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Abstract: The aim of this article is mainly to discuss the neutrosophic extended triplet (NET) group 

actions and Burnside’s lemma of NET group. We introduce NET orbits, stabilizers, conjugates and 

NET group action. Then, we give and proof the Orbit stabilizer formula for NET group by utilizing 

the notion of NET set theory. Moreover, some results related to NET group action, and Burnside’s 

lemma are obtained. 

Keywords: NET group action; NET orbit; NET stabilizer; NET conjugate; Burnside’s lemma; NET 

fixed points; The fundamental theorem about NET group action. 

 

 

1. Introduction 

Galois is well known as the first researcher associating group theory and field theory, along the 

theory particularly called Galois theory. The concept of groupoid gives a more flexible and powerful 

approach to the concept of symmetry (see [1]). Symmetry groups come out in the review of 

combinatorics outline and algebraic number theory, along with physics and chemistry. For instance, 

Burnside’s lemma can be utilized to compute combinatorial objects related along symmetry groups. 

A group action is a precise method of solving the technique wither the elements of a group meet 

transformations of any space in a method such protects the structure of a certain space. Just as there 

is a natural similarity among the set of a group elements and the set of space transformations, a 

group can be explained as acting on the space in a canonical way. A familiar method of defining 

no-canonical groups is to express a homomorphism f from  a group G  to the group of 

symmetries ( an object is invariant to some of different transformations; including reflection, 

rotation) of a set .X The action of an element g G  on a point x X  is supposed to be similar to 

the action of its image ( ) ( )f g Sym X  on the point .x  The stabilizers of the action are the vertex 

groups, and the orbits of the action are the elements, of the action groupoid. Some other facts about 

group theory can be revealed in [2-5].  

Neutrosophy is a new branch of philosophy, presented by Florentic Smarandache [6] in 1980, 

which studies the interactions with different ideational spectra in our everyday life. A NET is an 

object of the structure 
( ) ( )( , , ),neut x anti xx e e  for ,x N was firstly presented by Florentine 

Smarandache [7-9] in 2016. In this theory, the extended neutral and the extended opposites can 

similar or non-identical from the classical unitary element and inverse element respectively. The 

NETs are depend on real triads: (friend, neutral, enemy), (pro, neutral, against), (accept, pending, 

reject), and in general ( , ( ), ( ))x neut x anti x as in neutrosophy is a conclusion of Hegel’s dialectics 

that is depend on x and ( )anti x . This theory acknowledges every concept or idea x together 



Neutrosophic Sets and Systems, Vol. 30, 2019     45  

 

 

 

Moges Mekonnen Shalla and Necati Olgun, Neutrosophic Extended Triplet Group Action and Burnside’s Lemma 

along its opposite ( )anti x  and along their spectrum of neutralities ( )neut x  among them. 

Neutrosophy is the foundation of neutrosophic logic, neutrosophic set, neutrosophic probability, 

and neutrosophic statistics that are utilized or applied in engineering (like software and information 

fusion), medicine, military, airspace, cybernetics, and physics. Kandasamy and Smarandache [10] 

introduced many new neutrosophic notions in graphs and applied it to the case of neutrosophic 

cognitive and relational maps. The same researchers [11] were introduced the concept of 

neutrosophic algebraic structures for groups, loops, semi groups and groupoids and also their N 
algebraic structures in 2006. Smarandache and Mumtaz Ali [12] proposed neutrosophic triplets and 

by utilizing these they defined NTG and the application areas of NTGs. They also define NT field 

[13] and NT in physics [14]. Smarandache investigated physical structures of hybrid NT ring [15]. 

Zhang et al [16] examined the Notion of cancellable NTG and group coincide in 2017. Şahın and 

Kargın [17], [18] firstly introduced new structures called NT normed space and NT inner product 

respectively. Smarandache et al [19] studied new algebraic structure called NT G-module which is 

constructed on NTGs and NT vector spaces. The above set theories have been applied to many 

different areas including real decision making problems [20-44]. Furthermore, Abdel Basset et al 

applied this theory to decision making approach for selecting supply chain sustainability metrics 

[48], an approach of TOPSIS technique [49, 51], iot-based enterprises [50, 52], calculation of the green 

supply chain management [53] and neutrosophic ANP and VIKOR method for achieving sustainable 

supplier selection [54]. 

   The paper deals with action of a NET set on NETGs and Burnside’s lemma. We provide basic 

definitions, notations, facts, and examples about NETs which play a significant role to define and 

build new algebraic structures. Then, the concept of NET orbits, stabilizers, fixed points and 

conjugates are given and their difference between the classical structures are briefly discussed. 

Finally, some results related to NET group actions and Burnside’s lemma are obtained. 

2. Preliminaries  

Since some properties of NETs are used in this work, it is important to have a keen knowledge 

of NETs. We will point out some few NETs and concepts of NET group, NT normal subgroup, and 

NT cosets according to what needed in this work. 

Definition 2.1 [12, 14] A NT has a form     ,  ,  ,a neu at nti aa for     , ,a a Na neut anti  , 
accordingly  neut a  and  anti a N  are neutral and opposite of ,a  that is different from the 
unitary element, thus: ( ) ( )a neut a neut a a a     and ( ) ( ) ( )a anti a anti a a neut a     
respectively. In general, a  may have one or more than one neut's and one or more than one anti's. 

Definition 2.2 [8, 14] A NET is a NT, defined as definition 1, but where the neutral of a  
(symbolized by 

( )neut ae  and called "extended neutral") is equal to the classical unitary element. As a 
consequence, the "extended opposite" of a , symbolized by 

( )anti ae  is also same to the classical 
inverse element. Thus, a NET has a form 

( ) ( )( , , )neut a anti aa e e , for ,a N where 
( )neut ae  and 

( )anti ae   in N  are the extended neutral and negation of a  respectively, thus : 
( ) ( ) ,neut a neut aa e e a a     

which can be the same or non-identical from the classical unitary element if any and  
( ) ( ) ( ).anti a anti a neut aa e e a e     

Generally, for each a ∊ N there are one or more 
( )neut ae 's and 

( )anti ae 's. 

Definition 2.3 [12, 14] Suppose ( , )N   is a NT set. Subsequently ( , )N   is called a NTG, if the 

axioms given below are holds. 

(1) ( , )N  is well-defined, i.e. for and  ( , ( ), ( )), ( , ( ), ( ) ,a neut a anti a b neut b anti b N  

one    has ( , ( ), ( )) ( , ( ), ( ) .a neut a anti a b neut b anti b N   

(2)  ( , )N   is associative, i.e. for any  



Neutrosophic Sets and Systems, Vol. 30, 2019     46  

 

 

 

Moges Mekonnen Shalla and Necati Olgun, Neutrosophic Extended Triplet Group Action and Burnside’s Lemma 

one has ( , ( ), ( )) ( , ( ), ( ) ( , ( ), ( )) .a neut a anti a b neut b anti b c neut c anti c N    

Theorem 2.4 [46] Let ( , )N   be a commutative NET relating to   and

( , ( ), ( )), ( , ( ), ( ))a neut a anti a b neut b anti b N ; 
 (i)    ( ) ( ) ( );neut a neut b neut a b    
 (ii)  ( ) ( ) ( );anti a anti b anti a b    

 

Definition 2.5 [8, 14] Assume ( , )N   is a NET strong set. Subsequently ( , )N   is called a NETG, if 
the axioms given below are holds. 

