavirus isolates tested also increased from 6 h.p.i., 

except that their percentages were slightly lower than those reached for isolates WTEW, 
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WWM, and Wt1-5 after 10 h.p.i. (figure 3C). These results suggest that infection of 

SP2/0-Ag14 cells with most of rotavirus isolates studied can induce detectable apoptotic 

signals as early as 4 h.p.i. 

TUNEL assay was also used to assess DNA fragmentation after rotavirus infection of 

Sp2/0-Ag14 cells. This nick-end labeling method was followed in the same samples 

used in the immunocytochemistry assay to detect rotavirus structural antigens. A 

correlation was found between rotavirus-infected cells and TUNEL positive ones. 

Fluorescent signals from TUNEL-positive cells showed a similar pattern to that of H2O2-

treated control cells (figure 3E). The percentage of TUNEL-positive cells observed in 

infected cells was higher than 70% for the rotavirus isolates examined at 12 h.p.i. (figure 

3F). Detection of rotavirus-induced DNA fragmentation was further confirmed by 

agarose gel electrophoresis. This analysis indicated that DNA fragmentation is 

significantly associated with rotavirus infection and the rotavirus isolate WWM seemed 

to induce higher DNA fragmentation generating fragments with sizes lower than 300 bp 

(figure 3G). 

PARP-1 (113 kDa) is a eukaryote constitutive factor implicated in DNA damage 

surveillance to deal with DNA strand breaks produced by both exogenous and 

endogenous genotoxic agents (41) Drawing on the fact that PARP-1 is activated by DNA 

single-strand breaks generated by some genotoxic agents and then cleaved into 89 and 

24 kDa fragments during apoptosis, rotavirus-infected Sp2/0-Ag14 cells were assayed 

for their reactivity to a specific antibody to cleaved PARP-1. Fluorescent intensity 

associated with cleaved PARP-1 reactive cells was significantly higher in rotavirus-

infected cells, and fluorescent cells were correlated with those being positive to rotavirus 

antigen (figure 3H). The fluorescent pattern of cleaved PARP-1-positive cells was similar 
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to that observed in H2O2-treated control cells, except that fluorescent intensity was 

higher in infected cells. The proportion of infected cells showing positive fluorescent 

signals for cleaved PARP-1 ranged from 72% to 91% for all the rotavirus isolates 

studied (figure 3I). 

Expression of cell surface proteins in Sp2/0-Ag14 cells 

Cell surface Hsc70 and integrins such as αVβ3 have been proposed to participate in 

rotavirus entry into the host cell (33-35). To test for the presence of these proteins on 

the cell surface of the Sp2/0-Ag14 cells and for the presence of additional cell surface 

proteins induced by heat shock, these cells were subjected to epifluorescence and flow 

cytometry analysis. Antibodies against Hsp40, Hsp60, Hsp70, Hsp90, rHsc70, rPDI and 

integrin β3 were used for this analysis. The flow cytometry analysis showed a differential 

cell surface expression for the proteins studied. Hsp90, Hsp70, Hsp60, Hsp40, Hsc70, 

integrin β3, and PDI were expressed in 71.1%, 34.6%, 1.1%, 30,5%, 3.5%, 14.1, and 

2.4% of the cells tested, respectively, when rabbit hyperimmune sera against HSPs, PDI 

and integrin β3 were used as source of primary antibodies (figure 4A). 

Inhibition of rotavirus infection by antibodies to cell surface proteins 

Some cell surface proteins such as HSPs, PDI, and integrin αVβ3 have been shown to 

be markers of tumor progression and aggressiveness (28,42-46). Hsc70, PDI and 

integrin αVβ3 have been proposed as cell surface receptors for rotavirus infection of 

non-tumor cells (33-35,37,47). Then, we attempted to analyze whether HSPs, PDI, and 

integrin β3 are involved in the entry of rotavirus isolates Wt1-5, ECwt-O, TRUYO, WWM, 

and WTEW into Sp2/0-Ag14 cells. To conduct this analysis, cells were pre-treated with 

hyperimmune serum raised against synthetic peptides corresponding to specific regions 

of Hsp90, Hsp70, Hsp60 or Hsp40 or against rHsc70, rPDI or integrin β3. Following 
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infection of antibody-pretreated cells, the percentage of infected cells at 12 h.p.i. for all 

the rotavirus isolates tested was reduced by antibodies directed to Hsp90, Hsp70 (374, 

