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Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of

immature myeloid cells with major regulatory functions and rise during pathological

conditions, including cancer, infections and autoimmune conditions. MDSC expansion

is generally linked to inflammatory processes that emerge in response to stable

immunological stress, which alter both magnitude and quality of the myelopoietic

output. Inability to reinstate physiological myelopoiesis would fall in an “emergency

state” that perpetually reprograms myeloid cells toward suppressive functions. While

differentiation and reprogramming of myeloid cells toward an immunosuppressive

phenotype can be considered the result of a multistep process that originates in the

bone marrow and culminates in the tumor microenvironment, the identification of its

driving eventsmay offer potential therapeutic approaches in different pathologies. Indeed,

whereas expansion of MDSCs, in both murine and human tumor bearers, results in

reduced immune surveillance and antitumor cytotoxicity, placing an obstacle to the

effectiveness of anticancer therapies, adoptive transfer of MDSCs has shown therapeutic

benefits in autoimmune disorders. Here, we describe relevant mechanisms of myeloid

cell reprogramming leading to generation of suppressive MDSCs and discuss their

therapeutic ductility in disease.

Keywords: emergency myelopoiesis, myeloid-derived suppressor cells (MDSCs), immunosuppression, cancer,

autoimmune diseases

INTRODUCTION

Immunologic stress, such as infection and cancer, modifies the magnitude and composition of
the hematopoietic output, a feature of immune regulation defined as “emergency” hematopoiesis,
to guarantee proper supply of both lymphoid and myeloid cells to increased demand (1). Under
steady-state conditions, myelopoiesis is a strictly regulated process that consists of a series of cell
lineage commitments, encompassing sequential steps of differentiation that govern the transition
of hematopoietic stem cells (HSCs) to myeloid precursors and then to mature immune cells,
which is necessary to maintain the physiological levels of circulating neutrophils and monocytes
(2). This highly coordinated process is orchestrated by cytokines and growth factors, which act
through activation of specific transcription factors that differentially drive terminal differentiation
of myeloid cells. In particular, whereas C/EBPα appears to be a major regulator of “steady-state”
granulopoiesis (3), C/EBPβ (4) and Signal Transducer and Activator of Transcription 3 (STAT3)
(5) promote expansion and maturation of neutrophils in emergency conditions. Moreover,
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interleukin-17A (IL-17A) promotes both granulocyte-colony
stimulating factor (G-CSF)- and stem-cell-factor-mediated
neutrophilia (6) and supports G-CSF-driven “emergency”
myelopoiesis (7). Terminal macrophage differentiation is instead
induced by macrophage-CSF (M-CSF) through activation of the
transcription factors PU.1 and IRF8 (8). We recently showed
that the retinoic acid-related orphan receptor (RORC1/RORγ)
orchestrates emergency myelopoiesis by suppressing negative
(Socs3 and Bcl3) and promoting positive (C/EBPβ) regulators
of granulopoiesis, as well as the key transcriptional mediators
of myeloid progenitor commitment and differentiation to
the monocytic/macrophage lineage (IRF8 and PU.1) (9). Of
note, expansion of circulating RORC1+ myeloid cells marked
advanced cancer-related inflammation and the expansion of
immature suppressive cells (9).

In acute inflammation, notably during acute infections,
myeloid progenitors expand and differentiate into activated
pro-inflammatory monocytes, which eventually migrate into
tissues where they differentiate into macrophages and dendritic
cells (10, 11). On the other hand, in chronic inflammatory states
(e.g., cancer, chronic infection and autoimmune disease) the
differentiation of myeloid progenitors into mature immune
cells is impaired, a condition that leads to the expansion and
accumulation of a population of immature myeloid cells named
myeloid-derived suppressor cells (MDSCs) (12). MDSCs consist
of a heterogeneous population characterized by high plasticity
and strong capacity to reduce cytotoxic functions of T and NK
cells (13). MDSCs are conventionally divided into 2 subsets,
monocytic (M-MDSCs) and granulocytic (PMN-MDSCs), based
on the expression of specific markers that differ among human
and mouse cells. In humans, the M-MDSC and PMN-MDCS
subsets are defined as CD11b+CD14+HLA-DR−/lowCD15−

and CD11b+CD14−CD15+HLA-DRlow/−, respectively,
while their corresponding murine subsets are indicated as
CD11b+Ly6ChighLy6G− and CD11b+Ly6ClowLy6G+ cells (11).

From a biochemical and functional perspective, suppressive
PMN-MDSCs are characterized by the production of reactive
oxygen species (ROS) and arginase 1 (Arg1), whereas M-MDSCs
predominantly express the inducible nitric oxide synthase (iNOS)
gene and produce nitric oxide (NO). Both pathways promote
depletion of the amino acid l-arginine and down-regulation of
T cell receptor (TCR) ζ-chain expression, consequently leading
to cell cycle arrest (14). Combined production of ROS and NO
results in peroxynitration of TCR and promotes T cell apoptosis
(15). Additionally, expression of indoleamine 2,3 dioxygenase
(IDO) (16), cyclooxygenase (COX1) (17) and the programmed
death-ligand 1 (PD-L1) (18) by activated MDSCs concur to
immune suppression. MDSCs further promote T regulatory
(Treg) cell expansion to prevent anti-tumor T cell effector
functions (11, 19–21). A recent meta-analysis performed on a
cohort of 1864 patients evaluated the prognostic value of MDSCs
in various types of cancers and concluded that their elevated
frequency is associated with shorter overall survival (OS) and
poor disease-free survival/recurrence-free survival (DFS/RFS)
(22). Based on their critical pro-tumor role, efforts are underway
to define strategies that can reprogram or functionally deplete
MDSCs in order to evaluate their antitumor efficacy alone

or in combination with anti-checkpoint inhibitors (ICIs) (23).
Since persistent immunological stress promotes the pathological
differentiation of myeloid cells, MDSC expansion has been
reported also in autoimmune diseases (AD) (12). Similarly, in
some infections, caused either by bacteria (e.g., M. tuberculosis,
Staphylococcus aureus) or viruses (e.g., hepatitis B virus/HBV,
hepatitis C virus/HCV, human immunodeficiency viruses/HIV),
the host’s immune response is not able to remove the pathogen,
which instead persists and leads to a chronic inflammatory
state. In these pathological conditions, the accumulation of M-
MDSCs is stimulated to restrict T cell effector functions and
to recruit Treg cells in order to resolve inflammation and re-
establish immune homeostasis (24, 25). In infections, pathogen
recognition by innate immune receptors (e.g., Toll-like receptor),
other than cytokines and growth factors, is the key event
responsible for M-MDSCs expansion (25).