(1)  ( , )N   is well-defined, i.e. for any ( , ( ), ( )), ( , ( ), ( ) ,a neut a anti a b neut b anti b N  
     one has ( , ( ), ( )) ( , ( ), ( ) .a neut a anti a b neut b anti b N    
(2)  ( , )N   is associative,  
     i.e. for any ( , ( ), ( )), ( , ( ), ( )), ( , ( ), ( )) ,a neut a anti a b neut b anti b c neut c anti c N one has 

 

 

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( )).

a neut a anti a b neut b anti b c neut c anti c

a neut a anti a b neut b anti b c neut c anti c

 

  

 

Definition 2.6 [47] Assume that 
1

( , )N   and 
2

( , )N  are two NETG’s. A mapping 

1 2
:f N N  is called a neutro-homomorphism if: 

(1)  For any 
1

( , ( ), ( )), ( , ( ), ( ) ,a neut a anti a b neut b anti b N we have 

 

   

( , ( ), ( )) ( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( ))

f a neut a anti a b neut b anti b

f a neut a anti a f b neut b anti b



 

 

 (2)  If ( , ( ), ( ))a neut a anti a is a NET from 
1
,N Then 

   ( ) ( )f neut a neut f a and    ( ) ( ) .f anti a anti f a  

 
Definition 2.7 [45] Assume that 

1
( , )N  is  a NETG and H is a subset of 

1
.N  H is called a NET 

subgroup of N  if itself forms a NETG under .  On other hand it means : 
  (1)  

( )neut ae lies in .H  
  (2)  For any ( , ( ), ( )), ( , ( ), ( ) ,a neut a anti a b neut b anti b H  

( , ( ), ( )) ( , ( ), ( ) .a neut a anti a b neut b anti b H   
       (3)  If ( , ( ), ( )) ,a neut a anti a H  then 

( ) .anti ae H  
Definition 2.8 [45] A NET subgroup H  of a NETG N  is called a NT normal subgroup of N  if 
( , ( ), ( )) ( , ( ), ( )), ( , ( ), ( ))a neut a anti a H H a neut a anti a a neut a anti a N   and we represent it 
as .H N(  

3. NET Group Action 

    A NETG action is a representation of the elements of a NETG as a symmetries of a NET set. It is a 
precise method of solving the technique in which the elements of a NETG meet transformations of 
any space in a method that maintains the structure of that space. Just as a group action plays an 
important role in the classical group theory, NETG action enacts identical role in the theory of NETG 
theory. 

Definition 3.1 An action of N on X (left NETG action) is a map N X X  denoted  

 ( , ( ), ( )), ( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))n neut n anti n x neut x anti x n neut n anti n x neut x anti x  

as shown          1( , ( ), ( )) ( , ( ), ( ))x neut x anti x x neut x anti x  

and             
 

 

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))

n neut n anti n h neut h anti h x neut x anti x

n neut n anti n h neut h anti h x neut x anti x
 

for all ( , ( ), ( ))x neut x anti x in X and ( , ( ), ( )), ( , ( ), ( ))n neut n anti n h neut h anti h in .N Given a 
NET action of N on ,X we call X a N  set. A N map between N  sets X and Y is a map 

:f X Y of NET sets that respects the N action, meaning that,  
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   ( , ( ), ( ))( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))f n neut n anti n x neut x anti x n neut n anti n f x neut x anti x for 
all ( , ( ), ( ))x neut x anti x in X and ( , ( ), ( ))n neut n anti n in .N To give a NET action of N on X
is equivalent to giving a NETG neutro-homomorphism from N to the NETG of bijections of .X  
Note that a NETG action is not the same thing as a binary structure, we combine two elements of X
to get a third element of X (we combine two apples and get an apple). In a NETG action, we 
combine an element of N with an element of X to get an element of X (we combine an apple and 
an orange and get another orange). 
It is critical to note that  ( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))n neut n anti n h neut h anti h x neut x anti x  has two 
actions of N on elements of .X under other conditions 

 ( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))n neut n anti n h neut h anti h x neut x anti x  
has one multiplication in the NETG  ( , ( ), ( ))( , ( ), ( ))n neut n anti n h neut h anti h and then one 
action of an element of N on .X  

Example 3.2 For a NET subgroup ,H N  consider the left NT coset space 
 ( , ( ), ( )) : ( , ( ), ( )) .N a neut a anti a H a neut a anti a N

H
   (We do not care wether or not 

,H N  as we are just thinking about N
H

as a set.) Let N act on N
H

 by left multiplication. 
That is for ( , ( ), ( ))n neut n anti n N and a left NT coset ( , ( ), ( ))a neut a anti a H (
( , ( ), ( ))a neut a anti a N ), set  

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))

( , ( ), ( ))( , ( ), ( )) :
.

( , ( ), ( )) ( , ( ), ( ))

n neut n anti n a neut a anti a H n neut n anti n a neut a anti a H

n neut n anti n y neut y anti y

y neut y anti y a neut a anti a H

 

 
  

 

 

This is an action of N on ,N
H

 since ( , ( ), ( )) ( , ( ), ( ))1 a neut a anti a H a neut a anti a HN  and  

 

 

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))1 1 1 2 2 2

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))1 1 1 2 2 2

neut anti neut anti a neut a anti a Hn n n n n n

neut anti neut anti a neut a anti a Hn n n n n n

 

 
 

 

( , ( ), ( ))( , ( ), ( ))( , ( ), ( ))1 1 1 2 2 2

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( )) .1 1 1 2 2 2

neut anti neut anti a neut a anti a Hn n n n n n

neut anti neut anti a neut a anti a Hn n n n n n




 

Note: NET Groups Acting Independently by Multiplication 

All NETG acts independently like so, NET set N N and .X N Then for 
( , ( ), ( ))n neut n anti n N and ( , ( ), ( )) ,n neut n anti n X N   we define 

 ( , ( ), ( )) ( , ( ), ( ))n neut n anti n n neut n anti n
 ( , ( ), ( )) ( , ( ), ( )) .n neut n anti n n neut n anti n X N    

Example 3.3 Each NETG N  acts independently  X N by left multiplication functions. In other 

words, we set :( , ( ), ( )) N Nn neut n anti n  by 

 ( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))( , ( ), ( )) h neut h anti h n neut n anti n h neut h anti hn neut n anti n   

for all ( , ( ), ( ))n neut n anti n N and ( , ( ), ( )) .h neut h anti h H  Subsequently,  the axioms for 

being a NETG action are ( , ( ), ( )) ( , ( ), ( ))1 h neut h anti h h neut h anti hN   for all 

( , ( ), ( ))h neut h anti h N and  

 ( , ( ), ( )) ( , ( ), ( ))( , ( ), ( )1 1 1 2 2 2neut anti neut anti h neut h anti hn n n n n n  

 ( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))1 1 1 2 2 2neut anti neut anti h neut h anti hn n n n n n  
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for all ( , ( ), ( )),( , ( ), ( )),( , ( ), ( )) ,1 1 1 2 2 2neut anti neut anti h neut h anti h Nn n n n n n  which are both 

true whereby 1N  is a neutrality and multiplication in N is associative. 

