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Abstract. This paper provides workspace determination and analysis based on the 

graphical technique of both spatial and planar parallel manipulators. The computation 

and analysis of workspaces will be carried out using the parameterization and three-

dimensional representation of the workspace. This technique is implemented in CAD 

(Computer Aided Design) Software CATIA workbenches. In order to determine the 

workspace of the proposed manipulators, the reachable region by each kinematic chain 

is created as a volume/area; afterwards, the full reachable workspace is obtained by 

the application of a Boolean intersection function on the previously generated 

volumes/areas. Finally, the relations between the total workspace and the design 

parameters are simulated, and the Product Engineering Optimizer workbench is used 

to optimize the design variables in order to obtain a maximized workspace volume. 

Simulated annealing (SA) and Conjugate Gradient (CG) are considered in this study as 

optimization tools. 
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1. INTRODUCTION 

A parallel manipulator is a mechanism in which there are two or more closed 

kinematic chains attaching the base to the mobile platform. Nowadays, most of the 

manipulators are serial architecture; parallel robots exhibit many advantages, such as high 

speeds and accelerations, low mobile masses, high stiffness, and great accuracy. The 
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most notable disadvantage of the parallel manipulators is their relatively small 

workspaces. One can use the workspace volume or surface as an objective function for 

optimization. In this sense, the researchers focused on workspace determination as a 

performance index in order to design robots for specific industrial applications. The 

calculation of the parallel robots’ workspace is a complex problem due to the kinematic 

modeling difficulty. However, the problem of workspace optimization of the parallel 

manipulators to obtain a prescribed workspace has been investigated in few articles. The 

concept of the prescribed workspace is a significant issue to optimize and to synthesize a 

robot. The actuated joint variables, the range of joints motion and the mechanical 

interferences between the links essentially influence the parallel manipulators’ 

workspace. In this paper, we focus on some areas of the space that surrounds the 

manipulator, and limiting its workspace to the prescribed area. Several papers studied this 

problem based on geometrical techniques, and using optimization algorithms to 

synthesize the design parameters of the parallel manipulators.  

Gallant and Boudreau [1] used a Genetic Algorithm in order to optimize a 3-DOF 

planar parallel manipulator to obtain a workspace as close as possible to a prescribed one. 

Singularities and workspace of planar 3-RPR parallel mechanism for maximal 

singularity-free workspace by optimizing the geometric parameters are investigated by 

Jiang and Gosselin [2, 3] and Yang and O’Brien [4]. Di Gregorio and Zanforlin [5] 

studied the workspace of the 3-RUU and the DELTA robot. They concluded that these 

robots could have the same closure equations and workspace when some geometric 

conditions are satisfied. Chablat et al. [6, 7] compared 3-DOF parallel kinematic 

machines using two design criteria: regular workspace shape and a kinetostatic 

performance index that needs to be as homogenous as possible throughout the 

workspace ; this technique is based on the interval analysis method. In [8] the workspace 

optimization of translational 3-UPU parallel robot is performed using its parameterization 

by two design variables, which are the prismatic joint stroke and the distance between the 

base and the mobile platform. Zhao, Chu, and Feng [9] discussed the analogous 

symmetry properties between the workspace and the mechanism structure. Gao, Liu, and 

Chen [10] analyzed the relationship between the shapes of the workspaces and the link 

lengths for 3-DOF planar parallel manipulators; his results are useful for the designers to 

optimize the robots regarding the workspace index. Hay and Snyman [11, 12] focused on 

the numerical multi-level optimization for the synthesis of the 3-DOF parallel 

manipulators for a desired workspace. In [13] the workspace of Gough-Stewart platform 

was optimized using the Genetic Algorithm. The idea is to minimize the areas, which do 

not belong to the intersection between two areas: the workspace of the robot and the 

prescribed workspace. A genetic algorithm based method is used also in [14] to deal with 

the optimal dimensional synthesis of the DELTA robot for a prescribed workspace. The 

geometrical approaches have been used to represent the workspace of the parallel 

manipulators, by Assad Arrouk et al. [15], Aboulissane et al. [21], Bonevet al. [16], 

Gosselin [17], and Merlet [18]. The principle of these methods is to deduce, from the 

constraints on each limb, a geometrical entity (sub-workspace) which describes all the 

possible poses of the tool center point that satisfy the leg constraints. Then, the robotic 

manipulator workspace is generated by the intersection of all the sub-workspaces. 

Tsirogiannis et al. [22] presented an overall structural design optimization approach for a 

robot arm link seeking mass reduction and satisfaction of manufacturability with SLS 

AM technique. 
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In this paper, a graphical based technique is addressed for workspace’s determination, 

analysis and optimization of two parallel robots, which are the 3-RPR planar manipulator, 

and the DELTA robot. 

