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Abstract 

c-jun, a major component of AP-1 transcription factor, has a wide variety of functions. 

In the embryonic brain, c-jun mRNA is abundantly expressed in germinal layers around 

the ventricles. Although the subventricular zone (SVZ) of the adult brain is a derivative 

of embryonic germinal layers and contains neural precursor cells (NPCs), the c-jun 

expression pattern is not clear. To study the function of c-jun in adult neurogenesis, we 

analyzed c-jun expression in the adult SVZ by immunohistochemistry and compared it 

with that of the embryonic brain. We found that almost all proliferating embryonic 

NPCs expressed c-jun, but the number of c-jun immunopositive cells among 

proliferating adult NPCs was about half. In addition, c-jun was hardly expressed in 

post-mitotic migrating neurons in the embryonic brain, but the majority of c-jun 

immunopositive cells were tangentially migrating neuroblasts heading toward the 

olfactory bulb in the adult brain. In addition, status epilepticus is known to enhance the 

transient proliferation of adult NPCs, but the c-jun expression pattern was not 

significantly affected. These expression patterns suggest that c-jun has a pivotal role in 

the proliferation of embryonic NPCs, but it has also other roles in adult neurogenesis. 
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Introduction 

Activator protein-1 (AP-1) is a transcription factor consisting of homo- or 

heterodimers composed of proteins from various families such as Jun (c-jun, JunB, 

JunD) and fos (c-fos, FosB, Fra1, Fra2) (Herdegen and Waetzig 2001). Among them, 

c-jun is a key component of the AP-1 transcription factor and can form heterodimers 

with other transcription factors (Raivich and Behrens 2006). As a member of immediate 

early genes, c-jun mRNA and protein are immediately upregulated in response to 

various stimuli (Raivich and Behrens 2006). c-jun plays important roles in a wide 

variety of phenomena, including cell cycle control, apoptosis, and axogenesis 

(Wilkinson et al. 1989; Herdegen and Waetzig 2001).  

During development, c-jun mRNA is widely expressed in rodent embryonic tissues. In 

the central nervous system (CNS), the level of c-jun mRNA is high (Wilkinson et al. 

1989). In particular, its mRNA is abundantly detected in germinal layers including the 

ventricular and subventricular zone, consisting of actively proliferating neural precursor 

cells (NPCs) of the telencephalon at embryonic day 14.5 (Wilkinson et al. 1989). c-jun 

mRNA expression level is maximal at postnatal 15 (P15) but gradually declines toward 

the adult stage (Mellström et al. 1991). From the expression pattern analysis, it has been 

suggested that c-jun might be involved mainly in the proliferation of NPCs in the 

embryonic brain.  

In the adult brain, basal c-jun mRNA and protein expression is detected in a small 

fraction of mature cells (Herdegen and Leah 1998). The adult brain also contains 

proliferating NPCs. There are commonly accepted two neurogenic regions: one is the 

subventricular zone (SVZ), lining the lateral ventricle, and the another is the 

subgranular zone of the hippocampus. The NPCs in the SVZ sequentially differentiate 

from slowly cycling neural stem cells (Type B cells), transit amplifying cells (Type C 

cells), and neuroblasts (Type A cells). Subsequently, Type A cells tangentially migrate 

with limited cycles of proliferation to the olfactory bulb (OB) through the rostral 

migratory stream (RMS). Then they migrate radially and finally differentiate into 

granular neurons or periglomerular neurons in the OB (Mori et al. 2005; Lledo et al. 

2006; Ponti et al. 2013).  

In the embryonic brain, radial glia serve as apical progenitors and produce basal 

progenitors, and they constitute the ventricular zone and subventricular zone, 

respectively (Wilsch-Bräuninger et al. 2016). Type B cells in the adult SVZ derive from 

radial glia, and they share astrocyte properties including molecular marker expression 

(Merkle et al. 2004; Mori et al. 2005). Because almost all cells in the germinal layers of 

the embryonic telencephalon seem to express c-jun from in situ hybridization data, there 
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is a possibility that neural precursors in the adult SVZ also express c-jun. But a detailed 

c-jun expression pattern in the adult SVZ has not been examined.  