375 and 376), Hsc70, PDI and integrin β3, whereas no effect was observed in the case 

of antibodies to Hsp60 and Hsp40 (figurees 4B-K). Except for antibodies against Hsp60 

and Hsp40, antibody pretreatment of cells decreased virus infection in a dose-

dependent manner. In contrast, pretreatment of cells with the unrelated antibodies 

against potato virus Y had no effect on rotavirus infection. Virus infection in the absence 

of antibody pretreatment of cells was scored as 100%. Representative images of 

immunochemistry assays of infected and non-infected control cells with or without 

antibody treatment are shown in figure 4L. These results suggest that cellular proteins 

Hsp60 and Hsp40 are not involved in rotavirus entry into Sp2/0-Ag14 cells. 

Expression changes of PDI and HSPs after rotavirus infection 

Some chaperone proteins, including HSPs, change their expression pattern during the 

viral infection process (48-51). We wanted to study whether ECwt-O infection of Sp2/0-

Ag14 cells was able to induce changes in the expression of Hsp90, Hsp70, Hsp60, 

Hsp40, Hsc70, PDI or integrin β3. After confocal microscopy analysis of permeabilized 

infected cells using commercial antibodies against these cellular proteins, Hsc70, 

Hsp40, and Hsp90 were found to be increased in their fluorescence intensity at 12 h.p.i. 

as compared to that observed at 1 h.p.i. whereas only a moderate increase was 

detected for PDI and integrin β3, and no changes were detected in the fluorescence 

signals for Hsp70 (figure 5). In the case of Hsp60, the viral infection appeared to cause 

a redistribution of this cellular protein (figure 5). In addition, Hsc70 were found to overlap 

with structural viral antigens at 12 h.p.i. but not at 1 h.p.i. Hsp40 and Hsp90 showed only 
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a faint overlapped signal with viral antigens. A faint overlapped signal for PDI and viral 

antigens was detected only at 1 h.p.i. (figure 5). 

Discussion 

Most viruses can cause the death of the host cell by interacting with the cell death 

machinery (52) where apoptosis is one of such mechanisms. Viruses can trigger 

apoptosis of infected cells through a variety of molecular events. The present study 

attempted to assess the death mechanisms associated with rotavirus infection of Sp2/0-

Ag14 cells as an approach to understand the virus-induced death of tumor cells. First of 

all, rotavirus isolates ECwt-O, WTEW, TRUYO, Wt1-5, and WWM were able to replicate 

in Sp2/0-Ag14 cells as newly synthesized viral antigens were progressively accumulated 

from 2 to 12 h.p.i. in terms of the percentage of cells being positive to viral antigens. 

Moreover, supernatant and cell lysate fractions from rotavirus-infected Sp2/0-Ag14 cells 

harvested at different post-infection times were able to infect naïve cells, suggesting 

than mature infectious virions can be rescued from virus-producing Sp2/0-Ag14 cells. 

Interestingly, all the rotavirus isolates studied were unable to replicate in L929 mouse 

fibroblasts and human PBMCs. 

Regarding that infection of Sp2/0-Ag14 cells with rotavirus isolates ECwt-O, WTEW, 

TRUYO, WT1-5 or WWM induced permeability changes and early apoptotic signals in 

the cell membrane, beside chromatin condensation, nuclear fragmentation, and DNA 

fragmentation, it is plausible to suggest that rotavirus is inducing an apoptotic response 

in infected cells. However, rotavirus-infected Sp2/0-Ag14 cells appear to undergo lysis 

rather than fragmentation into apoptotic bodies. Rotaviruses have been reported to 

induce apoptosis in Caco-2 cells (53) and oncosis in MA104 cells (54) where virus 

infection affects cell membrane integrity without inducing DNA fragmentation or 
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formation of apoptotic bodies. On the other hand, rotavirus non-structural protein NSP1 

has been found to suppress apoptotic signaling during the first 6 h post-infection to favor 

cell survival (55). 

