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Abstract. Composite materials are increasingly exploited in industry especially 

replacing metallic structures due to their strength/weight ratio. Amongst the notable 

applications, for which composite materials have not challenged metals yet are hydro-

turbines, which are overwhelmingly made of steel or copper alloys. Replacing blade 

material by laminate composites can reduce weight and inertia, as well as achieve 

smaller cross-sectional thicknesses, better fatigue strength, damping, and resistance to 

cavitation. Manufacturing techniques are mature enough to respond to the challenge, 

provided that the laminate composite blades are properly designed. In the current 

work, the design of the Francis carbon blades was studied by employing finite element 

analysis. The blades were designed sub-optimally with various stratification patterns 

and different failure and maximum displacement limitations following a systematic 

methodology for gradual addition of laminate layers or patches. The methodology is 

still of a trial and error nature driven by the designer but guesses in the individual steps 

are much more informed due to model analysis and optimization tools available. 

Key Words: Composites, Francis Turbine Blade, Design, Finite Element Analysis, 
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1. INTRODUCTION 

Traditionally, hydro turbine runners are made of stainless steel [1]. Small runners are also 

made of manganese brass due to its high strength and abrasion/wear resistance with the 

addition of Fe, Sn and Mn as alloy elements or small percentage of As or Sb for anti-corrosion 

properties. The blades are often made separately by casting or pressing and assembling with 

the band and crown afterwards. Ni-Al bronze is often used to produce large blades. 
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Despite a very well established practice of design and manufacture of metallic blades 

and runners, the use of composite materials is a major challenge for the hydroturbine 

industry. The low specific weight of composite materials reduces inertia; their high 

strength allows a smaller cross-sectional thickness and their fatigue strength is very good. 

Protecting them from factors such as moisture, impact, and erosion etc. is necessary and 

can be implemented by special coatings. 

Laminate composites have been used very extensively in airfoil design, especially for 

wind turbines and propellers, and in hydrofoil design, especially concerning boat 

propellers and water turbines. In some cases, passively adaptive shapes have been 

achieved, i.e. foils whose shape changes in a desirable way with load. 

There is rich experience in structural design of composite laminate foils on which 

design of hydro-turbine blades can draw, but very rarely has work been reported on 

hydro-turbine blades as such. Work has mostly been conducted on marine turbines and 

propellers as well as on wind turbine blades, specially focusing on exploitation of bend-

twist behavior of the blade towards achieving passive adaptivity to external load. 

An advanced composite Pelton wheel was designed and fabricated, and its 

performance was studied for pico/micro hydro power plant application [2].  

The advantages of composite materials, used in marine renewable energy structures, were 

demonstrated in a 2 m prototype of a C-power underwater turbine [3]. A decrease in thrust 

and an increase in power capture were achieved by the use of properly designed, passively 

adaptive bend-twist coupled blades in a horizontal axis tidal turbine [4]. A shape-adaptive 

composite propeller using bend-twist coupling characteristics of composites was developed 

[5]. The advantages of flexible composite marine propellers were explored in sub-cavitating 

and cavitating flows [6]. Optimization and experiments of composite marine propellers in 

changeable pitch were conducted [7]. A systematic design methodology utilized bend-twist 

coupling effects for performance enhancement of self-twisting composite marine propellers 

[8]. An efficient theoretical model was developed to obtain a first-order estimation of the static 

divergence speed of self-twisting composite rotors. The methodology is equally applicable to 

other structures, such as tidal and wind turbines [9]. A composite marine propeller for a 

fishing boat was designed and its performance was evaluated [10]. Theoretical and 

experimental exploration of bend-twist coupling and damping properties with relation to the 

lay-up of composite marine propellers were explored [11].  

Approaches and evaluation were conducted to predict the performance of wind turbines 

utilizing passive smart blades [12]. A 10 MW wind turbine blade was designed and 

analyzed using composite materials [13]. A design methodology of high performance 

composite bend-twist coupled blades for a horizontal axis tidal turbine was developed [14]. 

This paper reports on the design of the Francis hydroturbine blades using laminate 

composite materials. Based on literature review, composites may bring several 

advantages to hydrοturbines. The main aim of the paper is to study the material 

replacement in the Francis hydroturbine blades with composites. This replacement has 

been studied for many turbines but not for the Francis type. In addition, adaptable flexible 

Francis blades can be designed to increase the performance of the hydroturbine. 

