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Abstract—A fundamental drawback of traditional Intelligent
Tutoring Systems (ITS) is that, unlike human tutors, they are
not able to understand the emotional state of their users and
adapt the learning process accordingly. This work explores the
potential use of affective computing techniques for providing an
affect detection mechanism for ITS. Electrocardiography (ECG)
and electromyography (EMG) signals were recorded from 45
individuals that undertook a computerised English language test
and provided feedback on the difficulty of the test’s questions.
Features extracted from the ECG and EMG signals were then
used in order to train machine learning models for the task of
predicting the self-perceived difficulty level of the questions. The
conducted supervised classification experiments provided promis-
ing results for the suitability of this approach for enhancing ITS
with information relating to the affective state of the learners,
reaching an average classification F1-score of 75.49% for the
personalised single-participant models and a classification F1-
score of 64.10% for the global models.

Index Terms—Intelligent Tutoring Systems(ITS), Affective
computing, ECG, EMG, Physiological Signals, Machine learning

I. INTRODUCTION

Advances in the field of Intelligent Tutoring Systems (ITS)
have provided alternatives to traditional teaching approaches
by requiring minimal input from tutors and by being able to
provide immediate and personalised feedback to the learner.
ITS have the ability to adapt the learning process based on
information gathered about the learner in terms of his/her
capabilities, prior knowledge, performance, and needs [1]–[3].
Nevertheless, ITS face some challenges in relation to tradi-
tional teaching methods. Ma et al. [4] conducted a review on
studies about ITS and reached the conclusion that ITS are still
not mature enough to completely replace traditional teaching
and learning practices although they have been proven to be
very effective in many areas. Another significant drawback
pointed out by Nye [5] is that typical ITS are more suitable
for developed countries and their use in developing countries
faces many challenges.

Many of the challenges that ITS face stem from the lack
of direct learner-tutor interaction. Human instructors are able
to infer the affective/emotional state of a learner and adapt
the learning and teaching process accordingly, an ability that
traditional ITS lack [1]. Approaches to address this challenge
focus on using methods for detecting the affective state of the
learner and attempting to adapt the learning process using the
affective information in combination with information such as
knowledge level, performance, etc. [6], [7]. This approach led
to the creation of a new type of ITS, called Affective Tutoring
Systems, based on the belief that emotions and affective state
are fundamental for thinking and learning [1], [8]–[10].

Ben Ammar et al. [8] showed that the learning process can
be negatively affected by negative emotions, while on the other
hand, positive emotions can significantly assist the learning
process. Research on the effect of specific emotions on the
learning process by Andres et al. [11] came to the conclusion
that delight is a very strong indicator for inquisitiveness to
learn but is not necessarily indicative of knowledge, contrary
to boredom, which was shown to be a strong indicator of
knowledge but not always indicative of learning. A study by
Bosch and D’Mello [12] on the most frequent emotions of
learners within an ITS context showed that curiosity, boredom,
engagement, frustration, and confusion are the most common
affective states of learners. The same study also concluded
that engagement and curiosity, along with frustration and
confusion are the most frequent pairs of emotions co-occurring
in learners within an ITS context.

Considering the effect of affect in the ability of learners
to learn, Affective Tutoring Systems utilise affect detection
methods, such as facial expressions [8], facial features com-
bined with neural networks [13], facial and voice features [14],
etc., in order to detect the affective state of the learner and
adapt the learning process accordingly. A field of research
that can potentially provide solutions for the detection of
affect in ITS is the field of Affective Computing. Affective



Computing refers to computing that relates to emotions [15]
and emotion/affect recognition is one of its main focuses [16].
Within this field, multiple studies [17]–[21] explored the rela-
tion between physiological signals, such as electroencephalog-
raphy (EEG), electrocardiography (ECG), electromyography
(EMG), electrodermal activity (EDA), and others, and the
affective state of humans in terms of the Valence and Arousal
dimensions, as defined by Russel in his Circumplex Model of
Affect [22].