The notation for the NET effect of N is ( , ( ), ( ))n neut n anti n  or  

 ( , ( ), ( ))( , ( ), ( )) x neut x anti xn neut n anti n  

simply as ( , ( ), ( )) ( , ( ), ( ))n neut n anti n x neut x anti x or  

( , ( ), ( ))( , ( ), ( )).n neut n anti n x neut x anti x  

In this explanation, the conditions for the left NETG action take the succeeding shape: 

i. for all ( , ( ), ( )) , ( , ( ), ( )) ( , ( ), ( )).1x neut x anti x X x neut x anti x x neut x anti xN   
ii. for every ( , ( ), ( )),( , ( ), ( ))1 1 1 2 2 2neut anti neut anti Nn n n n n n  an

( , ( ), ( )) ,x neut x anti x X  

 ( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))1 1 1 2 2 2neut anti neut anti x neut x anti xn n n n n n   

 ( , ( ), ( ))( , ( ), ( )) ( , ( ), ( )).1 1 1 2 2 2neut anti neut anti x neut x anti xn n n n n n   

Theorem 3.4 Let a NETG action N act on the NET set .X  If 
( , ( ), ( )) , ( , ( ), ( )) ,x neut x anti x X n neut n anti n N  and  

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( )),y neut y anti y n neut n anti n x neut x anti x  
then 

1( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( )).x neut x anti x n neut n anti n y neut y anti y    
If ( , ( ), ( )) ( ', ( '), ( '))x neut x anti x x neut x anti x then  

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( )) ( ', ( '), ( ')).n neut n anti n x neut x anti x n neut n anti n x neut x anti x    

Proof : From ( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))y neut y anti y n neut n anti n x neut x anti x   we get 

 

1

1

( , ( ), ( )) ( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))

n neut n anti n y neut y anti y

n neut n anti n n neut n anti n x neut x anti x








 

 1( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))n neut n anti n n neut n anti n x neut x anti x  
( , ( ), ( ))1 x neut x anti xN ( , ( ), ( )).x neut x anti x  

To show ( , ( ), ( )) ( ', ( '), ( '))x neut x anti x x neut x anti x   

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))( ', ( '), ( ')),n neut n anti n x neut x anti x n neut n anti n x neut x anti x  

we show the contrapositive : if  

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))( ', ( '), ( '))n neut n anti n x neut x anti x n neut n anti n x neut x anti x  

then applying 
1( , ( ), ( ))n neut n anti n 

to both sides gives  

 

 

1

1

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( )) ( ', ( '), ( '))

n neut n anti n n neut n anti n x neut x anti x

n neut n anti n n neut n anti n x neut x anti x





 

  
 

so  

 

 

1

1

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( )) ( ', ( '), ( '))

n neut n anti n n neut n anti n x neut x anti x

n neut n anti n n neut n anti n x neut x anti x







 
 

so 
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( , ( ), ( )) ( ', ( '), ( ')).x neut x anti x x neut x anti x  

On the other hand to imagine action of a NETG on a NET set is such it’s a definite 
neutro-homomorphism. On hand are the facts. 

Theorem 3.5 Actions of the NETG N on the NET set X are identical NETG 
neutro-homeomorphisms from ( ),N Sym X  the NETG of permutations of .X  

Proof: Assume we’ve an action of N on the NET set .X  We observe 

( , ( ), ( )) ( , ( ), ( ))n neut n anti n x neut x anti x as a function of ( , ( ), ( ))x neut x anti x (with 

( , ( ), ( ))n neut n anti n fixed). That is, for each ( , ( ), ( ))n neut n anti n N we have a function 

:( , ( ), ( )) X Xn neut n anti n  by 

 
( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( )).
n neut n anti n

x neut x anti x n neut n anti n x neut x anti x    

The axiom ( , ( ), ( )) ( , ( ), ( ))1 x neut x anti x x neut x anti xN  says 1 is the neutrality function on .X  

The axiom 

 ( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( )1 1 1 2 2 2neut anti neut anti x neut x anti xn n n n n n   

 ( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))1 1 1 2 2 2neut anti neut anti x neut x anti xn n n n n n   

says 

( , ( ), ( )) ( , ( ), ( ))1 1 1 2 2 2

,( , ( ), ( ))( , ( ), ( ))1 1 1 2 2 2

neut anti neut antin n n n n n

neut anti neut antin n n n n n

 


 

so structure of functions on X match multiplication in .N Additionally, ( , ( ), ( ))n neut n anti n is 

an invertible function whereby 1( , ( ), ( ))1 1 1neut antin n n  is an anti-neutral: the composite of 

( , ( ), ( ))1 1 1neut antin n n and 1( , ( ), ( ))1 1 1neut antin n n  is ,1 which is the neutral function on 

.X Therefore, 
1 1 1

( , ( ), ( ))
( )

neut anti
Sym X

n n n  and 
1 1 1

( , ( ), ( ))
( , ( ), ( ))

neut anti
n neut n anti n

n n n is a 

neutro-homomorphism ( ).N Sym X  

    Contrariwise, assume we’ve a homomorphism : ( ).f N Sym X  For every 

( , ( ), ( )),n neut n anti n  we have a permutation  ( , ( ), ( ))f n neut n anti n  on ,X  and  

 ( , ( ), ( ))( , ( ), ( ))1 1 1 2 2 2f neut anti neut antin n n n n n  

   ( , ( ), ( )) ( , ( ), ( )) .1 1 1 2 2 2f neut anti f neut antin n n n n n  

Setting ( , ( ), ( )) ( , ( ), ( ))n neut n anti n x neut x anti x  

  ( , ( ), ( )) ( , ( ), ( ))f n neut n anti n x neut x anti x  
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introduces a NETG action of  N on ,X whereby the neutro-homomorphism properties of f
submits the defining properties of a NETG action. From this view point, the NET set of 
( , ( ), ( ))n neut n anti n N  that act trivially  

 ( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))n neut n anti n x neut x anti x x neut x anti x   

for all ( , ( ), ( ))x neut x anti x X is straightforwardly the neutrosophic kernel of the 

neutro-homomorphism ( )N Sym X related to the action. Consequently the above mentioned 

( , ( ), ( ))n neut n anti n such act trivially on X are assumed to lie in the neutrosophic kernel of the 

action. 

Example 3.6 To build N act independently by conjugation, take X N  and let 

( , ( ), ( )) ( , ( ), ( ))

1( , ( ), ( ))( , ( ), ( )) .( , ( ), ( ))

n neut n anti n x neut x anti x

n neut n anti n x neut x anti x n neut n anti n




 

Here, ( , ( ), ( ))n neut n anti n N and ( , ( ), ( )) .x neut x anti x N  Since 

1( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))1 1 1x neut x anti x x neut x anti x x neut x anti xN N N
    

and  

 ( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))1 1 1 2 2 2

( , ( ), ( ))1 1 1

neut anti neut anti x neut x anti xn n n n n n

neut antin n n

 

 
 

 

 

1( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))2 2 2 2 2 2

( , ( ), ( ))1 1 1

1( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))2 2 2 2 2 2

1( , ( ), ( ))1 1 1

( , ( ), (1 1 1

neut anti x neut x anti x neut antin n n n n n

neut antin n n

neut anti x neut x anti x neut antin n n n n n

neut antin n n

neut antin n n









 

 

 

))( , ( ), ( )) ( , ( ), ( ))2 2 2

1
( , ( ), ( ))( , ( ), ( ))1 1 1 2 2 2

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( )),1 1 1 2 2 2

neut anti x neut x anti xn n n

neut anti neut antin n n n n n

neut anti neut anti x neut x anti xn n n n n n



 

 

neutrosophic conjugation is a NET action. 

Definition 3.7 Assume such N is a NETG and X is a NET set. A right NETG action of N on X is 
a rule for merging elements ( , ( ), ( ))n neut n anti n N and elements ( , ( ), ( )) ,x neut x anti x X
symbolized by ( , ( ), ( )) ( , ( ), ( )),n neut n anti n x neut x anti x  

 ( , ( ), ( )) ( , ( ), ( ))n neut n anti n x neut x anti x X  for all ( , ( ), ( ))x neut x anti x X and  

( , ( ), ( )) .n neut n anti n N We also need the succeeding conditions. 

I. ( , ( ), ( )) ( , ( ), ( ))1x neut x anti x x neut x anti xN for all ( , ( ), ( )) .x neut x anti x X  
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II. 
 

