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PREFACE 
 
 
 
 

For the first time authors have ventured to study, analyse 

and investigate the properties of the fuzzy models, the experts 

opinion and so on. Here the concept of merged Fuzzy Cognitive 

Maps and Neutrosophic Cognitive Maps are carried out, which 

are based on merged graphs and merged matrices. This concept 

is better than the usual combined Fuzzy Cognitive Maps. 

Further by this new technique we are able to give equal 

importance to all the experts who work with the problem.  

Here the new concept of New Average Fuzzy Cognitive 

Maps and Neutrosophic Cognitive Maps is defined and 

described. This new tool helps in saving time and economy.  

Another new tool called Kosko Hamming distance of FCMs 

and NCMs are defined which measures the closeness or 

otherwise of the experts. The node with maximum vertices is 

usually termed as a powerful node but here the influential node 
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in a FCMs (NCMs) is a node whose on state makes on the most 

number of nodes in the hidden pattern given by it.   

We wish to acknowledge Dr. K Kandasamy for his 

sustained support and encouragement in the writing of this 

book.  

 
  

W.B.VASANTHA KANDASAMY 
FLORENTIN SMARANDACHE 

ILANTHENRAL K 
 



 
 
 
 
Chapter One 
 

 
 
INTRODUCTION 
 
 
 
 In this book we mainly analyse FCMs and NCMs.  This 
analysis by authors will lead the expert to understand more 
about the problem.  The main aim of the authors was a FCM or 
a NCM does not in general function on the opinion of a single 
expert but several experts.  In [45, 79] the notion of combined 
FCMs and NCMs are given.  However combined FCMs (or 
NCMs) has the disadvantage of canceling of the –1 with +1.   
 

But one believes in the law of large numbers so we have to 
build a method which can cater to each and every experts 
opinion equally and also save time and economy.  This has been 
done in chapter IV where the new average simple FCMs and 
NCMs are built and described. This newly modeled FCMs 
(NCMs model) not only treats every expert equally but also 
saves time and economy by working with a single dynamical 
system. 
 
 Also a study of distance between hidden patterns of the 
same initial state vectors analysed by two different experts by a 
new method is carried out.  This is defined as Kosko-Hamming 
distance which measures whether two experts opinion are close 
or very much deviant for a given initial state vector.   
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 This study is new and innovative for these Kosko Hamming 
distance is defined only if two experts work on the same 
problem with same number of attributes on the same initial state 
vector.  Such study exhibits the distance between two experts on 
one specific initial state. 
 
 Now another important technique when the number of 
attributes involved for study is very large we use the newly 
defined concept of merged FCMs and NCMs.  There are three 
types of merging and they are discussed with examples.  The 
authors wish to keep on record that all the examples given in 
this book are just illustrations and they are not any real material 
worked with the real world problems.  
 
 To get the merged FCMs or NCMs the reader must be 
familiar with working of the directed merged neutrosophic 
graphs.  For this concept please refer [100].  Now using this 
concept of merged graphs in the directed graphs given by the 
experts we can study merged FCMs.  This is better than 
combined FCMs (or NCMs) for merging does not affect the 
entries of the connection matrix drastically.  Such analysis and 
study is described and developed in chapter II of this book. 
 
 However in [100] the authors have already done a new 
concept on FCMs known as the special combined FCMs.  In 
this case entries greater than 1 can also occur.  This is not 
merged so we call them as overlapping FCMs. 
 
 For more about FCMs and NCMs please refer [79]. 



 
 
 
 
  
Chapter Two 
 
 

 
 
MERGED FCMS AND NCMS MODELS 
 
 

 
 

In this chapter we introduce the new notion of Merged 
Fuzzy Cognitive Maps model (MFCMs model) and 
Merged Neutrosophic Cognitive Maps model (MNCMs 
model). 
 
 Merged graphs and lattices got by merging the vertices 
or edges or both have been discussed in the book [100].   
 

Here we study mainly pseudo lattice graphs of type II 
where we take two graphs and merge a vertex of one with 
other or take two graphs and merge a edge of one with 
other or both or several vertices or several edges or both 
are merged.   
 

We will illustrate this situation by some examples. 
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Example 2.1:  Let G1 =   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
and G2 =  
 
 
 
 
 
 
 
 
 
 
 
 
be any two directed graphs.  The pseudo lattice graph of 
type II is got by merging the vertex C1 of G1 with vertex 
C1 of G2 [100]. 
 
 This is a special type of merging for only the node C1 
is common so merging of other types cannot take place in 
this case. 
 

C2 C1 

C4 
C3 C5 

C8 

C6 C1 

C7 
C8 
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 Now these graphs cannot be merged in any other way 
other than the one mentioned.   
 

However merging of any two arbitrary graphs can be 
made in any number of ways. 
 
 
Example 2.2:  Let G1 =  
 
 
 
 
 
 
 
 
 
 
 

C2 

C1 

C4 

C6 

C3 

C7 

C5 
C8 




v3


v2

v1
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and G2 =  
 
 
 
 
 
 
 
 
be any two graphs.  The vertices are different so the 
merging a single vertex of G1 with G2 or an edge of G1 
with G2 or both or many vertices and many edges of G1 
with G2 can be carried out. 
 
 It is infact an open problem if G1 has n1 vertices and 
m1 edges and if the graph G2 has n2 vertices and m2 edges 
how many pseudo lattice graphs of type II can be got. 
 
 Now we give a few pseudo lattice graphs of type II. 
 
 S1 =  
 
 
 
 
 
 
 
 
 
is pseudo lattice graph of type II.   
 

We can get S2 by merging v1 with u5 which is as 
follows. 

u1



u2 

u3


u4 


u6


u5 

v3 = u1 



u2 

u3


u4 


u6


u5 

v1


v2  
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is again a graph. 
 
 Consider S3 got by merging v1v2 of G1 with u1u4 of G2 
which is as follows. 
 
 
 
 
 
 
 
 
 
We merge u1 with v1, v2 with u2 and u4 with v3 and obtain 
the following pseudo lattice graph of type II. 
 
 
 
 
 
 
 
 
 
 
We can have several such pseudo lattice graphs of type II. 

u1



u2 

u3


u4 


u6

u5=v2


v2


v3 

u1



u2 

u3

 u4=v2 


u6

u5 

 v3 

u1=v1 


u2=v2


u3

 u4=v3 


u6

u5 
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Example 2.3:  Let G1 =  
 
 
 
 
 
 
 
 
 
 
 
 G2 =  
 
 
 
 
 
 
be any two graphs. 
 
 Find the number of pseudo lattice graphs of type II got 
using G1 and G2. 
 
 We give one or two examples of them. 
 
 
 
 
 
 
 
 
 
 

v1

v2 

v8 v6
v5

v7

v3

 v4

u1  
u5

u2  u4

u3

v1

v2  

v8  v6  
v5

v7  

v3=u1 

 v4=u2

u5

u4

u3  
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 We can merge v1 with v2 and u2 with v5. 
 
 
 
 
 
 
 
 
 
 
 We have several such pseudo lattice graphs of type II. 
 
 Now we proceed onto describe merging of vertices or 
edges or so of more than two graphs by some examples. 
 
Example 2.4: Let G1, G2 and G3 be three graphs given in 
the following. 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
We can merge v3 with u4 and w1 and u5 get the following 
pseudo lattice graph of type II. 

v1=u1 

v2  

v8  v6
v5=u2 

v7 

v3

 v4

u5

u4

u3  

v4 v3

v1 v2

u1


u3 u2


u4


u5

w1 

w6 

w2 


w3






w4

w5 
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We can also merge w2 w3 with u3 u2 and v1 v4 and get the 
following pseudo lattice graph of type II. 
 
  
 
 
 
 
 
 
 
 
 
 Now we can merge the vertices v3 and u4 and u2 with 
w1 and get the pseudo lattice graph of type II which is as 
follows: 
 
 
 
 
 
 
 
 
 
 

u1


u3 u2


u4


u5

v4  v3

v1  v2



w6 

w2 


w3







w4

w5 

u1


u3 
u2=w1 


u4 =v3


u5

w1 

w6 



w2 


w3







w4

w5 
v4  

v1  v2

u1


v1=w2=u3 
 u2=w3=v4


u4


u5





w4

w5 
w1  


v2


v3


w6 
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 It is pertinent to keep on record that we need not 
always merge all the graphs together. We can merge them 
in a cycle say G1 to G2, G2 to G3 or G3 to G1 and G1 to G2 
or G2 to G3 and G3 to G1.   
 

It is still an open problem to find the number of pseudo 
lattice graphs of type II using 3 graphs whose number of 
vertices and edges are known. 
 
 Thus we can have pseudo lattice graphs of type II 
having more than 3 graphs also.  All these new techniques 
are used in the problems of FCMs models and NCMs 
models.  However in case of using in these models we 
have one and only one pseudo lattice graph of type II.  For 
more about these concepts refer [100]. 
 
 We will now describe the use of these in Fuzzy 
Cognitive Maps models. 
 
 In the first place to use the concept of merging of 
vertices or edges or both of the directed graphs associated 
with the FCMs model we mainly need all the related 
directed graphs pertain to the same problem and they are 
modeled or studied using only FCMs.   
 

Only after ascertaining this we can proceed onto use 
the concept of merging of graphs. Further we also need the 
concept of merged matrices. 
 
 We will just define the notion of merged matrices.  
 
 Suppose G1 and G2 are two graphs given in the 
following: 
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G1 = 
 
 
 
 
 
 

G2 =  
 
 
 
 The matrices M1 and M2 associated with G1 and G2 are 
given in the following. 
 

M1 = 

1 2 3 4 5 6

1

2

3

4

5

6

v v v v v v
v 0 0 1 0 1 0
v 1 0 0 0 0 0
v 0 0 0 0 0 0
v 1 0 0 0 1 0
v 0 0 0 0 0 0
v 0 0 0 1 0 0

 
 
 
 
 
 
 
 
  

 

 
 

and M2 = 

1 3 7 8

1

3

7

8

v v v v
v 0 1 0 1
v 0 0 1 0
v 1 0 0 0
v 0 0 1 0

 
 
 
 
 
 

. 

 
 
 The merged graph of G1 with G2 is as follows: 
 

v1


v8  v7

v3

v1


v4 v5

v2 v3

v6
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The merged matrix M to M1 and M2  is as follows. 
 
 

M =  

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

v v v v v v v v
v 0 0 1 0 1 0 0 1
v 1 0 0 0 0 0 0 0
v 0 0 0 0 0 0 1 0
v 1 0 0 0 0 0 1 0
v 0 0 0 0 0 0 0 0
v 0 0 0 1 0 0 0 0
v 1 0 0 0 0 0 0 0
v 0 0 0 0 0 0 1 0

 
 
 
 
 
 
 
 
 
 
 
  

. 

 
 
 We see the presence of both M1 and M2 as submatrices 
exist.  So we can merge two matrices M1 and M2 into a matrix 
M if M1 and M2 are submatrices of M. (when the rows and 
columns of a matrix is deleted the resultant matrix is also 
defined as a submatrix). 
 
 Now in case of merged FCMs the merged matrix serves as 
the dynamical system of the merged FCMs.  Further these 
merged matrices are the matrices associated with the directed 
graphs of the FCMs.  
 
 Finally we can merge two FCMs if and only if they have 
atleast a common node or edge or both.  Further if they have an 

v1


v2

v5

v3

v4

v8 v7


v8
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edge in common they should also be in the same direction as 
that of the others.  Only then merging can be done.  
 
 We cannot merge      with          .
  
 
 For we can in this case merge u2 with u2 or u1 with u1 and 
the edges cannot be merged as they are in opposite directions.  
 
 Suppose we have three experts working in the same 
problem with some concepts c1, c2, c3,…, c8.  They express their 
opinion in the graphs G1, G2 and G3 which is given in the 
following:  
 
G1 =  
 
 
 
 
 
 
 
 
 
 
 G2 =         G3= 
 
 
 
 The matrices related with the graphs are as follows: 
 

M1 = 

1 2 3 4 6

1

2

3

4

6

c c c c c
c 0 1 0 0 0
c 0 0 1 1 0
c 0 0 0 0 1
c 0 0 0 0 0
c 1 0 0 0 0

 
 
 
 
 
 
  

 

c1 
 

c4  

c6

c2

c3

c1 
 c2

 c7 

c6
 c3

c5  c8

u1  u2 u1  u2
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is the matrix of the graph G1. 
 

M2 = 

1 2 7

1

2

7

c c c
c 0 1 1
c 0 0 1
c 0 0 0

 
 
 
  

 is the matrix of the graph G2.  

 
 

 M3 = 

3 5 6 8

3

5

6

8

c c c c
c 0 1 1 1
c 0 0 0 1
c 0 1 0 0
c 0 0 0 0

 
 
 
 
 
 

is the matrix of G3.   

 
The merged graph G of G1, G2 and G3 is as follows: 
 
 
 
 
 
 
 
 
             =   G 
 
 

 
 
 
 
 
 The matrix related with the merged graph G is as follows: 
 
 

c1  c2

c3
c4  

c6 

c5  c8

c7
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M = 

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

c c c c c c c c
c 0 1 0 0 0 0 1 0
c 0 0 1 1 0 0 1 0
c 0 0 0 0 1 1 0 1
c 0 0 0 0 0 0 0 0
c 0 0 0 0 0 0 0 1
c 1 0 0 0 1 0 0 0
c 0 0 0 0 0 0 0 0
c 0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
  

. 

 
 
 Now we can easily verify that M is also the merged matrix 
of the matrices M1, M2 and M3.  This is the way we get merged 
matrices and pseudo lattice graphs of type II. 
 
 Merging of matrices must obey the following law.  If M1, 
M2, …, Mn are n matrices if M is the merged matrix then M1, 
M2, …, Mn must be submatrices of M.  Then only we call M to 
be the merged matrix of M1, M2, …, Mn.   
 

We see for merging of matrices Mi and Mj  they must have 
atleast a ats to be common between Mi and Mj for some i and j in  
1  i, j  n. 
 
 Similarly for merging graph at least a vertex or an edge 
must be common in case of graphs associated with fuzzy 
models like FCMs or NCMs or NRMs or FRMs.   
 

Keeping these conditions in mind we illustrate the situation 
in case of FCMs. 
 
