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Abstract

Let [Xi] be a sequence of independent, identically-distributed

random variables with EX? < o and E(]{i-EXI)2 =1. Let

S(n) = ('E;XJ-nEXi)//h . If 1, is a sequence of positive integer-
valued rg;dom variables such that Tn/n-2+ v , a positive (possibly
degenerate) random variable, and En(x) = P[g(-rn) < x], then by a
theorem of Blum, Hanson, and Rosenblatt agg[ﬁh(x)-gﬁx)l + 0 as

n + oo. This dissertation establishes sufficient conditions for

series convergence rates of the form

Z}n4zsup|§h(x)—§(x)| < 0. ; (1)
n X

The exponent @ in (1) depends on the number of finite absolute
moments of X,. If Elxi|2+5 <o, 0<§<1, then a =1-2/2. 1If
mfi < but E|X1l2+5 =, for all § >0, then @ =1. In this
case, unless EX? loglxi| < o, the tem @Kx) in (1) is replaced
by E@Kx/gT ), where o is the variance of X; truncated at /.

n

The problem is most naturally treated in two cases: In the
first case, the sequences {X,} eand [Tn] are taken to be independ-
ent, and in the second, they are assumed to be dependent. 1In the
independent case, a basic sufficient condition for (1) to hold is

2n %« Plr_=kl= o(x™) . (2)
n

=\







It is shown that, if 1 is the nth epoch of a positive,
integer-valued renewal process, then it satisfies (2). Another
theorem gives a condition on the rate with which 1n/n-2+ co, a
positive constant, which is sufficient for (2) to hold, and thus
for (1).

In the dependent case, sufficient conditions are given in

terms of the rate of decrease of
IP([8(x) < x] n [r=k]) - P[S(k) < x] - Plr =k ]|

and of

|P((S(x) < x] n [r_=k]) - B([8(n) < x] n [ =x])]| .

The sharpness of these sufficient conditions is indicated through
simple examples whereas the conditions are violated and the
convergence in (1) fails. A further example satisfying both of

these conditions is then given.
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Te Introduction

Throughout this dissertation, let Xl,)(z,... be a sequence
of independent, identically-distributed random variables on a
probability space (Q,Q,P). The distribution function of X,
is F(x) = P([w!)(i(m) < x}), or more simply F(x) = ‘P[Xi <x].

The following conditions are assumed:

(1) Exf <

(@) ¥xou) =1,

. n

where E denotes expectation and u = EX;. Let S(n) = i}:,"l X ,
S(n) = (S(n)-np)//B . The distribution function of §(n) is denoted

by

F_(x) = P[8(n) < x] .

Let §(x) and ¢(x) be the distribution function and density function,
respectively, of the normal probability distribution with zero mean

and unit variance, i.e.,

§x) = 2= |

2
X -t
e /2

-0

at ,

2

' ) 2
o(x) = (x) =— ¢ .
) =
A truncated variance is defined for Xi by
2
x| <va Ix|<v/m

s







Note that 1lim Op = 1, the variance of Xi'
n+oo

The central limit problem has been a principal line of research
in probability theory since the inception of the theory. In its
simplest form, the central limit problem consists of finding

conditions under which

B, = s;p]ﬁh(x)-gkx)l +0 as n =+ 00 .

The history of the problem begins with DeMoivre and Laplace, who
proved that B ¥ 0 for random variables Xi with a binomial distri-

bution. Lindeberng

and I-‘eller'8 proved the necessity and sufficiency of
the finiteness of E[Xi|2 for 4 + 0, for independent, identically
distributed Xi. Further work in the central limit problem has
extended these classic results to include sequences of non-identically
distributed random variasbles and dependent random variables of certain
types.

In many practical applications, the limiting distribution is
used to approximate the distribution of the sum 5(n) for finite
values of n. Such usage must be based on rigorous estimates of the

15,16

remainder term or the speed of convergence. Liapounov showed that,
o+ 5 +

it E[x,| 5 <w, 0<5<1, then A, S en /2 E[xil2 ® | where the

constant ¢ may depend on the distribution of the Xi. VWhen

5

E|Xi[5 < 00, Berry~ and Esseen7 proved that

3
- /2
Ay < St / EIXiP )

-2







vhere o is a constant which does not depend on the distribution

of Xi. This result was refined by Nagaeveo, who showed that

coElX I°

IF_(x)-8(x)| < =
g n 2(l+|x|5)

where s is the Berry-Esseen constant. Another direction was

12
teken by M. Katz , who proved that, if g(x) is a real, non-negative,

even function, non-decreasing on [0,00), then Exig(xi) < oo is

sufficient for X?
coEXe(X;)

by S

1

2
gn /?)
The results of Berry and Esseen, and of Nagaev, are the best possible
in the sense that the bound is achieved by some distribution satisfying
the hypotheses.

In 1966, N. Friedman, M. Katz, and L. Koopmans 9 proved a series
10

convergence rate theorem requiring only two moments. C.C. Heyde and

J.A. Davis6 each noted improvements and simplifications which led to the
following result:
Theorem: If ElXi|2 < w, say E|Xi[2 =1 eand EX, = 0, then

o ¢ = g

¥ n sup]Fn(x)-§I /gn)l < oo0. If, in addition, EX? loglxil < oo,

n=l. X
(e ]

then 2 n-lﬁn < co. Further, if EX§+6 <o, 0<§ <1, then
n=1

@ &
-1+

7 nl /25n<oo.

n=1







Suppose now that {Tn] is a sequence of positive, integer-

valued random variables on (Q,@,P). Let G (x) = P({o/S(r (0)) < x}).