Section 2 presents the design of a sample Francis blade, including loads obtained from 

CFD analysis, and presentation of candidate materials. Section 3 presents the designs of the 

Francis blades under failure and maximum displacement limitations. In each case studied, 

the respective numerical models are analyzed showing the stacking sequence, the maximum 

total deformation, the maximum stress, and the failure probability. 
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2. BLADE ANALYSIS 

Analysis was performed in AnsysTM software. 

2.1 Fluid Flow Analysis 

The blade under consideration was hydrodynamically designed at the Laboratory of 

Hydraulic Turbomachines the National Technical University of Athens (NTUA) as part 

of the small Francis hydroturbine runner with basic dimensions as follows: diameter 413 

mm, height 100 mm, and maximum blade thickness 4 mm. Fig. 1 illustrates the Francis 

runner and its components, i.e. the blades, the band, and the crown. 

Fluid flow analysis using the FluentTM solver of the entire hydro turbine runner was 

carried out under the following flow conditions: rotational velocity w=-157 rad/sec, radial 

component vr=-6.3 m/sec and local component vu=-32.9 m/sec, corresponding to a flow 

rate of Q=0.022743 m3/sec. Fig. 2 shows the distributed pressure on the upper and lower 

surface of an isolated blade  

 

Fig. 1 Francis runner (left) and its blades (right) 

 

Fig. 2 Distributed fluid pressure (in hbar) on the blade (a) upper surface (b) lower surface 
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2.2 Materials 

Two carbon fiber pre-impregnated epoxy resin systems were used, implementing 

woven fibers and unidirectional (UD) fibers, respectively (see Table 1). Their density is 

1.42∙10-3 and 1.49∙10-3 gr/mm3 respectively. 

Table 1 230GBΤΜ Epoxy Carbon pre-preg material properties 

Elasticity Woven UD Stress Woven UD Strain  Woven UD 

Young’s Modulus (MPa) Tensile strength (MPa) Tensile strain 

X 61340 1.21E+05 X 805 2231 X 0.012 0.017 

Y 61340 8600 Y 805 29 Y 0.012 0.003 

Z 6900 8600 Z 50 29 Z 0.012 0.003 

Poisson’s Ratio Compressive strength (MPa) Compressive strain 

XY 0.04 0.27 X -509 -1082 X -0.010 -0.011 

YZ 0.30 0.40 Y -509 -100 Y -0.010 -0.019 

XZ 0.30 0.27 Z -170 -100 Z -0.010 -0.019 

Shear Modulus (MPa) Shear strength (MPa) Shear strain 

XY 19500 4700 XY 125 60 XY 0.019 0.012 

YZ 2700 3100 YZ 65 32 YZ 0.014 0.011 

XZ 2700 4700 XZ 65 60 XZ 0.019 0.012 
 

2.3 Geometry and Modeling 

A blade was isolated and its pressure surface selected. In order to create the blade 

model first a reference surface of zero thickness must be defined and then plies must 

appropriately be added, thus defining the thickness of the reference surface, hence of the 

blade. The blade pressure surface edge geometry at the water inlet side was approximated 

by a bevel shape as shown in Fig. 3. For the discretization of the blade model, an element 

size of 1mm was used. In total, a mesh was formed of 7728 shell elements (10 linear 

triangular and 7718 linear quadrilateral) and 7929 nodes. 

  

Fig. 3 Blade section at water inlet Fig. 4 Fixed support of the blade 
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2.4 Boundary conditions 

Fig. 4 shows the fixed support points of the blade edges which are fully constrained. 

The distributed fluid pressure is added to both surfaces of the blade, see Fig. 2. The 

standard earth gravity and the rotational velocity of the turbine were, obviously, taken 

into account.  

2.5 Failure Criteria 

Inverse Reserve Factor (IRF) refers to the inverse margin to failure as a failure 

probability measure. Load divided by IRF yields failure load, i.e. IRF>1 means failure. In 

ANSYSTM IRF default threshold is 0.25, for which the failure probability is acceptably 

low. Failure criteria for composite blades refer to laminate plies (e.g. Max Strain, Max 

Stress, Tsai-Wu, Tsai-Hill, Hoffman, Hashin, Puck, LaRC and Cuntze). The failure 

probability caused by the fluid pressure in each ply is calculated based on each criterion 

because each criterion can cause maximum IRF for differing stacking sequence. 

2.6 Design Methodology 

ANSYS optimization option through Response Surface Methodology (RSM) was 

tried, see Fig. 5. This proved useful in analyses with single layer as well as with 

reinforcement layers with few variables, but not in the general case, in which the design 

methodology illustrated in Fig. 6 was followed. 