Example 2.5:  Let us consider the problem of passengers 
preference maximum utilization of a bus route in Madras city  
[92], the comfort, waiting time, congestion in the vehicle and so 
on.  We first give the attributes suggested by the experts in the 
following. 
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 C1  - Frequency of the vehicle along the route. 
 C2  - In vehicle travel time along the route. 
 C3 - Travel fare along the route. 
 C4 - Speed of the vehicles along the route. 
 C5 - Number of intermediate points in the route. 
 C6 - Waiting time. 
 C7 - Number of transfers in the route. 
 C8 - Congestion in the vehicle. 
 
 Suppose the first expert wishes to work with the five 
attributes.  
 
 C1, C2, C3, C4, C5 and C6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The second expert works with the nodes C3, C6, C8 and C7 
and the directed graph given by him is as follows: 
 
 
 
 
 
 
 
 

C1 C2 

C6 
C5 

C3 C4 

–1 

–1 

–1 
 1 

–1 

1 

–1 

C3 C8 

C7 C6 

–1 

 1  1 

–1 
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 Now the graph can be merged by merging the vertex C3 
with C3 and the vertex C6 with C6.   
 

The merged graph is as follows: 
 
 
 
 
 
 
                        - G 
 
 
 
 
 
 
 
 
 The merged matrix of the merged graph G is as follows: 

 

M  = 

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

c c c c c c c c
c 0 1 0 1 0 1 0 0
c 0 0 0 0 0 0 0 0
c 0 1 0 1 1 0 0 1
c 0 1 1 0 0 0 0 0
c 0 1 0 0 0 0 0 0
c 0 0 0 0 0 0 1 1
c 0 0 1 0 0 0 0 0
c 0 0 0 0 0 0 0 0

  
 
 
   
  
 
 

 
 
 
  

. 

 
 Using M we get the solution of the problem using the 
merged FCMs model. 
 
 Here merging of the common vertex C3 of the directed 
graphs related with the FCMs is carried out. 

 C1  C2 

 C4 
 C6 

 C5 

 C3 

 C7  C8 
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 We can also have a merging of an edge.  This is illustrated 
in the following.   
 

The directed graph given by expert I using C1, C5, C6, C7 
and C8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Let C1, C7, C8, C3, C4 and C2 be the nodes taken by the 
second expert who has given the following directed graph. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 C1  C7 

 C8  C6 

 C5 

  C1   C2 

  C7 
  C3 

  C4 

  C8 
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 Now the unique merged graph of the directed graphs 
associated with the FCM is as follows. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We merge vertices C1 C7 and C8 and edges C1 C7 and C1 C8 
in this merged graph.  
 
 Thus using this merged model we can find the merged 
connection matrix of the FCM using which we can analyse the 
problem. 
 
 Let C1, C2, C3, C4 and C6 be used by the first expert who 
gives the following directed graph. 
 
 
 
 
 
 
 
 
 
 

  C1   C2 

  C4   C3 

  C6 

  C1   C2 

  C3 
  C4 

  C5 

  C6   C7 

  C8 
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 Using C1 C2 C5 C7 and C8 the following directed graph is 
given by the second expert. 
 
 
 
 
 
 
 
 
 
 
 
 
 Now we can merge these two directed graphs associated 
with the FCMs in one edge C1 to C2 and two vertices C1 and C2 
which is as follows: 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 

This merged graph acts as the merged matrix for the merged 
FCMs. 
 
 Now it may also so happen that three or more number of 
experts work on the same problem with a collection of attributes 
with only one common node. 

  C1   C2 

  C7   C5 

  C8 

  C1   C2 

  C4   C3 

  C6 

  C8   C5 

  C7 
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 They all use of same model viz the fuzzy cognitive maps 
models.  
 
 Then we see the merged model, which have that concept / 
node to be common and all other nodes of these three persons 
get related indirectly and the merged FCM model is formed.   
 

We will first illustrate this situation by an example. 
 
 Let three experts work on the same problem and give the 
following three directed graphs. 
 
 
 
 
 
   G1 =  
 
 
 
 
 
 
 
be the directed graph given by the first expert who wishes to 
work with the FCM model. 
 
   Let  
 
 
 
 
G2 =  
 
 
 
 
 
 

 C1 
  C3 

  C5   C2 

  C4 

  C1 

  C8   C6 

  C7 
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be the directed graph of the FCMs model given by the second 
expert. 
 
 
 
G3 =  
 
 
 
 
 
 
 
 
be the directed graph given by the third expert by using the 
FCMs model. 
 
 We can merge these three in only one way and obtain the 
merged graph G which is a pseudo lattice graph of type II. 
 
 
 
 
 G =  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  C1 

  C10   C9 

  C11 

  C1 

  C8 

  C6 

  C7 

  C9 

  C10 

  C11 

  C3 

  C4 

  C2 
  C5 
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 Now thus we have 11 attributes which are got after merging 
the common vertex C1 in all the three of the graph G1, G2 and 
G3.   
 

The merged connection matrix M of the merged graph is as 
follows: 
 

M = 

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

c c c c c c c c c c c
c 0 0 1 0 0 1 0 0 1 0 0
c 0 0 1 0 0 0 0 0 0 0 0
c 0 0 0 0 0 0 0 0 0 0 0
c 0 0 1 0 0 0 0 0 0 0 0
c 0 1 1 0 0 0 0 0 0 0 0
c 0 0 0 0 0 0 1 0 0 0 0
c 0 0 0 0 0 0 0 0 0 0 0
c 1 0 0 0 0 1 1 0 0 0 0
c 0 0 0 0 0 0 0 0 0 0 0
c 1 0 0 0 0 0 0 0 1 0 0
c 0 0 0 0 0 0 0 0 1 1 0

 
 
 
 
 
 
 
 
 
 
 
 
 



 





. 

 
 
 Using the merged matrix M we can study merged FCMs 
model for which M is the merged dynamical system.   
 

We can merge more number of vertices and get the FCMs 
which are merged. 
 
 We will still illustrate some other new type of merging.   
 

Let G1, G2, G3 and G4 be the directed graphs given by four 
experts using FCM on the same problem. 
 
 Graph given by the first expert working with the nodes C1, 
C2, C5 and C6. 
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Let G1 = 

 
 
 
 
 
 
 
  
 

Let G2 be the directed graph given by the second expert 
working on the same problem with the nodes C2, C3, C4, C9 and 
C10. 
 
 
 
  G2 =  
    
 
 
 
 
 
 
 
 Let G3 be the graph given by the third expert who works 
with nodes C3, C7, C8 and C11 is as follows: 
 
 
 
 
   G3 =  
 
 
 
 
 
 

C2 

C4 
C3 

C9 C10 

C3 

C8 
C7 

C11 

C1 

C5 
C2 

C6 
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 Finally the fourth expert works with the nodes C7 C8, C12 
and C13 which is as follows: 
 
 
 
 

G4 = 
 
 
 
 
 
 We can merge the four graphs only in the following  way. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 This G is finally the merged graphs of G1, G2, G3 and G4. 
 
 So using 13 nodes four expert work on the problem they felt 
as relevant.  However merged FCM gives the working model of 
the experts on the 13 nodes which saves time and economy.  

C7 C13 

C12 
C8 

C1 

C5 

C2 

C6 

C3 

C4 

C9 

C10 

C7 

C8 

C11 C13 C12 
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Further no expert will feel he was not preferred or his expertise 
was not given equal importance.  Only this merged FCMs alone 
can serve the best. 
 
 Now suppose two experts work on the same problem and  
they both also have a same pair of common nodes  
 

but          and  
 
 

for the second and first expert respectively then we can merge 
Ci with Ci and Cj with Cj however the edge will be annulled. 
 
 Suppose on the other hand Ci  Cj and Ci  Cj then we 
merge as Ci  Cj. 
 
 We will give some more illustrations of these types of 
merging.  Suppose we have say 15 concepts C1, C2, …, C15 
associated with the problem and all the experts wish to work 
with a selective number of nodes from these 15 nodes.  We have 
four experts working on this problem and we see every expert 
has atleast one among the other four experts with a common 
node or edge or both in their directed graphs.  All of them use 
the FCMs model and we get using these four experts directed 
graph and the merged FCM model is obtained. 
 
 Let G1 be the directed graph of the FCM given by the first 
expert. 
 
  
 

G1 = 
 
 
 
 
 

 

  Ci   Cj +1 
  Ci   Cj –1 

C5 

C10 

C1 

C7 

C8 



34 New Techniques to Analyse the Prediction of Fuzzy Models 
 
 
 
 
 
 
 

 Let G2 be the directed graph of FCMs given by the second 
expert. 
 
 
 
 
 
 
 
 
 
 
 
 
 Let G3 be the directed graph of the 
 
 
 
 
 
 
 
 
 
 
 
 
third expert.  
 

Let G4 be the directed graph of the FCM. 
 
 
 
 
 
 
 
 
 

C8 

C12 

C3 

C13 

C15 C14 

C14 

C9 

C6 

C13 C11 

C7 

C2 

C9 

C15 
C4 
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We can merge these four graphs appropriately and get at the 
final graph which is as follows: 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Merging of FCMs paves way for integrated study of the 
experts opinion.  However merged FCMs model are different 
from combined FCMs model. 
 
 It is left as an open problem for the reader to give a program 
for getting a merged FCMs merged graph and the merged 
matrix in the analysis of a problem by several experts. 
 
 We will give illustrations of this concept.   
 

C2 

C3 

C1 

C7 

C5 C8 

C6 

C4 

C11 

C13 

C14 

C10 
C9 

C15 

C12 
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However we wish to keep on record that these examples are 
only illustrations and we have not worked on any real model. 
 
Example 2.6:   Let C1, C2, C3, …, C12 be some 12 concepts 
related with a social problem. 
 
 3 experts work on the same problem using some of the 
concepts from C1, C2, …, C12 using the FCMs model. 
 
 Let G1 be the directed graph given by the first expert who 
uses the concepts C1, C2, C5, C7, C8 and C9. 
 
 
 
 
 
G1 =  
 
 
 
 
 
  
 
 
 
 Let M1 be the related connection matrix of the FCM given 
by the first expert. 
 

M1 = 

1 2 5 7 8 9

1

2

5

7

8

9

c c c c c c
c 0 0 1 1 0 0
c 0 0 0 0 0 1
c 0 0 0 1 0 0
c 0 0 0 0 1 0
c 0 1 0 0 0 0
c 1 0 0 0 0 0

 
 
 
 
 
 
 
 
  

. 

 

C2 

C9 

C1 

C7 C5 

C8 
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 Let G2 be the graph given by the second expert.  He works 
on the nodes c1, c3, c7, c8  and c10. 
 
 
 
 G2 =  
 
 
 
 
 
 
 
 
 
 The connection matrix M2 associated with the graph G2 is as 
follows: 
 

1 3 7 8 10

1

3

7

8

10

c c c c c
c 0 1 1 0 1
c 0 0 0 1 0
c 0 0 0 1 0
c 0 0 0 0 0
c 0 1 0 0 0

 
 
 
 
 
 
  

. 

 
 Let G3 be the graph given by the third expert who works 
with the nodes c3, c4, c10, c11 and c12. 
 
 
 
 
 G3 =  
 
 
 
 
 

C3 

C8 

C1 

C10 

C7 

C3 

C12 

C4 

C11 C10 
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 The connection matrix associated with this graph is as 
follows. 
 
 
 

3 4 10 11 12

3

4

10

11

12

c c c c c
c 0 0 0 0 0
c 1 0 0 1 0
c 1 0 0 1 0
c 0 0 0 0 1
c 1 0 0 0 0

 
 
 
 
 
 
  

. 

 
 
 
 Now we get the unique merged graph of the three graphs 
G1, G2 and G3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Now using this merged directed graph we get the merged 
connection matrix M which is as follows: 
 

C1 C2 C3 

C7 
C10 C9 C8 

C5 C6 

C12 

C4 

C11 
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1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

9

10

11

12

c c c c c c c c c c c c
c 0 0 1 0 1 0 1 0 0 1 0 0
c 0 0 0 0 0 0 0 0 1 0 0 0
c 0 0 0 0 0 0 0 1 0 0 0 0
c 0 0 1 0 0 0 0 0 0 0 1 0
c 0 0 0 0 0 0 1 0 0 0 0 0
c 0 0 0 0 0 0 0 0 0 0 0 0
c 0 0 0 0 0 0 0 1 0 0 0 0
c 0 1 0 0 0 0 0 0 0 0 0 0
c 1 0 0 0 0 0 0 0 0 0 0 0
c 0 0 1 0 0 0 0 0 0 0 1 0
c 0 0 0 0 0 0 0 0 0 0 0 1
c 0 0 1 0 0 0 0 0 0 0 0 0






 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

 
 Note: We use at times capital Ci’s  and at times small ci but 
both mean the same, easily followed from the context. 
 
 This M serves as the connection matrix or the dynamical 
system of the merged FCM. 
 
 The concept of merged FCMs play a vital role in the study 
of FCMs using multi experts opinion with certain conditions 
imposed on the concepts used by them. 
 
 If in the FCMs the concepts are so tailored (that is attributes 
/ nodes without changing the notion they carry) we can always 
make the directed graph to have weights 0 and 1 only we 
assume –1 does not occur as a weight of the directed graph.  
This is so conditioned so as to make while merging or while 
adding the matrices they do not cancel out. Further they are 
different from the overlapping FCMs and NCMs developed by 
the authors in [76]. These are different and they give equal 
importance to each and every expert and the merged matrix also 
contains only entries from 0 and 1. 
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 Another flexibility of the merged FCMs is if we have c1, …,  
cn number of attributes and say some t expert work with them.  
One expert can work with r1 attributes, another say r2 attributes 
and so on and the researcher who works with problem can work 
with these t FCMs models if he is interested in getting t-bunch 
of opinions. 
 
 These r1, r2, …, rt sets of attributes are such that any set of ri 
and rj attributes have a common attribute or attributes for each 1 
 i, j  t.  So if the expert wishes to work with only two set of 
attributes from two experts he can do so.  Likewise one can 
choose to get the merged matrix with 2 experts or 3 experts to 4 
experts or so on say upto s experts s  r. 
 
 We will describe this with examples.   
 

However the authors make it clear to the readers this 
illustration is not a product of working with any of the problems 
only an example to show how the merged FCMs functions and 
nothing more.  
 
Example 2.7:  Let c1, c2, c3, …, c12 be 12 attributes or nodes of a 
problem.  Suppose 4 experts wish to work on it using only 
FCMs model.  Further the experts do not work with all the 12 
concepts only a few of the concepts from the 12 concepts.  
However each expert has a common concept with the other 
three experts.  The directed graphs given by the four experts are 
as follows: 
 
 Suppose expert 1 works with the nodes c1, c2, c7, c10 and c11.  
Expert 2 prefers to work with the nodes c5, c7, c10, c4, c12. Expert 
3 works with the nodes c1, c2, c5 and c9 and expert four work 
with c3, c6, c8, c10, c12 and c9.  We see experts, 1 and 2 have the 
common nodes {c10, c7}. 
 