Then

G (x) = B(1 (8(r,)))

(-UOJX]

where IA is the set indicator function of the set A.

Proceeding in the same line,

I

5, (x) = B(I_o, (8ry))

(-00,x

]

B, TB(1(_g, ) Br )7y

.
]

a
Y B(I

Z 1(8Ge) |1 =k)) + Plr =k]

(-00,x

n

@
}El P[S(x)<x| v =k] « Plr =k].

Note that in case ({r ]} is independent of X1,

m ——
Gn(x) = k>=31 F (x) « Plr =X%] .

The question of when sgp]ﬁh(x)-Q(x)l goes to zero is a natural
extension of the classical central limit problem. For example, one
might wish to approximate Eh(x) when 7T = is the first passage of
the sequence S(n) past n, or when T, is an integer-multiple of
n determined by the value of S(n)., Such an approximation would

be useful in sequential analysis for tests based on S(wn) (see Waldll).

-h-







The case where the Tn's are independent of the summands was dealt

2 p
with by'Robbinsl in 1948, Anscombe > showed that, if Tn/n —+c,

where c is a positive constant, then A = suplﬁh(xﬂ-gﬁx)]-+ 0,
n X

regardless of the fact that the Tn‘s might depend on the Xi's.

25

This result was extended in 1960 by Renyi ~ to the case where

Tn/nEL-¢ , a positive discrete random variable; and by Blum,
Hanson, and Roaenblattl4, and, independently, Mogyorodilg, in 1963,
to the case where r is any positive random variable.

In 1964, Wittenberg27 investigated, more generally, the conditions
under which the Kolmogorov-Smimov (K-S) distance between S(¢n) and
S(n) tends to zero. If S(n), when properly normed, converges in
distribution to a random variable with non-degenerate law, and if
the K-S distance between S(n) and S(Tn) tends to zero, then
S(Tn) converges to a random variable with the same law. The
theorem of Blum, Hanson and Rosenblatt becomes a particular case of
Wittenberg's results.

This variety of results concerning the convergence of Eh(x) to
gﬁx) will be referred to as the random central limit theorem (RCLT).
In particular, & pair of sequences {X;}, {r } will be said to satisfy
the conditions of the RCLT if {Xi] is a sequence of independent,
jdentically-distributed random variables with at least two finite
moments, and if {Tn] is a sequence of positive, integer-valued

P

random varisbles such that Tn/n — 1 , & positive (possibly degenerate)

random variable.

75







It is the purpose of this dissertation to investigate the rate
of convergence of Eh(x) to @Ix). In order to derive series
convergence rates similar to those of the Friedman-Katz-Koopmans
Theorem (F-K-K), one must treat functions similar to E(x/cn) where
the normalizing factor is defined in terms of both {X,} and {7} .

To this end, consider

E@(x/o-Tn) =}Z{:?ﬁ(x/ck) . P[-rn=k] .

Since o * 1, in order to avoid trivial details, it will be assumed
that Ox > 0 for all k. The series whose convergence properties

are examined are the following:

A (x,0) = }r_:,‘ n’alan(x)—ﬂﬁ(X/oTn”

Ae) =T sup|G, (x)-Ef(x/o, )|
n X

n

ay(x,0) = T |G, ()-F(x)

"
g

514

A,(a) 2 s;p['@n(x)-ﬁ(x)f .

The original statement of the F-K-K Theorem allowed for dropping

the normalizing factor g;ll of the argument of E provided that

S 6 LS 2
2 n (l—-gn) < 0. J.A. Davis later pointed out that ZTn (:L..gn)<oo
n=1 n

if and only if Exf log]Xil < oo. It will be valuable to have a

sufficient condition for dropping the nommalizing factor O -1 from
n

Al(x,cz) or A2(Ct). The following lemma presents such a conditiocn:







' Lemma: If Az(a) (or Al(x,a)) is finite and if

©
(1) b B n-aZP[-rn=k] . |l—0i| <o ,
n=1 k

then Ahﬁl) (or As(x,a)) is finite.

Proof: Throughout this and following proofs, c,c’,c",... will
denote positive constants that arise in the arguments, the values
of which are unimportant to the discussion. For a sequence 2 =+ A b

a straightforward computation yields

|§(a, x)-B(x)| SE'(X)I(ak-l)ﬂ(l+cx2|&k-l|exp(-%ﬁkx2)) ,

where Bk =2 - &, > 0 as soon as & <2, Thus, for k sufficiently

large,

s;plgﬁakx)-§xx)| <ec' si? @_(x)](ak-l)xl .

By teking c¢' sufficiently large, this inequality can be mads valid

for-all k.

=1
Let ak =i Then







T 0 %sup|Ef(x/0_ )-8(x)| < T a8 (sun|Fx/o, )-B(x)])
n x n n X n

Ta” T Pl lsup|§(x/o )-3(x)

n

<&« Ba" >k:1=[1n=k]- s;p@‘(x)-lx/ck-xn

n

- zn‘a;;P[Tn=k] sup[lxﬁ (x)|: | — 3.
n

Now, |x§'(x)[ is bounded, so

= n%sup|8)(x/o_ )-B(x)| < o' Do TRlr, =x] - |
n x oy o n k

< " B ZP(T . ]l—ail ’
n

since Ok and (1+Uk) are bounded away from zero. But then
A (c:) < A(@) +c"ZTn EP[-r =k] |1—crk| (2)
n

and the finiteness of A, follows from the finiteness of the right-

b
hand side of (2). Similar reasoning yields the result for A3(x,0!) |

=







Theorems giving sufficient conditions for the finiteness of

Al or A2 thus become theorems for A or Ah with the addition

5
of condition 1 of the lemma. This fact will not usually be repeated

in the following.