 

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))2 2 2 1 1 1

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))2 2 2 1 1 1

x neut x anti x neut anti neut antin n n n n n

x neut x anti x neut anti neut antin n n n n n

 


 

for all ( , ( ), ( ))x neut x anti x X and ( , ( ), ( )),( , ( ), ( )) .1 1 1 2 2 2neut anti neut anti Nn n n n n n   

Remark 3.8 Left NETG actions are not very distinct from right NETG actions. The only distinction 
exists in condition (ii). 

 For left NETG actions, implementing ( , ( ), ( ))2 2 2neut antin n n to an element and then applying 

( , ( ), ( ))1 1 1neut antin n n to the result is the same as applying  

( , ( ), ( ))( , ( ), ( )) .1 1 1 2 2 2neut anti neut anti Nn n n n n n   

 For right NETG actions applying ( , ( ), ( ))2 2 2neut antin n n and then ( , ( ), ( ))1 1 1neut antin n n is 

the same as applying ( , ( ), ( ))( , ( ), ( )) .2 2 2 1 1 1neut anti neut anti Nn n n n n n   

Let us see the example of a right NETG action (beyond the Rubik’s cube example, which as we wrote 
things is a right NETG action). Also it is easy to do matrices multiplying vectors from the right. 

Example 3.9 (A NETG acting on a NET set of NT cosets). Assume such N is a NETG and H is a 
NET subgroup. Examine the NET set  / ( , ( ), ( ))X Ha a neut a anti a N  of right NT cosets of 

.H subsequently N acts on X by right multiplication, That is, we describe 

 

 

( , ( ), ( )) ( , ( ), ( ))

( , ( ), ( ))( , ( ), ( ))

H a neut a anti a n neut n anti n

H a neut a anti a n neut n anti n




 

for ( , ( ), ( ))n neut n anti n N and ( , ( ), ( )) .H a neut a anti a X First let’s chect that this is well 

defined, hence assume such ( , ( ), ( )) ( ', ( '), ( ')),H a neut a anti a H a neut a anti a then 

1( ', ( '), ( '))( , ( ), ( )) .a neut a anti a a neut a anti a H  Now, we have to prove that  

for any ( , ( ), ( )) .n neut n anti n N But 
1( ', ( '), ( '))( , ( ), ( ))a neut a anti a a neut a anti a H  so that  

 

 

1

( ', ( '), ( '))( , ( ), ( ))

( , ( ),
( ', ( '), ( '))( , ( ), ( ))

( ))( , ( ), ( ))

( , ( ), ( ))( , ( ), ( ))

a neut a anti a n neut n anti n

a neut a
a neut a anti a a neut a anti a

anti a n neut n anti n

H a neut a anti a n neut n anti n

  
  

 



 

so that  

( , ( ), ( ))( , ( ),
( ', ( '), ( '))( , ( ), ( )) .

( ))

a neut a anti a n neut n
a neut a anti a n neut n anti n H

anti n

 
  

 
 

But certainly  ( ', ( '), ( '))( , ( ), ( ))H a neut a anti a n neut n anti n also contains  

   ( , ( ), ( ))( , ( ), ( )) ( ', ( '), ( '))( , ( ), ( ))H a neut a anti a n neut n anti n H a neut a anti a n neut n anti n
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 ( ', ( '), ( '))( , ( ), ( )) ( ', ( '), ( '))( , ( ), ( )).1 a neut a anti a n neut n anti n a neut a anti a n neut n anti nN   

Thus the two cosets  ( , ( ), ( ))( , ( ), ( ))H a neut a anti a n neut n anti n and 

 ( ', ( '), ( '))( , ( ), ( ))H a neut a anti a n neut n anti n  have the elements 

( ', ( '), ( '))( , ( ), ( ))a neut a anti a n neut n anti n in common. This proves that  

   ( , ( ), ( ))( , ( ), ( )) ( ', ( '), ( '))( , ( ), ( ))H a neut a anti a n neut n anti n H a neut a anti a n neut n anti n  

since NT cosets are either same or separate.  

Now we’ve proved that this is well defined, we have to show it is also an action. Definitely axiom (i) 

is holds since  

   ( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( )).1 1H a neut a anti a H a neut a anti a H a neut a anti aN N   

Lastly, we have to show axiom (ii). Assume such  

( , ( ), ( )),( , ( ), ( )) .1 1 1 2 2 2neut anti neut anti Nn n n n n n   Then 

  

  

  

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))2 2 2 1 1 1

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))2 2 2 1 1 1

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))2 2 2 1 1 1

(

H a neut a anti a neut anti neut antin n n n n n

H a neut a anti a neut anti neut antin n n n n n

H a neut a anti a neut anti neut antin n n n n n

H

 

 



   

   

, ( ), ( )) ( , ( ), ( ))( , ( ), ( ))2 2 2 1 1 1

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))2 2 2 1 1 1

a neut a anti a neut anti neut antin n n n n n

H a neut a anti a neut anti neut antin n n n n n 

 

which proves (ii) and ends the proof. Of course, N also acts on the set of left NT cosets of H by 

multiplication on the left.  

Definition 3.10 A NETG action of N on X is called NET faithful if distinct elements of N act on 
X in dis-similar methods: when ( , ( ), ( )) ( , ( ), ( ))1 1 1 2 2 2neut anti neut antin n n n n n  in ,N  there 

is an ( , ( ), ( ))x neut x anti x X such that  

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( )).1 1 1 2 2 2neut anti x neut x anti x neut anti x neut x anti xn n n n n n    

Note that when we say 
1 1 1

( , ( ), ( ))neut antin n n and 
2 2 2

( , ( ), ( ))neut antin n n act distinctly, we 

signify they act distinctly somewhere, not all place. This is consistent with what it signifies to say 

two functions are disjoint. They take distinct values somewhere, not all place. 

Example 3.11 The action of N independently by left multiplication is faithful: distinct elements 

send 1N  to distinct places. 
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Example 3.12 When H is a NET subgroup of N and N acts on /N H left multiplication 

( , ( ), ( ))1 1 1neut antin n n  and ( , ( ), ( ))2 2 2neut antin n n  in N act in the similar method on /N H

exactly when  

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))1 1 1 2 2 2neut anti n neut n anti n H neut anti n neut n anti n Hn n n n n n  

for all ( , ( ), ( )) ,n neut n anti n N which means  

1

1( , ( ), ( )) ( , ( ), ( ))2 2 2 1 1 1 ( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( )) .

neut anti neut antin n n n n n
n neut n anti n

N n neut n anti n H n neut n anti n 

 



 

So the left multiplication action of N on /N H is NET faithful in the case that the NET subgroups 

1( , ( ), ( )) ( , ( ), ( ))n neut n anti n H n neut n anti n 
 (as ( , ( ), ( ))n neut n anti n  varies) have trivial 

intersection. 

Viewing NETG actions as neutro-homeomorphisms, a NET faithful action of N on X is an 
injective neutro-homomorphism ( ).N Sym X Non faithful actions are not injective as NETG 
neutro-homeomorphisms, and many important homeomorphisms are not injective. 

Remark 3.13 What we’ve been calling a NETG action could be a left and right NETG action. The 

difference among left and right actions is how a product ( , ( ), ( ))( ', ( '), ( '))n neut n anti n n neut n anti n  

acts: in a left action ( ', ( '), ( '))n neut n anti n acts first and ( , ( ), ( ))n neut n anti n acts second, while in 

a right action ( , ( ), ( ))n neut n anti n acts first and ( ', ( '), ( '))n neut n anti n acts second. 