 Experts 1 and 3 have the common nodes {c1, c2}. 
 Experts 1 and 4 have {c10} to be the common node. 
 Experts 2 and 3 have {c5} to be the common node. 

Experts 2 and 4 have {c10} to be the common node. 
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Experts 3 and 4 have {c9} to be the common node. 
 
Thus the first criteria of having common attributes / nodes 

between any two experts are satisfied.   
 
Now the researcher or problem solver may like to study the 

expert opinion in twos or threes or all the four.  All these 
situations will be described.   

 
Now the directed graph given by the four experts and the 

related connection matrices are given in the following.  
 
The directed graph given by the first expert is 
 
 
 
 
 
 
             Graph I 
 
 
 
 
 
 
 
  

The connection matrix M1 of graph I is as follows: 
 
 

M1 = 

1 2 7 10 11

1

2

7

10

11

c c c c c
c 0 1 0 0 0
c 0 0 1 0 1
c 0 0 0 1 0
c 1 0 0 0 0
c 0 0 1 0 0

 
 
 
 
 
 
  

. 

C2 

C1 
C7 

C11 

C10 
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 The directed graph given by the second expert is as follows: 
 
 
 
 
 
 
 
 
                        Graph II 
 
 
 

 
 
 
The connection matrix M2 associated with the directed graph of 
second expert using graph II is as follows: 
 

M2 = 

4 5 7 10 12

4

5

7

10

12

c c c c c
c 0 0 0 1 0
c 1 0 1 0 0
c 0 0 0 1 0
c 0 0 0 0 0
c 0 1 0 1 0

 
 
 
 
 
 
  

. 

 
The directed graph given by the third expert is as follows: 
 
 
 
 
 
 
 
 
 
 

C5 

C4 
C7 

C12 

C10 

C2 

C1 

C5 C9 
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The connection matrix M3 associated with the directed 
graph III of the 3rd expert is as follows: 
 

M3 = 

1 2 5 9

1

2

5

9

c c c c
c 0 1 0 1
c 0 0 0 1
c 0 1 0 0
c 0 0 0 0

 
 
 
 
 
 

. 

 
The directed graph given by the fourth expert is as follows: 
 
 
 
 
 
 
             Graph IV 
 
       
 
 
 
 
 
 
The related connection matrix of the graph IV is as follows: 
 
 

M4 = 

3 6 8 9 10 12

3

6

8

9

10

12

c c c c c c
c 0 1 0 1 0 0
c 0 0 0 0 1 1
c 0 0 0 1 0 0
c 0 0 0 0 0 1
c 0 1 1 0 0 0
c 0 0 0 0 0 0

 
 
 
 
 
 
 
 
  

. 

C6 

C3 

C10 

C8 

C9 

C12 
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 Now we get the merged FCM of experts 1 and 2 is given in 
the following. 
 
 
 
 
 
 

A = 
 
 
 
 
 
 
 
 
 
 
 

The merged graph of graph I and graph II of the FCMs of 
experts 1 and 2 is denoted by A.  The related connection matrix 
MA is as follows. 
 
 

MA = 

1 2 4 5 7 10 11 12

1

2

4

5

7

10

11

12

c c c c c c c c
c 0 1 0 0 0 0 0 0
c 0 0 0 0 1 0 1 0
c 0 0 0 0 0 1 0 0
c 0 0 1 0 1 0 0 0
c 0 0 0 0 0 1 0 0
c 1 0 0 0 0 0 0 0
c 0 0 0 0 1 0 0 0
c 0 0 0 1 0 1 0 0

 
 
 
 
 
 
 
 
 
 
 
  

. 

 
 

C2 
C1 

C11

C7 

C12

C5 
C4 

C10
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 MA serves as the merged dynamical system of the merged 
FCMs of the experts 1 and 2.  Using MA one  can study the 
problem for the 8 attributes.   
 

Suppose some wants to study the experts opinion of 1 and 3 
alone.  Then we merge the graph I and III of the FCMs given by 
the experts 1 and 3.  Let B denote the merged graph of the two 
FCMs which is as follows: 
 
 
 
 
             --- B 
 
 
  
 
 
 
 
 
 
 
Using the merged graph B we obtain the merged FCMs merged 
connection matrix which is denoted by MB. 
 
 

MB = 

1 2 5 7 9 10 11

1

2

5

7

9

10

11

c c c c c c c
c 0 1 0 0 1 0 0
c 0 0 0 1 1 0 1
c 0 1 0 0 0 0 0
c 0 0 0 0 0 1 0
c 0 0 0 0 0 0 0
c 1 0 0 0 0 0 0
c 0 0 0 1 0 0 0

 
 
 
 
 
 
 
 
 
  

. 

 

C1 C2 

C5 

C11 

C10 

C9 

C7 
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MB serves as the merged dynamical system of the merged 
FCMs of experts 1 and 3.  Now we find the merged FCM 
associated with the experts 1 and 4. 
 
 The merged directed graph C of the experts 1 and 4 is as 
follows. 
 
 
 
 
 
 
 
 
 
 
 
 
 
              (C) 
 
The connection merged matrix of the merged graph C is as 
follows: 
 
 

Mc = 

1 2 3 6 7 8 9 10 11 12

1

2

3

6

7

8

9

10

11

12

c c c c c c c c c c
c 0 1 0 0 0 0 0 0 0 0
c 0 0 0 0 1 0 0 0 1 0
c 0 0 0 1 0 0 1 0 0 0
c 0 0 0 0 0 0 0 1 0 1
c 0 0 0 0 0 0 0 1 0 0
c 0 0 0 0 0 0 1 0 0 0
c 0 0 0 0 0 0 0 0 0 1
c 1 0 0 1 0 1 0 0 0 0
c 0 0 0 0 1 0 0 0 0 0
c 0 0 0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

. 

C1 C2 

C6 

C3 

C10 

C8 

C7 

C11 
C9 

C12 
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 We get the merged opinion of the two experts 2 and 3.  The 
merged directed graph of the experts 2 and 3 be denoted by D 
which is as follows: 
 
 
 
 
 
              
 
 
 
 
 
 

(D) 
 
 
 
The merged matrix of the merged graph D is as follows: 
 
 

MD = 

1 2 4 5 7 9 10 12

1

2

4

5

7

9

10

12

c c c c c c c c
c 0 1 0 0 0 1 0 0
c 0 0 0 0 0 1 0 0
c 0 0 0 0 0 0 1 0
c 0 1 1 0 1 0 0 0
c 0 0 0 0 0 0 1 0
c 0 0 0 0 0 0 0 0
c 0 0 0 0 0 0 0 0
c 0 0 0 1 0 0 1 0

 
 
 
 
 
 
 
 
 
 
 
  

. 

 
 
 Using the merged connection matrix MD we can use it as the 
merged FCMs dynamical system of the two experts 2 and 3. 

C1 
C2 

C4 

C9 

C10 

C7 

C12 

C5 
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 Now we give the merged directed graph E of the experts 2 
and 4 which is as follows: 
 
 
 
 
 
 
 
               
 
 
 
 
 
 

(E) 
 
 The merged connection matrix ME of the merged directed 
graph E is as follows: 
 
 

ME =  

3 4 5 6 7 8 9 10 12

3

4

5

6

7

8

9

10

12

c c c c c c c c c
c 0 0 0 1 0 0 1 0 0
c 0 0 0 0 0 0 0 1 0
c 0 1 0 0 1 0 0 0 0
c 0 0 0 0 0 0 0 1 1
c 0 0 0 0 0 0 0 1 0
c 0 0 0 0 0 0 1 0 0
c 0 0 0 0 0 0 0 0 1
c 0 0 0 1 0 1 0 0 0
c 0 0 1 0 0 0 0 1 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

 
 

C3 C6 

C5 

C8 

C12 

C10 

C9 

C7 

C4 
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 Using dynamical system ME of the FCMs we can get the 
hidden pattern of the any desired merged state vector. 
 
 Now we get the merged directed graph F of the experts 3 
and 4 which is as follows: 
 
 
 
 
 
 
 
 
 
               (F) 
 
 
 
 
The merged connection matrix MF of the two experts is as 
follows: 
 
 

MF = 

1 2 3 5 6 8 9 10 12

1

2

3

5

6

8

9

10

12

c c c c c c c c c
c 0 1 0 0 0 0 1 0 0
c 0 0 0 0 0 0 1 0 0
c 0 0 0 0 1 0 1 0 0
c 0 1 0 0 0 0 0 0 0
c 0 0 0 0 0 0 0 1 1
c 0 0 0 0 0 0 1 0 0
c 0 0 0 0 0 0 0 0 1
c 0 0 0 0 1 1 0 0 0
c 0 0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

 
 

C3 C6 

C1 

C8 

C10 

C9 

C12 

C2 

C5 
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 Using MF as the merged FCMs dynamical system we can 
get the opinion.   
 

Now we can merge the opinion of three of the experts 1, 2, 
and 3.  We can get the merged graph G of the three experts 
which is as follows: 
 
 
 
 
 
 
 
 
 

            G 
 
 
 
 
 

Let MG be the connection matrix related with the merged 
graph G. 

MG =  

1 2 4 5 7 9 10 11 12

1

2

4

5

7

9

10

11

12

c c c c c c c c c
c 0 1 0 0 0 1 0 0 0
c 0 0 0 0 1 1 0 1 0
c 0 0 0 0 0 0 1 0 0
c 0 1 1 0 1 0 0 0 0
c 0 0 0 0 0 0 1 0 0
c 0 0 0 0 0 0 0 0 0
c 1 0 0 0 0 0 0 0 0
c 0 0 0 0 1 0 0 0 0
c 0 0 0 1 0 0 1 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

 
 Using MG we can get the opinion of the three experts at a 
time. 

C7 C1 

C11 

C10 

C5 

C12 

C2 

C4 C9 
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 Now let us get the merged graph of the three experts 1, 2 
and 4.  Let H be the related merged graph. 
 
 
 
 
 
H = 
 
 
 
 
 
 
 
 
 
Let MH be the related connection matrix of the merged graph H 
of the three experts 1, 2 and 4.  We have the following merged 
matrix MH. 
 

MH = 

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

9

10

11

12

c c c c c c c c c c c c
c 0 1 0 0 0 0 0 0 0 0 0 0
c 0 0 0 0 0 0 1 0 0 0 1 0
c 0 0 0 0 0 1 0 0 1 0 0 0
c 0 0 0 0 0 0 0 0 0 1 0 0
c 0 0 0 1 0 0 0 0 0 0 0 0
c 0 0 0 0 0 0 0 0 0 1 0 1
c 0 0 0 0 1 0 0 0 0 1 0 0
c 0 0 0 0 0 0 0 0 1 0 0 0
c 0 0 0 0 0 0 0 0 0 0 0 1
c 1 0 0 0 0 0 0 1 0 0 0 0
c 0 0 0 0 0 0 1 0 0 0 0 0
c 0 0 0 0 1 0 0 0 0 1 0 0






 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

 

C5 C1 

C9 

C10 

C7 

C8 

C2 

C11 C12 

C3 

C6 

C4 
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 Using the merged matrix MH we can get the resultant of all 
the 12 attributes.  Let I denote the merged graph of the three 
experts 1, 3 and 4 which is as follows: 
 
 
 
 
 
 
 
 
 
 
 I =  
 
 
 
 
 
 

Let MI be the merged matrix of the directed merged graph I 
which is as follows: 
 

MI = 

1 2 3 5 6 7 8 9 10 11 12

1

2

3

5

6

7

8

9

10

11

12

c c c c c c c c c c c
c 0 1 0 0 0 0 0 1 0 0 0
c 0 0 0 0 0 1 0 1 0 1 0
c 0 0 0 0 1 0 0 1 0 0 0
c 0 1 0 0 0 0 0 0 0 0 0
c 0 0 0 0 0 0 0 0 1 0 1
c 0 0 0 0 0 0 0 0 1 0 0
c 0 0 0 0 0 0 0 0 0 0 0
c 0 0 0 0 0 0 1 0 0 0 1
c 1 0 0 0 1 0 1 0 0 0 0
c 0 0 0 0 0 1 0 0 0 0 0
c 0 0 0 0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 





 







. 

C1 C2 

C9 

C6 

C11 

C10 

C12 C8 

C7 
C3 

C5 
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 MI is the merged matrix of the merged FCMs of the three 
experts 1, 3 and 4.  Let J be the merged graph of the three 
experts 2, 3 and 4 which is as follows. 
 
 
 
 
 
 
J = 
 
 
 
 
 
 
 
 
 
 
 

Let MJ be the merged connection matrix of the merged 
graph J of the three experts 2, 3 and 4. 
 

MJ = 

1 2 3 4 5 6 7 8 9 10 12

1

2

3

4

5

6

7

8

9

10

12

c c c c c c c c c c c
c 0 1 0 0 0 0 0 0 1 0 0
c 0 0 0 0 0 0 0 0 1 0 0
c 0 0 0 0 0 1 0 0 1 0 0
c 0 0 0 0 0 0 0 0 0 1 0
c 0 1 0 1 0 0 1 0 0 0 0
c 0 0 0 0 0 0 0 0 0 1 1
c 0 0 0 0 0 0 0 0 0 1 0
c 0 0 0 0 0 0 0 0 1 0 0
c 0 0 0 0 0 0 0 0 0 0 1
c 0 0 0 0 0 1 0 1 0 0 0
c 0 0 0 0 1 0 0 0 0 1 0

 
 
 
 
 
 
 
 
 
 
 
 
 



 





. 

C5 
C4 C1 

C2 

C7 

C10 

C9 

C3 

C6 

C8 

C12 
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 Using the merged dynamical system MJ of FCMs we can 
get the resultant of all attributes other than c11. Now we get the 
merged graph K of all the four experts 1, 2, 3 and 4 which is as 
follows. 
 