Adult neurogenesis is tightly regulated. However, proliferation and migration can be 

disrupted under some pathological conditions, such as stroke, traumatic injury, and 

seizures (Parent et al. 2002; Zhang et al. 2004; Mori et al. 2012). In the status 

epilepticus (SE) model rodents, proliferation of NPCs in the adult SVZ is transiently 

enhanced (Parent et al. 2002). Although a lot of studies have shown that c-jun 

expression is induced in neurons and glial cells immediately after seizures in the adult 

brain (Herdegen and Leah 1998), it has not been examined whether c-jun expression is 

upregulated in the adult neurogenic regions after seizures.  

In the present study, we aimed to speculate the function of c-jun in adult neurogenesis. 

1) We examined the expression pattern of c-jun in the adult SVZ by 

immunohistochemistry. And because of the similarity between embryonic and adult 

NPCs as described above, we compared the c-jun expression pattern in these NPCs. 2) 

In addition, we examined whether c-jun expression could be changed in the SE model 

mice. Our findings indicated that c-jun protein was continually expressed in the 

germinal zones throughout life, but a differential expression pattern was found in the 

embryonic and adult NPCs. Moreover, c-jun expression was tightly regulated in the 

adult NPCs after induction of SE.  

 

 

Materials and Methods 

 

Animals 

Timed pregnant ICR mice were used for analysis of the embryonic brain. The day 

when a vaginal plug was detected was defined as embryonic day 0 (E0). Six- or 

seven-week-old male ICR mice were used for analysis of the adult brain. Mice were 

supplied by Japan SLC. Inc. (Hamamatsu, Japan). Mice were maintained under 12-h 

bright/right cycles. All experiments were performed in compliance with the Guidelines 

for Animal Experimentation, Faculty of Medicine, Tottori University under the 

International Guiding Principles for Biomedical Research Involving Animals. 

 

Status epilepticus model mice 

Pilocarpine-induced SE model mice were created as follows. Scopolamine methyl 

bromide (scopolamine; Sigma, St. Louis, MO, USA), pilocarpine hydrochloride 

(pilocarpine; Nacalai tesque, Kyoto, Japan), and phenobarbital (Sigma) were dissolved 
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in phosphate-buffered saline (PBS) at 0.2 mg/ml, 50 mg/ml, and 10 mg/ml, respectively. 

All drugs were administrated intraperitoneally. Scopolamine was administrated at a dose 

of 1 mg/kg to prevent peripheral responses to pilocarpine. Pilocarpine was 

administrated at 300 mg/kg 30 min after the scopolamine. An identical volume of 

scopolamine and PBS was administered to control mice. The behavior of mice was 

observed for 30 min after pilocarpine administration. Most mice started to exhibit 

myoclonus within 10 min. Seizures developed into a continuous tremor and finally into 

generalized clonic seizures with falling that lasted for several seconds. Subsequently, 

the mice exhibited continuous wet-dog shakes and periodical generalized clonic seizures. 

Mice that exhibited a milder behavioral change (no response, sniffing, head-nodding, 

myoclonus or a single attack of generalized clonic seizures without continuous wet-dog 

shakes) were not used for the analysis. To stop the seizures, phenobarbital was 

administrated at a dose of 50 mg/kg 1 h after pilocarpine administration. Mice were 

fixed at 1, 8, or 24 h after pilocarpine administration. For the 1-h mouse group, 

phenobarbital was not administrated.  

 

BrdU labeling experiment 

To detect actively proliferating cells, BrdU labelling was administered. BrdU (Tokyo 

Kasei, Tokyo, Japan) was dissolved in PBS at 10 mg/ml and injected intraperitoneally at 

a dose of 50 mg/mg. Mice were analyzed 2 h after BrdU injection. 

 

Histological procedures 

Tissure preparation 

Timed pregnant female mice were deeply anesthetized with 4% chloral hydrate (600 

mg/kg), and embryonic brains were immersion-fixed with 4% formaldehyde for 4 h. 

Adult mice were deeply anesthetized with 4% chloral hydrate (600 mg/kg) and perfused 

transcardially with PBS, followed by 4% formaldehyde in PBS. The brains were 

removed, post-fixed with the same fixative overnight. All brains were cryoprotected 

with 20% sucrose in PBS, embedded in Super Cryo Mount (Muto Pure Chemicals, 

Tokyo, Japan), snap frozen on dry ice, and cut transversely using a cryostat. Coronal 

sections were made as 12 µm-thick sections attached to the glass slides for embryonic 

brain analysis or 30 µm-thick free floating sections for adult brain analysis. The sections 

were then processed for immunohistochemistry.  

