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Abstract
The efficiency and robustness of modern visual tracking systems 
are largely dependent on the object detection system at hand. 
Bernoulli and Multi-Bernoulli filters have been proposed for visual 
tracking without explicit detections (image observations). However, 
these previous approaches do not fully exploit discriminative 
features for tracking. In this paper, we propose a novel Bernoulli filter 
with determinantal point processes observations. The proposed 
observation model can select groups of detections with high 
detection scores and low correlation among the observed features; 
thus achieving a robust filter.
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Visual tracking is a challenging computer vision task 
with applications in human-computer interaction, video 
surveillance and crowd monitoring among others. 
Modern visual tracking systems may use complex 
object detection schemes for estimating the current 
state of a target in any particular video frame. However, 
this approach does not fully exploit the temporal 
structure of the estimation problem. Visual tracking can 
be also thought of as a dynamic model with observed 
features and latent states representing the position/
velocity of an object (Maggio and Cavallaro, 2011). In 
this context, the generative model for visual tracking 
requires not only the correct specification of the model 
and its parameters but also the ability to capture the 
variations of the system (Wang et al., 2015).

The Bernoulli filter is a powerful algorithm that 
allows objects to appear and disappear, using 
extracted features from the image as observations 
(Vo et al., 2010). Similar approaches for visual tracking 
have been proposed (also known in the literature as 
Track-Before-Detect). Nevertheless, these methods 
rely on unreliable background subtraction operations 
or the likelihood function being in a separable form 
(Hoseinnezhad et al., 2012, 2013).

Current state-of-the-art trackers are based on 
either correlation filters (Bolme et al., 2010), deformable 

parts models (Hare et al., 2016) or convolutional 
neural networks (Li et al., 2018). These trackers learn 
a discriminative model from a single frame and then 
update the model using new frames. Furthermore, 
tracking performance can be increased when using 
more discriminative features such as HOG (Henriques 
et al., 2015; Solis Montero et al., 2015; Xu et al., 
2019). On the other hand, even when Bernoulli filters 
have demonstrated being useful models for tracking 
in complex scenarios, it is still hard to rely on such 
features for increasing their performance.

Related works

The Bernoulli filter is a specialized version of the PHD 
filter (Mahler, 2003), with the focus on single target 
tracking. While the original PHD filter is based on a 
Poisson point process, several extensions have been 
proposed to cope with non-Poisson distributions. In 
particular, the Cardinalized PHD filter allows estimating 
the number of targets using arbitrary distributions and 
provides improved estimates (Mahler, 2007). The multi-
Bernoulli and Poisson multi-Bernoulli mixture filters 
also allow to approximate the cardinality distribution 
and become especially well suited when the mean of 
the multi-target posterior is higher than the variance 
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(García-Fernández et al., 2018). All of these methods 
rely on first-order or second-order moments but 
assume that targets behave independently with each 
other. Therefore, the authors in Privault and Teoh 
(2019) propose a second-order filter that accounts for 
interaction between the targets. The method is based 
on determinantal point processes (DPP) that take 
into consideration the correlation among the targets 
through a kernel function. In Jorquera et al. (2017), 
the authors propose a determinantal point process 
for pruning the components of the Gaussian mixture 
PHD filter. More recently, the authors in Jorquera et al. 
(2019) compared the PHD filter using determinantal 
point process observations with other methods for 
visual multi-target tracking.

The contributions of this paper are twofold. First, 
the third section provides introductory notions of the 
Bernoulli filter and then we derive a novel Bernoulli 
filter using determinantal point process observations 
(B-DPP filter) for single target tracking in the fourth 
section. Second, in the fifth section we derive a 
Sequential Monte Carlo implementation of the B-DPP 
filter using a truncated likelihood, which can outperform 
other discriminative trackers in several scenarios.

Point processes for visual 
object tracking

A point process is a random pattern of points in a 
possibly multi-dimensional space (Kingman, 1993). 
A simple point process can be defined in one 
dimension, which is usually times and can be used 
to describe the random times where the events can 
occur with no coincident points.