 
 
K= 
 
 
 
 
 
 
 
 
 
 
 
Using the merged directed graph K of the experts we get the 
associated merged matrix MK of the graph which is as follows: 
 

MK = 

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

9

10

11

12

c c c c c c c c c c c c
c 0 1 0 0 0 0 0 0 1 0 0 0
c 0 0 0 0 0 0 1 0 0 0 1 0
c 0 0 0 0 0 1 0 1 1 0 0 0
c 0 0 0 0 0 0 0 0 0 1 0 0
c 0 1 0 1 0 0 1 0 0 0 0 0
c 0 0 0 0 0 0 0 0 0 1 0 1
c 0 0 0 0 0 0 0 0 0 1 0 0
c 0 0 0 0 0 0 0 0 1 0 0 0
c 0 1 0 0 0 0 0 0 0 0 0 0
c 1 0 0 0 0 1 0 1 0 0 0 0
c 0 0 0 0 0 0 1 0 0 0 0 0
c 0 0 0 0 1 0 0 0 0 1 0 0






 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

C1 C2 
C7 

C5 C4 
C3 

C11 

C9 

C6 

C10 
C12 

C8 
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 We see MK and MH are different graphs and the resultant 
also may not be the same for any initial state vector.  For the 
merged graph MK contains all the merged graphs and the graphs 
I, II, III and IV. 
 
 This is the way the merged graphs of any t experts who 
have non empty intersection of any two concepts associated 
with the experts works. 
 
 Another type of merging is as follows: 
 
 Let C1¸C2, …, Cn be n concepts associated with the 
problem.  Suppose t experts wishes to work with the problem 
taking a few of the attributes using the FCMs model. 
 

Suppose the t experts work with this problem we see as in 
the earlier case no two experts need to have the non empty 
intersection of the attribute set; what we demand is every expert 
has only with two other expert the non empty intersection of the 
attributes selected by them.  Further two of the experts have 
only one expert who has a non empty intersection with the 
attributes.   

 
For better understanding we give the following example.  

Further this type of choice of attributes can also occur for 
always one cannot demand every expert to choose the attributes 
in such a way that the attributes set intersect giving a non empty 
set. 

 
Example 2.8:  Let C1, C2, C3, C4,…, C11 be the 11 attributes 
associated with the problem where four experts choose to work 
with a selected set of attributes from C1, …, C11 using the FCMs 
model.   
 

Let E1, E2, E3 and E4 be the four experts who work with the 
problem using attributes from the set {C1, C2, …, C11}.  The 
expert E1 works with the attributes {C1, C2, C7, C8}. 
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 The expert E2 works with the attributes {C7, C8, C4, C5, 
C10}.  The expert E3 works with the attributes {C4, C5, C6, C11}.  
The expert E4 works with the attributes {C6, C11, C9, C3}.   
 

We see the experts E1 and E2 have  
{C7, C8} = {C1, C2, C7, C8}  {C7, C8, C5, C4, C10}. 

 
 The experts E1  E3 = , E1  E4 = ,  

E2  E3 = {C4, C5, C7, C8, C10}  {C4, C5, C6, C11} 
 = {C4, C5}. 
 
 E2  E4 =  (Here we use Ei  Ej to represent the 
intersection of the sets of attributes used by experts Ei and Ej). 
 
 E3  E4 = {C4, C5, C6, C11}  {C3, C6, C11, C9} 
 = {C6, C11}. 
 
 This sort of choice of attributes by experts will be called as 
chain like merging and the resultant merged graphs will be 
know as chain like merged graph and the corresponding 
matrices as chain like merged matrix.  Finally the merged FCMs 
will be known as chain like merged FCMs. 
 
 As in case of merged FCMs we cannot merge any of the 
two experts.   
 
 Here we can get the merged graphs of experts E1 with E2, E2 
with E3 and E3 with E4 and merged graphs of E1, E2 and E3 or 
E2, E3 and E4 and E1, E2, E3 and E4.  
 
 Let us exhibit the directed graph given by the first expert E1 
and denote it by A. 
  
 
           --- A 
 
 
 
 

C1 C2 

C7 C8 
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The connection matrix A associated with the directed graph A is 
as follows: 
 

MA = 

1 2 7 8

1

2

7

8

C C C C
C 0 1 0 0
C 0 0 1 1
C 0 1 0 0
C 0 0 1 0

 
 
 
 
 
 

 

 
 Let B be the directed graph given by the expert E2. 
 
 
 
 
 
 
B =  
 
 
 
 
Let MB be the connection matrix of the directed graph. 
 
 

MB  = 

4 5 7 8 10

4

5

7

8

10

C C C C C
C 0 1 0 0 0
C 0 0 1 1 1
C 0 0 0 1 0
C 0 0 0 0 1
C 0 1 0 0 0

 
 
 
 
 
 
  

. 

 
 
Let C be the directed graph given by the third expert E3. 
 

C4 C5 

C7 C8 

C10 
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      C =  
 
 
 
 
The connection matrix MC associated with the directed graph C 
is as follows: 
 

 

Mc = 

4 5 6 11

4

5

6

11

C C C C
C 0 1 0 1
C 0 0 1 1
C 0 1 0 0
C 0 0 1 0

 
 
 
 
 
 

. 

 
 
 Let D be the directed graph given by the fourth expert. 
 
 
 
 
 
 
          = D 
 
 
 
 
 
 The connection  matrix MD associated with graph D  is as 
follows. 
 

C4 C5 

C6 C11 

C3 C6 

C11 C9 
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 MD = 

3 6 9 11

3

6

9

11

C C C C
C 0 1 0 0
C 0 0 0 0
C 0 1 0 1
C 0 1 0 0

 
 
 
 
 
 

. 

 
We have no option of merging E3 and E4 .   
 
The only option is E1 can be merged with E2.  The merged 

graph of A and B of the experts E1 and E2 is as follows.  Let E 
be the directed merged graph of A and B. 
 
 
 
 
 
 E =  
 
 
 
 
 
 
 The merged connection matrix of the merged directed graph 
E is denoted by ME which is as follows: 
 
 

ME = 

1 2 4 5 7 8 11

1

2

4

5

7

8

11

c c c c c c c
c 0 1 0 0 0 0 0
c 0 0 0 0 1 1 0
c 0 0 0 1 0 0 0
c 0 0 0 0 1 1 1
c 0 1 0 0 0 1 0
c 0 0 0 0 1 0 1
c 0 0 0 1 0 0 0

 
 
 
 
 
 
 
 
 
  

. 

C1 C2 

C7 C8 

C4 

C5 

C11 
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Now we merge the directed graphs B and C of experts E2 
and E3 which is as follows: 

 
 

 
 
 
 
 
F =  
 
 
 
 
 
 
 

Let us denote the merged graph by F. 
 

The connection merged matrix of MF of F is as follows: 
 
 

MF = 

4 5 6 7 8 11

4

5

6

7

8

11

c c c c c c
c 0 1 0 0 0 1
c 0 0 1 1 1 1
c 0 1 0 0 0 0
c 0 0 0 0 1 0
c 0 0 0 0 0 1
c 0 1 1 0 0 0

 
 
 
 
 
 
 
 
  

. 

 
 

Now we can merge the directed graph C with that of D and 
get the merged directed graph G which is as follows: 
 

C4 C5 

C7 C8 

C6 

C11 
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  G =  
 
 
 
 
 
 
 
 

The connection merged matrix MG of the merged graph G is 
as follows: 
 

MG = 

3 4 5 6 9 11

3

4

5

6

9

11

c c c c c c
c 0 0 0 1 0 0
c 0 0 1 0 0 1
c 0 0 0 1 0 1
c 0 0 1 0 0 0
c 0 0 0 1 0 1
c 0 0 0 1 0 0

 
 
 
 
 
 
 
 
  

. 

 
 
 

Thus using ME, MF and MG we can study the problem using 
each of the two experts opinion.   
 

Now we can find also 3 experts opinion only in two ways.  
Taking the experts E1, E2 and E3 or E2, E3 and E4.  
 
 To find the opinion of the experts E1, E2 and E3 we should 
get the merged graph of the three directed graph A, B and C.  
Let H denote the merged graph of the graphs A, B and C. 
 
  

C4 C5 

C3 

C9 

C6 C11 
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H = 
 
 
 
 
 
 
 

Let MH denote the connection matrix of the merged graph 
MH which is as follows. 
 

MH = 

1 2 4 5 6 7 8 11

1

2

4

5

6

7

8

11

c c c c c c c c
c 0 1 0 0 0 0 0 0
c 0 0 1 0 0 1 1 0
c 0 0 0 1 0 0 0 0
c 0 0 1 0 1 1 1 1
c 0 0 0 1 0 0 0 0
c 0 1 0 0 0 0 0 0
c 0 1 0 0 0 1 0 1
c 0 0 0 1 1 0 0 0

 
 
 
 
 
 
 
 
 
 
 
  

. 

 
 
 Using MH we can get the resultant of all attributes except 
C3, C9 and C10.   
 

Now we find the merged graph I of the three directed 
graphs B, C and D of the experts E2, E3 and E4.   

 
The merged graph I of the directed graphs B, C and D are as 

follows. 
 

C1 C2 C4 

C7 C8 C11 

C6 

C5 
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 I =  
 
 
 
 
 
 
 
 
 
 
The connection matrix MI of the merged graph I as follows. 
  

MI = 

3 4 5 6 7 8 9 11

3

4

5

6

7

8

9

11

c c c c c c c c
c 0 0 0 1 0 0 0 0
c 0 0 1 0 0 0 0 1
c 0 0 0 1 1 1 0 1
c 0 0 1 0 0 0 0 0
c 0 0 0 0 0 1 0 0
c 0 0 0 0 0 0 0 1
c 0 0 0 1 0 0 0 1
c 0 0 1 1 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
  

. 

 
 
 
 Using the connection matrix MI we can study the effect of 
the 8 attributes.   
 

We cannot find the effect of C1, C2 and C10. 
 

C4 C5 
C6 

C7 C8 

C11 C3 

C9 
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 Finally we get the merged directed graph I of the four 
graphs A, B, C and D which is as follows. 
 
 
 
 
 
 
 J =  
 
 
 
 
 
 
 
 
 
 Now we find the connection merged matrix of the merged 
directed graph J which is denoted by MJ. 
 

MJ = 

1 2 3 4 5 6 7 8 9 11

1

2

3

4

5

6

7

8

9

11

c c c c c c c c c c
c 0 1 0 0 0 0 0 0 0 0
c 0 0 0 0 0 0 1 1 0 0
c 0 0 0 0 0 1 0 0 0 0
c 0 0 0 0 1 0 0 0 0 1
c 0 0 0 0 0 1 1 1 0 0
c 0 0 0 0 1 0 0 0 0 0
c 0 0 0 0 0 0 0 1 0 0
c 0 0 0 0 0 0 1 0 0 1
c 0 0 0 0 0 0 0 0 0 1
c 0 0 0 0 1 1 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

. 

 
 

Thus we see all the four experts opinion is merged and we 
get the merged connection matrix MJ.  

C1 C2 
C5 

C3 
C6 

C7 

C11 

C4 

C8 

C9 
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 Now we proceed onto describe the model abstractly.  
 
 Let c1, c2, …, cn be n attributes with which t experts say E1, 
E2, …, Et work on some problem using FCMs.  However these 
experts choose only a subset from the set of concepts c1, c2, …, 
cn. 
 
 Without loss of generality let us assume the expert E1 and 
E2 have common attributes and the expert  E1 does not share any 
common attribute with any of the other experts E3, E4, …, Et.  
Consider the expert E2, E2 has common attributes with E1 and E3 
and none others E4, E5, …, Et.  Likewise expert E3 has common 
attributes only with E4 and E2 and none others.  Similarly expert 
E4 has common attributes only with E5 and E3 and none others 
and so on.  Thus the expert Ei has common attributes with the 
expert Ei-1 and Ei+1 for i = 1, 2, …, t – 1.  We see the expert Et 
has only common attributes with Et–1 only we see thus E1  E2  
.  E1  Ei =  for all 3  i  t.  That is Ei  Ei+1   for i = 1, 2, 
…, t – 1. 
 
 When experts distribute the nodes and concepts in this way 
among themselves we can work with the merged FCMs which 
we call as specially linked merged FCMs.   
 

Study of this concept is described and developed in an 
example.  Now using this specially linked merged FCMs we can 
study the problem. 
 
 Now we introduce yet another new type of merged FCMs 
which is little different from the other two merged FCMs 
models.  Let us suppose we have say C = {C1, C2, …, Cn} to be 
n-attributes associated a problem.  Suppose E1, E2, …, Et be t 
experts who works with some attributes from the subset of C.  
Suppose r of the experts from the t experts r < t happen to 
contribute to the merged FCMs in such a way that these r 
experts say E1, …, Er cover C with Ei  Ej   for 1  i, j  r (or 
they cover C with Ei  Ei+1  , 1  i  r–1) then we get the 
merged FCMs model to study the problem.   
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Further we can choose some other s experts from the t 
experts (s < t) to cover C such that some from these s-experts 
are also in the r-experts mentioned earlier.  Thus we can have 
say m such groups and these m-group of experts have non 
empty intersection.  While studying these merged FCMs we 
clearly see some experts are vital that is they appear in many of 
the groups, so that unintentionally these experts play a major 
role in every merged FCMs.   
 
 Some experts may appear only in one group of experts and 
some experts may appear in two groups and so on. 
 
 If an experts finds place in every m-group we call that 
expert to be a strongly influencing vital expert. It may so 
happen we can have more than one expert to be a strongly 
influencing vital expert.  The expert who finds in one and only 
group will be known as the non vital or non influencing expert.  
No expert need to feel their expertise is lost for grouping is not 
going to bias as no role is played by the humans. 
 
 We will illustrate this model by an example. 
 
 The example is only artificial as this example is not based 
on any real world problem.  Further adopting this to any real 
world problem is at a risk of bias as this example is only a mere 
illustration and nothing more. 
 
 However the techniques of this model are vital and this 
model is described for experts / researchers to understand the 
situation. 
 
Example 2.9:  Let C = {c1, c2, …, c13} be the 13 concepts 
related with the problem.  Suppose 5 experts work with some 
attributes from the 13 attributes set C. 
 
 Let E1, E2, E3, E4 and E5 be the five experts who work on 
the problem. 
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 Let the expert E1 work with the nodes {c1, c2, c3, c10, c4}.  
The expert E2 works with the following nodes {c3, c4, c1, c6, c9}.   
The third expert E3 works with the nodes {c8, c5, c7, c12, c13},   
expert E4 works with the nodes {c1, c3, c5, c10, c11} and the 
expert E5 works with attributes {c2, c5, c10, c12}.   
 

We give the directed graph associated with each of the five 
experts in the following. 
 
 The directed graph I given by the first expert E1 is as 
follows. 
 