The first section is dedicated to the description of the proposed manipulators. In the 

next section, we present the steps to determine the workspace of both robots. The last 

section is about the comparison of the two optimization methods, applied to the 

workspace of the DELTA robot. 

2. KINEMATIC SCHEME AND DESCRIPTION OF THE 3-RPR AND THE DELTA ROBOTS 

2.1 The 3-RPR Planar Parallel Robot 

Fig. 1 shows the Kinematic scheme of the 3-RPR planar robot. This mechanism is a 

parallel robot with closed loop chains. Three actuated prismatic joints are linked to 

passive joints𝐴1, 𝐴2, and 𝐴3 fixed to the base, and 𝐵1, 𝐵2, 𝐵3 fixed to the mobile 

platform. The actuated prismatic joints coordinates are given by the length of the legs, 

named 𝜌1, 𝜌2, and 𝜌3. The orientation of the mobile platform is given by angle 𝜑. The 

components of points 𝐴𝑖 and 𝐵𝑖  are respectively (𝑥𝑎𝑖 , 𝑦𝑎𝑖) and (𝑥𝑏𝑖 , 𝑦𝑏𝑖). Each limb 

generates an annular region bounded by two concentric circles with radii of 

𝜌𝑖,𝑚𝑖𝑛 and 𝜌𝑖,𝑚𝑎𝑥 , the centers of the circles 𝐶𝑖(𝑥𝑐𝑖 , 𝑦𝑐𝑖) are defined by Eq. (1), and Eq. (2): 

 cos( ) sin( )ci ai bi bix x x y     (1) 

 sin( ) cos( )ci ai bi biy y x y     (2) 

 

Fig. 1 Kinematic diagram of the 3-RPR planar parallel robot 

The vector describing the 3-RPR parallel manipulator parameters is defined as 

follows: 

  1 min max 1 1 2 2 3 3

T

c c c c c cx y x y x y    (3) 
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2.2 The DELTA Parallel Robot 

The robot under study in this section is the DELTA parallel robot depicted in Fig. 

2(a); it is composed of a triangular moving platform linked to a triangular fixed base with 

three closed parallel chains. Each one consists of an actuated rotational joint mounted 

near to the fixed base; the parallelograms and spherical joints transmit the movement of 

the mobile platform. In this work, all the three arms of the manipulator are identical in 

terms of geometrical parameters (Fig. 2(b)). 

 

 
 

(a) 
 

(b) 

Fig. 2 (a) Geometric scheme of the Delta robot; (b) the DELTA robot parameterization 

The independent design variables for the DELTA robot are: 

  2 1 2

T
L L R r   (4) 

3. WORKSPACE DETERMINATION OF THE PROPOSED ROBOTS 

First, we need to determine workspace of the proposed robots. We can define this 

region as the reachable positions and rotations by the end-effector center point, generally 

located on the platform of the robots. In this work, we used a geometrical technique for 

the representation of the workspace through the CATIA software, and there are no limits 

for all the revolute joints used for each manipulator. 

3.1 Workspace of the 3-RPR Planar Robot 

For this robot, we obtain the workspace by the intersection of three circular areas, 

which correspond to the areas accessible by the end-effector point center when each leg is 

taken as a serial manipulator. Fig. 3 shows the steps we followed to generate the 

workspace of the 3-RPR manipulator in the CATIA. 
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(a) 

 

 
 

(b) 

 

 
 

(c) 

Fig. 3 Steps of the workspace determination of the 3-RPR robot[15] 

Fig. 3(a) depicts the first step; it consists of creating three annular regions in the 

Sketcher workbench; then the Pad and Pocket commands are applied to the drawing with 

a finite thickness in the Part Design workbench. The second step is performed under the 

Part Design workbench; it consists of applying the first intersection Boolean operation. 

Fig. 3(b) above shows the obtained result. 

The final step to determine the workspace of the 3-RPR is to apply a second 

intersection Boolean operation on the two remaining regions in the second step. The 

obtained shape corresponds to the theoretical workspace of the mechanism shown in Fig. 

3(c). This step is also done in the Design Part workbench.  

The area of the 3D model presented in Fig. 3(c) is calculated by using a smart area 

parameter. Since the thickness of this 3D model is neglected, the workspace area of the 3-

RPR robot is obtained, dividing by two, the area previously calculated. 