Bernoulli point process

The problem of performing joint detection and 
estimation of multiple objects has a natural 
interpretation as a dynamic point process, where 
the stochastic intensity of the model is a space-time 
function λ(x), where x ∈ ℝd denotes the state space of 
the target. If we let B = B1∪ B2 ∪ … ∪ Bk represent the 
union of disjoint video frames Bi, the corresponding 
number of objects on each image can be written as 
N(B1), N(B2), …, N(Bk). The Bernoulli point process for a 
single object that can randomly appear or disappear 
takes the form:
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where ni can take either 1 or 0, n = ∑ni and 
Λ (B) = ∫Bλ(x)dx. Every subset Bi can take at most 
one target x with probability q, therefore we can 
characterize the distribution of the point process 
X = {x} using the following relationship:
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Determinantal point process

In recent years, deep learning approaches have 
demonstrated outstanding performance in several 
visual tracking benchmarks (Kristan et al., 2019). 
These trackers are mostly based on extracted 
features from a convolutional neural network and an 
objective loss that minimizes a localization error (Li 
et al., 2018). However, the detection process is not 
perfect and false positives and negatives are to be 
encountered after ranking the top proposals from the 
convolutional features.

In order to develop an stochastic approach for 
the single-object observation model, a discrete DPP 
can be used to capture probabilistic relationships 
using a kernel matrix K  :  Z _   × Z _   ↦  ℝ that measures 
the similarity among different detections (Lee et al., 
2016). Therefore, instead of considering independent 
detections in a particular frame, the DPP likelihood 
specifies the joint probability over all 2n subsets of Z _   
with distribution:

p(Z  ⊂  Z _  ) = det (Kz),  ∀Z  ⊂  Z _   (2)

where Z is a random subset of Z _   and KZ  ≡  [Ki, j] for 
all i, j ∈Z _ . Furthermore, the product density can 
also be written in terms of a positive definite matrix 
L  =  K(I  −  K)−1, such that the probability mass function 
of Z can be written as:

p Z
L

I L
Z( ) ( )

+( )=
det

det  
(3)

where I is the identity matrix and LZ is a sub-matrix of 
L indexed by the elements of Z.

Bernoulli filter

In this case, a model for detection and estimation of 
multiple objects can be achieved by the conditional 
expectation of the posterior point process (random 
finite set) under transformations (Ristic et al., 2013).

Let Xk = {x} be a Bernoulli point process and 
Zk = {z1, z2, …, zm} a DPP observed from frame K. The 
result from superposition, translation and thinning 
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transformations is also a Bernoulli point process  
Xk ∼  p(Xk|Xk−1) (Kingman, 1993). The predicted point 
process can be written as the linear superposition 
of a πs thinned point process with Markov translation 
f(x|x′) and a πb Bernoulli birth process. The predicted 
expected number of targets Nk|k−1 for a single target 
with probability of survival πs(x) and spontaneous 
birth can be written as:

N N Nk k k k
s

k k
b

| | |− − −= +1 1 1  (4)
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The filtering density of a Bernoulli point process is 
completely specified by the pair (pk|k−1, qk|k−1), which is 
obtained by:
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Using Equation (5), the probability of existence 
qk|k−1 can be written as:

q q qk k b k k s k k| 1 1| 1 1| 1= 1− − − − −−( ) +p p  (6)

And the probability of the predicted Bernoulli point 
process:
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If we let Zk be the observations that contain both 
false detections and target originated measurements, 
the update equation considers the probability of 
observing the target with probability of detection 
πd under clutter (e.g. false positives). From (Mahler, 
2003, 2007), the multi-target likelihood function 
for the standard measurement model (Poisson 
distributed clutter with density κp(Zk) = e−λ∏iλfc(zi) and 
Bernoulli probability of detection πd) can be written 
as:
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The likelihood term in Equation (8) considers all 
possible locations and location-to-track associations 

σ, so most of the terms will be canceled. The 
likelihood term becomes:
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The Bayes update equation takes the form:
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The denominator of Equation (10) can be written as:
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The updated binomial point process can be 
derived as follows:
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Determinantal filter