 
 
 
 
            I 
 
 
 
 
 
 
 
 The directed graph II given by the second expert E2 is as 
follows. 
 
 
 
 
 
            II 
 
 
 
 
 
 
 

C1 C2 

C3 C10 

C4 

C4 C3 

C1 C6 

C9 
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 The directed graph III of the third expert is given by the 
following. 
 
 
 
 
 
 
 
             III 
 
 
 
 
 
 
 
 The directed graph IV of the expert four E4 is given in the 
following. 
 
 
 
 
 
 
 
             IV 
 
 
 
 
 
 
 
 
 The directed graph V given by the fifth expert is as follows. 
 

C1 C3 

C5 C11 

C10 

C5 C7 

C13 C8 

C12 
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              V 
 
 
 
 
 
 
 We get the following connection matrices for these directed 
graphs I, II, III, IV and V respectively.  They are denoted by MI, 
MII, MIII, MIV and MV respectively. 
 
 The connection matrix MI of the directed graph I given by 
the expert I is as follows. 
 

MI =

1 2 3 4 10

1

2

3

4

10

c c c c c
c 0 1 0 0 0
c 0 0 1 1 1
c 0 0 0 0 1
c 0 0 0 0 0
c 0 0 0 0 0

 
 
 
 
 
 
  

 

 
 
 The connection matrix MII of the directed graph II is as 
follows: 
 

MII = 

1 3 4 6 9

1

3

4

6

9

c c c c c
c 0 0 1 0 0
c 0 0 0 0 1
c 0 1 0 0 1
c 0 1 0 0 0
c 0 1 0 0 0

 
 
 
 
 
 
  

. 

C2 C5 

C10 C12 
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The connection matrix MIII of the directed graph III is as 
follows.  
 

MIII = 

5 7 8 12 13

5

7

8

12

13

c c c c c
c 0 1 0 1 1
c 0 0 1 0 1
c 0 0 0 0 1
c 0 0 0 0 0
c 0 0 1 0 0

 
 
 
 
 
 
  

. 

 
 
 Let MIV denote the connection matrix of the directed graph 
IV of expert four which is as follows. 
 
 

MIV = 

1 3 5 10 11

1

3

5

10

11

c c c c c
c 0 1 0 1 0
c 0 0 1 0 0
c 0 0 0 0 1
c 0 1 0 0 0
c 0 0 0 1 0

 
 
 
 
 
 
  

. 

 
Let MV denote the connection matrix of the directed graph V of 
the expert which is as follows: 
 

MV = 

2 5 10 12

2

5

10

12

c c c c
0 1 1 1c

c 0 0 1 0
c 0 1 0 0
c 0 0 0 0

 
 
 
 
 
 

. 

 
 
 Now see by merging the experts E2, E4, E3 and E5 or experts 
E1, E2, E3 and E4  we get covered all the 13 attributes or nodes. 
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 However to get all the nodes we need the three experts set 
E2, E3 and E4.  For the expert E2 alone has used the nodes C6 and 
C9 and no other expert has used them.  Expert E3 cannot be 
overlooked for the expert E3 alone has worked with the nodes 
C8 and C13.  Expert E4 cannot be over looked for he alone has 
used the node C11.  Thus working with the merged or integrated 
FCMs the three experts are very essential we can choose expert 
E1 or expert E2 as per the wishes of the experts or the researcher 
who works in the problem. 
 
 We merge the four experts E1, E2, E3 and E4 by merging the 
directed graphs given by them which is as follows. 
 
 Let A denote the merged directed graph of the four experts 
E1, E2, E3 and E4. 
 
 The merged directed graph A of the directed graphs E1, E2, 
E3 and E4 and the merged connection matrix of A be denoted by 
MA, which is as follows. 
 
 
 
 
 
 
 
 
 
 
 
 
A = 

C1 C2 

C3 C4 

C10 

C9 

C6 

C11 C5 C7 

C8 C13 

C12 
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MA = 

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7

8

9

10

11

12

13

c c c c c c c c c c c c c
c 0 1 1 1 0 0 0 0 0 1 0 0 0
c 0 0 1 1 0 0 0 0 0 1 0 0 0
c 0 0 0 0 1 0 0 0 1 1 0 0 0
c 0 0 1 0 0 0 0 0 1 0 0 0 0
c 0 0 0 0 0 0 1 0 0 0 1 1 1
c 0 0 1 0 0 0 0 0 0 0 0 0 0
c 0 0 0 0 0 0 0 1 0 0 0 0 1
c 0 0 0 0 0 0 0 0 0 0 0 0 1
c 0 0 1 0 0 0 0 0 0 0 0 0 0
c 0 0 1 0 0 0 0 0 0 0 0 0 0
c 0 0 0 0 0 0 0 0 0 1
c
c

0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

. 

 
 
 Suppose we merge the opinion of the experts E2, E3, E4 and 
E5 by merging the directed graph II, III, IV and V.  Let B denote 
the merged directed graph which is as follows. 
 
 
 
 
 
 
 
 
 

              B 
 
 
 
 
 

C1 
C4 

C6 C3 

C2 

C11 

C9 

C5 

C7 

C8 

C13 

C10 

C12 
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 Using the merged directed graph B we obtained the merged 
connection matrix of B which will serve as the dynamical 
system of the merged FCMs.  Let MB denote the connection 
matrix of B. 
 

 MB = 

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7

8

9

10

11

12

13

c c c c c c c c c c c c c
c 0 0 1 1 0 0 0 0 0 1 0 0 0
c 0 0 0 0 1 0 0 0 0 1 0 1 0
c 0 0 0 0 1 0 0 0 1 0 0 0 0
c 0 0 1 0 0 0 0 0 1 0 0 0 0
c 0 0 0 0 0 0 1 0 0 1 1 1 1
c 0 0 1 0 0 0 0 0 0 0 0 0 0
c 0 0 0 0 0 0 0 1 0 0 0 0 1
c 0 0 0 0 0 0 0 0 0 0 0 0 1
c 0 0 1 0 0 0 0 0 0 0 0 0 0
c 0 0 1 0 1 0 0 0 0 0 0 0 0
c 0 0 0 0 0 0 0 0 0 1
c
c

0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

. 

 
 
 We see both the connection matrices are different and they 
give different resultants.  
 
 We see E1 and E5 are experts who are not that strong only 
partly strong one of them is sufficient to give a merged or 
integrated FCMs model. 
 
 However both models can be used as they are different.  In 
the further following chapter a new average technique will be 
used and also in another chapter the concept of Kosko-
Hamming distance will be introduced and that can applied to the 
resultants given by the two models for the same initial state 
vector. We have throughout used only FCMs whose related 
matrices take values from the set {0, 1}. 
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 Now when we have a subset from the set of experts set  
E = {E1, E2, …, Et} which can give the merged FCMs taking all 
the n concepts we take all such subsets of E and find the merged 
FCMs.   
 

Using new average simple FCMs which will be defined in 
chapter four of this book we find a new single of integrated 
model which can predict the solutions of the  problem. 
 
 Further we proceed onto describe the notion of merged 
NCMs.  
 

The basic notion of NCMs and the concept of neutrosophic 
graphs have been introduced in chapter I.   
 

We now give a few types of merged neutrosophic NCMs 
and mixed merged NCMs and FCMs.  In case of NCMs we 
have two types of merging and both merging pave way to only 
NCMs.   
 

We will define, develop and describe these situations by 
some examples. 
 
 We know a neutrosophic directed graph associated with 
NCMs.   
 

We just show how merging takes place among neutrosophic 
graphs.   

 
Suppose we have two neutrosophic graphs G1 and G2 which 

has some common vertices. 
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 G1 =       G2 = 
 
 
 
 
 
 
 
 
 
 
 We see both the graphs have only C4 to be the common 
vertex so merging can be done without any difficulty for only 
one common vertex is C4.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Further we assume in NCMs in general the vertices are not 

neutrosophic only the edges are neutrosophic.  Further merging 
of an neutrosophic edge with the real edge cannot be accepted 
how to overcome or redefine the edge.   

C1 

C3 

C2 

C4 C5 

C9 
C7 

C8 

C1 

C3 C2 

C4 

C4 C5 

C9 C7 

C8 
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We redefine the edge in a very flexible way.   
 
If the expert feels neutrosophy that is indeterminacy over 

usual edge let them opt for indeterminacy if they feel contrary 
let them take the real. 
 
 But however if one chooses to take indeterminacy till the 
end of the problem that is while forming each and every merged  
graph the same should be adopted.  Only under these conditions 
we can get NCMs merged model. 
 
 We will first illustrate this situation by some examples. 
 
Example 2.10:  Let G1 and G2 be any two neutrosophic graphs 
which has some neutrosophic edges and vertices in common  
 
 
 
 
 
  G1 =  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C1 C4 

C5 C2 

C3 
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 G2 =    
 
 
 
 
 
 
 
  
 
be the two neutrosophic graphs.   
 

We can merge the two graphs in one and only one way. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The merging is carried out in a direct way as there is no 

conflicts about the edges.  

C1 C4 

C9 

C2 
C7 

C12 

C10 

C1 C4 

C5 

C2 

C3 

C9 
C7 

C12 

C10 
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 This is the way merging is carried out without any 
difficulty. 
 
 Next we find merging of the two neutrosophic graphs G1 
and G2.  
 
 
 
 
 
 G1 =  
 
 
 
 
 
 
 
 
 
 
 
 
 
 G2 =  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C1 C3 

C9 

C4 
C12 

C10 

C8 

C11 

C1 C3 

C4 
C2 

C5 
C6 

C7 
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The merged graph of G1 with G2 is as follows. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 This is the way neutrosophic graphs are merged.  We see 
the merging is done not under any assumption. 
 
 Suppose we have two neutrosophic graphs G1 and G2 which 
is as follows. 
 
 
 
 
  G1 =  
 
 
 
 
 
 
 
 
 

C1 C2 

C4 
C3 

C5 

C1 C3 

C4 
C2 

C5 
C6 

C7 

C9 
C12 

C10 

C8 

C11 
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  G2 =  
 
 
 
 
  
 
 
 
 

We can merge the graph G1 and G2 which is as follows. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We see by merging the neutrosophic edge and real edge we 
get the neutrosophic edge and so on. Here the experts opts to 
take C3 to C2 as a neutrosophic edge only. 

C1 C2 

C4 

C3 

C6 C8 

C7 

C1 C2 

C4 
C3 

C5 

C6 C8 

C7 
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 This is not the usual merging.   
 

Now using these techniques we work for the merging 
NCMs. 
 
 Suppose we wish to merge two NCMs whose directed 
graphs G1 and G2 are as follows: 
 
 
 
 
 
  G1 =  
 
 
 
 
 
 
 
 
 
  G2 =  
 
 
 
 
 

The merged graph of G1 and G2 is as follows. 
 
 
 
 
 
 
 
 
 
 

C1 C2 

C8 
C5 

C6 C7 

C1 C2 

C4 C3 

C6 C5 

C1 C2 

C4 

C3 

C6 C5 

C8 

C6 C7 
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 G is the merged neutrosophic graph of G1 and G2. 
 
 As in case of merged FCMs we can get merged NCMs of 
the three types apart from those mixed merged NCMs and 
FCMs. 
 
 Let {C1, C2, …, Cn} be n attributes or nodes.  Suppose t 
experts E1, E2, …, Et work on the problem working will some 
attributes from the set C. 
 
 Suppose all of them work with only Neutrosophic Cognitive 
Maps (NCMs)  model we can find the merged NCMs as in case 
of FCMs. 
 
 Let us suppose c1, c2, …, c10 are the 10 nodes or attributes 
related with the some problem.  Suppose only three experts E1, 
E2 and E3 work with the problem.   
 

Let the expert E1 work with the nodes {C1, C3, C5, C7 and 
C9}.  Let the expert E2 work with the nodes {C1, C2, C4, C7, C6, 
C8} and the expert E3 works with the nodes {C2, C3, C10, C7, C8, 
C9}.  We can find the merged graph of the NCMs using the 
neutrosophic graphs G1, G2 and G3 of the experts  E1, E2 and E3 
respectively. 
 
 
 
 
 
 
 G1 =  
 
 
 
 
 
 

The neutrosophic connection matrix 
1GM  of the graph G1 is 

as follows.  

C1 C3 

C5 

C7 

C9 
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1GM  = 

1 3 5 7 9

1

3

5

7

9

c c c c c
c 0 1 0 0 1
c 0 0 I I 0
c 0 I 0 1 0
c 0 0 0 0 0
c 0 0 0 1 0

 
 
 
 
 
 
  

. 

 
 
 The neutrosophic directed graph G2 given by the expert E2 
is as follows: 
 
 
 
 
   G2 =   
 
 
 
 
 
 
 
 
 

The connection matrix 
2GM  is given by G2 is as follows. 
 
 

2GM  = 

1 2 4 6 7 8

1

2

4

6

7

8

c c c c c c
c 0 1 0 0 1 0
c 0 0 0 1 0 0
c 0 0 0 0 I 0
c 0 0 0 0 0 0
c 0 0 0 1 0 1
c 0 0 0 I 0 0

 
 
 
 
 
 
 
 
  

. 

C1 C2 

C4 
C6 

C7 

C8 
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 The directed neutrosophic graph G3 given by expert 3 is as 
follows. 
 
 
 
 
 
 
G3 =  
 
 
 
 
 
 

 
 
 
The neutrosophic connection matrix associated with G3 is as 

follows: 
 

3GM  = 

2 3 7 8 9 10

2

3

7

8

9

10

c c c c c c
c 0 1 I 0 I 0
c 0 0 0 0 0 0
c 0 0 0 0 1 0
c 0 0 0 0 1 1
c 0 0 0 0 0 0
c 0 1 0 0 0 0

 
 
 
 
 
 
 
 
  

. 

 
 
 
 Now we can merge the graphs G1 and G2.   
 

Let H be the merged graph of G1 and G2 which is as 
follows: 

C2 C3 

C7 C10 C9 

C8 
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             - H 
 
 
 
 
 
 
 
 
 
 

The neutrosophic merged connection matrix MH of H is as 
follows: 
 

MH = 

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

c c c c c c c c c
c 0 1 1 0 0 0 1 0 1
c 0 0 0 0 0 1 0 0 0
c 0 0 0 0 I 0 I 0 0
c 0 0 0 0 0 0 I 0 0
c 0 0 0 0 0 0 1 0 0
c 0 0 0 0 0 0 0 0 0
c 0 0 0 0 0 1 0 1 0
c 0 0 0 0 0 0 0 0 0
c 0 0 0 0 0 0 1 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

 
 
 We can also merge the neutrosophic graph G1 with G3.   
 