Targeting MDSCs appears to provide a specular perspective
in cancer vs. autoimmune conditions. Here we discuss
the role of MDSCs in cancer and autoimmune diseases,
highlighting their main suppressor mechanisms and possible
therapeutic interventions.

THE IMMUNOSUPPRESSIVE ARMAMENT
OF MDSCS AND ITS IMPACT IN CANCER

Beyond being highly heterogeneous, MDSCs are also highly
plastic (26), therefore the surrounding microenvironment
shapes MDSCs’ functions to suppress immune responses
through multiple mechanisms (Figure 1), including depletion
of metabolites critical for T cell functions, expression of
immune checkpoint inhibitors, secretion of immunosuppressive
molecules, production of reactive oxygen and nitrogen species
and regulation of lymphocyte homing.

Depletion of Metabolites Critical for T
Cell Functions
A metabolic feature of MDSCs is the up-regulation of
enzymes/transporters that pauperize essential amino acids from
the extracellular space. This results in both microenvironmental
depletion of essential nutrients for T cells and in the generation
of molecules endowed with immunomodulatory activities (e.g.,
nitric oxide, polyamines and kynurenines). Cysteine is an
example of an amino acid that T cells cannot produce either
by intracellular conversion of methionine or by import of
extracellular oxidized cysteine (27). Usually, antigen-presenting
cells couple the import of extracellular oxidized cysteine with
the export of cysteine, thereby creating a circuit of symbiotic
nutrients sharing that feeds T cell activation. In contrast, MDSCs
up-take cystine through the xc- transporter but do not export
cysteine, thus limiting the extracellular pool of cysteine required
for T cell activation (28). MDSCs express copious amount of
IDO1 that converts tryptophan in kinurenines inducing Treg
cells expansion (29), dampening dendritic cell immunogenicity
(30) and concomitantly depriving T cells of an essential
nutrient (31). Several preclinical studies have demonstrated the
therapeutic potential of IDO inhibition in combination with both
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FIGURE 1 | MDSCs inhibit immune responses by multiple mechanisms. (A) MDSCs deplete the extracellular microenvironment of essential nutrients for T cells.

Through the up-regulation of metabolic enzymes (e.g. ARG1, NOS2, IDO1) and ectoenzymes (e.g. CD38) MDSCs consume copious amounts of amino acids (L-Arg,

L-Trp) and NAD, and concomitantly produce molecules endowed with immunomodulatory activities (e.g. nitric oxide/NO, polyamines and kinurenines). Further,

MDSCs internalize cystine without releasing the oxidized L-Cys and up-take of FFA, which fuels FAO and expression of immunosuppressive activities. (B) MDSCs

up-regulate PD-L1 in response to multiple microenvironmental signals, including hypoxia via HIF1α, IFNγ via STAT1/IRF1, MCSF and VEGF via unknown mechanisms.

Up-regulation of COX2 and PGE2 are also found associated with PD-L1 expression. (C) MDSCs release a range of immunosuppressive soluble molecules. They

produce ROS and RNS through NOX-2 and NOS2, adenosine via CD39 and CD73, kinurenines via IDO1, polyamines via ARG1, anti-inflammatory cytokines (IL-10,

TGFβ) and PGE2. Both TGFβ (blue lines) and PGE2 (red lines) also create autocrine loops that sustain the production of additional suppressive molecules. TGFβ

induces the ectoenzymes CD39 and CD73 via HIF-1 α and PGE2 promotes expression of immunosuppressive molecules (IDO1, IL-10, ARG1 and VEGF) as well as

repression of immunogenic-associated genes via DNMT3A. MDSCs also secrete exosomes which contain different molecules, such as immunosuppressive ARG1,

inflammatory S100A8/9 and the oncogenic miR-126a. (D) MDSCs modulate T cell trafficking. They limit homing of naïve T cells to LNs by TACE-mediated cleavage of

CD62L on T cells and they impair extravasation of effector T cells through NO-mediated down-regulation of adhesion molecules CD162 and CD44. In contrast

MDSCs support the recruitment of CCR5+ Treg cells by production of CCL3, CCL4, CCL5.
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chemotherapy and immune checkpoint blockers. Accordingly,
phase II/III human trials will evaluate two small molecule enzyme
inhibitors of IDO1 (epacadostat and GDC-0919/navoximod) in
human cancer patients (32).

Metabolic conversion of L-arginine (L-Arg) through either
iNOS or Arg1 is the first and the main mechanism associated
with the immunosuppressive activities of MDSCs. In addition,
Arg1 supports tumor cell proliferation by producing ornithine
and polyamines, whereas iNOS promotes T cell death through
NO generation and consequent tyrosine nitration and S-cysteine
nitrosation of various proteins (33, 34). Strikingly, a recent paper
reported that bone marrow (BM)-derived MDSCs require direct
cell-cell contact rather than Arg1 expression or production of
soluble factors tomediate immunosuppression in different tumor
models (e. g. melanoma, colon carcinoma and lymphoma) (35).

The expression of Arg1 and iNOS differs among mouse and
human myeloid cells, with the former predominantly expressed
by the granulocytic subset and the latter by the monocytic
counterpart (36). Preclinical studies and clinical trials with
inhibitors of phosphodiesterase-5, (e.g., sildenafil and tadalafil)
pointed out that a reduction of both iNOS and Arg1 activities in
MDSC reactivates antitumor immunity (37–39).