 

Antibodies and immunohistochemistry 

The following primary antibodies were used: rabbit monoclonal anti-c-jun (clone 
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60A8, 1:2000; Cell Signaling Technology, Danvers, MA, USA)(Mazzitelli et al. 2011), 

mouse anti-GFAP (1:400; Sigma), mouse anti-Mash1 (1:2000; BD Biosciences, San 

Jose, CA, USA), guinea pig anti-DCX (1:2000; Millipore, Temecula, CA, USA), goat 

anti-MCM2 (1:100; Santa Cruz Biotechnology, Santa Cruz, CA, USA), mouse 

anti-NeuN (1:200, Millipore), mouse anti-Glutamine Synthase (GS, 1:500, BD 

Biosciences), mouse anti-S100 (1:1000, Sigma), mouse anti-GST- (1:2000, BD 

Biosciences), goat anti-IbaI (1:400, Abcam, Cambridge, UK), rat anti-BrdU (1:200, 

Abcam).  

In some experiments, special treatments were needed. To detect astrocytes, a cocktail 

of anti-GS and anti-S100β antibodies (markers for astrocyte) was used because 

astrocytes are highly heterogeneous, and a single marker cannot label all astrocytes 

(Kimelberg 2004). To retrieve the antigenicity of MCM2, sections were incubated in 

L.A.B. solution (Polysciences, Warrington, PA, USA) for 5 min at room temperature. To 

detect BrdU labeled cells, sections were pretreated with 2 M HCl for 30 min at room 

temperature followed by neutralization with 0.1 M sodium borate (pH 8.5) and three 

washes with PBS.  

Primary antibodies were detected using species-specific donkey secondary antibodies 

conjugated to Alexa- Fluor 488 (1:400; Invitrogen, Carlsbad, CA, USA), Alexa-Fluor 

555 (1:400, Invitrogen), or Cy2 (1:200; Jackson ImmunoResearch, West Grove, PA, 

USA). To visualize nuclei, stained sections were mounted onto glass slides using a 

medium containing 100mM DTT, 50% glycerol, and 5 µg/ml Hoechst 33258. In 

some experiments, primary antibodies were detected with a chromogenic reaction. 

Sections were incubated in 0.3% H₂O₂ for 5 min and incubated with each primary 

antibody, followed by incubation with secondary antibodies conjugated to biotin (1:200, 

Vector Laboratories, Burlingame, CA, USA). The chromogenic reaction was performed 

with an ABC kit (Vector laboratories) and 0.05% DAB solution with 0.05% Nickel 

chloride and 0.015% H₂O₂ for 5 min. 

 

Image acquisition  

Images were acquired using an epi-fluorescent microscope (TE2000, Nikon, Tokyo, 

Japan) equipped with a digital camera (Wraycam-SR130M, Wraymer Microscope, 

Osaka, Japan) or with a light microscope (Opti-photo, Nikon) equipped with a digital 

camera (EOS kiss X8i, Cannon, Japan). Single optical confocal microscopy images 

were acquired using an LSM 780 microscope with a 40x objective lens (Carl Zeiss, 

Oberkochen, Germany).  
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Quantification analysis 

For quantification analysis of the embryonic brain, confocal microscopy images were 

acquired. Every tenth section was collected, and three sections from each embryo were 

used for quantification. For quantification of the adult brain, every tenth coronal section 

was collected from 1.18 mm to -0.10 mm anteroposterior to the bregma, and three 

sections were analyzed from each mouse. For quantification of BrdU+ cells in the 

anterior SVZ of the SE mice, randomly selected three sections from 1.42 mm to 1.72 

mm anteroposterior to the bregma were analyzed from each mouse. 

The number of immunopositive cells with a nuclear-staining pattern, such as c-jun, 

MCM2 and BrdU, was quantified with ImageJ using the particle analysis function 

(https://imagej.nih.gov/ij/). The area was also calculated with ImageJ. DCX+ cells were 

counted manually. The densities of c-jun+ cells are presented as the mean ± standard 

deviation (SD). Level of significance was determined using the two-tailed student’s 

t-test. Three mice were analyzed in each group. Statistical significance was set at p < 

0.05. The statistical analysis was performed using R, a free statistical software package 

(http://www.R-project.org). 