 

C1 C6 

C5 C4 C7 

C9 

C2 

C3 

C8 
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Let I denote the merged neutrosophic graph which is as 
follows. 

 
 
 
 
 
 
              I 
 
 
 
 
 
 
 
 
 
 
 
 Let MI denote the neutrosophic merged connection matrix 
of the neutrosophic graph I. 
 
 

MI = 

1 2 3 5 7 8 9 10

1

2

3

5

7

8

9

10

c c c c c c c c
c 0 0 1 0 0 0 1 0
c 0 0 1 0 I 0 I 0
c 0 0 0 I I 0 0 0
c 0 0 I 0 1 0 0 0
c 0 0 0 0 0 0 1 0
c 0 0 0 0 0 0 1 1
c 0 0 0 0 1 0 0 0
c 0 0 1 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
  

 

 
 

C1 
C2 

C5 
C10 

C7 

C9 

C3 

C8 
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 Now we get the merged graph J of the graphs G2 with G3 
which is as follows. 
 
 
 
 
 
 
 
               J  

 
 
 
 
 
 
 
 
 
 
 

MJ = 

1 2 3 4 6 7 8 9 10

1

2

3

4

6

7

8

9

10

c c c c c c c c c
c 0 1 0 0 0 1 0 0 0
c 0 0 1 0 1 I 0 I 0
c 0 0 0 0 0 0 0 0 0
c 0 0 0 0 0 I 0 0 0
c 0 0 0 0 0 0 0 0 0
c 0 0 0 0 1 0 1 1 0
c 0 0 0 0 I 0 0 1 1
c 0 0 0 0 0 0 0 0 0
c 0 0 1 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

 
 
 Now we can get the merged neutrosophic graph K of all the 
three experts E1, E2 and E3 which is as follows. 
 

C1 
C3 

C4 
C10 

C7 

C8 

C2 

C9 

C6 
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K =  
 
 
 
 
 
 
 
 
 
The merged connection matrix MK of the three experts gives 

by the merged graph which is as follows. 
 

MK = 

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

c c c c c c c c c c
c 0 1 1 0 0 0 1 0 1 0
c 0 0 1 0 0 1 I 0 I 0
c 0 0 0 0 I 0 I 0 0 0
c 0 0 0 0 0 0 I 0 0 0
c 0 0 I 0 0 0 1 0 0 0
c 0 0 0 0 0 0 0 0 0 0
c 0 0 0 0 0 1 0 1 1 0
c 0 0 0 0 0 I 0 0 1 1
c 0 0 0 0 0 0 1 0 0 0
c 0 1 0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

. 

 
 

MK gives the total or integrated dynamical system of the 
merged model.  Working with this given the every node of the 
problem.   

 

C1 

C3 

C5 

C10 
C6 

C9 

C2 

C8 

C7 C4 
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By looking at the merged graph one will think C7 is the vital 

or the most influential node.  Such study about the graphs 
associated with the models is carried out in chapter III of this 
book.   

 
Once such study is done the researcher will have more 

knowledge about the problem and its outcome.  
 
 Next we give the merged NCM such that the t experts say 
E1, E2, …, Et work with n nodes of the problem using NCM by 
selecting some of the nodes from the n nodes such that the node 
of the expert Ei  Ei+1   for i = 1, 2, …, t–1 and Ei  Ej =  if 
j  i+1. 
 
 Such a type of merged FCM was discussed earlier.  Here we 
discuss the same type of problem using NCMs.   
 

We will illustrate this situation by some examples.  
 
 Let C1, C2, …, C10 be the concepts associated with a 
problem.  Let four experts work with the problem using NCMs 
taking some nodes from the ten nodes. 
 
 Let the expert E1 work with the nodes {C1, C2, C3, C5}.  Let 
the expert E2 work with the nodes {C3, C2, C6, C7}.  Let the 
expert E3 work with the nodes {C6, C7, C8, C9} and the expert E4 
works with the nodes {C8, C4, C9, C10}.   
 

We see the common nodes between E1 and E2 is {C3, C2} 
the common node between E2 and E3 is {C6, C7} and the 
common node between E3 and E4 {C8, C9}.   

 
However Ei  Ej =  if j = i+1; 1  i  4; 2  j  3.  
 
Now the directed neutrosophic graph given by the expert E1 

is as follows. 
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              I 
 
 

 
 
 
 
 
 The connection neutrosophic matrix MI associated 
with the directed graph I is as follows: 
 

MI = 

1 2 3 5

1

2

3

5

c c c c
c 0 1 0 I
c 0 0 0 0
c 0 1 0 I
c 0 0 0 0

 
 
 
 
 
 

. 

 
 
The directed neutrosophic graph II given by the second 

expert E2 is as follows: 
 
 
 
 
 
             II 
 
 
 
 
 

 

C1 C2 

C3 C5 

C2 C3 

C6 
C7 
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The connection neutrosophic matrix MII given by the 
expert E2 is as follows: 
 
 

MII = 

2 3 6 7

2

3

6

7

c c c c
c 0 1 I 0
c 1 0 0 I
c 0 0 0 1
c 0 0 1 0

 
 
 
 
 
 

. 

 
 
The directed graph III given by the third expert E3 is as  follows: 
 
 
 
 
 
 
            III 
 
 
 
 
 
The neutrosophic connection matrix MIII of the graph III is 
as follows: 
 
 

MIII = 

6 7 8 9

6

7

8

9

c c c c
c 0 1 0 I
c 0 0 0 1
c 1 I 0 0
c 0 1 0 0

 
 
 
 
 
 

. 

 
 

C6 C7 

C8 C9 
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 The directed graph IV given by the forth expert E4 is as 
follows: 
 
 
 
 
 
            IV 
 
 
 
 
 
The neutrosophic connection matrix MIV associated with graph 
IV is as follows: 
 

MIV = 

4 8 9 10

4

8

9

10

c c c c
c 0 I 1 I
c 0 0 0 I
c 0 0 0 1
c I 0 0 0

 
 
 
 
 
 

. 

 
 We cannot merge the graph I with III or IV. 
 
 Likewise graph II cannot be merged with graph IV.  
Further graph III cannot be merged with graph I.  Finally 
graph IV cannot be merged with graphs I and II.  We now 
get the merged neutrosophic graphs. 
 
 First let us get the merged NCMs of experts E1 and E2 
by merging the neutrosophic graphs I and II.   
 
 Let A denote the merged graph of graphs I and II 
which is as follows. 
 
 

C4 C8 

C9 C10 
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              A 
 
 
 
 
 
 
Let MA denote the neutrosophic merged connection matrix 
of A. 
 

MA = 

1 2 3 5 6 7

1

2

3

5

6

7

c c c c c c
c 0 1 0 I 0 0
c 0 0 1 0 I 0
c 0 1 0 I 0 I
c 0 0 0 0 0 0
c 0 0 0 0 0 1
c 0 0 0 0 1 0

 
 
 
 
 
 
 
 
  

. 

 
Let B denote the merged graphs of the graphs II and III which is 
as follows: 
 
 
 
 
 
 
 
               B 
 
 
 
 

C1 C2 

C3 C5 

C7 

C6 

C2 C3 

C6 C7 

C8 

C9 
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The merged neutrosophic connection matrix MB of the graph B 
is as follows: 
 

MB  =  

2 3 6 7 8 9

2

3

6

7

8

9

c c c c c c
c 0 1 I 0 0 0
c 1 0 0 I 0 0
c 0 0 0 1 0 I
c 0 0 1 0 0 1
c 0 0 1 I 0 0
c 0 0 0 1 0 0

 
 
 
 
 
 
 
 
  

. 

 
 Let C denote the merged neutrosophic graphs III and IV 
which is as follows: 
 
 
 
 
              C 
 
 
 
 
 
 
Let Mc denote the merged neutrosophic connection matrix of 
the merged neutrosophic graph C. 
 

Mc = 

4 6 7 8 9 10

4

6

7

8

9

10

c c c c c c
c 0 0 0 I 1 I
c 0 0 1 0 I 0
c 0 0 0 0 1 0
c 0 1 I 0 0 1
c 0 0 1 0 0 1
c I 0 0 0 0 0

 
 
 
 
 
 
 
 
  

. 

 

C6 C7 

C8 C9 

C4 

C10 
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 Let D denote the merged graph of all the four neutrosophic 
graphs I, II, III and IV which is as follows: 
 
 
 
 
 
D 
 
 
 
 
 
 
 
 
 
 
 
Let MD denote the merged neutrosophic connection matrix of 
the merged neutrosophic directed graph D which is as follows: 
 
 

MD = 

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

c c c c c c c c c c
c 0 1 0 0 I 0 0 0 0 0
c 0 0 1 0 0 I 0 0 0 0
c 0 1 0 0 I 0 I 0 0 0
c 0 0 0 0 0 0 0 I 1 I
c 0 0 0 0 0 0 0 0 0 0
c 0 0 0 0 0 0 1 0 I 0
c 0 0 0 0 0 1 0 0 1 0
c 0 0 0 0 0 1 I 0 0 1
c 0 0 0 0 0 0 1 0 0 0
c 0 0 0 I 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

. 

 

C1 C2 

C5 

C7 

C3 

C6 

C8 

C9 

C4 

C10 
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 This is the way specially linked merged NCMs function.   
 

Now we proceed onto describe the notion of specially 
linked (merged) NCMs.  Suppose we have some n concepts say 
{c1, c2, …, cn} and say t experts work on it and all of them use 
only NCMs .   

 
Now we proceed onto describe the specially merged NCMs 

model using groups of experts from the t experts. 
 
 Suppose say r1 of the experts from the t experts give the 
total or integrated model.  If we have another set of r2 experts 
from t experts give the total or integrated model so on say some 
ri of the t experts give the integrated model then to find the most 
influential expert and the least influential expert.   
 

Most influential expert is one who cannot be compensated 
or replaced by some other expert.   

 
A passive or a weak expert is one who can be replaced by 

one or more experts.  This has been described developed in the 
case of FCMs.   

 
Now we will describe the situation by an example.   
 
Let C = {C1, C2, …, C10} be the ten concepts associated 

with a problem.  Let E1, E2, E3, E4, E5 be 5 experts working on 
this problem using NCMs by selecting some attributes from the 
set C.  Suppose the expert E1 works with the attributes {C1, C3, 
C4, C5} and the expert E2 works with the attributes {C5, C4, C2, 
C7}.  The third expert E3 works with the attributes {C6, C9, C8, 
C10}.   
 
 The forth expert works with {C1, C2, C7 and C6} and the 
fifth expert works with {C2, C5, C1, C4}. 
 
 Now we see {C1, C3, C4, C5}  {C5, C4, C2, C7}  {C6, C9, 
C8, C10} = C. 
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 However the set {C5, C4, C2, C7} is replaced by {C1, C2, C7, 
C6} and still we get C. 
 
 However the sets {C1, C3, C4, C5} and {C6, C8, C9, C10} 
cannot be replaced by any other set.  We can as in case of FCMs 
get the merged connection neutrosophic matrix of the merged 
neutrosophic cognitive maps model. 
 
 It is pertinent to keep on record that all the five experts 
work only with the NCMs. 
 
 Finally we describe the mixed FCMs and NCMs model. 
Suppose we have a problem which is associated with n 
attributes say C = {c1, …, cn}.  Some s experts agree to work on 
the problem using some attributes from the set C using only the 
FCMs model.  Some t expert wish to work on the problem using 
some attributes from the set C using the NCMs model only. 
Thus these t + s number of experts alone can contribute for the 
integrated merged mixed FCMs and NCMs model.   
 

That is all the s-experts do not cover the set of n attributes 
neither the set of t-experts cover the set of all n-attributes only a 
subcollection from the s-experts and the t-experts alone are in a 
positive to cover all n concepts in C. 
 
 Thus we are forced to merge a directed graph with a 
directed neutrosophic graph to arrive at a solution.  The 
resultant model will be defined as the mixed merged FCMs and 
NCMs model.   
 

This will be illustrated by the following example. 
 
 Let C = {C1, C2, C3, …, C10} be the set of 10 attributes.  
Suppose 3 experts choose to work with the problem with some 
nodes from the set C using only NCMs model.  Some 2 experts 
work the problem with some nodes from C using only the 
FCMs model.  Thus 5 experts E1, E2, …, E5 work on the 
problem. 
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 Let the three experts E1, E2 and E3 work with the NCMs and 
the experts E4 and E5 work with the FCMs model. 
 
 Let the first expert E1 work with the concepts {C1, C2, C4, 
C5} and the second expert E2 work with the nodes {C6, C3, C7, 
C9}.  The third expert E3 works with the nodes {C4, C5, C6, C9}.  
Thus all the three experts work only with the NCMs model.   
 

Let the forth experts E4 work with the nodes {C1, C2, C3, C8, 
C9} and the expert E5 work with the nodes {C4, C5, C10, C7, C2}.   
 

In the first place we observe even when all the three experts  
E1, E2 and E3 join together to get the merged NCMs still the 
nodes C8 and C10 are left out from the set C.   

 
Now it is also observed that two experts E4 and E5 cannot 

give in the merged FCMs model accounting for all the nodes 
from C.   

 
They also cannot account for C6, for C6 is missing.  Thus we 

to get whole of C define the merged mixed FCMs and NCMs 
model.   

 
Now let A be the neutrosophic graph associated with the 

first expert E1 which is as follows. 
 
 
 
 

A =  
 
 
 
 
 
 
 
 

C1 C2 

C4 C5 
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Let B be the directed neutrosophic graph given by second expert 
E2. 
 
 
 B =  
 
 
 
 
 
 
 
 
 
 

Let C be the directed neutrosophic graph given by the third 
expert E3 which is as follows: 

 
C =  
 
 
 
 
 
 
 
 
 
Let D be the directed graph given by the fourth expert E4 

which is as follows: 
 
 
 
 
D =  
 
 
 
 

C3 C6 

C7 C9 

C4 C5 

C6 C9 

C1 C2 

C3 C8 

C9 
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Let E be the directed graph of the FCMs model given by the 
fifth expert E5. 

 
 
 
 
             ---  E 
 
 
 
 
 
 
 
 
Now the connection matrix of the neutrosophic graph A be 

MA which is as follows: 
 
 

MA =  

1 2 4 5

1

2

4

5

c c c c
c 0 I 1 0
c 0 0 1 1
c 0 0 0 I
c 0 1 0 0

 
 
 
 
 
 

. 