In this work, we conducted a proof-of-concept study in order
to examine the use of ECG and EMG signals acquired using
wearable wireless off-the-shelf sensors for the task of detecting
the affective state of learners participating in a computerised
English language test. ECG and EMG signals were recorded
for the whole duration of the test, and were used for the
extraction of spatial and spectral features that were used to
train machine learning models for the task of predicting the
difficulty level of the test’s questions, as perceived by the users.
Predicting the perceived difficulty level of a question would
allow an ITS to provide a personalised learning experience to
a user by being able to adapt its difficulty and provide feed-
back relevant to the needs of the user. Forty five individuals
participated in this proof-of-concept study and results from
the conducted supervised classification experiments reached a
classification F1-score of 64.10% for multi-participant (global)
models and an average classification F1-score of 75.49%
for single-participant (personalised) models for the task of
predicting the questions’ difficulty level.

The rest of the paper is organised into three sections. The
methodology followed is described in Section II, while results
are presented in Section III. Finally, conclusions are drawn in
Section IV.

II. METHODOLOGY

A. Experimental protocol

The experiment took place within a quite environment
with low noise levels and no external disturbances, in order
to ensure that the affective state of the participants would
not be affected by factors not related to the experiment.
Before starting, the experiment and the experimental procedure
were thoroughly explained to the participants. After signing a
consent form for their participation and data handling, the four
ECG electrodes were attached to both lower ribs and clavicle
of the participant, and the three EMG electrodes were attached
to the upper trapezius muscles.

ECG signals provide a measurement of the electrical activity
of the heart and were captured for the whole duration of the
experiment at a 256 Hz sampling rate, using a SHIMMER v2
wireless sensor [23]. EMG signals provide a measurement of
the electrical activity of the muscles and were also captured for
the whole duration of the experiment at a 256 Hz sampling rate
using a SHIMMER v2 wireless sensor [23]. The SHIMMER
ECG and EMG devices (Fig. 1) have been previously used suc-
cessfully for affective computing studies [18], [21] and were
selected due to their small form-factor, low weight, portability,
and wireless characteristics that limited the discomfort of the

Fig. 1: The SHIMMER v2 wireless ECG (left) and EMG
(right) devices.

participants due to the presence of equipment. A typical laptop
computer (Intel i5-5300U @2.3 GHz CPU, 4.0 GB of DDR3
RAM, Windows® 10 OS) was used for signal recording and
monitoring. After verifying that the ECG and EMG devices
were transmitting correctly, participants were asked to sit in
front of a computer in order to proceed with the test and the
supervising researchers left the room in order to not affect the
participants.

The participants were asked to undertake a computerised
English language test comprised of 20 multiple choice ques-
tions that could be answered by selecting the appropriate
answer using the computer’s mouse. The 20 questions were
taken from the Oxford Quick Placement Test (QPT) Version
1 [24], which is a standardised test for assigning test takers
to levels according to the Common European Framework of
Reference for languages (CEFR) [25] for assessing foreign
language skills. The Oxford QPT contains 40 questions of
varying difficulty that are designed to test four different skills:
(a) the use of phrase forms for understanding the meaning
of short notices, (b) the level of grammatical knowledge, (c)
knowledge of pragmatic meaning and linguistic contextual
information, and (d) the level of grammar and vocabulary. Five
questions referring to each of the four skills were selected for
the experiment in order to reduce the total time of the test and
avoid tiring the participants, thus remaining focused.

Participants were also prompted by the test platform to as-
sess the difficulty of each question immediately after providing
the answer, by selecting one of the following difficulty levels:
Very easy, Easy, Moderate, Hard, and Very hard. Finally,
the experiment finished after the participants answered and
assessed all the 20 questions of the test.

B. Participants

Forty five participants (34 male, 11 female) were recruited
among international students from the areas of Paisley and
Glasgow in Scotland, United Kingdom. Their average age was
28.1 years (σage = 6.0, minage = 16, maxage = 47) and the
prerequisites for participating in the study were to have at least
basic knowledge of the English language, being healthy, and
have sufficient computer skills to interact with a web browser
interface using a computer mouse.
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Fig. 2: Average time taken (s) for a question in relation to the
self-perceived difficulty level.