Note that in the Francis blade design, because of loads applied and the curved shape, 

it was observed that the woven fabrics outperform Unidirectional (UD) fabrics. In 

particular, it appeared that the designs with woven fabrics present better results across the 

studied range of orientations compared to the UD. The latter exhibited comparable results 

to the woven fabrics only at the optimum point. Consequently, the design with woven 

fabrics was preferred. 

 

Fig. 5 RSM project schematic attempted 

The main stages are analyzed below. 
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Fig. 6 Design Methodology flowchart 

At the initial ply selection stage the number and orientation of plies are selected 

according to experience. 

At the initial ply insertion stage the plies are first placed at random orientations, as 

follows: (a) In the case of a single layer, this is placed so that the strength design limit is 

reached; (b) In the case of a single layer with reinforcement patches, the thickness of the 

single layer is reduced to the next commercially available and at the point or points where 

the design limit is violated, reinforcement layers are added to reach the strength design 

limit; (c) In the case of a multi-layer laminate, where the strength design limit is violated, 

reinforcement layers are added. 

At the stage of assessment and identification of optimal ply orientations, for each ply 

separately and all plies collectively, all possible orientations are investigated so that the 

plies are positioned optimally in relation to the design limit. Initially, four alternatives 

(e.g. 0°, ±45° and 90°) are generally considered; then, the point where the best results are 
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observed is closely investigated. If the initially selected orientation is completely wrong, 

four opposing orientations are proposed to identify the optimal orientation in a short 

amount of time. However, in the case of the plies with a similar application area and 

thickness, a similar optimal orientation is observed. Thus, identifying the optimal 

orientation of one ply can lead to the identification of the optimal orientation of the rest if 

that orientation is taken as the initial one. 

At the stage of ply thickness increase, thickness is increased to the next value that is 

commercially available: (a) In the case of a single layer with reinforcement patches, the 

thickness of plies is increased, the plies at the design limit violation being given priority. 

At the same time, minor relocation of patches may be examined, priority being given to a 

possible reduction in their surface area. A comparison is made between the alternative 

results and the best is selected. (b) In the case of a multi-layer laminate, the thickness of 

plies is increased and minor relocation of the reinforcement layers is examined. 

Furthermore, possible reduction of the size of the patches, which initially cover the entire 

surface of the blade, is investigated. As previously, a comparison is made between the 

alternative results and the best one is selected. 

At the ply thickness reduction stage, the thickness of plies is reduced to the next value 

that is commercially available, following the flow of actions of the previous stage. 

Then, the stage of comparison between the result and the previous result follows and 

when the best result is reached, an assessment is made to identify the optimal number of 

plies, this being the final result. 

3. RESULTS AND DISCUSSION 

Using the aforesaid design methodology, different analyses were performed in three 

different cases presented next. 

3.1 Large allowable displacement 

For this case, two models were developed. In the first model, the blade was designed 

with a single layer of woven fabric, as thin as possible (0.65 mm) see Fig. 7 (a) for the 

points with increased failure probability. In the second model, the blade was designed 

with a single layer of reduced thickness and a reinforcement patch, see Fig. 7 (b). 

For both models, the blades were optimally designed using woven fabrics within the 

threshold of failure criteria. In the first model, the maximum total deformation is 

observed in the middle of the water inlet increasing at the center of the blade. The 

maximum stress is observed at both edges of the water inlet. Increased failure probability 

exists at the water inlet and in the middle of the edge that is bonded to the band.  

In the second model, the maximum total deformation is observed at the center of the 

blade, slightly increasing in the middle of the water inlet. The maximum stress is 

observed at both edges of the water inlet slightly increasing at the center of the blade. An 

increased failure probability exists on most of the blade’s surface. This shows that the 

blade is designed at its limits and that there is no excess material. Table 2 shows the input 

and output parameters for both optimized blades. 
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a)  b)  

Fig. 7 (a) Points with increased failure probability in a 0.65mm thick single layer (b) the 

position of the reinforcement layer in red 

Table 2 Input and output parameters for both optimized blades  

(I: inlet, MI: middle of inlet, B: entire blade, MB: midpoint of entire blade, BE: band 

edge, MBE: middle of band edge, 2EI: both edges of inlet) 

3.2 Medium allowable displacement 

For this analysis, five models were constructed to design the blade with a maximum 

acceptable displacement of 50 μm within the threshold of failure criteria. Fabrics of 

thickness 0.5 mm, 1 mm, 1.5 mm and 2 mm were used. A displacement constraint serves 

the purpose of faithful shape retention of the blade for hydrodynamic purposes. 