Nicotinamide adenine dinucleotide (NAD) is one of the
most important coenzymes in mammalian metabolic pathways
(40). CD38 is an ectoenzyme that, by consuming extracellular
NAD, leads to mitochondrial dysfunction of surrounding cells,
as observed in metabolic diseases and cancer (41). CD38
was found up-regulated in MDSCs from various preclinical
tumor models and cancer patients (neck cancer and non-
small cell lung cancer). Along with the detrimental effects
associated with depletion of microenvironmental NAD, CD38
generates second messengers associated with calcium signaling
(42), resulting in an increased amount of NO that favors
tumor growth (43). Treatment of multiple myeloma patients
with daratumumab (an antibody directed toward CD38) was
associated with reduction of PMN-MDSCs, suggesting that this
event might contribute to the therapeutic effect of anti-CD38
(44). Beyond being a key regulator of energy metabolism and
ATP production, NAD is the substrate for numerous NAD-
consuming enzymes that participate in cell signaling, including
mono- and poly-(ADP-ribose) polymerases, sirtuins (SIRT) and
CD38/CD157 (45).

Interestingly, in different tumor models (i.e., thymoma and
melanoma) the lack of SIRT1 in MDSCs fuels the glycolytic
pathway through the mTOR-HIF-1α pathway. This metabolic
reprogramming is associated with a functional switch of
immunosuppressive MDSCs toward a pro-inflammatory
(NO, TNF, IL-12) and anti-tumor phenotype (46). Additional
studies confirmed the importance of metabolic pathways
on MDSC activity. In both tumor bearing mice and
humans, tumor-derived cytokines induce expression of cell
surface lipid transport receptors on MDSCs via STAT3
and STAT5 (47). This results in increased fatty acid uptake
and oxidative metabolism in association with activation
of MDSCs’ immunosuppressive mechanisms. Therefore,
hampering the intracellular accumulation of lipids (47) as
well as pharmacological inhibition of FAO (48) blocks the

immunosuppressive functions of MDSCs, improving the efficacy
of either immunotherapy or low-dose chemotherapy.

Expression of Immune
Checkpoint Inhibitors
It is not surprising that several pre-clinical and clinical studies
have found an association between PD-L1 expression by MDSCs
and immunosuppression (49). Mechanistically, the expression
of PD-L1 on MDSCs can be triggered through different
pathways whose relative importance may depend on different
microenvironmental features of tumor regions as well as on
the type of tumor. For example, hypoxia induces PD-L1
expression on MDSCs via HIF-1α (18). In line with this, the
blockade of PD-L1 expression under hypoxia enables MDSCs
to support T cell activation; therefore, the combination of
PD-L1 neutralization with HIF-1α inhibitors could improve
the clinical response of patients with advanced disease. In a
preclinical model of colitis-associated colorectal cancer, PD-L1
emerged to be mainly expressed by tumor-infiltrating M-MDSCs
(CD11b+Ly6C+ cells) in response to IFNγ via STAT1-IRF1 axis
(49). M-CSF and VEGFA produced by human liver cancer cell
lines can induce PD-L1 expression on immature myeloid cells
(CD33DimHLA-DR− cells) isolated from peripheral blood of
healthy donors. Accordingly, circulating PD-L1+MDSCs were
detected in HCC patients and their frequency increased with
disease progression, although it did not correlate with serum
concentration of M-CSF or VEGF (50).

In mouse bladder cancers, PD-L1 expression on tumor-
associated myeloid cells is associated with the expression
of cyclooxygenase-2 (COX2), microsomal prostaglandin E
synthase-1 (mPGES1), prostaglandin E2 (PGE2) and the capacity
to induce apoptosis of CD8+ T cells (51). Either genetic or
pharmacological inhibition of PGE2 restrained tumor-induced
PD-L1 expression on myeloid cells. PGE2 can also directly
and indirectly blunt the activation of CD8T cells (52). Further,
PGE2 has been shown to promote MDSCs activity by inducing
up-regulation of additional immunosuppressive molecules (e.g.,
IDO, IL-10, ARG-1, and VEGF) (53–55), as well as by repressing
immunogenic-associated genes via DNA methyltransferase 3A
(DNMT3A) (56). In agreement, human MDSCs from ovarian
cancer patients display a similar hypermethylation signature
in connection with PGE2-dependent DNMT3A overexpression
(56). Recently, in a pre-clinical model of colorectal cancer there
has emerged a circuit based on down-regulation of receptor-
interacting serine/threonine-protein kinase 3 (RIPK3) in MDSCs
linked to the production of PGE2. This autocrine loop is
crucial for MDSC accumulation and immunosuppressive activity
and the consequent promotion of colon carcinogenesis (57).
Therefore, PGE2 represents a very attractive drugable target
that can be exploited to modulate MDSCs’ immunosuppressive
functions in multiple contexts.

Interestingly, not only are high levels of circulating MDSCs
(CD33+CD11b+HLA-DR−cells) predictive of a poor response
of advanced melanoma patients to ipilimumab (anti-CTLA4)
therapy (58), but circulating MDSCs of non-responders showed
higher expression of PD-L1 by PMN-MDSCs and copious

Frontiers in Immunology | www.frontiersin.org 4 May 2019 | Volume 10 | Article 949

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Consonni et al. MDSCs in Pathology

production of NO byM-MDSCs (59). In line with this, in models
of lung and renal cell carcinoma, entinostat, a class I histone
deacetylase inhibitor, improved the anti-tumor effect of anti-
PD-1 antibodies by reducing the expression of Arg1, iNOS, and
COX2 in MDSCs (60). Therefore, different clinical trials are
studying the combination of entinostat with immune checkpoint
blockade (ICB) in patients with renal cell carcinoma and other
advanced solid tumors (61).