We can introduce the NET conjugate of ( , ( ), ( ))h neut h anti h  by ( , ( ), ( ))n neut n anti n as 

( , ( ), ( ))( , ( ), ( ))( , ( ), ( ))n neut n anti n h neut h anti h n neut n anti n  

Instead          
1( , ( ), ( ))( , ( ), ( ))( , ( ), ( )) ,n neut n anti n h neut h anti h n neut n anti n 

 

and this convention fits well with the right NET conjugation action but not left action : setting 

( , ( ), ( )) 1( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))n neut n anti nh neut h anti h n neut n anti n h neut h anti h n neut n anti n

we have 1( , ( ), ( )) ( , ( ), ( ))Nh neut h anti h h neut h anti h and  

 
( , ( ), ( ))2 2 2

1 1 1

1 1 1 2 2 2

( , ( ), ( ))

( , ( ), ( ))( , ( ), ( ))

( , ( ), ( ))

( , ( ), ( )) .

neut antin n n

neut anti

neut anti neut anti

n n nh neut h anti h

n n n n n nh neut h anti h

 

The distinction among left and right actions of a NETG is mostly unreal, whereby subsetituting 
( , ( ), ( ))n neut n anti n with 

1( , ( ), ( ))n neut n anti n 
in the NETG changes left actions into right 
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actions and contrarily since inversion backwards the order of multiplication in .N So for us “NETG 
action” means “left NETG action”. 

Definition 3.14 Let a NETG N act on NET set .X  For each ( , ( ), ( )) ,x neut x anti x X its orbit is  

 ( , ( ), ( ))( , ( ), ( )):( , ( ), ( ))( , ( ), ( )) n neut n anti n x neut x anti x n neut n anti n N XOrb x neut x anti x     

and its stabilizer is  

 ( , ( ), ( )) :( , ( ), ( ))( , ( ), ( )) .( , ( ), ( )) n neut n anti n N n neut n anti n x neut x anti x NStab x neut x anti x   

(The stabilizer of NET ( , ( ), ( ))x neut x anti x is symbolized by ( , ( ), ( ))N x neut x anti x , where N is 

NETG.) We call ( , ( ), ( ))x neut x anti x  a NET fixed point for the action when 

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))n neut n anti n x neut x anti x x neut x anti x   

for every ( , ( ), ( )) ,n neut n anti n N that is, when  

 ( , ( ), ( ))( , ( ), ( )) x neut x anti xOrb x neut x anti x   

(or equivalently, when ).( , ( ), ( )) NStab x neut x anti x   The orbit of NETs of a point is a geometric 

notion: it is the NET set of places where the points can be moved by the NETG action. Under other 

conditions, the stabilizer of a NET of a point is an algebraic notion: it is the NET set of NETG 

elements that fix the point. Mostly we’ll denote the elements of X as points and we’ll denote the 

size of a NET orbit as its length. 

Definition 3.15 Let N be a NETG, ( , ( ), ( )) ,n neut n anti n N and let H be a NET subgroup of 

.N   

1

1

( , ( ), ( )) ( , ( ), ( ))

( , ( ), ( ))( , ( ), ( ))( , ( ), ( )) :

( , ( ), ( ))

a neut a anti a H a neut a anti a

a neut a anti a h neut h anti h a neut a anti a

h neut h anti h H



 
  

 

 

is called a NET conjugate of H and the NET center of N is 

( , ( ), ( )) :( , ( ), ( ))( , ( ), ( ))
.

( , ( ), ( ))( , ( ), ( )): ( , ( ), ( ))

a neut a anti a N a neut a anti a n neut n anti n
Z N

n neut n anti n a neut a anti a n neut n anti n N

 
 

   
 

Remark 3.16 When we imagine about a NET set as a geometric object, it is useful to describe to its 
elements as points. For instance, when we imagine about /N H as a NET set on which N acts, it is 
helpful to imagine about the NT cosets of ,H which are the elements / ,N H as the points in 

/ .N H  simultaneously, though, a NT coset is a NET subset of .N  
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All of our applications of NETG actions to group theory will flow from the similarities among NET 
orbits, stabilizers, and fixed points, which we now build explicit in our the following fundamental 
examples of NETG actions. 

Example 3.17 When a NETG N acts independently by conjugation, 

a) the NET orbit of ( , ( ), ( ))a neut a anti a is 

        
( , ( ) , ( ) ) ( , ( ) , ( ) )

,( , ( ) , ( ) ) 1( , ( ) , ( ) ) : ( , ( ) , ( ) )

n n e u t n a n t i n a n e u t a a n t i a
O r ba n e u t a a n t i a

n n e u t n a n t i n n n e u t n a n t i n N

  
     

 

which is the conjugacy class of ( , ( ), ( )),a neut a anti a  

b) 

( , ( ), ( )):( , ( ), ( ))

1( , ( ), ( ))( , ( ), ( ))( , ( ), ( ))

( , ( ), ( ))

n neut n anti n n neut n anti n

a neut a anti a n neut n anti nStab a neut a anti a

a neut a anti a

 
    
 
  

 

c) 



( , ( ), ( ))
( , ( ), ( ))

:( , ( ), ( ))( , ( ), ( ))

( , ( ), ( ))( , ( ), ( ))

n neut n anti n
Z a neut a anti a

n neut n anti n a neut a anti a

a neut a anti a n neut n anti n


 




 

is the NET centralizer of ( , ( ), ( )).a neut a anti a  

d) ( , ( ), ( ))a neut a anti a is a NET fixed point when it commutes with all elements of ,N and 
thus the NET fixed points of conjugation form the NET center of ,N  and thus the NET 
fixed points of NET conjugation form the center of .N  

Example 3.18 When H acts on N by conjugation, 

i. the orbit of ( , ( ), ( ))a neut a anti a is  

( , ( ), ( ))( , ( ), ( ))
,( , ( ), ( )) 1( , ( ), ( )) :( , ( ), ( ))

h neut h anti h a neut a anti a
Orb a neut a anti a

h neut h anti h h neut h anti h H

  
     

 

which has no special name (elements of N that are H  conjugate to ( , ( ), ( ))a neut a anti a ), 

ii. 







1

( , ( ), ( )) :( , ( ), ( ))

( , ( ), ( ))( , ( ), ( ))( , ( ), ( ))

( , ( ), ( ))

( , ( ), ( )) : ( , ( ), ( ))( , ( ), ( ))

( , ( ), (

h neut h anti hStab a neut a anti a

h neut h anti h a neut a anti a h neut h anti h

h neut h anti h

h neut h anti h h neut h anti h a neut a anti a

a neut a anti a









 ))( , ( ), ( ))h neut h anti h
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is the elements of H commuting with ( , ( ), ( ))a neut a anti a (this is  ( , ( ), ( ))H Z a neut a anti a is 

the NET centralizer of ( , ( ), ( ))a neut a anti a in N ). 

iii. ( , ( ), ( ))a neut a anti a  is a NET fixed point when it commutes with all elements of ,H so 

the NET fixed points of H  conjugation on N shape the NET centralizer of H in .N  

Theorem 3.19 the Fundamental Theorem about NETG Action 

 Let a NETG N act on a NET set .X  

a. Different NET orbits of the action are disjoint and form a portion of .X  

b. For each ( , ( ), ( )) , ( , ( ), ( ))x neut x anti x X Stab x neut x anti x is a NET subgroup of N and  

1

( , ( ), ( ))( , ( ), ( ))( , ( ), ( ))

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))

n neut n anti nStab n neut n anti n x neut x anti x

n neut n anti nStab Stabx neut x anti x n neut n anti n



 

for all ( , ( ), ( )) .n neut n anti n N   

c. For each ( , ( ), ( )) ,x neut x anti x X there is a bijections  

/( , ( ), ( )) ( , ( ), ( ))NOrb Stabx neut x anti x x neut x anti x by  

( , ( ), ( ))( , ( ), ( ))

( , ( ), ( )) .( , ( ), ( ))

n neut n anti n x neut x anti x

n neut n anti n Stab x neut x anti x
 

More concretely, 
( , ( ), ( ))( , ( ), ( ))