Since there was no time limit for answering the test’s
questions, the overall time spent for the experiment by each
participant varied, with the average duration being 416 s
(σduration = 119 s). The difficulty of each question affected the
duration of the experiment for each participant. As shown in
Fig. 2, participants needed more time to answer a question that
they considered more difficult, with the time needed increasing
linearly with the increase in self-perceived difficulty (linear fit
R2 = 0.977). Furthermore, as expected, the difficulty level
of a question also affected how successful the participants
were in answering it. As shown in Fig. 3, the percentage
of successfully answered questions decreased linearly with
the increase of the self-perceived difficulty level (linear fit
R2 = 0.987).

Regarding the overall performance of the 45 participants on
the used English language test, each participant was assigned
to an English language knowledge level depending on the per-
centage of the test’s questions that he/she answered correctly,
as follows: Poor (0-50%), Beginner (50-60%), Elementary
(60-70%), Intermediate (70-80%), Advanced (80-90%), and
Expert (90-100%). Only two participants were assigned to
Poor level and none to Expert level, with the majority of
participants being assigned to at least Beginner level, as shown
in Fig. 4.

C. Signal pre-processing

The acquired ECG and EMG signals were recorded as con-
tinuous signals for the whole duration of each experiment. The
timestamps associated with when a question was presented to
a participant and when the participant answered the question
were used in order to segment the ECG and EMG recordings
into segments associated with a single question each. This
process led to 20 ECG and 20 EMG signal segments for each
participant. Furthermore, each segment was annotated with the
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Fig. 3: Correctly answered questions (%) per self-perceived
difficulty level.
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Fig. 4: Distribution of assigned English language level across
participants.

difficulty level reported by each respective participant for each
respective question.

Then, in order to reduce the effects of noise and artefacts,
the ECG and EMG signals were pre-processed as follows:
Baseline wander was removed from the ECG signals by first
applying a median filter with a 200 ms window, then applying
a median filter with a 600 ms window, and finally subtracting
the filtered signal from the original ECG signals [26]. The
approach followed by [27] was followed for the pre-processing
of the EMG signals. The peaks with values within the lowest
or highest 3% values within the signal were first cut, followed
by applying a 3rd order Butterworth FIR lowpass filter (0.4 Hz
cutoff frequency). Finally, the filtered signal was normalised
in the range [0, 1].

D. Feature extraction

Spatial and spectral features were extracted from the ECG
and EMG signals after the pre-processing step in order to be
used for training machine learning models:

1) EMG-based features: Twenty one features that have
been previously used in affective computing studies (e.g. [21])



were extracted from the EMG signals using the Augsburg
Biosignal Toolbox (AuBT) [27]. The features included the
mean, median, standard deviation, minima, maxima, and the
number of times per time unit that the signal reached the
minima and the maxima, and were extracted from the original
EMG signal, its first derivative, and its second derivative. The
21 computed features were then concatenated in order to create
the final feature vector.

2) ECG-based features: Eighty four features, related to the
raw ECG signal and the heart rate variability (HRV), that have
been commonly used in affective computing studies (e.g. [17],
[18], [21]) were extracted from the ECG signals using the
AuBT [27]. The features included the mean, median, standard
deviation, minima, maxima, and range of the HRV histogram,
the number of intervals with latency > 50 ms from HRV, the
power spectral density (PSD) of HRV between the intervals
[0 , 0.2], [0.2 , 0.4], [0.4 , 0.6] and [0.6 , 0.8], and the mean,
median, standard deviation, minima, maxima, and range from
the raw ECG signal and from the derivative of the PQ, QS
and ST complexes within the ECG signal. The 84 computed
features were then concatenated in order to create the final
feature vector.

3) Fusion of ECG and EMG features: Future fusion was
also examined since it has been shown to lead to increased
performance in affective computing studies [19], [28]. The
ECG and EMG features were concatenated in order to create
the fused feature vector after normalising them to the range
[0, 1] in order to address the issue of different range of values.