Interaction between viruses and their host cells is characterized by interactions between 

cell surface receptors and virus structural proteins that facilitate entry. Once inside the 

host cell, many virus-encoded proteins can modify cellular transcription and translation 

patterns to favor virus multiplication. In this regard, we wanted to study the implication of 

some cell surface proteins in the infection of Sp2/0-Ag14 cells by rotavirus isolates and 

the changes in the expression of these cellular proteins induced by the viral infection. 

Cell surface Hsc70, PDI and integrin αVβ3 has been shown to interact with rotavirus 

structural proteins during entry into MA104 or Caco-2 cells (40,56,57). These cellular 

proteins, in addition to some HSPs, have also been associated with cell malignancy 

(58,59). Here, we found through flow cytometry and epifluorescence analysis that Sp2/0-

Ag14 cells express moderate levels of Hsp90 and Hsp70 on their cell surface while 

Hsp60, Hsp40, Hsc70, PDI and integrin β3 are expressed at low levels. These results 

prompted us to examine the implication of these proteins in the infection of cells Sp2/0-

Ag14 cells by rotavirus isolates, such as occurs with Hsc70, PDI and integrin β3 in 

MA104 and Caco-2 cells and mouse enterocytes (35,56,60). Pre-incubation of cells with 

antibodies to Hsp90, Hsp70, Hsc70, PDI or integrin β3 resulted in decreased viral 

infection, suggesting that these cellular proteins are used to some extent by the 

rotavirus isolates studied. Since any antibody treatment of cells was able to completely 

abolish virus infection, it is suggested that rotaviruses appear to have evolved to use 

alternative cell surface molecules as entry pathways (36). Here we have shown that the 

cellular proteins reacting with their respective antibodies fall within the three main types 
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of cell surface proteins required by entry into the host cell (36). For instance, integrin β3 

is a cell surface molecule that mediates rotavirus attachment to cell (35, 56), while 

rotavirus entry needs chaperone activities and redox reactions performed by 

HSPs/Hsc70 (33,61,62) and PDI (37,57), respectively. In addition, specific inhibition of 

Hsp90 has been reported to decrease infection by human rotavirus strain KU and simian 

rotavirus strain SA11 through modulation of cellular signaling proteins (61). 

Nevertheless, the implication of other cell surface proteins in rotavirus entry into Sp2/0-

Ag14 cells cannot be discarded and further studies are needed. The present report 

highlights the role of new HSPs (Hsp70, Hsp60, and Hsp40) in rotavirus infection, 

particularly in infection caused by reassortant rotavirus isolates adapted to tumoral cells 

(36).The expression of cellular HSPs has been found to change during viral infections 

(48-51). Although host mRNA synthesis and translation were not measured in the 

present work, the net accumulation of the cellular proteins studied was determined at 12 

h.p.i. and compared to their expression levels at 1 h.p.i. Confocal analysis indicated a 

virus-induced differential accumulation of the cellular proteins studied in which Hsc70, 

Hsp40, and Hsp90 accumulation was higher than that observed for PDI, while a 

moderate change was found for PDI and no change was detected for Hsp70. Although a 

redistribution of Hsp60 appeared to be caused by the viral infection at 12 h.p.i., a clear 

cut statement could not be made whether this redistribution involved either or both the 

cytoplasm or the cell membrane. However, the merged image seems to suggest that 

colocalization of viral antigen and Hsp60 do not occur. In addition, an apparent 

accumulation of Hsp60 in the cell membrane appeared to be induced by the viral 

infection but further assays should be conducted to confirm this apparent change in the 

Hsp60 redistribution. Interestingly, Hsc70 was found to overlap with viral antigens at 12 
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h.p.i. This result suggests that Hsc70 might play some role during the late stages of viral 

infection. However, only faint overlapping signals of viral antigens with Hsp40 and 