( ', ( '), ( '))( , ( ), ( ))

n neut n anti n x neut x anti x

n neut n anti n x neut x anti x
 

in the case that ( , ( ), ( ))n neut n anti n and ( ', ( '), ( '))n neut n anti n lie in the similar NET coset of 

,( , ( ), ( ))Stab x neut x anti x and different NT left cosets of ( , ( ), ( ))Stab x neut x anti x correspond to 

different points in .( , ( ), ( ))Orb x neut x anti x  In particular, if ( , ( ), ( ))x neut x anti x and 

( , ( ), ( ))y neut y anti y are in the same NET orbit then  

( , ( ), ( )) : ( , ( ), ( ))( , ( ), ( ))

( , ( ), ( ))

n neut n anti n N n neut n anti n x neut x anti x

y neut y anti y

 
 
 

 

is a NT left coset of ,( , ( ), ( ))Stab x neut x anti x  and  
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: .( , ( ), ( )) ( , ( ), ( ))NOrb Stabx neut x anti x x neut x anti x
 
 

 

Parts b and c Show the role of conjugate NET subgroups and neutrosophic triplet cosets of a NET 
subgroup when working with NETG actions. The formula in part c that relates the length of a NET 
orbit to the index in N of a NET stabilizer for a point in the NET orbit, is named the NET 
orbit-stabilizer formula. 

Proof:  

a)  We show distinct NET orbits in a NETG action are not equal by showing that two NET orbits 

that overlap must coexist. Assume ( , ( ), ( ))Orb x neut x anti x and ( , ( ), ( ))Orb y neut y anti y have a 

common element ( , ( ), ( )).z neut z anti z  

1 1 1

2 2 2

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( )).

z neut z anti z neut anti x neut x anti x

z neut z anti z neut anti y neut y anti y

n n n

n n n




 

We want to show ( , ( ), ( ))Orb x neut x anti x and .( , ( ), ( ))Orb y neut y anti y  It suffices to show 

,( , ( ), ( )) ( , ( ), ( ))Orb Orbx neut x anti x y neut y anti y  since then we can switch the roles of 

( , ( ), ( ))x neut x anti x and ( , ( ), ( ))y neut y anti y to obtain the converse insertion. For each point 

( , ( ), ( )) ,( , ( ), ( ))u neut u anti u Orb x neut x anti x write 

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))u neut u anti u n neut n anti n x neut x anti x  

for some ( , ( ), ( )) .n neut n anti n N Since  

( , ( ), ( ))

1( , ( ), ( )) ( , ( ), ( )), ( , ( ), ( ))1 1 1

x neut x anti x

neut anti z neut z anti z u neut u anti un n n


 

 1( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))1 1 1u neut u anti u neut anti z neut z anti zn n n
  

 

 

1( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))1 1 1

( , ( ), ( ))2 2 21( , ( ), ( ))( , ( ), ( ))1 1 1
( , ( ), ( ))

1( , ( ), ( ))( , ( ), ( )) (1 1 1 2

n neut n anti n neut anti z neut z anti zn n n

neut antin n n
n neut n anti n neut antin n n

y neut y anti y

n neut n anti n neut antin n n



   
 

 , ( ), ( ))2 2

( , ( ), ( )),

neut antin n n

y neut y anti y
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which shows us that ( , ( ), ( )) .( , ( ), ( ))u neut u anti u Orb y neut y anti y Therefore 

.( , ( ), ( )) ( , ( ), ( ))Orb Orbx neut x anti x y neut y anti y  Every element of X is in some NET orbit 

(its own NET orbits), so the NET orbits partition X into disjoint NET subsets. 

b)  To see that ( , ( ), ( ))Stab x neut x anti x is a NET subgroup of ,N we’ve 

1 ( , ( ), ( ))StabN x neut x anti x since ( , ( ), ( )) ( , ( ), ( )),1 x neut x anti x x neut x anti xN   and if 

( , ( ), ( )),( , ( ), ( )) ,1 1 1 2 2 2 ( , ( ), ( ))neut anti neut antin n n n n n Stab x neut x anti x  then  

 

 

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))1 1 1 2 2 2

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))1 1 1 2 2 2

( , ( ), ( ))( , ( ), ( ))1 1 1

( , ( ), ( )),

neut anti neut anti x neut x anti xn n n n n n

neut anti neut anti x neut x anti xn n n n n n

neut anti x neut x anti xn n n

x neut x anti x







 

so ( , ( ), ( ))( , ( ), ( )) .1 1 1 2 2 2 ( , ( ), ( ))neut anti neut antin n n n n n Stab x neut x anti x  Thus 

( , ( ), ( ))Stab x neut x anti x is closed under multiplication. Lastly,  

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))1 1 1neut anti x neut x anti x x neut x anti xn n n   

 1

1

1

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( )),

n neut n anti n n neut n anti n x neut x anti x

n neut n anti n x neut x anti x

x neut x anti x n neut n anti n x neut x anti x











 

 

so ( , ( ), ( ))Stab x neut x anti x is closed under inversion. To prove  

1

( , ( ), ( ))( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( )) ,( , ( ), ( ))

Stab n neut n anti n x neut x anti x

n neut n anti n n neut n anti nStab x neut x anti x


 

for all 
( , ( ), ( ))x neut x anti x X

and 
( , ( ), ( )) ,n neut n anti n N

 observe that 

 

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))

( , ( ), ( ))( , ( ), ( ))

h neut h anti h Stab n neut n anti n x neut x anti x

h neut h anti h n neut n anti n x neut x anti x

n neut n anti n x neut x anti x



 



 

 ( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))

( , ( ), ( ))( , ( ), ( ))

h neut h anti h n neut n anti n x neut x anti x

n neut n anti n x neut x anti x




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 

 

1

1

1

( , ( ), ( ))( , ( ), ( ))
( , ( ), ( ))

( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( ))( , ( ),

h neut h anti h n neut n anti n
n neut n anti n

x neut x anti x

n neut n anti n n neut n anti n x neut x anti x

n neut n anti n h neut h anti h n neut n ant







 
  

 



  ( ))

( , ( ), ( )) ( , ( ), ( ))

1( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))

( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))

( , (

i n

x neut x anti x x neut x anti x

n neut n anti n h neut h anti h n neut n anti n

Stab x neut x anti x

h neut h anti h n neut n anti n Stab x neut x anti x

n neut n







 

1), ( )) ,anti n 

 

so 

1

( , ( ), ( ))( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( )) .( , ( ), ( ))

x neut x anti xStab x neut x anti x

n neut n anti n n neut n anti nStab x neut x anti x


 

C)  The condition  

( , ( ), ( ))( , ( ), ( )) ( ', ( '), ( '))( , ( ), ( ))n neut n anti n x neut x anti x n neut n anti n x neut x anti x  

is equivalent to  

 1( , ( ), ( )) ( , ( ), ( )) ( ', ( '), ( ')) ( , ( ), ( )),x neut x anti x n neut n anti n n neut n anti n x neut x anti x  

which means 
1( , ( ), ( )) ( ', ( '), ( ')) ,( , ( ), ( ))n neut n anti n n neut n anti n Stab x neut x anti x
  or  

( ', ( '), ( ')) ( , ( ), ( )) .( , ( ), ( ))n neut n anti n n neut n anti n Stab x neut x anti x  

Therefore ( , ( ), ( ))n neut n anti n and ( ', ( '), ( '))n neut n anti n have the same effect on 

( , ( ), ( ))x neut x anti x  in the case that ( , ( ), ( ))n neut n anti n and ( ', ( '), ( '))n neut n anti n lie in the 

similar NT coset of .( , ( ), ( ))Stab x neut x anti x  (Recall that for all NET subgroups H and 