In the first and second model, the blades were designed with a single layer using 

woven and UD fabric, respectively, results being shown in Fig. 8.  

In the third, fourth and fifth models, the blades were designed with a single layer and 

reinforcement patches, using woven fabrics based on the first model. In particular, in the 

third model the blade was designed with a single layer of reduced thickness (1.5 mm) and 

one reinforcement patch, see Fig. 9 (a) and (b).  

In the fourth model, two smaller patches are used, see Fig. 9(c).  

Model 1 2 

Fabric Woven Woven 

Single layer B 
Ply thickness [mm] 1.25 0.65 

Ply orientation [°] 0.7 7.1 

Reinforcement 

layer 
From I along BE 

Ply thickness [mm] - 0.69 

Ply orientation [°] - 79.2 

Total deformation max [mm] 
Value 0.150 0.319 

Position MI MB 

Equiv. stress max [MPa] 
Value 136.25 126.68 

Position 2EI 2EI 

IRF max 
Value 0.249 0.249 

Position I, MBE B 
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In the fifth model the thickness of the single layer was reduced to 1 mm, Fig. 10 (a) 

illustrating the points of increased displacement and Fig. 10 (b) depicting the position of 

the reinforcement patches in the fifth model. 

a) b)  

c)  

Fig. 8 First and second model comparison (a) displacement (b) stress (c) failure risk 

a)  

b)  c)  

Fig. 9 (a) Displacement distribution in a 1.5mm thick single ply (b) reinforcement layers 

for third model (c) reinforcement layers for fourth model 
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a)  b)  

Fig. 10 (a) Points with increased displacement in a 1 mm thick single layer (b) the 

reinforcement layers for the fifth model in red 

In the first model, the maximum total deformation is observed in the middle of the 

water inlet and at the center of the blade. The maximum stress is observed at both edges 

of the water inlet. 

In the second model, the maximum total deformation is observed at the center of the 

blade and increased in the middle of the water inlet. The maximum stress is observed at 

the edge of the water inlet bonded to the band.  

In the third and fourth models, the maximum total deformation is observed in the 

middle of the water inlet and at the center of the blade. The maximum stress is observed 

at the edge of the water inlet bonded to the band and increases at the edge of the water 

inlet bonded to the crown.  

In the fifth model, the maximum total deformation extends along the midpoint of 

almost the entire blade. The maximum stress is observed at the edge of the water inlet 

bonded to the band and increased at the edge of the water inlet bonded to the crown. All 

models have a very low failure probability and thus, corresponding positions are not 

reported. Table 3 shows the input and output parameters for all designed blades. 

Table 3 Input and output parameters for medium allowable displacement  

(PT: ply thickness, PO: ply orientation, MI: middle of inlet, B: entire blade, CB: centre of 

blade, I: inlet, BEI: band edge of inlet, 2EI: both edges of inlet) 

Model 1 2 3 4 5 

Fabric Woven UD Woven Woven Woven 

Single layer B 
PT[mm] 2 2 1.5 1.5 1 

PO [°] 70 70 65 70 70 

Reinforcement 

layer 

I→ CB 
PT[mm] - - 0.5 - - 

PO [°] - - 20 - - 

I 
PT[mm] - - - 0.5 1 

PO [°] - - - 30 0 

CB 
PT[mm] - - - 0.5 1 

PO [°] - - - 60 40 

max Deformation [mm] 
Value .047 .048 .049 .049 .048 

Posit MI,CB CB MI,CB MI,CB CB 

max Equiv Stress [MPa] 
Value 59.8 126.0 55.0 68.0 76.0 

Posit 2EI BEI BEI BEI BEI 

max IRF Value 0.153 0.185 0.17 0.196 0.18 
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3.3 Low allowable displacement considering manufacturing cost 

A model was constructed to design the blade with a maximum acceptable 

displacement of 5 μm within the threshold of failure criteria. Only fabrics with thickness 

of 0.5 mm were considered. 

In addition, the blade has been designed for minimum manufacturing cost. A 

simplified cost model was used, involving material and labor for n plies, as follows: 

 

Cost =   AC ∗ Ai 

n

i=1

+ LC ∗  
Pi
100

+
Ai
2500

+
Pi
200

 

n

i=1

 

 (1) 

Fabric costs AC=30.86 €/m2. The labor cost (LC) refers to the time that it takes for 

the technician to mark and cut the profiles on the fabric sheet and to stack each profile on 

the mold. After consultation with practitioners, marking and cutting time was calculated 

by dividing fabric ply perimeter Pi (in mm) by 100 while stacking time was obtained by 

dividing fabric area Ai (in mm2) by 2500 and adding it to perimeter Pi (in mm) divided by 

200. This is performed for n plies. Finally, labor cost was assumed at LC=12 € per hour. 

Tooling cost was not taken into account. Considering that labor costs depended heavily 

on perimeter Pi of each ply, it was favorable to combine smaller plies in the same layer, 

which were slightly abstracted from each other, into larger single plies. Total cost was 

calculated at 22.96 € of which 20.44 € is attributed to labor.  