II. Convergence of the Aj's when the Sequences {7} eand {X,]

are Independent.

In this section, we assume that {'Tn] is an independent sequence
and is independent of [Xn}. Our basic theorem states, that in order
for A2 (or Ah) to be finite, it is sufficient that the probability
that a given value k recurs in a sequence of -rn's diminishes

rapidly as n increases:

Theorem II A. Let Elxi|2+5 € ooyt 0K § <L, FE

w ) &
Z r;“1+/2P{Tn=k] = ok~ /2) ; ' (1)

n=l

then A2(1-5/2) <oo. If §>0 or § =0 but Ex? logl}{il < oo,

then Ah(l) < 0.

Proof':
(o0 o]
S ] /2 sup |5n(x)-E§(x/c,r )|
n=1 X n
_1+5/2 20 -
$E 121 P[-rn=k]s;ple(X)—§(x/ck)l

@ 5 @ &
- k§1 s;ple(X)-ﬁ(w’ck)l S Pr_=K]

n=1
(e8] _1+6/2 —
o BV o di)

-10-







This final sum ie finite by the F-K-K Theorem. If E)(? longil < 00,

then Ah(l) < o by the second part of the F-K-K Theorem. B

b )
bt /QP[«rn=k] - o172

The condition 2 n ) is a basic one. Ve

n
first give an example in which it does not hold and the conclusion of
Theorem A is false. This example provides information concerning the

sharpness of Theorem A. Then we give examples of distributions for

which the condition does hold.

Example II.1l. Let {Xi} be any sequence of non-normal, independent,

2+
jdentically-distributed random variables satisfying E|Xi| 6 < @O,

0<§<1l. Let

s
P[‘rn=k ] =

[ (log n)-l for k
n,

1-(log n)'l for k

and let x, be chosen so that |F (xo) §(x )] > 0. Then

o L SRR rk
Zn S;Plcn(x)-@xﬂ > |n§1n 1.E]-(Fk(xo)-@(xo))- P[-rn—k] |

But (oe] 5 @
T 22 T (F,(xp)-lxy)) - Plr k)
n=1 k=l

co o}
= M 2(10g n)™L (F (x)-B(x,))

n=1 \
5
PR /2(1o§§gn1) (F xo)@("o))} .

5. )
By Liapounov's theorem, |Fn(x0)-§(x0)l Lies n /2 . Thus, for

large n, say n >NO 3

w1lla






o

b ®
w2 T (B, (g)Blag)) - Bl ]

IE: f -1+ /Q(logn) x ) g&x ))- c(logn 1 n-l} I
(0 0]

n=N0 Togn
i
2 n-l{c' B -c"} ! 5
Ny

which diverges faster than Z:n'l+Y for some y >0 .
n

s )i
Tbragimov has shown that, for random variables with character-
istic function f(t) such that Iim |£(t)| < 1, the condition

t+00

o)
sgplﬁﬁ(X)-ﬁ(X)l = O(n'(k+ /2)) y  k=1,2,... .,

0<§ <1, is equivalent to the Joint conditions

(i) I ]x|k+QdF = O(z“é), z + oo ; and
| x| >z

(ii) the moments p_ of X

3 5 up to order s = k+2, inclusive,

coincide with the corresponding moments of the normal

distribution.

-14%/2 o
Thus, no condition of the form 2 n P[-rn=k] = 0k "), @ >0, is
n ;

necessary for Ah < 0o; while the sufficiency of conditions weaker

than (1) of Theorem A depends on the specific distribution of X,.

Some familiar distributions for {Tn} which satisfy the

hypotheses of Theorem A are the following:

-] 2=




R aas A A s el




Example II.2. Let T5 be Poisson, with parameter n. Here

P[-rn= k] =e

Then

|
f]w
™8
3

o}
5 a1t/2 P[r =]

1]
ol L
™8
S

5
k-1+ /2e-n

The sumuand n is everywhere positive and monotone decreasing

for n>1, so

(80)

Z

n=

5 @ )
-1+/2 = &
n / Plr =k] < i —"kl ‘Y g /2e “at

: X

© 4 145
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Example II.3. Let ) be binomial with parameters n and p,

0<p<1l, Then

n' k n-k
Plog=k) = grmor P (-p) 7, for 0O<k<n.

We have
(o) 5 . 5
> o /2 P[Tn=k] - 2 /2 p['rnzk]
n= n=k
- B]:_ X nt -l+5/2 n-k
& @
<2 Ry B (ai)(nike1) .o

n=0
(n+1)- (1-p)"

8
k20 By et/o5* L) (Rer. 20)

-1+5/e) .