, ( ', ( '), ( ')) ( , ( ), ( ))N n neut n anti n n neut n anti n H  

( ', ( '), ( ')) ( , ( ), ( )) .n neut n anti n H n neut n anti n H  

Whereby ( , ( ), ( ))Orb x neut x anti x consists of the points 

( , ( ), ( ))( , ( ), ( ))n neut n anti n x neut x anti x for varying ( , ( ), ( )),n neut n anti n and we showed 

elements of N have the similar effect on ( , ( ), ( ))x neut x anti x if and only if they lie in the similar 
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NT left coset of ,( , ( ), ( ))Stab x neut x anti x we get a bijections between the points in the NET orbit of 

( , ( ), ( ))x neut x anti x and the NT left cosets of ( , ( ), ( ))Stab x neut x anti x by 

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( )) .( , ( ), ( ))n neut n anti n x neut x anti x n neut n anti n Stab x neut x anti x  

Therefore the cardinality of the NET orbit of ( , ( ), ( )),x neut x anti x which is 

( , ( ), ( ))Orb x neut x anti x  equals the cardinality of the NT left cosets of ( , ( ), ( ))Stab x neut x anti x

in .N   

Remark 3.20 that the NET orbits of a NETG action are a partition results in a NETG theory: 
conjugacy classes are a partitioning of a NETG and the NT left cosets of a NET subgroup partition 
the NETG. The first result utilizes the action of a NETG independently by NET conjugation, having 
NET conjugacy classes as its NET orbits. The second result utilizes the right inverse multiplication 
action of the NET subgroup on the NETG. 

Corollary 3.21 Let a finite NETG act on a NET set. 

a)  The length of every NET orbit divides the size of .N  
    b)  Points in a common NET orbit have conjugate stabilizers, and in particular the size of the 
NET stabilizer is the similar for all points in a NET orbit. 

Proof:  a) The length of NET orbit is an index of a NET subgroup, so it divides .N  

         b)  If ( , ( ), ( ))x neut x anti x and ( , ( ), ( ))y neut y anti y are in the same NET orbit, write 

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( )).y neut y anti y n neut n anti n x neut x anti x  

Then,  

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))

1( , ( ), ( )) ( , ( ), ( )) ,( , ( ), ( ))

x neut x anti xStab Staby neut y anti y n neut n anti n

n neut n anti n n neut n anti nStab x neut x anti x




 

so the NET stabilizers of ( , ( ), ( ))x neut x anti x and ( , ( ), ( ))y neut y anti y are conjugate NET 

subgroups. 

A converse of part b is not generally true: points with NET conjugate stabilizers need not be in the 
same NET orbit. Even points with the same NET stabilizer need nor be in the same NET orbit. For 
example, if N  acts on itself trivially then all points have NET stabilizer N and all orbits have size 
1. 

Corollary 3.22 Let a NETG N acts on a NET set ,X where X is finite. Let the distinct NET orbits 

of X be symbolized by ( , ( ), ( )),...,( , ( ), ( )).1 1 1neut anti neut antix x x x x xt t t Then 

1 1

( , ( ), ( )) : ( , ( ), ( )) .
t t

i i i i i i
i i

X Orb neut anti N Stab neut antix x x x x x
 

       
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Proof: The NET set X can be written as the union of its NET orbits, which are mutually disjoint. 
The NET orbit-stabilizer formula tells us how large each NET orbit is. 

Example 3.23 As an application of the NET orbit-stabilizer formula we describe why 

H K
HK

H K



 for NET subgroups H and K of a finite NETG .N  At this point 

( , ( ), ( )), ( , ( ), ( )) : ( , ( ), ( )) ,

( , ( ), ( ))

h neut h anti h k neut k anti k h neut h anti h H
HK

K neut K anti K K

 
  

 
 

is the NET set of products, which usually is just a subset of .N  To count the size of ,HK  let the 
direct product of NETG H K act on the NET set HK like this : 

 
1

( , ( ), ( )), ( , ( ), ( )) ( , ( ), ( ))

( , ( ), ( ))( , ( ), ( ))( , ( ), ( )) ,

h neut h anti h k neut k anti k x neut x anti x

h neut h anti h x neut x anti x h neut h anti h 




 

which gives us a NETG action (the NETG is H K and the NET set is HK ). There is only 1 NET 

orbit where by 1 1 1 HKN N N   and  

 1( , ( ), ( )), ( , ( ), ( )) ( , ( ), ( )),( , ( ), ( )) .1h neut h anti h k neut k anti k h neut h anti h k neut k anti k N
   

So that the NET orbit-stabilizer formula shows us  

1

H K
HK

Stab N


  

 
.

( , ( ), ( )),( , ( ), ( )) :( , ( ), ( )),( , ( ), ( )) 1

1

H K

h neut h anti h k neut k anti k h neut h anti h k neut k anti k N

N


   
 
  

 

The condition  ( , ( ), ( )),( , ( ), ( )) 1 1h neut h anti h k neut k anti k N N   means 

1( , ( ), ( ))( , ( ), ( )) ,1h neut h anti h k neut k anti k N
  so  

  ( , ( ), ( ))( , ( ), ( )) :( , ( ), ( )) .1Stab h neut h anti h h neut h anti h h neut h anti h H KN    

So that 1Stab H KN    and .
H K

HK
H K




 

Theorem 3.24 Burnside’s Lemma 

Let a finite NETG N act on a finite NET set X in relation to r NET orbits. Subsequently r is the 
average number of NET fixed points of the elements of the NETG. 

 
1

,
( , ( ), ( ))

( , ( ), ( ))

r Fix Xn neut n anti nN n neut n anti n N

 

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where  

 
( , ( ), ( )) :( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))

x neut x anti x X n neut n anti n
Fix X

n neut n anti n x neut x anti x x neut x anti x

 
  

 
 

is the NET set of elements of X fixed by ( , ( ), ( )).n neut n anti n  

Don’t confuse the NET set  ( , ( ), ( ))n neut n anti nFix X in relation to the NET fixed points of the action: 

 ( , ( ), ( ))n neut n anti nFix X is only the points fixed by the elements ( , ( ), ( )).n neut n anti n  The NET set of 

NET fixed points for the action of N is the intersection of the NET sets  ( , ( ), ( ))n neut n anti nFix X as 

( , ( ), ( ))n neut n anti n runs over the NETG. 

Proof: we will count 

 ( , ( ), ( )), ( , ( ), ( )) :

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))

n neut n anti n x neut x anti x N X

n neut n anti n x neut x anti x x neut x anti x

   
 

  

 

in two ways. By counting over ( , ( ), ( ))n neut n anti n ’s first we have to add up the number of 

( , ( ), ( )) 'x neut x anti x s with  

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( )),n neut n anti n x neut x anti x x neut x anti x  so 

 ( , ( ), ( )), ( , ( ), ( )) :

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))

n neut n anti n x neut x anti x N X

n neut n anti n x neut x anti x x neut x anti x

   
 

  
 

( ) .( , ( ), ( ))
( , ( ), ( ))

Fix Xn neut n anti n
n neut n anti n N

 


 

Next we count over the ( , ( ), ( ))x neut x anti x ’s and have to add up the number of 

( , ( ), ( ))n neut n anti n ’s with ( , ( ), ( ))( , ( ), ( )) ( , ( ), ( )),n neut n anti n x neut x anti x x neut x anti x  

i.e., with 
( , ( ), ( ))( , ( ), ( )) :x neut x anti xn neut n anti n Stab  

 ( , ( ), ( )), ( , ( ), ( )) :

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))

n neut n anti n x neut x anti x N Y

n neut n anti n x neut x anti x x neut x anti x

   
 

  
 

.( , ( ), ( ))

( , ( ), ( ))

Stab x neut x anti x

X neut X anti X X

 



 

Equating these two counts gives  
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( )
( , ( ), ( ))

( , ( ), ( ))

.
( , ( ), ( ))

( , ( ), ( ))

Fix X
n neut n anti n

n neut n anti n N

Stab
x neut x anti x

X neut X anti X X

 


 



 

By the NET orbit-stabilizer formula, 
( , ( ), ( )) ( , ( ), ( )) ,x neut x anti x x neut x anti x

N

Stab Orb
so 

( )( , ( ), ( ))
( , ( ), ( ))

.