E. Classification experiments

In order to evaluate the feasibility of using ECG and EMG
signals to predict the self-perceived difficulty level of the test’s
questions, we designed two supervised classification experi-
ments. The first experiment attempted to create a global model
for difficulty level prediction using the data acquired from
all participants. The second experiment focused on creating
single-participant personalised models by creating a separate
classification model for each participant. To simplify the
examined problems, both problems were converted to binary
classification problems, as commonly practised in affective
computing studies [17]–[19], [21]. To achieve this, samples
annotated as Very easy or Easy were classed as referring to
Low difficulty, and samples annotated as Hard or Very hard
were classed as referring to High difficulty. Samples annotated
as Moderate were discarded since they could not be assigned
to either binary difficulty class, as the original number of
difficulty classes was odd. As a result of this process, only
697 out of the 900 samples were used for the final analysis.
A close inspection of the final class distribution revealed that
the final dataset was biased towards the Low difficulty class,
with 79.5% of the samples belonging to it. To avoid discarding
additional samples in order to balance the dataset, we opted to
use the F1-score as a metric of classification performance and
conduct a statistical significance analysis to examine whether
the trained models are severely biased towards the majority
class.

III. EXPERIMENTAL RESULTS

Machine learning models were trained using the extracted
ECG and EMG features for the task of predicting whether
the difficulty of a question belongs to the Low or High
class. Various classification algorithms were examined, such
as Linear Support Vector Machines (LSVM), SVM with the
Radial Basis Function (RBF) kernel, k-Nearest Neighbour
(kNN) for k = 1, 3, 5, Linear Discriminant Analysis (LDA),
and Decision Trees (DT), using the Matlab (R2018a) imple-
mentations. The F1-score was selected as the metric of classi-
fication performance since it constitutes a better classification
performance metric than classification accuracy in cases of
unbalanced datasets such as the one in this work. The F1-
score is computed as:

F1 = 2 · Pr ·Re
Pr +Re

(1)

where Pr denotes the precision and Re the recall. Further-
more, since the F1-score depends on which class is considered
as positive, in this work, the reported F1-scores refer to the
average F1-scores between the examined classes. In addition,
to the best of the authors’ knowledge, there are no other works
in the literature attempting to predict the difficulty level of test
questions using ECG and EMG signals, hence no comparative
results with other methods are provided.

A. Global model

The data acquired from all the participants in the study
were used in order to create a global model for difficulty level
prediction. A Leave-One-Subject-Out (LOSO) cross-validation
approach was followed for evaluating the created global mod-
els in order to provide a fair comparison between the examined
classification approaches by avoiding over-fitting the trained
models and removing bias stemming from samples from the
same participant being present in both the training and test
sets. To this end, all the samples associated with a single
participant were used for testing the models at each iteration
of the cross-validation, while all the other samples were
used for training the models. Then, the average classification
performance across all iterations of the cross-validation was
reported as the overall performance of the models. Results
achieved for the ECG-based features, EMG-based features,
and their fusion are reported in Table I for the best performing
classification algorithms.

The highest classification F1-score (64.10%) for the global
models was achieved using the fusion of the ECG-based and
EMG-based features and the linear SVM classifier. The highest
F1-score achieved using the ECG-based features was slightly
less, reaching 61.22% using the 3NN classifier, while the
highest classification F1-score for the EMG-based features was
significantly worse, reaching 57.23% using the LDA classifier.

To test the acquired results for statistical significance and to
verify that the trained models do not just favour the majority
class, the acquired results were tested for significance against
the analytically computed results for voting randomly (50%
class probability), voting according to the ratio of classes (class



probability equal to its ratio of samples), and voting according
to the majority class (100% probability for the majority class).
The analytically computed F1-score for these three approaches
is reported in Table I. An unpaired Kruskal-Wallis test between
the results for the best performing classification approaches
for each feature set and the results for random voting showed
that all the acquired results were significantly different (p ≤
7.26 · 10−38) than results for random voting. Similarly, an
unpaired Kruskal-Wallis test showed that all the acquired
results were significantly different (p ≤ 2.60 · 10−16) than
results for class ratio-based voting. A paired Wilcoxon signed-
rank test was used to test for significance against majority
voting, since the predicted class labels could be computed
definitely due to being always equal to the majority class. The
Wilcoxon signed-rank test showed that all the acquired results
were significantly different (p ≤ 1.82 · 10−12) than results for
majority voting.