= 0(k

Let ® be the class of real, non-increasing functions ©(t)

such that for all ¢ > O, Zn-l+s0(n) = 0o, and let ¥ be the class
n (s}

of real, non-increasing functions #(t) such that 20 n-l‘y(n) < 09,
n=1

Theorem II.B. If the RCLT conditions hold for ({X,} and {r,), i

@ &
D n-l-l- /EE(T:‘"‘"(Tn)) <o forsome ¢ € ¥N®, and an arbitrary
n=1

)
a such that 6/2 >Q >0; and if & =2__:-n-l+ /2
- n

P[-rn=k] is
monotone decreasing for large kj; then A2(1-6/2) <o I §=0

or § =0 and Exf loglxi[ < 00, then Ah(l) <.

-1k~






e ) 5 © & @
-1+°/2_, & -1+-/2 -a
2 w2 %)) = £ o/ B k). Blry=x]
n=1 n=1 k=1
©o ® 5
= T x%k) T i /EP[Tn=k] <.
k=1 n=1
(The final sum is finite by
hypothesis.)
o 21
Now, 2 k ¢(k)ak <co and a monotone imply ~ that
k=1
kdzak = O(k"l), or
5 )
-1+7/2 -1+ -1+7/2
s = Tu /2 pis x] 20T =012y
n
The result now follows from Theorem A, B

Mnother approach is the following:

Theorem II.C. Suppose the RCLT conditions hold for {X,} and ({r}
T

n P
—'c

with - 0

, & positive constant. Suppose further that there is a
positive monotone sequence {Qn], Ph = 0(%) , such that for al1 n =znd

for some function ¢ €Y,
P(|r -ncy| > np ] = o(n " y(n)) . (1)

Then A2(1-6/2) < . If, in addition, Exf log|X, | < @, then

Ah(l) < 00

-15-






Proof: Fix k sufficiently large so that Py < o and let

x1 % [colipk] £ Ep = [co}fpk] -

where Py <p< CO . Here the symbol [a] denotes the largest integer

not exceeding a. Then

K Ké-l &

o] & 1 )
z o2 1= {5+ T+ 2} D)
n=1 o =1 nd{fl n:--i{2

]

Il(k) + Ie(k) + Ia(k) .

We consider Ig(k) Pirst:

" 5 5 2kp
= -1 2 k
I(k)= ¥ n s /EP[-rn=k] < (x,+1) 1 ) (2"“ T‘é‘)
n=—-Kl+1 =P
)
= 0(k‘1+ /2) , since p = 0(%) :
(e 3] &} s} o0
1.0) = T 02 el k] <M/2 T ple ]
> n=K 1 - n=i(2 i
2
o) Q
SK£1+ /2 5 n-1*(n)
n=K
2
& loo)
= o(k“l+ /2) , since 2 n'lq,(n) < o .
n=1
o -1+4%/2
We next consider the term involving Il(k) = 7, n P[-rn=k]:
n=1
<36

| R






Qo
J = }El sup|Fy (x)-Bx/oy )|+ T, (k)

[k/(cyte, )]
= 'E sup | B (x)- @x/ck)l 2z

k=1 X n=1

5
o1t /2 P('rn-—'k]

For fixed n, let n = min{,j/,} > n(co+pJ)], and note that n is well-

defined because of the monotonicity of pJ. Then

00 l+6/2 @

J< 2 n Z‘ P[T =k ] BUP]F (x)- g(x/dk”
n=1 k=n
0o 8/, ©
< B o2 3 aym)sulF, (x)-8l /o, ) |
n=1 k=n X
T U K eatle o
< n'é‘l n }Eﬁ n w(n)(—gﬁ) s;ple(x)-ﬁfx/ck)l
® 5 ©
<o R Lt /2 sup[?k(x)-—ﬁ(x/gk)l * B n_l\y(n) SO0y
k=1 X n=1
®
since both (_";n'lq;(n) eand 3 (i /2 sup|F (x)-ﬁ(x/okﬂ are finite.
k=1

Thus,

@
4,(1-%/2) = z 81;P|r=k(2'r)-§(x/ok)| + {1 (k)T (k)4 ()]

) 5
<ot 3 K2 uplF (x)Bx/oy)| <o . B
k=1 X

%







. It may not always be obvious that a given sequence of stopping

times {Tn] satisfies the hypotheses of Theorems II.,A, II.B, or II.C.
In Theorem II.D below, a more easily recognizable class of random
variables is treated.

Let {Tn] be a sequence of non-negative, independent, identically
distributed random variables, and let T ='§}Ti. Consider a population
of individuals such that when any individual "dies" or "fails", it is
replaced by a new individual; and successive individuals live and die
independently of one another. If the lifetime of the ith individual
is Ti’ then T represents the time of the nth replacement of a

sequence of individuals. In such a situation, {Ti] is called an

ordinary renewal process5 , and Tn- is called the nth renewal epoch.

Theorem II.D. Suppose [Xi} ie a sequence of independent, identically-

+
distributed random variables, E]xi|2 b < o for some y 0< 8§ <1.

Let [Ti] be an integer-valued ordinary renewal process independent of
the {X,} , such that P[T, >0] =1, EITi}2+6 <oo and EI, =m >0,

Let T be the nth renewal epoch. Then
(1) Sl;P[Gn(x)-Eﬁ(x/cTnH—* O as n= oo .

(i) A,(1-%/2) < oo .

If, in addition, EX? log]Xi| < co, then sup|§£(x)—§(x)[ + 0 and
x

Ah(l) <o .
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Proof': Part (i) follows immediately from the strong law of large numbers

Ty P
and Anscombe's theorem, since the first implies ===k

(i1) Let n(k) = min{n/Tn >k} . Then P[q(k)>n-1] =

Pt <k], since P[T; >0] =1 implies that P[r, < k] = Plr_ ,<kl.