Production of
Immunosuppressive Molecules
MDSCs express high levels of Ectonucleoside triphosphate
diphosphohydrolase 1 (E-NTPDase1, CD39) and the ecto-5’-
nucleotidase, which convert the extracellular ATP released by
dying cells in adenosine. Extracellular adenosine is a powerful
immunosuppressive factor that impairs differentiation of naïve
CD8+ T cells in effector cells (62), inhibits cytolitic activity
of NK and activated T cells (63), and it promotes the
immunosuppressive functions of tumor-associated macrophages
(TAM) and expansion of PMN-MDSCs (64). MDSCs also
produce copious amounts of immunosuppressive cytokines, such
as TGF-β and IL-10, which induce the generation of Treg
cells, differentiation of pro-tumoral IL-12low TAM and direct
suppressive effects on T effector cells (65, 66). TGF-β can
also exert either promoting or inhibiting effects on MDSCs
themselves (67, 68). Exposure of murine BM-derived MDSC
or healthy human PBMCs to TGF-β, along with conditioned
medium of either MEER (murine pharyngeal epithelial cells
expressingHPV16 E6 and E7, and hRas) or human head and neck
squamous cell carcinoma cells (SCC-47), triggered CD11b+Gr1+

MDSCs to acquire antigen-presenting capability and Fas-
dependent tumor cells killing activity (68). Consequently, in
mice transplanted with MEER tumor, the combination of
radiotherapy with intra-tumoral adoptive transfer of TGF-β-
conditioned MDSCs resulted in a durable tumor clearance (68).
In apparent contrast, ex vivo studies indicate that TGF-β skews
differentiation of human peripheral blood CD14+ monocytes
toward immunosuppressive M-MDSCs (67). Accordingly, in
mouse models of lung and mammary carcinoma, disruption
of TGF-β signaling in myeloid cells resulted in decreased
expression of CD39 and CD73, in association with increased
infiltration of T lymphocytes, reduced density of blood vessels
and diminished tumor progression (69). A recent study
highlighted that the frequency of CD39+CD73+ MDSCs in the
NSCLC patients is closely correlated with disease progression
and chemotherapeutic resistance (70). Mechanistically, it was
confirmed that tumor-derived TGF-β triggers CD39 and CD73
expression on circulating and tumor-infiltrating MDSCs via
activation of mTOR/HIF-1α-signaling (70). Along with these
findings, diabetic patients with ovarian carcinoma gain beneficial
anti-tumor effects by metformin treatment. Indeed, this anti-
diabetes drug down-regulates HIF-1α via the activation of the
AMP-activated protein kinase α (AMPKα) and consequently
decreases expression of CD39 and CD73 on both M- and PMN-
MDSCs. Therefore, metformin treatment leads to the reduction

of circulating CD39+CD73+ MDSCs and enhances the anti-
tumor activities of circulating CD8+ T cells, promoting longer
overall survival of ovarian cancer patients (71). New evidence
indicates that MDSCs can secrete exosomes which contain
molecules, such as immunosuppressive Arg-1 (72), inflammatory
S100A8/9 (73) and the oncogenic miR-126a (74). Interestingly,
in vivo administration of PMN-MDSCs derived exosomes
to DSS-treated mice ameliorates colitis, thereby confirming
the immunosuppressive activity of molecules included in the
extracellular vesicles (EV) (72). In cancer bearers, tumor cells are
the major source of circulating EV. Recently a set of microRNAs
(miR-146a, miR-155, miR-125b, miR-100, let-7e, miR-125a, miR-
146b, miR-99b) has been identified that are transferred via EV
from melanoma cells to circulating monocytes, driving their
conversion intoMDSCs. Therefore, high levels of plasmaMDSC-
miRs emerged as valuable predictive peripheral blood biomarkers
of resistance to ICB in cancer (75).

Production of ROS
A major mechanism used by PMN-MDSCs to suppress antigen-
specific T cells is the secretion of copious amounts of
reactive oxygen species (ROS), including superoxide anions,
hydroxyl radicals, hydrogen peroxide and singlet oxygen (34).
Accordingly, in a MDSCs/T cells co-culture system, the addition
of ROS inhibitor catalase blunts the immunosuppressive effects
of MDSCs (76). ROS production by MDSCs is driven by the up-
regulation of NADPH oxidase activity, in particular the NOX2
subunits 47 (phox) and gp91 (phox). Indeed, the lack of NOX2
impaired both generation of ROS by MDSCs and their ability to
suppress antigen-specific CD8+ T cells (77). In addition, NOX2-
dependent ROS production supports MDSC expansion (77)
and recruitment in tumors through the up-regulation of VEGF
receptors (78). Myeloperoxidase is another ROS-producing
enzyme that, along with ARG-1, is more abundantly expressed
by PMN-MDSCs than neutrophils, contributing to suppression
of antigen-specific T cell responses in tumor bearers (79).

MDSCs survive despite elevated levels and continuous
production of ROS through the expression of the Nrf2
transcription factor, an important mediator of the cellular
antioxidant response (80). Indeed, genetic ablation of Nrf2
impaired generation, survival and suppressive potency ofMDSCs
in models of mammary and colon tumor (80). To counteract
the detrimental effects of oxidative stress, MDSCs up-regulate
their anaerobic metabolism (i.e., glycolysis), which leads to the
intracellular accumulation of the anti-oxidative intermediate
phosphoenolpyruvate (81). Overall, targeting redox-regulation of
MDSCs is emerging as a promising therapeutic opportunity in
multiple diseases, such as cancer, infection, inflammation, and
autoimmune disorders (82).