 

 

Results 

 

c-jun protein was expressed in the germinal regions in the brain throughout life 

In the past, almost all c-jun expression pattern analysis in the embryonic brain was 

done by in situ hybridization, and the c-jun protein expression pattern was not clear. Our 

immunohistochemistry results mostly supported those of mRNA expression, but there 

were also inconsistent results. In the telencephalon, c-jun immunopositive (+) cells were 

localized in the germinal layers, close to the ventricle at E14 (Figs. 1a−d). This region 

corresponds to the ventricular and subventricular zones, containing actively 

proliferating NPCs. Interestingly, the c-jun expression level was higher in the dorsal and 

ventral regions than in the middle regions (Figs. 1a−d), and this regional difference was 

not detected in later embryonic stages. This differential expression in the dorsoventral 

axis had not been described in in situ hybridization experiments (Wilkinson et al. 1989). 

Next, to confirm c-jun protein expression in the proliferating cells, we performed 

double immunostaining with anti-c-jun and anti-MCM2, a marker of G1 phase of the 

cell cycle (Maslov et al. 2004). Most of the c-jun+ cells were MCM2+, indicating that 

c-jun+ cells were proliferating cells (Figs. 1e−g, arrows). A notable point was that there 

were only a few c-jun single+ cells in the cortical mantle layers at E14 (Fig.1h, arrows), 
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where a scattered expression of c-jun mRNA was reported (Wilkinson et al. 1989). 

Afterward, the number of c-jun+ cells in the cortical mantle layers increased in the later 

embryonic and postnatal stages (Figs.1i and 1j), supporting the former in situ 

hybridization studies (Wilkinson et al. 1989; Mellström et al. 1991). In the postnatal 

stages, the c-jun protein expression pattern did not largely change in the germinal layers 

(Fig. 1j). 

We found that c-jun protein expression continued into the adult stage in the SVZ (Fig. 

2a). In contrast to the embryonic brain, c-jun immunoreactivity occurred even in the 

dorsoventral axis of the SVZ (Fig. 2a). Double immunostaining analysis revealed that 

there were considerable numbers of c-jun and MCM2 co-expressing cells (Figs. 2b−d, 

arrows). To compare the quantification analysis of c-jun+ cells in the germinal zones in 

the embryonic and adult brain, we analyzed the dorsolateral region of the lateral 

ventricle: a border between the dorsal and ventral pallium. We took advantage of 

selecting this region, because the morphology of the lateral ventricle dramatically 

changes during development, but this dorsolateral region principally conserves its 

morphology during development. Because we found that some ependymal cells, which 

comprised a single layer lining the adult lateral ventricle and were not proliferating 

(Spassky et al. 2005), were also c-jun+, we excluded these c-jun+ ependymal cells from 

the quantification analysis (Figs. 2b−d, dashed line). Quantification analysis revealed 

that the ratio of MCM2+ cells among c-jun+ cells was not significantly different 

between the embryonic germinal layers and the adult SVZ: about 70% of c-jun+ cells 

were proliferating in both stages (Fig. 2e). On the other hand, the ratio of c-jun+ cells 

among MCM2+ cells was significantly lower in the adult SVZ than in the embryonic 

germinal layers (Fig. 2f). These differential expression patterns between embryonic and 

adult NPCs suggest that c-jun is not be essential in proliferation of adult NPCs and may 

have other function(s).  

 

The majority of c-jun+ cells were DCX+ in the adult SVZ 

Next, we examined the possibility that c-jun might be involved in cell migration in 

adult NPCs, because c-jun can enhance cell migration in some types of cells (Jiao et al. 

2010; Lu et al. 2010). First, we analyzed whether c-jun could be expressed in 

post-mitotic migrating cells in the embryonic brain, where there were a few c-jun+ cells 

in the mantle layers as described above (Fig. 1h). The mantle layers in the embryonic 

cortex contain radially and tangentially post-mitotic migrating cells both from the dorsal 

and ventral germinal layers to form the cerebral cortex (Luhmann et al. 2015). And 

these migrating cells express DCX (Gleeson et al. 1999). At E14, DCX 
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immunoreactivity was detected outside the germinal layers (Figs 3a−c), but few 

c-jun/DCX double+ cells were detected (Figs. 1h and 3a−c). On the other hand, a small 

number of c-jun/DCX double+ cells were scattered in the germinal layers (2.12±1.10% 

among c-jun+ cells, n = 3), especially those close to the surface of the ventricle (Online 

Resource 1, arrows). Because DCX is also involved in the proper orientation of mitotic 

spindle angle in embryonic NPCs (Pramparo et al. 2010), these c-jun/DCX double+ 

cells in the germinal layers should not be post-mitotic migrating cells.  