The design parameters used to obtain this workspace are tabulated in Table 1: 

 

Table 1 Design parameters of the 3-RPR manipulator 

Design 

Parameters 
Limb 1 Limb 2 Limb 3 

xci (mm) -188,632 132,159 56,473 

yci(mm) -43,697 -141,512 185,209 

min  (mm) 120 

max  (mm) 270 

  (degrees) 102 

Area (cm²) 197,02 

 

For each orientation 𝜑, the workspace of the robot has different shape and area. Table 

2 illustrates the workspace of the robot for few orientations of the mobile platform. 
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Table 2 Variation of the workspace with respect to the orientation of the mobile platform 

A=70,611 cm² 

𝜑 = 177 (deg ) 

A=156,077 cm² 

𝜑 = 123 (deg ) 

A=197,668 cm² 

𝜑 = 101 (deg ) 

   
A=144,380 cm² 

𝜑 = 68 (deg ) 

A=29,600 cm² 

𝜑 = 40 (deg ) 

A=22,411 cm² 

𝜑 = 4 (deg ) 

   
 

3.2 Workspace of the DELTA robot 

The workspace of the DELTA Parallel robot is defined as a three dimensional volume 

in the Cartesian space; this volume is reached by a point on the mobile platform. The 

equations used to determine the workspace of a parallel robot are generally complex to 

solve by using the traditional approaches. Hence, the CAD-based approach is used in this 

work to determine geometrically the workspace of the DELTA parallel robot.  

The parallel robot workspace robot can be quickly generated as an area or a volume 

using the CATIA, then the complex technique such the numerical method. Discretization 

based techniques produce an approximate form of a low quality workspace. To improve 

it, it is necessary to use other graphical methods. By implanting the problem of 

workspace determination in a CAD software, these techniques will become more 

reachable to industry and more precise. As the first step, the proposed method for 

workspace determination of the DELTA robot consists in assuming all legs to be 

independent serial arms having the mobile platform as tool center point. Then, the region 

swept by the tool center point of each arm is determined for a given orientation of this 

point.  

In [14] the workspace of the DELTA robot is presented by following Eq. (5): 

    
2

2 22 2 2 2 2 2

1 2 14t t t t tx r y z L L L x r z            
   

 (5) 

with r R r    and: 
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(a) 

 
(b) 

 
(c)  

 
(d) 

Fig. 4 Generation of the workspace for a Delta robot based on the CATIA V5. (a) The 

three torus intersect; (b) First intersection Boolean operation; (c) Second Intersection; (d) 

The workspace of the Delta robot (z < 0) 

 

As shown in Fig. 4, the workspace of the Delta robot is based on three tori. The first 

step consists of drawing a circle with a radius 𝐿1, and another circle with a radius 𝐿2 

passing by the center of the first circle (Fig. 5). 

 

Fig. 5 Torus in Sketcher workbench 

Each limb of the DELTA robot generates a torus, Fig.4(a) depicts the intersection of 

those three volumes, and the rest of the figures shows the intersection Boolean operations 

with the final shape of the workspace of the robot presented by Fig. 4(d). 

3.3 Workspace analysis of the DELTA robot 

Before starting the optimization problem, an analysis between the reachable 

workspace and the design parameters is required. We presented examples for each 

variable 𝐿1and 𝐿2, as well as the resulting volume. First we fixed R = 55 mm, r =30 mm, 

and𝐿1= 100 mm, then length 𝐿2is varied from 100 mm to 250 mm. Table 3 shows the 

boundaries of the reachable workspace for length 𝐿2of 100 mm, 150 mm, 200 mm, and 

250 mm. 
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Table 3 Workspace shape versus 𝑳𝟐 

L2 = 100 mm
 

W = 4,765 dm3

 

L2 = 150 mm
 

W = 4,688 dm3

 

L2 = 200 mm
 

W = 4,661 dm3

 

L2 = 250 mm
 

W = 4,647 dm3

 

    

 

It can be seen from Table 3 that the workspace volume of the DELTA robot increases 

with reducing length 𝐿2 of the forearm. 

Now, to demonstrate the effect of length 𝐿1, forearm 𝐿2 is fixed at 250 mm, R = 55 

mm, r = 30 mm, and 𝐿1 is varied from 100 mm to 250 mm. 

Table 4 Workspace shape versus 𝑳𝟏 

L1 = 100 mm 
W = 4,647 dm3 

L1 = 150 mm 
W = 15,753 dm3 

L1 = 200 mm 
W = 37,637 dm3 

L1 = 250 mm 
W = 75,040 dm3 

    
 

As shown in Table 4, the workspace volume increases considerably by increasing the 

length 𝐿1. The volume starts to take a cup-shape. 