B. Single-participant models

For the second experiment, separate machine learning mod-
els were trained for each participant of this study. To avoid
over-fitting the trained models, compensate for the lower num-
ber of samples available for single participants compared to
the global model approach, and to provide a fair performance
evaluation between the trained models, we followed a Leave-
One-Out (LOO) cross validation approach. For each single-
participant model, at each iteration of the cross-validation
procedure, one sample was used for testing and the rest
for training the model. After repeating this process for all
the available samples, the average performance across all
iterations was computed as the classification performance for
the single-participant model. Finally, the average classification
performance across all participant-wise models was computed
and reported in Table II for the best performing classification
algorithms and each of the ECG-based features, EMG-based
features, and their fusion.

The highest average classification F1-score (75.49%) for
the single-participant models was achieved using the ECG-
based features and the DT classifier. The highest average
classification F1-score achieved using the EMG-based features
was 71.59% using the DT classifier, while the fusion of
the ECG-based and EMG-based features led to an average
classification F1-score of 74.59% using the LDA classification
algorithm.

Similarly to the global models, the acquired results for
the single-participant models were tested for statistical sig-
nificance against the analytically computed results for voting
randomly, voting according to the ratio of classes, and voting
according to the majority class. The analytically computed
average F1-scores for these three approaches are reported in
Table II. Paired Wilcoxon signed-rank tests showed that all
the acquired results were significantly different than results
for random voting (p ≤ 5.13 · 10−6), for majority voting
(p ≤ 2.94 · 10−5), and for voting according to the class ratio
(p ≤ 0.015).

TABLE I: Classification performance for the prediction of self-
perceived question difficulty using the global model approach.

Features Classifier F1-score Significance

ECG 3NN 61.22 ?†‡

EMG LDA 57.23 ?†‡

ECG & EMG LSVM 64.10 ?†‡

n/a Random 45.24
n/a Majority 44.28
n/a Class ratio 50.00
?†‡Statistically significant difference compared to random voting (?),
p ≤ 7.26 · 10−38, majority voting (†), p ≤ 1.82 · 10−12, and
voting according to the class ratio (‡), p ≤ 2.60 · 10−16.

TABLE II: Average classification performance for the pre-
diction of self-perceived question difficulty using the single-
participant models approach.

Features Classifier Avg. F1-score Significance

ECG DT 75.49 ?†‡

EMG DT 71.59 ?†‡

ECG-EMG LDA 74.59 ?†‡

n/a Random 41.95
n/a Majority 44.49
n/a Class ratio 50.00
?†‡Statistically significant difference compared to random voting (?),
p ≤ 5.13 · 10−6, majority voting (†), p ≤ 2.94 · 10−5, and voting
according to the class ratio (‡), p ≤ 0.015.

IV. CONCLUSION

This work examined the potential use of ECG and EMG
signals for the prediction of user-perceived question difficulty
level within the context of Intelligent Tutoring Systems. ECG
and EMG based features were extracted from recordings
acquired from 45 individuals that participated in a comput-
erised English language test and provided feedback regarding
each question’s difficulty level. The extracted features were
used in order to conduct supervised classification experiments,
following a global model approach using the data from all
the participants, as well as a participant-wise approach that
focused on training separate classification models for each
participant. The highest classification F1-score for the global
models was 64.10% using the fusion of the ECG-based and
the EMG-based features and the linear SVM classifier. Per-
formance was higher for the single-participant models, with
the highest average classification F1-score reaching 75.49%
for the ECG-based features and the Decision Tree classifier.
Furthermore, the reported results were tested and found to
be statistically significant compared to the random voting,
majority voting, and class ratio voting classifiers.

Examining the overall results, it is evident that single-
participant models achieved higher classification performance
compared to global models that contained data from multiple
participants, with classification F1-scores reaching 75.49% and
64.10% respectively. However, the results for both approaches
demonstrate the potential of using ECG and EMG signals for
the prediction of question difficulty level, as perceived by test



takers within an ITS context. The global model approach could
provide the baseline difficulty level prediction mechanism for
an ITS system that could subsequently increase its user-wise
prediction performance by creating personalised single-subject
models for its users by gathering feedback throughout its use,
thus evolving constantly. Based on the results of this proof-of-
concept study, future work will include the study of additional
physiological signals, such as EEG, and the integration of the
proposed approaches within an ITS.
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