Let M = [-’% ], where )\ is chosen arbitrarily between zero and

one., Note that

b2 ntt /2 Plr.=k] < X n i P[‘Tn_)_k] + Z o~ & PI:TnSk]
. n= n=M
M-1 & _
n=1
@ b
b SRR /2 P1(k) > n-1]
n=M

= Il(k) + Ie(k) .

Chebysheff's inequality is applied to Il(k) to obtain the

following inequality:

M-l .5
:L.L(k) e 2 it /2 P[-rn-nm> k-1-rm]
n=
M-1 5 nEp, 210
-1+°/2 it
E Z 2+5 °©
n=1 (x~1-nm)
Write o = 9/2 and note that M = 3%-, v >1, and that for
m

=19x






Kol xa(k-l-mx)-e—é is monotone decreasing. Thus,

x >

2+5+m
M-1 {
= -2 + -2-5
I, (x) < mf’f’ 5 0¥ (k-l-nm) " E.'1‘2 5 Z} > (k-1-rm)
i n=1 n=1
+ E.'1'2+6 Z n” (k-1- r11'1'1)'2'15' ;
n—Ll
where £, = [2*'6*‘111] . It follows that
2+8 -2-5
L (x) < BTy (2+6+m) ¢ 2+5+m {(x-1) « (1~ 5]
N #L
+ E'I‘§+6 I xa(k-l—m)"E‘GM .
0
&
The first term in the above inequality is of order O(k'l+ /2). Thus,
5 o E:'n 2 o
L (x) < o™ /2) + m?é . ——1‘2+5 S ‘;_‘ (x/ki 575 X
w5 Yo (- xem(*/x))
Ak-+m
-1+6/2 +5 -0 =10 Q. 1 -2-5
= 0(k ) + m‘f m Kk fo Y (I-E-Y) ay ,

by the substitution of y = - . It follows that
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: ) ofl, k
1) £ 00 /2) 4 mEY WAL, o (R

Y = Tn{m
149 5 Akt
- o(k 1+ /2) * 0% 1-0:{(1_% )t 5}
y=0

n

&
e B e G

o( k

6
_ 0(k"l+ /2) ]

2
By Stein's theorem 5, there exists p, 0 < p <1, such that

P[(x)>n] < p°. Thus

o)

Iz(k) = g ks /2 P[n(k)>n-1]

n=M

s
1 # R g e
n=M
8
- o 12y
Therefore,

) 5
T 072 ppr ax)< () + LK) = 0By,
n=1

and the result follows from Theorem II.A. |

S







We note that in the preceding proof, the positivity of [Ti} was
required in order to use the event [7(k) > n-1] and its known
properties.

Theorems II.C and II.D are related to the following theorem of

Baum and Katze H

Theorem: For t>1, r>1, /2 <7/t <1, the following statements

are equivalent:

(a) E|x1|t <oco eand EX; = . '

o x=2 IYt
(b) Y n °P[|s(n)-nu] >n’"¢] <o for all ¢>0.
n=1

For r = t = 2, statement (b) of Katz's theorem is similar to condition
(1) of II.C, with T, Teplaced by a sun (see II.D), and with the
monotone sequence P replaced by an arbitrary ¢ > 0. A condition
on {Tn] which required that it "resemble”, in a suitable way, a sum
of random variables might allow the sequence [pn] in II.C to be
replaced by any ¢ > O.

We close this section by considering analogues for random sums
to the theorems c¢f Berry and Esseen, and Nageaev. For an independent
sequence of non-negative integer-valued random variables [Tn} with
finite variances Ve and means as Orazov and H'udai-Verenove-1

T™h P
have shown that, if E:|)€1|3 <o and ?n_’ ¢c > 0, then

22






2 -2
sup|G_(x)-§(x)| < BOEIX:LPmax(a;I (2 ) 8, A“) ;
X

log Vo
where 3 =1 - g=

0g a,

similar result is the following:

, and Bo is the Berry Esseen constant. A

Theorem IT.E. If E|X |’ < oo and the RCLT conditions hold for

{r,} and ({X;}, then

B.E|X, |’
)Tl o2t B =)
GRIHNE
Also,
= : L W |
s;plsn(x)-@'(x)l < BE|x, |7E( —/;_;) ‘
Proof:

®
|En(x)-§(x)| < X |§k(x)_§(x)| + Plr_=k]
k=1

e A
< +x)BEln P - T K /2p(r =x ]
k=1

(by Nagaev's theorem)
Y

= BElx P+ B =

) - a
/T

Note that the theorem of Orazov and Hudai-Verenov deals with moments

1
of Th 2 while Theorem II.E is expressed in terms of moments of i
: n
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III. Convergence of the Aj's when the Sequences [¢n] and {X;} are

Dependent.

The case where ({7 } is no longer required to be independent of
{X;} can involve deeper complications. It will no longer suffice to
give conditions based solely on {r } . Rather, the conditions must
be stated in terms of the interaction of ({7 } and {x1 .

Suppose T depends only on Xi,...,Xh. Such & random variable
is called a stopping time for the sequence {S(n)}. It follows from
a Theorem of Reny122 on mixing sequences of random variable that for

each x and every ¢ > O, there is a K such that for k > K,

[p(8(x) <x] n [r=%]) - P(S(x) < x] Plr =k]| < ¢ Plr =kl (1)

For future reference, let

nn,k(x) = |P(I8(x) < x] n [r = k1) - P[5(x) < x]- Plr =k] | .