 
 

Let MB be the connection matrix associated with the 
neutrosophic directed graph given by the second expert which is 
as follows: 

 
 

MB = 

3 6 7 9

3

6

7

9

c c c c
c 0 1 0 0
c 0 0 I 1
c 1 I 0 0
c 0 0 1 0

 
 
 
 
 
 

. 

C4 C5 

C7 C10 

C2 
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Let Mc denote the connection neutrosophic matrix 
associated with the neutrosophic graph C. 

 

Mc = 

4 5 6 9

4

5

6

9

c c c c
c 0 I 1 0
c 0 0 0 I
c 0 1 0 1
c 1 0 0 0

 
 
 
 
 
 

. 

 
 
Let MD denote the connection matrix of the directed graph 

D given by the fourth expert E4 which is as follows: 
 
 

MD = 

1 2 3 8 9

1

2

3

8

9

c c c c c
c 0 0 0 1 0
c 0 0 0 0 0
c 1 0 0 0 1
c 0 0 0 0 1
c 0 1 0 0 0

 
 
 
 
 
 
  

. 

 
Let ME denote the connection matrix of the directed graph E 

given by the fifth expert E5. 
 

 

ME = 

2 4 5 7 10

2

4

5

7

10

c c c c c
c 0 1 1 0 0
c 1 0 0 1 1
c 0 0 0 0 0
c 0 0 0 0 1
c 0 0 1 0 0

 
 
 
 
 
 
  

. 
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Now let F give the merged graph of the first two experts E1 

ad E2 which is as follows: 
 
 
F =  
 
 
 
 
 
 
 
 
 
We see the graphs A and B cannot be merged to a graph so 

F does not exist as the graphs have no common vertex or edge. 
 
Let G denote the merged graph of the experts 1 and 3 which 

is as follows: 
 
 
 
 
 
 
 
 
           G   
 
 
 
 
 
 
 
The merged graph G is a neutrosophic graph.   
 
Let MG be the connection matrix of G. 

C1 C2 

C4 C5 

C6 C9 

C4 

C1 C2 

C5 

C3 

C7 

C9 

C6 
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MG = 

1 2 4 5 6 9

1

2

4

5

6

9

c c c c c c
c 0 I 1 0 0 0
c 0 0 1 1 0 0
c 0 0 0 I 1 0
c 0 1 0 0 0 I
c 0 0 0 1 0 I
c 0 0 1 0 0 0

 
 
 
 
 
 
 
 
  

. 

 
 
The merged graph H of experts 1 and 4 is as follows: 
 
 
 
 
 
 
 
H =  
 
 
 
 
 
 
 
 
 
 
 
Let MH be the connection matrix of the merged graph H. 
 
 

C1 C2 

C4 C5 

C9 

C3 

C8 
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 MH = 

1 2 3 4 5 8 9

1

2

3

4

5

8

9

c c c c c c c
c 0 I 0 1 0 1 0
c 0 0 0 1 1 0 0
c 1 0 0 0 0 0 1
c 0 0 0 0 I 0 0
c 0 1 0 0 0 0 0
c 0 0 0 0 0 0 1
c 0 1 0 0 0 0 0

 
 
 
 
 
 
 
 
 
  

. 

 
 
Let I denote the merged graph of the experts (1) and (5) 

which is as follows: 
 
 
 
 
I =  
 
 
 
 
 
 
 
 
Let MI denote the connection matrix of the merged graph I 

which is as follows: 
 

MI = 

1 2 4 5 7 10

1

2

4

5

7

10

c c c c c c
c 0 I 1 0 0 0
c 0 0 1 1 0 0
c 0 1 0 I 1 1
c 0 1 0 0 0 0
c 0 0 0 0 0 1
c 0 0 0 1 0 0

 
 
 
 
 
 
 
 
  

. 

C4 C5 

C7 C10 

C2 

C1 
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The merged graph J of experts 2 and 3 are as follows: 
 
 
 

 
 
 
 J =  
 
 
 
 
 
 

 
 
The merged connection matrix MJ of the merged graph J is 

as follows: 
 
 

 

MJ =

3 4 5 6 7 9

3

4

5

6

7

9

c c c c c c
c 0 0 0 1 0 0
c 0 0 I 1 0 0
c 0 0 0 0 0 I
c 0 0 1 0 I 1
c 1 0 0 I 0 0
c 0 1 0 0 1 0

 
 
 
 
 
 
 
 
  

. 

 
 

Now we get the merged graph K given by the experts 2 and 
4 which is as follows: 
 

C3 C6 

C7 C9 

C4 

C5 
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K =  
 
 
 
 
 
 
 
 
 
 

The merged connection matrix MK of the directed graph K 
is as follows: 
 

 

MK = 

1 2 3 6 7 8 9

1

2

3

6

7

8

9

c c c c c c c
c 0 0 0 0 0 1 0
c 0 0 0 0 0 0 0
c 1 0 0 1 0 0 1
c 0 0 0 0 I 0 1
c 0 0 1 I 0 0 0
c 0 0 0 0 0 0 1
c 0 1 0 0 1 0 0

 
 
 
 
 
 
 
 
 
  

. 

 
 
Let L denote the merged graph given by the experts 2 and 5 

which is as follows: 

C3 C6 

C7 
C9 

C1 

C8 

C2 
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            L 
 
 
 

 
 
 
 
 
 
The merged connection matrix ML of the neutrosophic 

merged graph L is as follows: 
 
 

ML = 

2 3 4 5 6 7 9 10

2

3

4

5

6

7

9

10

c c c c c c c c
c 0 0 1 1 0 0 0 0
c 0 0 0 0 1 0 0 0
c 1 0 0 0 0 0 0 1
c 0 0 0 0 0 0 0 0
c 0 0 0 0 0 I 1 0
c 0 1 1 0 I 0 0 1
c 0 0 0 0 0 1 0 0
c 0 0 0 1 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
  

. 

 
 
 

Let M denote the merged graph of the experts 3 and 4 which 
is as follows: 

C3 C6 

C7 C9 

C5 

C2 C4 C10 
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M 
 
 
 

 
 
 
 
 
 
Let MM be the merged neutrosophic connection matrix of 

the merged neutrosophic graph M which is as follows: 
 
 

MM = 

1 2 3 4 5 6 8 9

1

2

3

4

5

6

8

9

c c c c c c c c
c 0 0 0 0 0 0 1 0
c 0 0 0 0 0 0 0 0
c 1 0 0 0 0 0 0 1
c 0 0 0 0 I 1 0 0
c 0 0 0 0 0 0 0 I
c 0 0 0 0 1 0 0 1
c 0 0 0 0 0 0 0 0
c 0 1 0 1 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
  

 

 
 
 
Let N denoted the merged neutrosophic graphs of the 

experts 3 and 5. 
 

C5 C2 

C9 

C8 

C4 

C6 

C3 

C1 
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              N 
 
 
 
 
 
 
 
 
 
Let MN be the merged neutrosophic connection matrix of 

the merged neutrosophic graph N which is as follows: 
 
 

MN = 

2 4 5 6 7 9 10

2

4

5

6

7

9

10

c c c c c c c
c 0 1 1 0 0 0 0
c 1 0 I 1 1 0 1
c 0 0 0 0 0 I 0
c 0 0 1 0 0 1 0
c 0 0 0 0 0 0 1
c 0 1 0 0 0 0 0
c 0 0 1 0 0 0 0

 
 
 
 
 
 
 
 
 
  

. 

 
 

Let O denote the merged graph given by the experts 4 and 5 
which is as follows: 

C5 

C9 

C10 

C4 

C6 
C7 

C2 
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O 
 
 
 
 
 
 
 
 

We see the merged graph is not a neutrosophic graph.  
Infact a usual graph.   

 
Hence the related connection merged matrix Mo of O will 

not be a neutrosophic  graph.   
 
Hence the merged graph of these two expert also work with 

the FCM and not a NCM.   
 
Only when one of them works with a neutrosophic graph 

and other the usual graph we will get  a merged neutrosophic 
graph hence the merged connection matrix is also a 
neutrosophic matrix forcing the dynamical system associated 
with it to be a NCM and not a FCM.   

 
We now give the connection matrix Mo of the merged graph 

O which as follows: 
 

C4 
C5 

C7 C10 C8 

C2 C1 

C3 

C9 
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MO = 

1 2 3 4 5 7 8 9 10

1

2

3

4

5

7

8

9

10

c c c c c c c c c
c 0 0 0 0 1 0 1 0 0
c 0 0 0 1 0 0 0 0 0
c 1 0 0 0 0 0 0 1 0
c 0 1 0 0 0 1 0 0 1
c 0 0 0 0 0 0 0 0 0
c 0 0 0 0 0 0 0 0 1
c 0 0 0 0 0 0 0 1 0
c 0 1 0 0 0 0 0 0 0
c 0 0 0 0 1 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

 
 

We see this merged model is only a merged FCMs model.  
All nodes except C6 is present.  We can also merge the directed 
graphs of the experts 1, 2 and 4.   
 

Let the merged graph of the experts 1, 2 and 3 be denoted 
by P which is as follows. 

 
 

 
 
 
 
               P 
 
 
 
 
 
 

 
 
The merged connection matrix MP of P is as follows: 

 
 

C2 

C5 

C1 

C4 

C6 

C9 

C3 

C7 
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MP = 

1 2 3 4 5 6 7 9

1

2

3

4

5

6

7

9

c c c c c c c c
c 0 I 0 1 0 0 0 0
c 0 0 0 1 1 0 0 0
c 0 0 0 0 0 1 0 0
c 0 0 0 0 I 1 0 0
c 0 1 0 0 0 0 0 I
c 0 0 0 0 1 0 I 1
c 0 0 1 0 0 I 0 0
c 0 0 1 1 0 0 1 0

 
 
 
 
 
 
 
 
 
 
 
  

. 

 
 
Let Q denote the merged graph of the expert 1, 2 and 4 which is 
as follows: 
 
 
 
Q 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Let MQ denote the merged connection matrix of the merged 

graph Q. 
 

C2 

C5 

C1 

C4 

C6 

C9 

C3 

C7 

C8 
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MQ  = 

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

c c c c c c c c c
c 0 I 0 1 0 0 0 1 0
c 0 0 0 1 1 0 0 0 0
c 1 0 0 0 0 1 0 0 1
c 0 0 0 0 I 0 0 0 0
c 0 1 0 0 0 0 0 0 0
c 0 0 0 0 0 0 I 0 1
c 0 0 1 0 0 I 0 0 0
c 0 0 0 0 0 0 0 0 1
c 0 1 0 0 0 0 1 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

 
 
Let R denote the merged graph of the experts 1, 2 and 5 which 
is as follows. 
 
 Let R denote the merged graph of the experts 1, 2 and 5 
which is as follows: 
 
 
 
  
 
 
R 
 
 
 
 
 
 

 
 
Let MR denote the merged connection matrix of the graph R 

which is as follows: 
 
 

C2 

C5 

C1 

C4 

C6 

C9 

C3 

C7 

C10 
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MR = 

1 2 3 4 5 6 7 9 10

1

2

3

4

5

6

7

9

10

c c c c c c c c c
c 0 I 0 1 0 0 0 0 0
c 0 0 0 1 1 0 0 0 0
c 0 0 0 0 0 1 0 0 0
c 0 1 0 0 I 0 1 0 1
c 0 1 0 0 0 0 0 0 0
c 0 0 0 0 0 0 I 1 0
c 0 0 1 0 0 I 0 0 1
c 0 0 0 0 0 0 1 0 0
c 0 0 0 0 1 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

 
 
 Let S denote the merged graph of the experts 1, 3 and 4 
which as follows: 
 

 
 
 
 
 
 
             S 
 
 
 
 
 
 
 
Let Ms denote the merged connection matrix of the merged 

graph S which is as follows: 
 
 

C1 C2 

C4 C5 

C6 C9 

C3 

C8 
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MS = 

1 2 3 4 5 6 8 9

1

2

3

4

5

6

8

9

c c c c c c c c
c 0 I 0 1 0 0 1 0
c 0 0 0 1 1 0 0 0
c 1 0 0 0 0 0 0 1
c 0 0 0 0 I 1 0 0
c 0 1 0 0 0 0 0 I
c 0 0 0 0 1 0 0 1
c 0 0 0 0 0 0 0 1
c 0 1 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
  

. 

 
 
Let T denote the merged graph of the experts 1, 3 and 5 

which is as follows: 
 
 
 
 
 
 
            = T 
 
 
 
 
 
 
 
 
 
Let MT denote the merged connection matrix of the merged 

graph T which is as follows: 
 

C1 C2 

C4 C5 

C6 C9 

C7 

C10 
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MT =  

1 2 4 5 6 7 9 10

1

2

4

5

6

7

9

10

c c c c c c c c
c 0 I 1 0 0 0 0 0
c 0 0 1 1 0 0 0 0
c 0 1 0 0 1 1 0 1
c 0 1 0 0 0 0 I 0
c 0 0 0 1 0 0 1 0
c 0 0 0 0 0 0 0 1
c 0 1 0 1 0 0 0 0
c 0 0 0 1 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
  

. 

 
 
Let U denote the merged graph of the graphs given by the 

experts 1, 4 and 5 which is as follows: 
 
 
 
 
 
 
 
              = U 
 
 
 
 
 
 
 
 
 
 Let MU denote the merged neutrosophic connection matrix 
of the merged graph U which is as follows: 
 

C2 

C5 

C1 

C4 
C8 

C9 

C3 

C10 
C7 
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MU = 

1 2 3 4 5 7 8 9 10

1

2

3

4

5

7

8

9

10

c c c c c c c c c
c 0 I 0 1 0 0 1 0 0
c 0 0 0 1 1 0 0 0 0
c 0 0 0 0 0 0 0 1 0
c 0 1 0 0 I 1 0 0 1
c 0 0 0 0 0 0 0 0 0
c 0 0 0 0 0 0 0 0 1
c 0 0 0 0 0 0 0 1 0
c 0 1 0 0 0 0 0 0 0
c 0 0 0 0 1 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

 
 
However M0 and MU are distinct one is a FCM model and 

other is a NCM model.  Let V denote the merged graph of the 
experts 2, 3 and 4 which is as follows: 

 
 
 
 
 
 

 
V 

 
 
 
 
 
 
 
 
 
The merged connection matrix MV associated with 

neutrosophic directed graph V is as follows: 
 
 

C6 

C9 

C3 

C7 

C5 C4 C2 

C1 

C8 
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MV  = 

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

c c c c c c c c c
c 0 0 0 0 0 0 0 1 0
c 0 0 0 0 0 0 0 0 0
c 1 0 0 0 0 1 0 0 1
c 0 0 0 0 I 0 0 0 0
c 0 0 0 0 0 0 0 0 I
c 0 0 0 0 I 0 I 0 1
c 0 0 1 0 0 I 0 0 0
c 0 0 0 0 0 0 0 0 1
c 0 1 0 1 0 0 1 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

 
 
Next let W denote the merged graph given by the experts 2, 

3 and 5 which is as follows: 
 
 
 
 

 
W  

 
 
 
 
 
 
 
 
 
Let MW denote the merged connection neutrosophic matrix 

of the merged graph W which is as follows: 
 

C6 

C9 

C3 

C7 

C2 

C4 

C10 

C5 
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MW = 

2 3 4 5 6 7 9 10

2

3

4

5

6

7

9

10

c c c c c c c c
c 0 0 1 1 0 0 0 0
c 0 0 0 0 1 0 0 0
c 1 0 0 I 1 1 0 1
c 0 0 0 0 1 0 I 0
c 0 0 0 0 0 I 1 0
c 0 0 1 0 I 0 0 1
c 0 0 0 1 0 1 0 0
c 0 0 0 1 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
  

. 