( , ( ), ( ))( , ( ), ( ))

Fix Xn neut n anti n
n neut n anti n N

N

Orb x neut x anti xX neut X anti X X




 



 

Divide by :N  

1
( )

( , ( ), ( ))
( , ( ), ( ))

1
.

( , ( ), ( )) ( , ( ), ( ))

Fix X
n neut n anti nN n neut n anti n N

Orbx neut x anti x X x neut x anti x




 


 

Let’s examine the benefaction to the right side from points in a single NET orbit. If a NET orbit has 
n points in it, subsequently the sum over the points in that NET orbit is a sum of 

1

n
for n terms, and 

in other words equal to 1. Consequently the part of the sum over points in a NET orbit is 1, which 
makes the sum on the right side equal to the number of NET orbits, which is .r  

Definition 3.25 Two actions of NETG N on a NET sets X  and Y are called NET equivalent if 

there is a bijection :f X Y as shown 

   ( , ( ), ( ))( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))f n neut n anti n x neut x anti x n neut n anti n f x neut x anti x  

for all ( , ( ), ( ))n neut n anti n N and ( , ( ), ( )) .x neut x anti x X  

Actions of N on two NET sets are equivalent when N permutes elements in the similar method on 

the two NET sets following matching up the NET sets properly. When :f X Y is a NET 

equivalence of NETG actions on X  and ,Y  

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))n neut n anti n x neut x anti x x neut x anti x  

if and only if  

    ( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( )) ,n neut n anti n f x neut x anti x f x neut x anti x  
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so the NET stabilizer subgroups of ( , ( ), ( ))x neut x anti x X and ( , ( ), ( ))f x neut x anti x Y are 

the same. 

Example 3.26 Let H and K be NET subgroup of .N  The NETG N acts by left multiplication on 

N
H

 and .N
K

 If H and K  are NET conjugate subgroups then these actions are equivalent: fix 

a representation 
1( , ( ), ( )) ( , ( ), ( ))0 0 0 0 0 0K neut anti H neut antin n n n n n
 for some 

( , ( ), ( ))0 0 0neut anti Nn n n  and let : N Nf
H K
  by  

  1

0 0 0
( , ( ), ( )) ( , ( ), ( ))( , ( ), ( )) .f n neut n anti n H n neut n anti n neut anti Kn n n

  

This is well-defined (independent of the NT coset representatives for ( , ( ), ( ))n neut n anti n H ) since, 

for ( , ( ), ( )) ,h neut h anti h H  

 ( , ( ), ( )) , ( ), ( ))

1( , ( ), ( ))( , ( ), ( ))( , ( ), ( ))0 0 0

1 1( , ( ), ( ))( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))0 0 0 0 0 0

( , (

f n neut n anti n h neut h anti h H

n neut n anti n h neut h anti h neut anti Kn n n

n neut n anti n h neut h anti h neut anti H neut antin n n n n n

n neut



 

 1 1), ( )) ( , ( ), ( )) ( , ( ), ( ))( , ( ), ( )) .0 0 0 0 0 0n anti n H neut anti n neut n anti n neut anti Kn n n n n n
 

There can be multiple equivalences between two equivalent NETG actions, just as there can be 

multiple neutro-isomorphisms between two isomorphic NETGs. If H and K  are not NET 

conjugate then the actions have the same NET stabilizer subgroup, but the NET stabilizer subgroups 

of left NT cosets in N
H

are NET conjugate to ,K  and none of the former and the latter are equal. 

Theorem 3.27 An action of N that has one NET orbit is equivalent to the left multiplication action of 

N on some left NT coset space of .N  

 

Proof : Assume that N acts on the NET set X in relation to one NET orbit. 

0 0 0
( , ( ), ( ))neut anti

Fix X
x x x

 and let 
0 0 0

( , ( ), ( ))
.

neut anti
H Stab

x x x
  We will Show the action of N on 

X is equivalent to the left multiplication action of N on .N
H

 Every ( , ( ), ( ))x neut x anti x X

has the form ( , ( ), ( ))( , ( ), ( ))0 0 0n neut n anti n neut antix x x for some ( , ( ), ( )) ,n neut n anti n N
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and all elements in a left NT coset ( , ( ), ( ))n neut n anti n H have the same effect on 

( , ( ), ( )):0 0 0neut antix x x for all ( , ( ), ( )) ,h neut h anti h H  

  

 

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))0 0 0

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( )) .0 0 0

n neut n anti n h neut h anti h neut antix x x

n neut n anti n h neut h anti h neut antix x x
 

Let : Nf X
H
 by  ( , ( ), ( )) ( , ( ), ( ))( , ( ), ( )).0 0 0f n neut n anti n H n neut n anti n neut antix x x  

This is well defined, as we just saw. Moreover, 

   ( , ( ), ( )) ( ', ( '), ( ')) ( , ( ), ( )) ( ', ( '), ( '))n neut n anti n n neut n anti n H n neut n anti n f n neut n anti n H 

since both sides equal 

 ( , ( ), ( ))( ', ( '), ( ')) ( , ( ), ( )) ( , ( ), ( )) .0 0 0n neut n anti n n neut n anti n n neut n anti n neut antix x x  

We will show f is a bijection. Since X has one NET orbit, 

 

  

( , ( ), ( ))( , ( ), ( )):( , ( ), ( ))0 0 0

( , ( ), ( )) : ( , ( ), ( )) ,

X n neut n anti n neut anti n neut n anti n Nx x x

f n neut n anti n H n neut n anti n N

 

 
 

so f is onto. If    ( , ( ), ( )) ( , ( ), ( ))1 1 1 2 2 2f neut anti H f neut anti Hn n n n n n then 

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))( , ( ), ( )),1 1 1 0 0 0 2 2 2 0 0 0neut anti neut anti neut anti neut antin n n x x x n n n x x x

so

1( , ( ), ( )) ( , ( ), ( ))( , ( ), ( )) ( , ( ), ( )).2 2 2 1 1 1 0 0 0 0 0 0neut anti neut anti neut anti neut antin n n n n n x x x x x x
 

Since ( , ( ), ( ))0 0 0neut antix x x has NET stabilizer ,H   

1( , ( ), ( )) ( , ( ), ( )) ,2 2 2 1 1 1neut anti neut anti Hn n n n n n
  so 

( , ( ), ( )) ( , ( ), ( )) .1 1 1 2 2 2neut anti H neut anti Hn n n n n n  

Consequently f is one – to –one. 
A special condition of this theorem tells that an action of N is equivalent to the left multiplication 
action of N independently in the case that the action has one NET orbit and the NET stabilizer 
subgroup are trivial.  
 
 

5. Conclusion 

   The most important point of this research is first to define the NETs and subsequently use these 
NETs in order to describe the NETG action, NET orbits, stabilizers, and fixed point. We further 
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introduced the Burnside’s Lemma. Finally, we allow rise to a new field called NET Structures 
(namely, the neutrosophic extended triplet group action and Burnside’s Lemma. Another 
researchers can work on the application of NETG action to NT vector spaces (representation of the 
NETG), number theory, analysis, geometry, and topological spaces. 
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