The phenomenon exhibited in (1), the asymptotic independence of 38(k)
from each partial summand, suggests splitting the sums whose convergence
we wish to investigate into an "independent" part and an "asymptotically
independent" part. Sufficient conditions will be stated in terms of

the rate with which D k(x) goes to zero.
>
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Theorem III.A, Let [Xi}, [-rn} satisfy .the RCLT conditions. If

&
(1) 2 o1t Plr =k] = O(k™" 125,
n=1
and
&
(11) T Dy () = o TPya))

{k|P[1, =%]>0}

for some § € Y , then Al(x,].-‘s/z) < . If, in addition,

E)q log|X | < @, then A3(x,l) <m.

Remark: Condition (ii) will certainly be true if

& " 22
|P(8(x) < x|r =k] - P[S(x) < x]| = o(x™ ""4(a)) ,

for all sufficiently large values of k for which P[-rn= k] >0.

Proof: We proceed to split the sum A, as described above:

® +° o
A (x,1-5/2) = Dot PP |p(E(e )< %) - EB(¥o, )]
n

n=1

o 5
2 DR T |P(I8(x) < x1n [1,=k])
n=1 [k[P[-rn=k] >0}

- P[8(x) < x] - Plr_ =xl|

(o8 8 @
+ To 2 D e =K - [RIS() <x)-F(s/o, )]
n=1 k=1

= Il(x) + I(x) .
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RNow

5
L(x) = g [P (x) < x1-8(x/0y )] - % ATl P{r =k]
k=1 n=1

&
S c - k?a:: k-l+ /2|P[§(R)EX]-§(X/OE)| ’
=1

vhich is finite by the F-K-K Theorem. But Il(x) is Just

@ )
o1t /2 D ()
n=1 {x|p(r =x]>0} ™’
§0
@ A
Il(x)sc- Y ny(n) <o .
n=1
Thus
Al(x,l-5/2) < Il(x)+12(x) <.
The assertion sbout A5(x,l) follows from II.A. i3

Tt is not a hypothesis of Theorem III.A. that = depend only
on Xl,...,Xn. Referring to (1), one cen see that the rate of
convergence of Dn,k to zero can be dominated eitner by rapidly
decreasing values of P[Tn=1c}, or by bounding Dn,k by an
expression like cn,kP[Tnsz , Wwhere en,k+ O with suitable speed.
Thus, if S does in fact depend only on xl,...,xn, we need only &
slightly more stringent condition on {r } to satisfy (11) of Theorsm

III.A. The following example shows, however, that simple dependence

on Xl,...,xn is not enough.
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Exsmple III.1. Let X, > 0 be integer-valued, EX, 2 1 Ex2i+5 < oo,

5>0, and let T = S(n). Then

= T
T o t[Rl8(r,) < x1-§(x)]

n=1

A.j(x,l)

© 4 @ e
v ot ¥ |P([8(&) < x) n [ry= k]-Plr =x]- 3(x)]|
n=1 k=1

© 4, X - )
» ot ¥ |P([8(x) < x] n [S(n)=k])-P[S(n)=x]" §(x)]

n=1 k=1
o lrn-1

- £ oM T |R(Is(ak) < x/E +x(u-1)] 0 [S(n)=x1)
n=1 i\ 3 I

-P[s(n)=k] + §(x)]

- _
+ 2 |P([8(x-n) < x/K+k(p-1)] n [S(n)=k])

k=n
-p(s(n)=x] - &x)}
(o8] 1 (e8] x
> T a7t T rs(n)=x] [P[s(k-n)<wE k(u-1)]-0(x)1 .
n=l k=n

Now, P[S(k-n) < x/k + k(p-1)] + 0 as k + oo since

P[S(k-n) < X/E + k(u-1)] = P|S(ken) < s DK T
4% [ n =3 X kon m

=27







Let the quantity a(n,x)-l be the last infeger for which
|P(S(k-n) < x/k + k(p-1)]-0(x)| 1is less than some constant d where

ﬁ(x) >d > 0. Then there is a constant ey > 0 for which

00 0.0]
A(x1) 2 ef(x) T o B Pls(n)=k]

n=l  k=a(n,x)

A
A ey (x) 2 ‘n ™ Bi(n) >aln;x)] .
n=1

If a(n,x) <pn +ec, c >0, then P[S(n) > a(n,x)] + 1, and
A.j(x,l) = . To be more specific, then, let
: 1
. 73 for m=2

P[Xi=nﬂ = for m =0

roj =

0 otherwise .

Here, u = 1. Consider AE(O,ZL) and note first that a(n,x)-1 is
the largest integer for which |P[S(k-n) <o0] - 1/2]| is less than
some constant d, 1/2>d>0. Now P[S(k-n) <0] = (1/2)*" , s0
a(n,x) = n+2. From the above, A3(0,1) = 00. Notice that the
sequences (X, }, [-rn] satisfy the RCLT conditions and condition (i)

of Theorem III.A. For let k =24 (otherwise P[S(n)=k]=0). Then
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(e o) oo a
% et = © oD EP < BT TS
n=1 n={ n={,

. 00
(%) : g@- E% (n+e(n+g-1) =« (n-l)(%)n+L
n

kvl 1 4: Ad
< (QJ L S (g)

(3)

(Ref. 20)

o(x™1) .

i}

For future convenience, let H_ , = [Tn=k.}. Now consider the
3

case where [§(Tn) <x] eand [S(n) < x] have, in some sense, the
saeme asymptotic degree of dependence on Hn X One of the problems
J

that must be faced is the question of convergence of

@ 45
R 2 072 ounl§lo, )-EB/o, )] - (2)
n

n=1

Recall that we assume ¢y + 0 for all i > 0.