NPCs in the adult SVZ are defined by molecular marker expression; Type B cells 

(GFAP+), Type C cells (Mash1+), and Type A cells (DCX+) (Ponti et al. 2013). To 

identify c-jun+ cells, we examined marker expression in c-jun+ cells in the adult SVZ. 

Virtually no immunoreactivity was detected in GFAP+ cells (Figs. 3d−f). Although 

c-jun was expressed both in Mash1+ (Figs. 3g−i) and DCX+ cells (Figs. 3j−l), the 

majority of c-jun+ cells (61.86±10.49% among c-jun+ cells, n = 3) were DCX+. Thus, 

there is a possibility that c-jun could have some role in cell migration in adult 

neurogenesis. 

 

c-jun was expressed in tangentially but not radially migrating adult NPCs  

Next, we analyzed the c-jun expression pattern along the rostrocaudal axis of the 

SVZ-RMS-OB system, the migration pathway of the NPCs. The density of c-jun+ cells 

gradually decreased in the OB, but there was a substantial number of c-jun+ cells in the 

core of the OB (Figs. 4a−c). In the granule cell layer (GCL) of the OB, there were also 

many intensely labeled c-jun+ cells (Fig. 4c), but they did not express DCX (Figs. 4d−f, 

open arrowheads). c-jun+ cells in the GCL were NeuN+ mature neurons (Figs. 4g−I, 

arrows). 

Type A cells migrate with several rounds of mitosis (Ponti et al. 2013). Thus, we 

examined several markers for cell proliferation in the SVZ-RMS-OB system. MCM2 

was expressed in the entire SVZ-RMS and even in the core of the OB (Figs. 5a−c). On 

the other hand, BrdU+ cells were detected mainly in the SVZ (Figs. 5d−f). Our BrdU 

labelling protocol, with single injection and short-term survival period, effectively 

labels actively proliferating cells (Codega et al. 2014). The lengths of S phase and M 

phase of the cell cycle are relatively stable, but the length of G1 phase is variable: 

slowly cycling cells have a longer G1 phase (Takahashi et al. 1995; Zhang et al. 2008). 

In addition, both slowly and fast cycling cells can be detected with anti-MCM2 

antibody (Maslov et al. 2004). These results indicate that the proliferation activity of 

Type A cells gradually decreased and almost completely ceased after the cells exited the 

RMS. Our results indicated that c-jun was expressed in tangentially migrating and 
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slowly cycling cells in the RMS. In addition, it is still difficult to determine whether 

c-jun is involved in cell migration in the adult neurogenesis.  

 

The density of c-jun expression in the SVZ did not change after 

pilocarpine-induced SE 

To further examine the role of c-jun in adult neurogenesis, we analyzed 

pilocarpine-induced SE mice for whether c-jun protein expression could be upregulated 

in the SVZ, correlating with the transiently enhanced proliferation of NPCs (Online 

Resource 3) (Parent et al. 2002).  

In the control brain, a large number of c-jun+ cells were detected in the SVZ (Figs. 6a 

and 6b). However, in other regions, the number of c-jun+ cells was at a basal level (Fig. 

6a). In the SE brain, c-jun immunoreactivity was also detected in the SVZ (Fig. 6c and 

6d), and prominent upregulation was detected in neurons and glial cells all over the 

brain (Figs. 6d, arrows, and 6e−h). However, the density of c-jun+ cells in the SVZ did 

not significantly change (Fig. 6i).  

 

 

Discussion 

 

In the present study, to speculate the function of c-jun in adult neurogenesis, we 

examined the c-jun expression pattern in the adult SVZ by immunohistochemistry. In 

addition, the c-jun expression pattern was compared between the embryonic and adult 

brain. 