Let Xk = {x} be a Bernoulli point process and 
Zk = {z1, z2,…, zm} a DPP observed at frame K. The 
result from superposition, translation and thinning 
transformations is also a Bernoulli point process 
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Xk ∼  p(Xk|Xk−1) (Ristic et al., 2013). The predicted point 
process can be written as the linear superposition of a 
πs thinned point process with Markov translation f(x|x′) 
and a πb Bernoulli birth process. In order to measure 
the quality of the observations, we must introduce a 
random variable L such that p(L|Z)  ∝  det(L(Z)), where 
L(Z) is a positive definite kernel matrix that depends 
on the observed features Z. The L(Z) kernel can be 
written as a Gram matrix:

L Z g z z z g zij x i i

T

j x j( ) ( ) ( ) ( ) ( )= f f  (15)

= ( ) ( ) ( )g z S Z g zx i ij x j  (16)

The function gx(zi) = ∑cp(zi|c)p(c|x) is used to model 
the quality of the item zi and S(Z) the diversity of the 
set Z. If we let W be a subset of detections arising 
from the target (Reuter et al., 2013):
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The DPP Z can be treated as the union of two 
independent sets Z = C ∪ W, where C = {c1, …, cm} 
represents clutter. The clutter density becomes:
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The likelihood function for the standard measurement 
model using determinantal observations becomes:

P Z x W x Z W
W Z

d| { } | { } \( ) = ( ) ( )
⊆

∑h k
 

(19)

p Z x Z

Z M Z

M

k d k d

Mk

Z Zk

k

k
d
Z

d

| { } = (1 )

! | | !

!
1| |

( ) ( ) −





+
−( )

−( )
∈
∑

k p

p p MMk Z

i

x i

c i

Z Zk Z

Zk

g z
f z

S S

S

−

∏















| |

2
( )
( )

( ) ( )

( )

det det

det
\

 
 (20)

Now, we want to derive the posterior distribution 
for Bernoulli point process given DPP observations:
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Approximated Bernoulli  
determinantal filter

In practice, it is difficult to store and compute the power 
set with all possible configurations of Zk in the likelihood 
term (see Equation (20)). An approximation can be 
constructed by truncating the likelihood and focusing only 
on the more likely elements. Let Zk

* = arg maxZ⊂ Zk
η(Z|{x}) 

be a subset of Zk whose elements are detections arising 
from the target. The likelihood becomes:

p Z x Z g z Zk k
i

x i k
∗ ∗ ∗{ }( ) = ( ) ( )∏| ! det2

 
(25)

DPPs have been proposed in the literature as 
an alternative to other object refinement techniques 
such as non-maximum suppression (Lee et al., 2016). 
These methods operate over object proposals and 
eliminate redundant detections. For DPPs, mode 



5

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS

Table 1. Particle Bernoulli-DPP filter.

Particle Bernoulli-DPP filter

Number of particles N 100

Uniform birth probability (πb) 0.1

Uniform survival probability (πs) 0.99

Newborn particles (Nb) 0

Standard deviation for observation model (σo) 20.4

Covariance matrix for dynamic model (σx × 1) 3.0 × 1

Table 2. Greedy mode finding.

Greedy mode finding

Acceptance ratio ε 0.7

finding can be tackled using the following greedy 
algorithm (Kulesza and Taskar, 2011):

Conversely, by using the truncated likelihood from 
Equation (25), the Sequential Monte Carlo algorithm 
for the Bernoulli filter can be used to estimate the 
single-target posterior (Ristic, 2013).

Experimental results

In order to demonstrate the advantages of the proposed 
model updating approach over other discriminative 
approaches, we evaluate the tracking results on six 
challenging video sequences from the Visual Object 
Challenge 2014 (VOT) data set1. The proposed SMC 
implementation uses local binary patterns (LBP) as 
observed features and a simple observation model 
p z c expi

Dk

o
( ) ( )

2

22| ∝ − s , with Dk = dist[zc,zk] and zc being a 
reference LBP histogram (Czyz et al., 2007). The state xk 
is configured as a 4-dimensional rectangle including the 
left-most position, width and height of the target. The 
dynamic model uses a random walk and the parameters 
of the model are held fixed for all sequences. The 
B-DPP filter is implemented in the C++ language using 
the OpenCV library. The parameters for the B-DPP filter 
are determined empirically and shown in Table 1.