Letma: Let (X}, [Tn} satisfy the RCLT conditions. If, for some

vEY,

@ 5
T (s, logopl = ot /241 , (3)

then R dis finite.
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Proof':

D 3480 @ ;
RS T / b2l P(Hn,k)sgplﬁ(x/cn)-@xfok)|.
© _18/2 ¥ p(E )eup(B (o) (140, )e X - X |3
<P nr o n,k xp n n,k op Tk .
n=1

as in the lemma of section I. Here, Gn X +0 as k -+ for every n. Thus
J

@ o) e o] o f o]
-1+°/2 k
R<e Tott/2 3 p(r Jewl§(x/o,) X - 2 |
n=1 k=1 = x %n %%
@ 6} @ 04,0
<ct- T2 3o ) X2,
n=1 k=1 ’ %%

because tﬁ'(t) is bounded. Since Oy and On are bounded and nonzero,

00
R 5 C"' 2
n=l

5 ©
it /2 S P(H )]02-02! <o (by hypothesis) . W
3 n, ko N

Theorem III.B. Let {Xi], [Tn} satisfy the RCLT conditions and condition

(3) of the lemma. If there is a function f£(n,k) and a sequence {an?
such that
)
-1+
(1) Tap 72 <
n

2

for each n,

. \ -
(11) Ef(n,-:n; = %‘ f(n,k)P(Hn,k) < cB,

vhen c¢, is a fixed positive constant; and

0

(111) [B([8(x)<x1n B, ) - P([S(n) <x]n Hn’k)I < £(n,k)P(H, 1)

then A2(1-5/2) < 00. If,in addition, E)Ciloglxll < ®, then

Ah(l) < .

=30~






Proof:

00 5 3
A2(1_5/2) = 7, n‘l xesl;pIP[S("rn) < x]-Eﬁ(foTn”

n=1

0 o)
<0 AT /e{sup|P[§(Tn) <x]-P[S(n) <x] I
=1 X

+ sup|P[S(n)< x]-§(xfcn)l*ﬁup|§(xfcn)-E§(X/UT )|}
x X n

n_s]'l+12+]'3.

13 < oo by the lemma, and I2 < 00 by the F-K-K Theorem.

00 b
n=

P(H
1 (xlp(H, )>0) °

,k)s§p|P[§(k)E x] -P[S(n) fxlﬁn’kll

5 © 5
/2 spm Je(nk) <e s T nH /2,
% n,k -

n=

< n

M8

<D .
n

Thus A,(1-5/2) ST, + I, + ;<0 . W

One of the classical stopping times of sequential analysis is

the first time the sum S(k) exceeds a given value; e.g.,

T, = min{k|s(x) > n} .

To see how this sequence [-rn] cen lead to overdependence of
[S(x) < x] on H , and thus %o divergence of A3, consider the
il ’

following example.
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Example III.2. Let xi be zero with probability q, 1 >q >0,

and one with probability p,q = l-p. Let

T, =min{i|X;=1} , T, = ¢n“1+m1n{1|x7n-lﬂ=1} ;

It follows that

L}

A01) = ot T [R((sG)Skp) 0 [ry=k)) Fx)Plr = |
n=1 k—l

1}

(00] o (o8]
z o T |P([s(x)<kp n [8(k-1)=n-1] n [X =11)-8(x)
n=1 k=1

* P([s(k-1)=n-1] n [x,=11)|

since [«rn=k] = [8(k-1)=n-1] n [xk=1]. Thus

fo's) [n/D]
4,(0,1) = S M Z o e S
n=1
@
< = |p(k 1\ n-1 k-n i §(x)p\n l\ n-1 k n]}
k:[n/p]+1
(03] [n/b] =
T D G E i i - D v (g
n= k=n ﬁ(x) k=[n/pl+L
‘ ';'D'_:LCQ!l nk-n=m ]_CD n k-n
2¢ n§1 }Enk\n)P * I:Ek ngl@)p
@
= ) k_l(l'qk) = @
k=1

%







The problem we have encountered in this example is that the sum
S(Tn) is completely specified. In example III.1l, a similar situation
occurred--namely, the value of T, Was too closely tied to the value
of the summand S(n). ‘

In the next example, we consider a sequence [Tn} which, though
dependent on xl""’xn’ does not lead to a completely specified value of
S(-rn) and whose dependence on S(n) is such that the hypothesis of

Theorem IIT.A are satisfied.

Example III.3. Let {:{i] be an indepeudent sequence of identically-
distributed random variables with mean u and unit variance. Let
be a FPixed positive constant. Define a sequence {-rn] as follows:

€0

T =

- [ n, if 8(n) Sn(u+ec;)
n

2n , if s(n) > n(“+‘o) .