 

Embryonic brain 

During mid-gestation periods, NPCs actively proliferate in the germinal layers, and 

after their final division, post-mitotic young neurons radially or tangentially migrate to 

their final destinations (Luhmann et al. 2015). In this process, c-jun protein was mainly 

detected in the proliferating cells in the ventricular and subventricular zone of the 

telencephalon. This immunohistochemical data support the former in situ hybridization 

data. Indeed, c-jun is expressed in the various types of proliferating cells, including 

tumors (Ouafik et al. 2009; Blau et al. 2012). These results suggest that in the 

embryonic brain, c-jun might have important roles in cell cycle regulation in actively 

proliferating cells.  

On the other hand, post-mitotic migrating young neurons were not c-jun+, but some 

neurons after finishing migration expressed c-jun again. Because basal and 
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stimuli-induced c-jun protein expression can be detected in mature neurons in the adult 

brain (Herdegen and Leah 1998), there should be another function of c-jun in post 

mitotic neurons. Dendrites and spines are not static and are newly formed or retracted 

depending on brain activity (Trachtenberg et al. 2002; Lee et al. 2006). In fact, c-jun can 

induce neurite extension (Herdegen and Waetzig 2001; Raivich et al. 2004). 

Furthermore, the c-jun protein expression level reaches its peak around P15 (Herdegen 

and Leah 1998). In this period, neuronal connections or synaptic formation in the cortex 

is abundantly formed, then gradually selected, or pruned (Pinto et al. 2013; Miyamoto et 

al. 2016). Thus, basal c-jun expression in neurons might reflect neuronal maturation or 

activity.  

There was a discrepancy between the present results and former reports. It was 

reported that a scattering of c-jun mRNA was detected in the mantle layers at E14 

(Wilkinson et al. 1989); however, we could detect only a few c-jun+ cells in the mantle 

layers. The gap between the transcription and translation of c-jun is relative short 

because it is a member of the immediate early genes (Herdegen and Leah 1998). 

Therefore, the gap may be much longer in the developing brain due to 

posttranscriptional regulation (Bolognani and Perrone-Bizzozero 2008).  

 

Adult brain 

Through the postnatal stages, c-jun protein expression remained in the germinal layers 

around the lateral ventricle. However, its expression pattern in the adult brain was 

distinct from that of the embryonic brain. First, about 70% of c-jun+ cells were MCM2+ 

in both stages, but the ratio of c-jun+ cells among MCM2+ cells was significantly lower 

in the adult SVZ than in the embryonic germinal layers. Second, c-jun was expressed in 

a sub-population of Type C cells (fast proliferating cells) in the SVZ and in slowly 

cycling Type A cells in the RMS. These results suggest that c-jun might not only 

promote the fast proliferation of NPCs but also be involved in other functions in the 

adult brain. 

Our analysis revealed that, in the adult brain, the majority of c-jun+ cells were the 

tangentially migrating Type A cells in the SVZ. We found that radially migrating DCX+ 

cells in the OB did not express c-jun. However, a sub-population of mature granular 

neurons did express c-jun again after they had differentiated into mature neurons. Thus, 

c-jun might have some roles in cell migration. In fact, it was reported that deletion of 

endogenous c-jun caused a reduction in migratory velocity and invasiveness in 

mammary tumor epithelial cells (Jiao et al. 2010). Moreover, GDNF induces the cell 

migration of glioma via the JNK/c-jun pathway (Lu et al. 2010).  
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Alternatively, c-jun might have some roles in directing the tangential migration of 

NPCs. Tangential and radial migration of adult NPCs is regulated by distinct factors 

(Lledo and Saghatelyan 2005; Lalli 2014). Among them, a direction switch is induced 

by down-regulation of the sphingosine 1-phosphate receptor 1 (S1P1), resulting in 

downregulation of NCAM, and 1 integrin expression, in migrating neuroblasts 

(Alfonso et al. 2015). The c-jun expression pattern in the RMS along the rostrocaudal 

axis suggests that c-jun might be responsible for tangential but not radial migration in 

the SVZ-OB system.  

 

SE brain 

c-jun protein upregulation has been thoroughly analyzed by immunohistochemistry in 

the adult brain after various stimulations (Herdegen and Leah 1998), but it remains 

unclear whether c-jun expression could be changed in the adult SVZ by some stimuli. 