Hsp90 were detected at the same post-infection time, suggesting that a minor direct role 

is played by these proteins at this post-infection time.Co-localization is used in 

fluorescence microscopy analysis to detect protein interactions based on the signals 

emitted by fluorescently labeled protein species. However, interactions derived from 

colocalization analysis not necessarily mean direct interaction between two proteins and 

confirmation of such interaction sometimes requires the use of fluorescence resonance 

energy transfer (FRET). In the same line of thought, although fluorescence overlapping 

does not necessarily mean co-localization of two molecules, it can in principle suggest 

an interaction. Hence, with this precaution, we can speculate that the overlapping of 

fluorescent signals from PDI and rotavirus structural antigens in permeabilized cells 

suggests a probable interaction of these proteins during the early stages of rotavirus 

infection. The analysis of the fluorescent signals from integrin 3 and Hsc70 also 

suggests that these cellular proteins might interact with virion antigens during the early 

stages of viral life cycle. Fluorescent signals from Hsp70 and Hsp90, although in low 

percentage, seemed to be overlapped with those of viral antigens. Interaction of 

rotavirus with cellular chaperone Hsp90 has been reported during formation of functional 

rotavirus non-structural protein NSP3 (102). The strong fluorescent overlapping between 

Hsp70 and ECwt-O antigens at 12 h.p.i. could suggest that this cellular protein plays 

some role at late stages of viral cycle. However, the overlapping fluorescent signal 

analysis needs to be confirmed at least by a confocal microscope analysis. 
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The ability of the rotavirus isolates here tested to replicate and cause cell death of 

Sp2/0-Ag14 cells, through mechanisms that are compatible with virus-induced 

apoptosis, makes these viral isolates potential candidates to be used as oncolytic 

agents. 
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Figure 1. Infection of Sp2/0-Ag14 cells by rotavirus isolates and infectious virions 

present in supernatant from culture medium. Sp2/0-Ag cells at logarithmic growth 

phase were separately infected with previously trypsin-activated rotavirus isolates 

WTEW, WWM, Wt1-5, TRUYO or ECwt-O at 0.8 MOI each. A. HRP immunochemistry 

staining of rotavirus structural antigens (reddish) at 12 h.p.i. followed by FITC 

fluorescent staining (green). B. Sp2/0-Ag cells were separately infected with the 

rotavirus isolates mentioned above and cell aliquots taken at the indicated post-infection 

times. Infection was recorded as the percentage of cells being positive to rotavirus 

structural antigens using HRP immunochemistry assay. C. As in B, except that cells 

being positive to non-structural antigen NSP 4 were recorded. D. As in B, except that 

cells being positive to non-structural antigen NSP5 were recorded.  NP5. E. Control non-

tumoral L929 cells were separately infected with the rotavirus isolates indicated above 

using increasing MOI. Infection is expressed as percentage of cells being positive to 

rotavirus structural antigens at 12 h.p.i. using HRP immunochemistry assay. F. As 

in E, except control non-tumoral PBMCs were used instead of L926 cells. G. Sp2/0-Ag 

cells were infected as described in A and then aliquots of cells were collected every 2 h 

after infection with the indicated rotavirus isolates and subjected to centrifugation at 700 

g. The supernatant medium was collected and used to inoculate a fresh batch of Sp2/0-

Ag cells, which were collected at 12 h.p.i., lysed and the infectious titers (FFU/ml) of 

lysates determined by immunochemistry assay for the viral structural antigens. H. As in 

G, except that the non-structural antigen NSP4 was determined. I. As in G, except that 

the non-structural antigen NSP5 was determined. Infection is expressed as mean 

percentage ± SD from three independent experiments (n = 3), each performed in 

duplicate.  



 

40/39 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

41/39 
 

Figure 2. Effects of rotavirus infection on cell viability, membrane integrity, and 

nuclear morphology. Sp2/0-Ag cells at logarithmic growth phase were separately 

infected with previously trypsin-activated rotavirus isolates WTEW, WWM, Wt1-5, 

TRUYO or ECwt-O at 0.8 MOI each. Non-infected Sp2/=-Ag cells and 1 mM H2O2-

treated Sp2/0-Ag cells were used as a control. A. Viability of cells collected at the 

indicated post-infection time was determined using the trypan blue exclusion test. B. 