Regulation of Lymphocyte Homing
MDSCs impair T cell activation also by inhibiting the homing
of naïve CD4+ and CD8+ T cells to lymph node (83). This
effect is dependent on down-regulation of CD62L on naïve
T cells through the expression of TNF-α-converting enzyme
(TACE/ADAM17) by MDSCs (84). Growing evidence suggests
that this ability of MDSCs to hinder T cell activation plays a
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crucial role in establishing maternal–fetal tolerance in pregnant
mice and women (85). An expansion of MDSCs in maternal
peripheral blood occurs during human pregnancy, and higher
frequency of circulating PMN-MDSCs has recently emerged as
a favorable predictor of the success rate of in vitro fertilization
treatment (86). In addition, MDSCs can hamper the recruitment
of circulating effector T cells into tissues by inhibiting the
expression of CD162, a ligand of P-selectin and CD44, the
receptor for the extracellular matrix component hyaluronic acid
(HA) (87). The block of effector T cell homing is paralleled
with the recruitment of immunosuppressive T cells. For example,
in two mouse models of melanoma, tumor M-MDSCs produce
CCL3, CCL4 and CCL5 which drive the recruitment of CCR5+

Treg cells (88).

MDSCS IN AUTOIMMUNITY

Autoimmunity is defined as an immune response against self-
antigen. The tolerance against self-antigens is a tightly regulated
process that involves both innate and adaptive immunity and
implies the possibility to eliminate or inhibit self-reactive
lymphocytes. In autoimmune diseases (AD), both genetic and
environmental factors contribute to the breakdown of tolerance
(89), which results in the generation of auto-reactive B and T
cells. Clinical manifestation of AD derives from tissue damage
caused by self-reactive T cells. In contrast to their deleterious role
in tumors, MDSCs have been studied in various models of AD to
evaluate potential beneficial role (90).

Due to their prevalent immunoregulatory phenotype MDSCs
represent an important cell population that can be therapeutically
used to suppress T cell functions. On this line, newwork indicates
their accumulation in secondary lymphoid organs of patients
with autoimmune disorders, including type 1 diabetes, multiple
sclerosis, rheumatoid arthritis, systemic lupus erythematosus,
inflammatory bowel disease and autoimmune hepatitis (91), and
a number of studies have provided insight into the use of MDSCs
for treatment of AD (12).

Autoimmune Diabetes
Type 1 diabetes (T1D) is among the most prevalent autoimmune
diseases worldwide, affecting∼10–20 million people. The disease
occurs as a consequence of a disruption in immune-regulation,
resulting in the expansion of autoreactive CD4 and CD8T cells
and autoantibody-producing B lymphocytes (92), which leads
to the destruction of pancreatic insulin-producing β-cells in the
pancreas (93). Both CD4+ helper T cells and CD8+ cytotoxic T
cells can transfer autoimmune diabetes to immunodeficient hosts
in mouse models (94, 95), and T cells are found in inflammatory
infiltrates surrounding pancreatic islets in T1D patients (96).

Rising evidence of MDSCs’ involvement in the pathogenesis
of T1D opens new potential therapeutic strategies for T1D.
In two different murine models, Yin et al. provided evidence
that adoptive transfer of MDSCs against autoreactive T cells
prevented pancreatic islets damage (97). Furthermore, it was
shown in NOD/SCID mice that temporary B cell depletion
induced expansion of regulatory CD11b+Gr1+ cells, which

directly suppress diabetogenic splenocytic T cell functions in an
IL-10-, NO-, cell contact-dependent manner (98).

It has also been shown that the contribution of the C3
complement factor to the development of autoimmune diabetes
depends directly on MDSCs. In fact, the C3 deficiency in
the Streptozotocin-induced diabetes (STZ) model produces an
increase in the frequency of MDSCs and enhances their ability
to suppress the proliferation of diabetogenic T cells through
arginase/iNOS activity (99).

A paradoxical increase in the frequency of MDSCs was
reported in the peripheral blood of T1D patients, as well as in
the peripheral blood and secondary lymphoid organs of diabetic
NOD mice (100). Of note, this increased frequency of MDSC
was counterbalanced by the decreased MDSC number within the
pancreatic microenvironment of diabetic NOD mice, suggesting
that the lack of islet MDSCs may favor autoimmune diabetes
development (100).

A strong association has been demonstrated between
polymorphisms of NOD-like receptor family-pyrin domain
containing 3 (NLRP3) and predisposition to the T1D. Carlos et al.
showed that the ablation of NLR3P in bothNOD and STZ-treated
diabetic mice, as a consequence of elevated IL-6 expression,
produced an expansion of MDSCs in pancreatic lymph nodes
(PNLs), which inhibits the inflammatory T cells response in
the pancreatic islets and prevents the onset of T1D (101). This
evidence proposes the expansion of MDSCs as strategy for
dampening the autoimmune T cell response and preventing T1D.

Multiple Sclerosis (MS)
MS is an autoimmune inflammatory demyelinating disease
and a prime cause of neurological disability in young adults
(102). Clinically, MS manifests itself as neurological deficits that
frequently exhibit a relapsing and remitting pattern (RRMS)
reflecting the characteristic recurrent bouts of T cell-mediated
attack upon antigens in neuronal myelin sheaths. MS can resolve
completely or leave residual deficits of any grade (102).

Experimental Autoimmune Encephalomyelitis (EAE) is the
most used animal model of autoimmune inflammatory diseases
of the central nervous system (CNS), and it resembles MS. Active
EAE is induced by immunization with CNS tissue or myelin
peptides, such as myelin basic protein (MBP) and proteolipid
protein (PLP) emulsified in various adjuvants, usually containing
bacterial components highly capable of activating the innate
immune system via pattern recognition receptors (i.e., complete
Freund’s adjuvant, CFA) (103). This leads to the peripheral
activation of myelin-specific T cells which are subsequently
recruited together with myeloid cells in the CNS. These
provoke the release of inflammatory cytokines and chemokines,
producing demyelination and CNS damage (103, 104).

In the last decade, the presence and the activation state of
MDSC subsets in MS have been objects of intense investigation.
In a model of experimental autoimmune encephalomyelitis
(EAE), Zhu et al. first characterized the subsets of accumulating
myeloid cells in blood, spleen and CNS. They showed that a small
population of CD11b+Ly6Chi immature monocytic cells could
exert the potent suppression of both CD4+ T cells and CD8+
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T cells ex vivo, inducing their apoptosis through nitric oxide
production (105).