4. OPTIMIZATION PROBLEM 

In robotics, the designer uses numerous indices to evaluate the performance of a 

manipulator; among these indices, we can mention the workspace that describes the 

potential robot utilization. In this work, we are using the reachable workspace as a 

performance index in order to optimize the design parameters of the DELTA robot. The 

optimization problem is formulated as follows: 

 
2

2, ,min 2, 2, ,max

( )

i i i

maximize W

subject to



   
 (7) 

where W is the workspace volume, and  𝛿2 is the vector defined by Eq. (4). The main 

purpose of the maximization of the workspace is to expand the capabilities of the DELTA 

robot. The parameters that have an effect on the volume and the shape of the reachable 

workspace of the manipulator are: 𝐿1, 𝐿2, 𝑅, 𝑟 and 𝛼𝑗 with (j=1,2,3). The parameterization 

used in the CATIA software is shown in Fig. 6: 
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Fig. 6 Parameters of the DELTA robot on the CATIA 

For this optimization problem, we used the CATIA “Product Engineering Optimizer” 

workbench in which we can use different algorithms such as: Conjugate Gradient method 

(CG) a local algorithm and the simulated annealing (SA) a global algorithm. Both the 

methods are employed in our present study. The simulated annealing is listed as the 

oldest algorithm among the metaheuristics that had an explicit strategy to avoid local 

minima; it can be applied to the majority of optimization problems. The behavior of this 

algorithm is strongly dependent on the problem addressed [19]. The other algorithm, 

which is the Conjugate Gradient, is a mathematical approach used on both linear and 

non-linear systems; this approach can be used as an iterative algorithm and a direct 

method [20]. To realize this optimization, we choose the last five parameters that are 

shown in Fig. 6; we excluded the angles 𝛼𝑗 representing the angular offset between 

different kinematic chains. The optimization parameters are usually provided with an 

upper and lower limit. The main goal of this optimization is to maximize the objective 

function represented by the workspace volume of the DELTA robot, based on the 

parameters presented in Table 5, which can describe Eq. (7). 

The initial parameters correspond to the workspace shown in Table 6(a) with a volume 

W = 4,765 dm3. The first optimization is done using the (SA) algorithm, optimized values 

are tabulated in Table 5 corresponding to the workspace summarized in Table 6(b) with a 

volume W = 215,712 dm3. Secondly, we applied the (CG) method. Table 6(c) shows the 

shape of the workspace with a volume W = 110,265 dm3. This workspace is associated with 

the values of the design parameters presented also in Table 5. 

Table 5 Optimization results 

Design 

parameters 
Initial values 

Simulated 

Annealing 

Conjugate 

Gradient 

r (mm) 30 193,77 54,538 

R (mm) 55 344,198 120,308 

L1 (mm) 100 350 283,757 

L2 (mm) 100 112,255 250 

Volume (dm3) 4,765 215,712 110,265 
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Table 6 Workspace optimization 

Without optimization (a) 

   

Simulated Annealing algorithm (b) 

   
Conjugate Gradient algorithm (c) 

   
 

The number of iterations made to reach the objective is 523 for the (SA) algorithm, 

and 602 for the (CG) method. The time needed to achieve these two optimizations is 

about 10 minutes. The simulations were performed on a computer that has the following 

characteristics: CPU @2.10Ghz, 8.0 GB RAM.   

 

(a) 

 

(b) 

Fig. 7 Evolution of the design parameters for (a) SA algorithm; (b) CG method 

Fig. 7 presents the evolution of the design variables for both algorithms. From the 

parametric analysis previously presented in Table 4 and the design variables evolution 

shown in Figs. 7 (a) and (b), we can conclude that L1 have a significant impact on the 

volume of the workspace. On the other hand, the two algorithms applied in this study 
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have set the L1 variable to a maximum value, while other parameters R, r, and L2 are 

showing a variation in a large range searching for a maximum volume of the robot's 

workspace. Fig. 8 provides a comparison of the convergence rates of the results; it can be 

seen that the performance of the (SA) is more superior to that of (CG) method due to the 

good speed of convergence with few generations, also, the optimal value reached by the 

(SA) algorithm is greater than that obtained by the (GC) algorithm. 

 

Fig. 8 Comparison of convergence cost for SA and GC algorithms 

5. CONCLUSION 

In this paper, we have focused on the CAD based technique to determine the 

workspace of planar and spatial parallel robots. This study is performed on the 3-RPR 

planar parallel robot and the DELTA robot. We considered the determination and the 

characterization of the workspace of the two manipulators. For this purpose, we have 

applied a geometrical approach that has been implemented in CATIA workbenches. We 

put in evidence the effectiveness of this technique for the workspace optimization of the 

DELTA robot, taking into consideration the joint limits. Two algorithms were applied to 

maximize the workspace of the DELTA robot, the simulated annealing and the 

Conjugate Gradient algorithms. The best result is related to the (SA) algorithm in terms 

of convergence speed and the best optimal value of the workspace volume. The 

manipulators studied herein for the workspace analysis and optimization illustrate the 

efficiency and the capability of the graphical methodology for the designers, to avoid 

complex mathematical equations. 
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