Thus, the blade was designed with multiple plies using woven fabrics. In particular, it 

consists of 15 layers 0.5mm thick, of which 3 layers extend over the entire surface of the 

blade (shown in blue color in Fig.11), 7 layer patches cover most of the surface of the 

blade, 2 patches are positioned at the water inlet (shown in yellow color in Fig. 11), and 3 

patches are positioned at the center of the blade (shown in red color in Fig.11, at the 

middle of the blade and towards the water outlet). 

a) b)

c)  

Fig. 11 (a) Points with increased displacement in a laminate of max thickness 6.5mm  (b) 

position of the layers (c) stacking sequence 

Fig. 11 (a) illustrates the points with increased displacement in a 6.5 mm thick 

laminate. Fig. 11(b) illustrates the position of the layers, and Fig. 11(c) presents the 

stacking sequence on the blade. 
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The maximum total deformation extends along the midpoint of almost the entire 

blade. The maximum stress is observed at both edges of the water inlet. Table 4 shows 

the input and output parameters for the designed blade. 

Table 4 Input and output parameters for the blade  

(PT: ply thickness, PO: ply orientation, 2EI: both edges of inlet, I: water inlet, CB: centre 

of blade, EB: entire blade, MSB: most of blade surface, MEB: midpoint of entire blade) 

Fabric Woven 

Layer 

EB 
PT [mm] 0.5 

PO [°] [703] 

MSB 
PT [mm] 0.5 

PO [°] [60/652/602/65/70] 

I 
PT [mm] 0.5 

PO [°] [50/10] 

CB 
PT [mm] 0.5 

PO [°] [70/65/5] 

max Displacement [mm] 
Value 0.0049 

Position MEB 

max Equiv. stress [MPa] 
Value 7.57 

Position 2EI 

max IRF Value 0.025 

4. CONCLUDING REMARKS AND FURTHER WORK 

In the present study, sub-optimal Francis carbon fiber turbine blades were designed. 

The blades were as thin as possible with reduced weight and high strength. 

A design methodology for laminate hydrofoil optimization was defined. Based on this 

methodology, the design of blades with a single layer as well as multiple layers and 

reinforcement patches was studied under constraints of failure and maximum 

displacement. 

It has been observed that the change in thickness affects the results more than the 

change of orientation when woven fabrics are used. Comparison of a woven with a UD 

fabric showed that the woven fabric reach better results than UD across the range of 

orientations, which achieve comparable results only at the optimum orientations. 

The blade design and optimization methodology was similar either with a failure 

limitation or a maximum displacement limitation. Whenever the thickness of plies was 

reduced or their orientation changed beyond the optimum point, the values of all three 

output parameters, i.e. failure probability, equivalent stress, and the maximum 

displacement increased. At different ply thickness there was a different optimal point of 

orientation.  

Furthermore, the position selection and the reinforcement layers area were critical for 

the reduction of the thickness of the single layer and the three output parameters. The 

design and optimization process was terminated when a further reduction in plies 

thickness or decrease of their area and any change of their orientation led to inferior 

results.  
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The findings were similar across all analyses. In particular, the maximum 

displacement was observed in the middle of the water inlet and at the center of the blade, 

while the maximum stress was observed at the edges of the water inlet. 

Ultimately, a laminate blade of minimal cost, with woven fabrics 0.5mm thick and 

stricter maximum allowable displacement was designed, and its manufacturing cost was 

analyzed. The design and optimization methodology was similar to the previous analyses, 

as were the effects of the maximum displacement and the maximum stress. It was 

observed that the main cost is attributed to labor, as opposed to material. Thus, it was 

preferred to increase blade volume in order to reduce total cost. Moreover, it was 

generally observed that blade cost is reduced by using the minimum required number of 

plies, which however has a negative impact on the accuracy and optimality of the results. 

As short term future research, fatigue strength should be explored, following an 

established method.15 In the long run, an adaptable flexible Francis blade with partially 

fixed support, variable thickness and optimized ply orientation will be explored following 

the same methodology that was presented in this work. 
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