In contrast, two different and independent works highlighted
a more pro-inflammatory and pathogenetic role of the
CD11b+Ly6Chi cell subset. Mildner et al. proposed that
CCR2-expressing CD11b+Ly6Chi monocytes are indispensable
for the pathogenesis of MS due their capability to express
MHC class II molecules and inflammatory cytokines, which
would support local autoimmune encephalitogenic T cell
activation (106).

King et al. instead proposed a dynamic interpretation of
the role of CD11b+Ly6Chi cells in MS. CD11b+Ly6Chi cells
that accumulate in the blood and CNS of mice immunized by
myelin, before the onset of clinical episodes, would behave like
inflammatory monocytes rather than MDSCs. Next, the CNS
microenvironment would evolve during the course of the disease,
inducing a more suppressive and anti-inflammatory phenotype
of CD11b+Ly6Chi immediately before the onset of the remission
phase (107). In line with this, the distribution of protective Arg1-
expressing MDSCs within the spinal cord of EAE mice was
confirmed during the remitting phase (108).

A pivotal role in the regulation of CNS autoimmune
inflammation was provided also for PMN-MDSCs, which
accumulate in the peripheral draining lymph nodes (LNs) and in
the spinal cord of EAE-immunized mice, prior to the remission
phase of the disease (109).Moreover, granulocytic CD33+CD15+

MDSCs were significantly enriched in the peripheral blood of
subjects with active MS (109). Noteworthily, in EAE mice,
adoptively transferred PMN-MDSCs ameliorated the disease and
delayed its onset through the significantly reduced expansion of
autoreactive T cells in the draining of LNs (109).

The initiation and severity of the chronic disease phase in MS
is associated with the accumulation of these B cell aggregates.
Knier et al. showed that the frequency of CD138+ B cells in
the cerebrospinal fluid (CSF) of human patients with MS was
negatively correlated with the frequency of PMN-MDSCs in the
CSF (110).

Analyses of the dynamic of immune cell populations in
the CSF and CNS parenchyma of mice during EAE revealed
a persistent population of Ly6G+ cells recruited to the CSF
space at the beginning of the recovery stage. Cantoni et al.
have recently identified that the decreased number of blood M-
MDSCs in relapsing MS patients is associated with increased
MDSC expression of miR-223 compared to healthy subjects, and
it is accompanied by a reduced expression of STAT3 and Arg1
(111, 112). These data are corroborated by the evidence that miR-
223 deficient mice showed reduced EAE severity and pathology
progression as result of an increase in MDSC number in the
spleen and CNS (112).

Rheumatoid Arthritis (RA)
RA is a systemic AD characterized by a chronic synovitis that
results from the sustained influx of various leukocyte populations
into the synovial space, thereby leading to destruction of the
joint cartilage and erosion of bone (113). CD4+ T cells, and the
cytokinemilieu within the affected joints, are critically implicated
in the pathogenesis of RA, as they promote differentiation toward

pro- and anti-inflammatory T cell subpopulations, including
Th1, Th2, Th17, and Treg cells (114). Elevated levels of pro-
inflammatory Th17 cells as well as defects in anti-inflammatory
Treg cells have been reported in RA patients (115, 116) and in
experimental arthritis in mice (117, 118), but the mechanisms
governing the imbalance of Th17/Treg cells resulting in RA
remain unclear. Discordant results regarding the effect ofMDSCs
on RA have been reported in both preclinical mouse models and
patients (119). Jiao et al. reported that both the prevalence of
circulating MDSCs and plasma Arg1 increased significantly in
RA patients compared to healthy controls and were negatively
correlated with peripheral Th17 cells (116). Unfortunately,
these MDSC-like cells were defined only by phenotypic marker
expression, and the suppressive properties of these cells toward
T cells were not tested in that study. A beneficial accumulation
of MDSCs, mainly PMN-MDSCs, was reported in the spleens
of arthritic DAB/1 mice with collagen-induced arthritis (CIA) at
the peak of the disease (35 days after CIA induction), and these
cells prevented both the proliferation of CD4+ T cells and their
differentiation into Th17 cells in vitro, via an Arg1-dependent
mechanism (120). Moreover, in vivo depletion of PMN-MDSCs
with anti-Gr1 mAb delayed the spontaneous resolution of joint
inflammation in mice with CIA, while adoptive transfer of
CD11b+Gr1+ MDSCs reduced the severity of CIA in vivo and
decreased the number of total CD4+ T cells and Th17 cells
in the dLN (120). It has also been demonstrated that PMN-
MDSCs in synovial fluid (SF) frommice with proteoglycan (PG)-
induced arthritis (PGIA) could potently suppress autoreactive T
cell proliferation and dendritic cell maturation (121). Recently,
the adoptive transfer using three types of splenic MDSCs (total
MDSCs, M-MDSCs and PMN-MDSCs) obtained from CIA
mice demonstrated that all these kinds of MDSCs markedly
ameliorated inflammatory arthritis and profoundly inhibited T
cell proliferation (122). All the aforementioned studies revealed
promising therapeutic effects of MDSCs in an animal model
of RA (120–122). However, a few recent papers have shown
that MDSCs can aggravate inflammatory arthritis in mice
(123–125). Such a discrepancy in the results could be due to
the heterogeneity of MDSCs, inflammatory context-dependent
interaction betweenMDSCs and different subsets of CD4+ T cells
and different states of disease.

Systemic Lupus Erythematosus (SLE)
Lately, the possible involvement of MDSCs in SLE, a systemic
AD characterized by elevated levels of autoantibodies against
nuclear materials (ANAs) and cellular infiltration of various
organs (126), has also been addressed. Administration of
laquinimod, an immunomodulatory drug currently in clinical
trials for MS and lupus nephritis, in a (NZB × NZW)F1
murine model of SLE, delayed lupus manifestation by inducing
expansion of M-MDSCs and PMN-MDSCs in the spleen and
kidney (127). In addition, IL-33 blockade in MRL/Faslpr

mice could significantly ameliorate the severity of SLE
disease, and this therapeutic effect was closely associated
with expansion of MDSCs and Treg cells, accompanied by
reduced Th17 cells and inflammatory cytokines in the serum
and kidneys (128). Another study reported that deletion of
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CD24 in a lupus-like disease model (tm24KO mice) led to the
expansion of MDSCs and Treg cells that augmented immune
tolerance, accompanied with the alleviation of lupus-like
pathology (129).