The parameter setting the Greedy Mode Finding 
algorithm is described in Table 2.

The sequence jogging is a challenging example 
containing full occlusions, rotations and background 
clutter. Figure 1 shows one frame of the sequence 
and the estimates using the proposed approach and 
other state-of-the-art methods.

The Bernoulli DPP filter maintains a balance 
between the observed features and the quality of 
the observations (see Figure 1). The observation 
model uses a simple histogram comparison and no 
template update is performed, so the model is not 

robust to object deformation or rotation. Even that, as 
seen in Figure 1 the Bernoulli-DPP tracker achieves 
good performance in cases such as full occlusion 
where the other discriminative tracking methods 
fail. Performance is measured using widely used 
precision and success metrics2.

The precision metric describes the percentage of 
frames whose center location error is below a given 
threshold. Table 3 shows the overall precision metric 
averaged over all sequences on five different runs for 
each one of the algorithms.

The success measure accounts for bounding 
box overlap. Table 4 shows the number of success 
frames whose overlap is above some threshold, 
averaged over the sequences on five different runs. 
Quantitative analysis shows improved performance 
for the proposed approach when compared to the 
discriminative trackers in six different video sequences.

Figure 2 shows the precision metric against the 
location error threshold for all of the six tested sequences. 
The red line indicates the best performing method 
among the four different algorithms. Since the bolt 
and jogging sequences have background clutters (the 
background near the target has similar appearance as 
the target), the proposed Bernoulli DPP tracker reduces 
redundant observations and improves precision.

Figure 3 shows the ratio of the frames whose 
tracked box has more overlap with the ground-
truth box than a threshold. The success metric can 
be associated with the tracker algorithm ability to 

2http://cvlab.hanyang.ac.kr/tracker_benchmark/benchmark_
v10.html1www.votchallenge.net/vot2014/
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Table 4. Average success (th = 0.5).

Sequence DPP KCF sKCF Struck

Ball 0.206 0.211 0.201 0.128

Bolt 0.031 0.011 0.011 0.017

Diving 0.183 0.110 0.114 0.151

Gymnastics 0.560 0.415 0.420 0.425

Jogging 0.205 0.225 0.225 0.225

Polarbear 0.749 0.747 0.760 0.712

1.0
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Figure 2: Overall precision plots for the visual tracking sequences.

Figure 1: Frame 85 of the jogging sequence. At each frame, a greedy mode finding step is 
performed using Algorithm 1. Rectangles represent ground-truth, state estimates and DPP 
observations.

Bernoulli DPP Filter Struck KCF sKCF

A B C D

Table 3. Average precision (th = 20).

Sequence DPP KCF sKCF Struck

Ball 0.309 0.289 0.246 0.372

Bolt 0.083 0.017 0.017 0.026

Diving 0.073 0.082 0.087 0.091

Gymnastics 0.710 0.425 0.425 0.435

Jogging 0.707 0.231 0.231 0.228

Polarbear 0.946 0.857 0.916 0.844

th = threshold th = threshold
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Figure 3: Overall success plots for the visual tracking sequences.

maintain long-term tracks. Since the Bernoulli DPP 
filter accounts for missed detections, the proposed 
approach improves the area under the curve of the 
success metric in 67% of the tested sequences.

Conclusions

In this paper, a novel algorithm for joint detection and 
tracking a single object in video has been presented. 
The proposed approach takes into account the 
detection score and the similarity of the observed 
features. Then, a Bayesian filter using a Bernoulli 
point process estimates the state of the target from 
a diverse subset of object proposals. Experimental 
evaluations show that the results are comparable to 
other state-of-the-art techniques for visual tracking in 
only 6 of the 25 sequences of the data set. In this 
paper, we only considered a simple observation 
model (distance to a reference LBP histogram), which 
might hinder the performance of this approach in the 
overall data set. This observation model is not robust 
to scale and rotation changes and no model updating 
strategies are considered in this paper. Nevertheless, 
our model is expected to increase its performance 
when using a more complex observation model 
(such as deep learning features), model updating and 
ensemble post-processing techniques for combining 
the output from different tracking schemes.
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