Supporting former studies, c-jun protein was upregulated both in neurons and glial cells 

in other parts of the “non-neurogenic” brain regions, such as the striatum, after 

induction of SE. However, we found that c-jun expression was stable at least 24 h after 

induction of SE. These results clearly suggest that c-jun expression is under the control 

of a different mechanism in neurogenic and non-neurogenic regions, and c-jun 

expression is tightly regulated in the SVZ.  

There have been many reports indicating that proliferation of NPCs in the SVZ can be 

affected by excess neuronal excitation under pathological conditions (Zhang et al. 2004; 

Zhang et al. 2008; Kernie and Parent 2010). Pilocarpine-induced SE leads to transient 

upregulation of NPC proliferation (Parent et al. 2002). On the other hand, although 

migration of NPCs toward the OB is partially dispersed in the SE brain, the gross 

migration direction and the migration speed in the SE brain is normal (Parent et al. 

2002). Considering the present study indicating the stable c-jun expression after 

induction of SE, it is also suggested that c-jun might not only be involved in cell cycle 

regulation in adult neurogenesis. 

 

Function of c-jun in adult neurogenesis 

Our results suggest that c-jun might have distinct functions in embryonic and adult 

neurogenesis. In the adult SVZ-RMS-OB system, c-jun could be involved in the 

migration of NPCs, in addition to proliferation. c-jun has a wide variety of functions, 

and its function in adult neurogenesis is complicated. It is important to note that c-jun 

was expressed in a sub-population of adult NPCs. Adult NPCs in the SVZ are highly 

heterogeneous with regional identity and diverse differentiation fates (Merkle et al. 
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2007), and c-jun could have different functions in each small sub-population of adult 

NPCs. Unfortunately, there not exist any specific molecular markers to distinguish each 

sub-population.  

During adult neurogenesis, nearly half of newly generated cells undergo cell death 

(Biebl et al. 2000; Petreanu and Alvarez-Buylla 2002). Because c-jun induces apoptosis 

through the JNK/c-jun pathway (Herdegen and Waetzig 2001) and because 

phosphorylated JNK, an active form of JNK, is also expressed in the SVZ (data not 

shown), there is a possibility that c-jun might have some roles in the elimination of 

newly generated cells in the SVZ and RMS. However, because the number of TUNEL+ 

apoptotic cell in the SVZ and RMS is much lower than the number of c-jun+ cells 

(Biebl et al. 2000), induction of cell death by c-jun could be limited if possible.  

To examine the function of c-jun in vivo, knockout mice of c-jun should be useful. 

Brain specific c-jun conditional knockout (cKO) mice were generated (Raivich et al. 

2004). They have a normal gross brain morphology (Raivich et al. 2004) and can 

survive because c-jun function is compensated for by other AP-1 transcription factor(s) 

at least in the developing and normal adult brain (Passegué et al. 2002). But those cKO 

mice have impairment of axonal regeneration at the adult stage (Raivich et al. 2004). 

There are still possibilities that those cKO mice have some defectiveness in the adult 

NPCs. Further detailed analysis is required to elucidate the function of c-jun in adult 

neurogenesis. 

 

In conclusion, the present study revealed the c-jun protein expression pattern in the 

adult neurogenic region by immunohistochemistry and compared it with the embryonic 

brain. Our results suggest that c-jun might have distinct functions in embryonic and 

adult NPCs. In the embryonic NPCs, c-jun plays an important role in cell proliferation. 

On the other hand, c-jun activity might require proliferation, migration, and/or other 

phenomena in the sub-population of adult NPCs. 
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Figure legends 

 

Fig. 1 

c-jun protein is expressed in the embryonic and postnatal brain. (a−d) c-jun is expressed 

in the germinal layers of the E14 telencephalon. High magnification images in boxed 

areas are shown. c-jun immunoreactivity is more intense in the dorsal and ventral 

regions. Epi-fluorescent microscopy images are shown. (e−g) The majority of c-jun+ 

cells are MCM2+ proliferating cells at E14 (arrows). Single optical images of confocal 

microscopy are shown. (h−j) c-jun+ cells keep localizing in the germinal layers around 

the ventricle (dashed line). In the mantle layers, the number of c-jun+ cells increases 

with time. Light microscopy coronal-section images with chromogenic reaction from 

(h) E14, (i) 18, and (j) P2W brains are shown. CTX, cerebral cortex; GL, germinal 

layers; LV, lateral ventricle; ML, mantle layers; Str, striatum. Scale bars, 500 μm and 

200 μm in d for low and high magnification images, respectively, 50 μm in g, 50 μm, 

100 μm ,250 μm in j for h, i, j, respectively. 