However, the protective role of MDSCs in lupus is
challenged by much evidence. A significant increase in HLA-
DR−CD11b+CD33+ MDSCs, including both CD14+CD66b−

monocytic and CD14−CD66b+ granulocytic MDSCs, was
reported in the peripheral blood of patients with active
SLE, and the frequency of these populations positively
correlated with serum Arg1 activity, Th17 responses and
lupus severity. Moreover, adoptive transfer of non-MDSC-
depleted PBMCs from SLE patients in NOD/SCID mice,
induced lupus nephritis-like symptoms via Th17 response in
an Arg1-dependent manner (130). A critical pathogenic role
of MDSCs was recently documented also in lupus nephritis
(LN), one of the most severe manifestations of SLE. In
particular, in a TLR-7 agonist imiquimod-induced lupus
mice model, MDSCs induced severe podocyte injury in the
glomeruli of kidneys through increasing ROS, activating p-
38MAPK and NF-κB signaling (131). These data infer that
changes in both percentage and function of MDSCs could
be crucial during SLE development; however, it is still not
clarified which factors influence the behavior of MDSCs in the
lupus microenvironment.

Inflammatory Bowel Disease (IBD)
In IBD an aberrant homeostasis between intraluminal bacterial
antigens and the mucosal immune system leads to chronic
inflammatory pathology. IBD encompasses both Crohn’s disease
(affects any part of the gastrointestinal part) and ulcerative
colitis (affects colon and/or rectum) (132, 133). IBD is widely
considered to result from an overlay aggressive Th1 immune
response and excessive IL-23/Th17 pathway activation, as
well as decreased Treg responses (134). Interestingly, an
increase in the frequency of human CD14+HLA-DR−/low

MDSCs with suppressive properties was observed in the
peripheral blood from IBD patients (135, 136). In agreement,
hyperactivation of STAT3, a known regulator of MDSC
expansion, has been associated recently with protection
from experimental colitis (137, 138), while another study
reported that the resistance to colitis in gp130757F/F mice
occurred via myeloid-specific STAT3 activation, expansion
of PMN-MDSCs in the colon and increased production of
suppressive cytokines (138). In contrast with these observations,
another study showed that adoptively transferred BM Ly6Chigh

cells are recruited into the colon and differentiate into
inflammatory DCs and macrophages (139), contributing to
intestinal inflammation in a TNFα-dependent manner (140)
and triggering proliferation of antigen-specific T cells (141).
In addition, a recent paper reported that IBD patients had
high peripheral blood levels of CD14+HLA-DR−/low MDSCs,
associated with exacerbated IBD (142). Hence, the intrinsic
plasticity of MDSCs renders them prone to conversion into
effector cells; it is very important to evaluate how their
suppressive potential can be harnessed therapeutically to benefit
IBD patients.

Others (Myastenia, Psoriasis,
Uveitis, Trombocytopenia)
Additional evidence supporting the immune regulation
capabilities of myeloid cells in ADs came from a mouse model of
myasthenia gravis, by which McIntosh and Drachman showed
a population of “large suppressive macrophages” (LSM) capable
of suppressing T cell proliferation (143). A counterintuitive role
of MDSCs is emerging in psoriasis. Psoriatic patients display
an increased frequency of granulocytic and monocytic MDSC
subtypes in blood and skin compared to healthy subjects (144–
146). Lauren et al. highlighted a high heterogeneity of MDSCs in
this pathology in terms of a diverse capability to inhibit allogeneic
T cells through the use of either the IL-17/Arg-1 or IFNγ/iNOS
axis as suppressor mechanisms (144). Furthermore, these cells
are capable of producing various molecules, including matrix
metalloproteinase-9 and−1, interleukin-8, growth-related
oncogene, and monocyte chemoattractant protein 1, which
could contribute to further establishing a pro-inflammatory
immune response and confer less immunosuppressive attitudes
to MDSCs (145). Soler et al. showed that psoriatic M-MDSCs
directly suppressed CD8+ T-cell proliferation less efficiently
than healthy control M-MDSCs (146). Kerr et al. have also
described a dynamic presence of MDSCs in the inflamed eye
of autoimmune uveoretinitis (EAU) subjects. In this model,
MDSCs isolated from the inflamed eye were able to profoundly
suppress T cell proliferation (147). In another study, this group
showed an infiltrating subset of CD11b+Gr1+Ly6C+ cells which
suppressed the T cell mediated pro-inflammatory response in
a TNF receptor 1-dependent manner (148). Finally, Hou et al.
have described impaired numbers and suppressive functions
of MDSCs in the blood and spleens of adult patients with
primary immune thrombocytopenia (ITP), where cell-mediated
immune responses are involved in platelet destruction (149). The
overall scenario indicates that MDSC manipulation may provide
therapeutic benefit during the course of autoimmune disorders.

Perspectives of MDSC Reprogramming
in Therapy
The gold-standard treatment for autoimmune diseases relies on
immunosuppressive drugs because of their high effectiveness
in ameliorating symptoms in many patients. However, long-
term and high-dose administration of such drugs can lead
to life-threatening, opportunistic infections and long-term
risk of malignancy (150). Furthermore, the generation of
new therapeutic approaches exploiting the CTLA-4-mediated
costimulatory blockade (151–154) or the neutralization of pro-
inflammatory cytokines (155) frequently result in increased side
effects and lack of responsiveness in long-term administration.
In this scenario, cell-based therapy that exploits the ex vivo
generation of MDSCs represents an interesting perspective for
the treatment of ADs. Indeed, compelling evidence from animal
models has provided insights into the potential therapeutic effects
of MDSCs adoptive transfer in ADs.