Note that the event [-rnr-k] is the same as the event
(8(n) < n(u+ey)] for k =n, and the same as [s(n) > n(utey)] for

k = 2n. The sum B D, k(:c) becomes, for x = 0, simply
{x|P[r =k]>0} ™

D

z 1 (0) < [PIS(n)< nu] n [8(n) Snlurey)])
{x|P[r =X]>0} ™

k

- P[s(n)<npl-P[S(n) < n(u+ey)]|

+  |p([s(2n)< 2np] n [S(n) >n(ptey)])

- P[s(2n) <2np)*P(s(n)> n(w+ey)l| -

A%







- Consider the first term:

[P([S(n) < nul n [s(n) <n(utey)]-PlS(n) < npl- PIS(n) < n(pte,)]]
= [P[S(n) < np)-PIS(n) < np] - P[S(n) < nlwtey)l]
= P[S(n) < np] + (1-P[S(n) < n(u+ey)])

= P[S(n) < nu] « P[S(n) > n(utey)] -

Let S'(n) = s(2n) - S(n). Then, for the second term,
|P([s(2n) < 2npl n [S(n) > n(utey)1)-Pls(2n) < 2np]
- P[S(n) > n(u+ey)]|
= |P([s"(n) < 2np-s(n)] n [S(n) > n(ut+ey)1)-P(8(2n) < 2ny)
- P[S(n) > n(wtey)l] -
It is certainly the case that

(s*(n) < 2op-8(n)] n [S(n) > nlutey)]  [8*(n) < nu-g,)]

n [s(a) > n(urey)]

Thus

P([s*(n) < 2np-s(n)] n [(8(n) > n(pu+ey)]) < P([s"(n) < n(u-¢,)]

n [s(n) > n(u+ey)]) .

T







By the strong law of large numbers and the central limit theorem,
for sufficiently large n, P[S" (n) < n(p-co)] < P[s(2n) < 2nul] ,
since the former goes to zero with n, and the latter to one-half.

Thus,
P([s™(n) < n(u-¢y)] n [(n) > n(p+ey)]

= P[s"(n) < n(u-¢y)] - P(s(n) > n(uﬂ:&]
< P[s(2n) < 2nu] - P{S(n) > n(ptey)] .«
But, for sufficiently large n, it follows that
|P([5™(n) < 2nu-5(n)] n [S(n) > n(u+ey)]
- P[S(2n) < 2nu] -+ P[S(n) > n(u+e,)]|

= P[s(2n) < 2nu] - P[S(n) > n(p+ey)]

- P([s"(n) < 2nu-S(n)] n [S(n) > n(ute,)])
< P[s(2n) < 2np] - P[S(n) > n(p+e0)] .

Hence
D, k(%) £2° PS(n) > nlwtey)] -

¢ Elxi|2+5 < @, § >0, then Chebysheff's inequality yields

T, y(x) <2 - PIS(n) > n(urey)]

2-:1-]::]1::1|2”5

245 n2+ &
€

5
= 0(n” /2¢r(n)) 2

IA

and condition (ii) of Theorem III.A is satisfied.
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Condition (i) of Theorem III.A is easily verified, since

0 & & )
-1+°/2 -1+ /2 ky=-1+7/2
;Ein / Plr =k ]= p;k /2 P, (3) / ’

where 12 and p, are the probabilities that L and 2n,

respectively. We also note that [Xi] and [Tn] satisfy the RCLT
T, P
conditions, since -{%-—+ 1 by the weak law of large numbers. Thus,

by Theorem III.A, Al(O,l-é/Q) < .
This same example serves as an illustration of Theorem III.B.
Referring to the theorem of Baum and Katz2 , recall that if

E]Xil2+6 < 00, then

@
¥ nd . P[lS(n)-npl > nco] < oo for o >0
n=1

For condition (iii) of III.B, we have for k =n,

|P((s(@) < nu] n [S(n) < n(utey)]) - P([S(n) < nul
n [8(n) < n(utel))| =0,

and for k = 2n,

|P([s(2n) < 20u] n [8(n) > n(utey)]) - P([S(n) < nul

n [8(n) > n(utey)])]
< PIs"(n) < n(u-gy)] * PIS(n) > nuey)] .

For other values of k, P[r =k] = 0. Using the notation of III.B,







O for kx $2n,

0

£(n,k)

£(n,k) P[s"(n) < n(u+c0)] for k =2n ,

Thus

2 £(n,x)R(R, \) < P[s"(n) < n(p-e,)] * P[S(n) > n(utey)]

and by the theorem of Baum and Katz,

&
a1t /2

z P(S(n) > n(utey)] - PIS¥(n) < nlu-gg)] < oo

with plenty to spare. The only condition of III.B not yet verified

is the condition that

oo &
R= D B(H_,) - lo2o2] = ofn™ /2y(n)) .
k=1 g

In this example,
2 2
R = lcgn-cnl * P[s(n) > nutey)] -
Here Icgn-gil is bounded, and
_5/2
P[S(n) > n(u+ey)] = 0(n” ""y(n))

2
by Theorem 3 and the lemma of the paper by Baum and Katz . Thus

the proof of Theorem IIT.B also yields A1(0,1-5/2) < 0.
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_ We have seen examples where the sufficiency conditions of
Theorems III.A and III.B do not hold, and the series in question
diverge, and an example where they do hold. This indicates that
these conditions are reasonably sharp. However, the search for
interesting necessary conditions has been fruitless. The openness
of the necessity question for independent [Tn} suggests that no
condition more stringent than

o)
S0 72 pir =x]1< o
n n

is likely to be, in general, necessary in the dependent case.
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