The total number of the cells/ml remaining at the indicated post-infection times was 

determined using a Neubauer chamber. C. SP2/0-Ag cells infected with the indicated 

rotavirus isolates were stained with 7-AAD at 12 h.p.i. The percentage of cells being 

positive to 7-AAD fluorescence was determined for the rotavirus isolates 

indicated. D. Representative images of 7-AAD-stained cells at 12 h.p.i. are 

shown. E. SP2/0-Ag cells infected with the indicated rotavirus isolates were stained 

with annexin V at 12 h.p.i. The percentage of cells being positive to annexin V was 

determined for each rotavirus isolate tested. F. Representative images of Annexin V-

stained cells at 12 h.p.i. are shown. Images were taken with 

a confocal microscope (Nikon-C1) and analyzed using Software EZ-C1. Ver. 3.90. 

Results are shown as mean percentages ± SD from two independent experiments 

performed in duplicate. 
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Figure 3. Genotoxic and apoptotic effects induced by rotavirus infection. Sp2/0-

Ag14 cells were separately infected with rotavirus isolates ECwt-O, TRUYO, Wt1-5, 

WTEW or WWM at MOI 0.8 each. Non-infected and H2O2-treated cells were used as 

negative and positive controls, respectively. A. Cell aliquots were harvested at the 

indicated times, stained with PI and analyzed by epifluorescence microscopy. The 

percentages of cells showing chromatin condensation and nuclear fragmentation are 

indicated. B. Representative images of PI staining at 12 h.p.i. from the cells analyzed in 

A. C. Cells were analyzed in terms of percentages as indicated in A, except that they 

were stained with Hoechst. D. Representative images of cells at 12 h.p.i. exhibiting 

chromatin condensation and nuclear fragmentation are shown. E. Cells at 12 h.p.i. were 

tested for rotavirus structural antigen and for DNA fragmentation (TUNEL labeling). 

Representative images are shown. F. Mean percentages of TUNEL positive cells are 

shown for each virus isolate tested in C. G. DNA fragmentation assay in agarose gel 

(1%) stained SyBR® Safe DNA gel stain is shown for cells infected with each virus 

isolate at 12 h.p.i. H. Representative images of cells showing rotavirus structural 

proteins in immunocytochemistry assay and PARP-1 expression in immunofluorescence 

assay at 12 h.p.i. are shown for the virus isolates indicated. I. Mean percentage of cells 

showing PARP-1 fluorescent signals are shown for the virus isolates tested in H.
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Figure 4. Inhibition of rotavirus infection by antibodies against cell surface proteins. A. Dot plots of fluorescent 

events in Sp2/0-Ag cells labeled by FITC-conjugated antibodies to the indicted cell surface proteins. Positive cells were 

selected by gating FITC-labelled cells in a FITC vs side scatter plot. B-K. Sp2/0-Ag cells were incubated with serial 

dilutions of antibodies against the indicated cell surface proteins or the indicated synthetic peptides. Cells were separately 

challenged with rotavirus isolates ECwt-O (B,C), TRUYO (D,E), Wt1-5 (F,G), WTEW (H.I) or WWM (J,K) at MOI 0.8 each. 

Percentage of infection Inhibition at 12 h.p.i. in terms of cells positive to rotavirus structural antigens was expressed 

relative to the corresponding rotavirus-infected control cells that had not been antibody-treated. Infected and non-infected 

cells treated with unrelated isotype-matched antibodies were used as a control. Percentages were normalized to those of 

the infected cells that had been treated with isotype antibody. L. Representative images from an immunochemistry assay 

of cells non-infected (left panel), infected with virus isolate WTEW (central panel) and pre-treated with 

hyperimmune antiserum (reciprocal dilution 40 x 103) against Hsp90 (right panel) before infection with isolate WTEW are 

shown.  
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Figure 5. Effect of ECwt-O infection on expression of cell surface proteins in 

Sp2/o-Ag cells. Cells were inoculated with ECwt-O at MOI 2. Confocal microscopy was 

used to determine expression changes of the indicted cellular proteins at 1 and 12 h.p.i. 

Alexa Fluor 568 (red) and FITC (green)-labelled secondary antibodies were used to 

visualize cellular proteins and rotavirus structural proteins, respectively. Nuclei were 

counterstained with DAPI (blue). Cells were analyzed using a confocal microscope 

(Nikon C-1) and analyzed using Software EZ-C1. Ver. 3.90.  

 

 

 