 

Fig. 2 

c-jun protein is expressed in the adult SVZ. (a) Dense and basal c-jun immunoreactivity 

is detected in the adult SVZ (dashed line) and other parts of the brain (arrows). High 

magnification images in boxed areas are shown. Epi-fluorescent microscopy images are 

shown. (b−d) The majority, but not all, of c-jun+ cells in the adult SVZ are MCM2+ 

proliferating cells (arrows). Closed arrowheads and open arrowheads indicate c-jun 

single+ cells and MCM2 single+ cells, respectively. Ependymal cells are also c-jun+ but 

are not proliferating (dashed line). Single optical images of confocal microscopy are 

shown. (e) About 70% of c-jun+ cells are MCM2+ proliferating cells both in the 

embryonic germinal layers at E14 and in the adult SVZ. (f) Almost all MCM2+ 

proliferating cells in the embryonic germinal layers at E14 are c-jun+, but about half of 

them are c-jun+ in the adult SVZ. ns, not significant; **, p <0.01. cc, corpus callosum. 

Scale bars, 500 μm and 100 μm in a for low and high magnification images, respectively, 

50 μm in d. 

 

Fig. 3 

c-jun+ cells are migrating neuroblasts in the adult brain. (a−c) c-jun is not expressed in 

DCX+ cells. Arrowheads indicate c-jun single+ cells. (d−f) In the adult SVZ, virtually 

all c-jun+ cells are not GFAP+ (arrowheads), but there are only a few double+ cells 

(arrow). Many Mash1+ (g−i) and DCX+ (k−l) cells are c-jun+ (arrows). Closed 
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arrowheads and open arrowheads indicate c-jun single+ cells and marker single+ cells, 

respectively. Single optical images of confocal microscopy are shown. Scale bar, 50 μm 

in l. 

 

Fig. 4 

c-jun is expressed in the sub-population of tangentially migrating cells. (a−c) c-jun 

immunoreactivity decreases in the core of the OB. (d−f) c-jun+ cells are not DCX+ in 

the granule cell layer of the OB (open arrowheads), but they are NeuN+ mature neurons 

(arrows, g−i). Dashed lines indicate the SVZ, RMS, and core of the OB. Single optical 

images of confocal microscopy are shown. GCL, granule cell layer. Scale bar = 50 μm. 

 

Fig. 5 

The immunoreactivities of cell proliferation markers change along the SVZ-RMS-OB 

migration pathway in the adult brain. (a−c) MCM2 immunoreactivity is maintained 

even in the core of the OB. (d−f) Most BrdU+ cells are detected in the SVZ but not in 

other regions by a single injection and short-term survival protocol. Scale bar = 50 μm. 

 

Fig. 6 

c-jun protein expression is not affected by pilocarpine-induced status epilepticus. c-jun+ 

cells in the control (a and b) and SE (c and d) brains are shown. In the SE brain, induced 

c-jun protein expression is detected outside the SVZ (arrows). Epi-fluorescent 

microscopy images are shown. c-jun protein induction in the SE brain is not only in 

neurons (e) but also in astrocytes (f), oligodendrocytes (g) and microglia (h) in the 

striatum. Merged single optical images of confocal microscopy are shown. 

Co-localization of signals is shown as an orthogonal image. (i) The density of c-jun+ 

cells in the SVZ is not significantly different between the control and SE group. Scale 

bars = 500 μm and 100 μm in a for low and high magnification images, respectively, 25 

μm in h. 

 

Online Resource 1 

c-jun+ cells are not migrating cells of the embryonic brain. 

At E14, there is a scattering of c-jun+ cells lining the surface of the lateral ventricle that 

are DCX+ (arrows), and some of them are in telophase (double arrow). Single optical 

images of confocal microscopy are shown. Scale bar = 12.5 μm. 

 

On line Resource 2 
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Status epilepticus enhances proliferation of adult NPCs. In the anterior part of the SVZ, 

larger number of BrdU+ cells are detected in the SE group (b) than in the control group 

(a) 1 week after induction of SE. Light microscopy images are shown. (c) The number 

of BrdU+ cells is compared (n = 3). *, p <0.05. Scale bar = 200 μm. 
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