In a murine model of arthritis, BM progenitor cells of healthy
mice cultured with a combination of IL-6, G-CSF and GM-
CSF became enriched in MDSC-like cells that potently inhibited
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antigen-specific and polyclonal T-cells proliferation in vitro via
the production of nitric oxide. The injection of BM-MDSCs into
mice with PGIA ameliorated arthritis and reduced PG-specific
T cell responses and serum antibody levels (156). Moreover,
addition of tofacitinib (a small-molecule JAK inhibitor currently
considered as novel therapy of RA) facilitated the in vitro
expansion of MDSCs inhibiting their differentiation to DCs,
and their adoptive transfer in SKG arthritic mice reduced the
severity of the disease (157). A therapeutic effect of BM-derived
MDSCs was demonstrated also in a model of SLE. Intravenous
injection of MDSCs, differentiated from BM cells of C57BL/6
mice upon stimulation with M-CSF and GM-CSF, induced
expansion of Breg cells via iNOS and ameliorated autoimmunity
in Roquinsan/san lupus mice (158). In another study, BM cells
were isolated from wt mice and cultured in the presence of GM-
CSF and HSCs, resulting in the generation of MDSCs. Adoptive
transfer of these MDSCs in mice with colitis, induced by
2,4,6-trinitrobenzenesulfonic acid (TNBS), decreased intestinal
inflammation as well as the levels of IFNγ, IL-17 and TNFα (159).
Likewise, in the study by Su et al., which investigated the role of
MDSCs in the model of TNBS-induced colitis, transplantation of
GM-CSF-induced MDSCs ameliorated intestinal inflammation
and downregulated the levels of proinflammatory cytokines
(160). In the STZ-treated diabetic mice, Hsieh et al. provided
proof that the adoptive transfer of MDSCs, obtained from BM
cells cultured in vitro with GM-CSF, IL-1β, and IL-6 under

normoglycemic conditions, substantially reduced fibronectin
accumulation in the renal glomerulus, ameliorating diabetic
nephropathy (161). In a mouse model of alopecia areata (AA), it
was recently demonstrated that MDSCs can efficiently exert their
activity not only through cell-cell contacts or soluble factors, but
also by their capability to secret exosomes (Exo) (162). Indeed,
Zöller et al. showed that treatment with MDSC-derived Exo
from naïve mice prevented the progression of the disease and
induced partial hair growth as a result of the inactivation of
pro-inflammatory T cells and promotion of T regulatory cell
differentiation (163).

Other potential opportunities of MDSC-mediated cell therapy
apply to allogeneic transplantation. In this regard, Highfill et
al. showed that addition of IL-13 in BM cells cultured with
GM-CSF and G-CSF resulted in the production of suppressive
MDSCs that efficiently inhibited allo-immune rejection (164).
In pancreatic islet transplantation, Chou et al. observed that
the presence of small amounts of Hepatic stellate cells (HpSC)
into DC culture (BM-cells stimulated for 5 days with GM-CSF)
produced a large number of MDSCs that efficiently protected
islet allografts (165). Importantly, in this model of allograft
transplantation, as well as in transplantation of male skin onto
female recipients, it was found that only long-term and multiple
injections of MDSCs significantly improved the acceptance of the
graft (166). This may be due to the observation that in absence
of chronic inflammation MDSCs may terminally differentiate

FIGURE 2 | Schematic role of MDSCs in pathology. Immunological stress induces the expansion of MDSCs that play different roles depending on distinct pathological

and microenvironmental contexts. MDSCs are characterized by the strong ability to suppress T cell functions. Much clinical and preclinical evidence demonstrates

their ability to promote tumor growth and metastasis formation. Given the immunosuppressive phenotype, MDSCs can also play a beneficial role in autoimmune

diseases. As shown in the figure, the expansion of MDSCs is protective in some autoimmune diseases, such as type 1 diabetes, multiple sclerosis, myastenia gravis,

uveitis and trombocytopenia. Their role in systemic lupus erythematosus, inflammatory bowel disease psoriasis and rheumatoid arthritis remains to be further clarified.

The types of tumor and autoimmune diseases in which an expansion of MSDCs have been reported are summarized in the figure. MDSCs, myeloid-derived

suppressor cells; BM, bone marrow.
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toward a pro-inflammatory phenotype (167, 168). This evidence
highlights the need to identify new strategies that stabilize the
suppressive phenotype of MDSCs. In this regard, Greifenberg
et al. showed that BM-MDSCs differentiated in the presence of
LPS and IFN-γ expressed a stable suppressive phenotype (169).
Therefore, although many open questions on the therapeutic
use of MDSCs remain to be clarified, an increasing number of
observations indicate that these cells can potentially be used to
control autoimmune diseases and allograft rejection.

DISCUSSION

MDSCs violently emerge in pathological conditions in an
attempt to limit potentially harmful immune and inflammatory
responses. Mechanisms supporting their expansion and survival
are deeply investigated in cancer, in the perspective to reactivate
specific antitumor responses and prevent their contribution
to disease evolution. These findings will likely contribute to
improve the targeting of MDSCs in anticancer immunotherapies,
either alone or in combination with immune checkpoint
inhibitors. New evidence indicates that the expansion of myeloid
cell differentiation in pathology is subject to fine-tuning,

as its alterations may support either immunosuppression or
autoimmunity. This pathological plasticity is supported by

evidence indicating that common MDSC-associated targets
may be specularly targeted in autoimmunity vs. cancer (12),
and there is now hope that understanding autoimmune
mechanisms might serve as a lesson for the development
of new anticancer therapies. The functional plasticity and
therapeutic ductility of these cells (Figure 2) suggest that
while MDSC inhibition might succeed as anticancer treatment,
their induction is expected to provide therapeutic benefit in
autoimmune diseases.
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