 
 
Next let X denote the merged graph given by the experts 3, 

4, 5 which is as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Let MX denote the merged connection matrix of the merged 

graph X which is as follows: 
 

C8 

C3 

C1 

C2 

C4 

C5 

C7 

C10 

C6 

C9 
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MX = 

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

c c c c c c c c c c
c 0 0 0 0 0 0 0 1 0 0
c 0 0 0 1 1 0 0 0 0 0
c 1 0 0 0 0 0 0 0 1 0
c 0 1 0 0 I 1 1 0 0 1
c 0 0 0 0 0 0 0 0 I 0
c 0 0 0 0 1 0 0 0 1 0
c 0 0 0 0 0 0 0 0 0 1
c 0 0 0 0 0 0 0 0 1 0
c 0 1 0 1 0 0 0 0 0 0
c 0 0 0 0 1 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

. 

 
 
 
This merged graph X gives the complete merged NCM 

model of all the 10 attributes.  So we see three experts are 
sufficient to make up for the integrated NCMs model. 

 
We now find the merged graph Y given by the experts 1, 2, 

3 and 4 which is as follows: 
 
 
 
 
 

Y  
 
 
 
 
 
 
 
 
 
 

C2 

C5 

C1 

C4 

C6 

C9 

C3 

C7 

C8 
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Let MY denote the merged connection matrix of the merged 
graph Y which is as follows: 

 
 
 

MY = 

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

c c c c c c c c c
c 0 I 0 1 0 0 0 1 0
c 0 0 0 1 1 0 0 0 0
c 1 0 0 0 0 1 0 0 1
c 0 0 0 0 I 1 0 0 0
c 0 0 0 0 0 0 0 0 0
c 0 0 0 0 1 0 I 0 1
c 0 0 1 0 0 I 0 0 0
c 0 0 0 0 0 0 0 0 I
c 0 1 0 1 I 0 1 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

 
Now we get the merged graph Z of the experts 1, 2, 3 and 5.  
 
 
 
 
 
 
 
 
 

Z 
 
 
 
 
 
 
 
 

C2 

C5 

C1 

C4 

C6 

C9 

C3 

C7 

C10 
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Let MZ be the merged connection matrix of the merged 
graph Z. 

 
 

MZ = 

1 2 3 4 5 6 7 9 10

1

2

3

4

5

6

7

9

10

c c c c c c c c c
c 0 I 0 1 0 0 0 0 0
c 0 0 0 1 1 0 0 0 0
c 0 0 0 0 0 1 0 0 0
c 0 1 0 0 I 0 1 0 1
c 0 1 0 0 0 0 0 I 0
c 0 0 0 0 1 0 I 1 0
c 0 0 1 0 0 I 0 0 1
c 0 0 0 1 0 0 1 0 0
c 0 0 0 0 1 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

 
Now we get the merged graph  of the four experts 2, 3, 4 

and 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The connection  merged matrix M of the merged graph  

is as follows.   

C6 

C9 

C3 

C7 

C2 

C4 

C5 

C8 
C10 

C1 
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The matrix is a neutrosophic matrix with all the 10 concepts 

C1, C2, …, C10. 
 

M = 

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

c c c c c c c c c c
c 0 0 0 0 0 0 0 1 0 0
c 0 0 0 1 1 0 0 0 0 0
c 1 0 0 0 0 0 1 0 0 0
c 0 1 0 0 I 1 1 0 0 1
c 0 0 0 0 0 0 0 0 I 0
c 0 0 0 0 1 0 I 0 1 0
c 0 0 1 0 0 I 0 0 0 1
c 0 0 0 0 0 0 0 0 1 0
c 0 1 1 1 0 0 1 0 0 0
c 0 0 0 0 1 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

. 

 
 
 Now we give the merged directed graph  given by 1, 3, 4 
and 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C1 C2 

C4 C5 

C6 C9 

C7 

C10 

C3 

C8 
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 Let M denote the merged connection matrix of the merged 
graph  which is as follows: 
 
 

M  = 

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

c c c c c c c c c c
c 0 I 0 1 0 0 0 1 0 0
c 0 0 0 1 1 0 0 0 0 0
c 1 0 0 0 0 0 0 0 1 0
c 0 1 0 0 I 1 1 0 0 1
c 0 1 0 0 0 0 0 0 I 0
c 0 0 0 0 1 0 0 0 1 0
c 0 0 0 0 0 0 0 0 0 1
c 0 0 0 0 0 0 0 0 1 0
c 0 0 0 1 0 0 0 0 0 0
c 0 0 0 0 1 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

. 

 
 
We see this gives the integrated merged NCMs of the 

problem. 
 
It is important to note that even without the inclusion of all 

the experts a few of the experts can contribute to the integrated 
merged NCMs.  

 
It may so happen that we may get some integrated merged 

NCMs leading to the complete problems.  They may also be 
distinct.   

 
So in this case we to overcome the problem of selecting 

which set of experts define a new NCMs model called the 
average NCMs model.   

 
We can adopt the method new average NCMs model for 

these merged NCMs which is introduced in the last chapter of 
this book. 
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 Further we have defined in chapter IV the notion of Kosko 
Hamming distance for NCMs and FCMs.  We can use this 
distance to study how far two systems vary from each other and 
if the distance / deviation is small we accept the solution.   
 

If on the other hand the deviation is large we investigate the 
cause for it.  Thus by these methods applied to the merged 
models we can analyse the problem in a sensitive and in a 
productive way which will help.  The experts draw appropriate 
conclusions.   

 
We suggest a few problems for this chapter. 

 
Problem: 
 

1. Obtain some special features enjoyed by merged 
graphs. 

 
2. Show merged FCMs are in general better than the 

combined FCMs. 
 

3. Use merged FCMs to study some special real world 
problem. 

 
4. Find the special features enjoyed by merged FCMs. 

 
5. Give a real world problem illustration by using merged 

FCMs. 
 

6. Describe with an example the merged NCMs. 
 

7. Give an illustration in the real world problem the notion 
of the linked merged FCMs. 

 
8. What are the advantages of using merged FCMs and 

linked merged FCMs? 
 

9. Study question 8 for NCMs. 
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10. Describe with an example the notion of specially 

merged FCMs (NCMs). 
 

11. Describe with an example the notion of mixed merged 
FCMs and NCMs. 

 
12. Prove these new techniques of merged FCMs (NCMs) 

make the analysis more sensitive with a better solution. 
 



 
 
 
 
 
Chapter Three 
 
 

 
 
KOSKO – HAMMING DISTANCE IN FCMS 
AND NCMS 
 
 
 
 
In this chapter authors for the first time introduce the new 
notion of Kosko - Hamming distance (K-H) distance in 
vectors related to FCMs and NCMs.  However K-H 
distance is nothing but a Hamming distance defined for a 
special type of vectors x, y  Vn which enjoy same initial 
properties.   
 

So K-H distance in general cannot be defined for any 
two arbitrary  

x, y  Vn = {(x1, …, xn) | xi  Z2 = {0, 1}, 1  i  n}, 
they are resultant state vectors related with a FCMs or a 
NCMs model.  Such study is innovative and show how far 
two experts agree or defer over an issue.   

 
Such study will help to get more information on the 

problem their by making the solution more closer to truth 
and feasibility. 
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 As said at the out set Kosko-Hamming distance is a 
distance function depending on the NCMs or FCMs.  So 
for one to define a K-H distance they basically need the 
resultants and properties of the FCMs (or NCMs).   
 

Let C = {c1, …, cn} be the n concepts / attributes 
related with the problem.  Suppose some experts work 
with the same problem using all the n attributes using a 
FCM (or NCM) model.  
 
 However the researcher is interested in comparing the 
results of the t experts and wants to know how much they 
differ over the predicted results. 
 
 To this end we denote by the on state of the node C1 
alone by X1 = (1, 0, 0, 0, …, 0) the on state of the node C2 
by X2 = (0, 1, 0, …, 0) and so on and the on state of the 
node Ci by Xi = (0, 0, …, 0, i, 0, …, 0) and finally the state 
on the node Cn by Xn = (0, 0, …, 0, 1).   
 

Let us denote the t experts by E1, E2, …, Et.  Let M1 
denote the connection matrix of the FCM (or NCM) which  
serves as the dynamical system of the first expert. 
 
 Let M2 be the connection matrix associated with the 
directed graph given by the second expert.  M2 acts as the 
dynamical system of the FCMs for the second expert and 
so on. 
 
 Thus Mi denotes the connection matrix associated with 
the directed graph given by the ith expert and Mi serves as 
the dynamical system of the FCMs for Ei the ith expert.  
Finally Mt denotes the connection matrix associated with 
the directed graph given by the tth  expert Et and Mt serves 
as the dynamical system of the FCMs.  
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Now to find Kosko Hamming distance denoted dk we 
need the following conditions to be satisfied by the two 
vectors in Z2

n  = {(a1, …, an) | ai  {0, 1}, 1  i  n} for 
which the Kosko - Hamming distance can be found. 
 
 (i) For any initial state vector A = (a1, …, an) we find 
using each of the t experts the hidden pattern by finding 
AMi,  i = 1, 2, …, t. 
 
 The resultant state vector that is the hidden pattern may 
be a fixed point or a limit cycle.  Let A A A

1 2 tY ,Y ,...,Y  be the 
hidden patterns of the initial state vector A of the t experts.  
We can define the Kosko - Hamming distance only on the 
set of vectors Y = ( A A A

1 2 tY ,Y ,...,Y ) clearly  
A
iY   {(a1, a2, …, an) | aj  {0, 1}, 1  j  n} and  

i = 1, 2, …, t. 
 
 dk( A A

r sY ,Y ) = {the Hamming distance between the 
vectors A

rY  and A
sY  in the set Y} 

 
 = dk(Er, Es) because Er is the rth expert and Es is the sth 
expert and A

rY  and A
sY  are their the resultant vectors given 

by the experts on the initial state vector A. 
 
 Now clearly (1) dk(x, y)   0 or (2) dk (x, y)  n.  
 
 If dk(Er, Es) = 0 we say both the experts Er and Es agree 
on the outcome of the initial state vector A.   
 

If dk(Er, Es) = m has a bigger value 0  m  n we say 
the two experts do not agree over the outcome of the initial 
state vector A.  So the experts have a different opinion 
hence this sort of comparison can make the study more 
sensitive and very closer to the solution or suggestions in 
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the investigation of the problem.  In the final chapter of 
this book we have given about averages of the FCMs and 
NCMs and certainly this notion will be used there. 
 
 Now we will technically describe the working of the 
problem.  Suppose we have n concepts or attributes related 
with the problem.  We have say t experts E1, E2, …, Et 
working with the problem using all the n concepts / 
attributes using either FCM or NCM.  Suppose M1, M2, 
…, Mt are the t connection matrices given by the t experts 
respectively.   
 
 Let X1 = (1, 0, 0, …, 0), X2 = (0, 1, 0, …, 0), X3 = (0, 
0, 1, …, 0)  so on Xn = (0, 0, …, 0, 1) be the initial  state 
vectors with which we work. 
 
 X1M1 is calculated and the hidden pattern of X1 is a 
fixed point or a limit cycle given by  

1
1Y  = {(a1, a2, …, an) | ai  {0, 1}, 2  i  n}. 

 
 Let the hidden pattern for X2 = {0, 1, 0, …, 0) given by 
X2M1 be denoted by  
 
 1

2Y  = {(a1, 1, a3, …, an) | ai  {0, 1}, i  2, i = 1, 3, …, n}.   
 

The hidden pattern for the initial state vector X3 = (0 0 
1 0 … 0) is as follows. 
 
 The hidden pattern X3M of the initial state vector X3 
be  

1
3Y  = {(a1, a2, 1, a4, …, an) | ai  {0, 1} i = 1, 2, 4, …, n}. 

 
 Finally for Xi = (0, 0, …, 0, i, 0, …, 0) the initial 
vector.  
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Let Xi M1 give the resultant vector that is the hidden 
pattern of Xi Mi as  

1
iY  = {(a1 a2, …, ai–1, 1, ai+1 ai+2 … an) | aj  {0, 1}; j = 

1, 2, …, i-1, i+1, …, n} and so on. 
 
 Finally for Xn = (0, 0, …, 0, 1) we get XnM1’s resultant 
state vector of Xn’s to be  

1
nY  = {(a1, …., an–1, 1) | ai  {0, 1} and 1  i  n–1}. 

 
On similar lines for each of the initial state vectors  

X1 = (1 0 0 … 0), X2 = (0 … 1 0) and so on Xn = (0, …, 1, 
0) we get using the dynamical system given by the second 
expert E2 the hidden pattern to be 2

1Y  = (1, a2, …, an),  
2
2Y = (a1, 1, a3, …, an) and so on.   

 
 2

iY  = (a1, …, ai-1, 1, ai+1, …, an), …, and 2
nY  = (a1 a2 … 

an–1, 1)  
 
 Similarly for expert 3 and so on. 
 
 For expert i we get the resultant of X1, …, Xn to be  

i
1Y  = (1, a2, …, an), i

2Y  = (a1 1, a3, …,   an) and so on.   
i
nY  = (a1, a2, …, an–1, 1) using the dynamical system Mi of 

the FCMs or NCMs. 
 
 Thus for the tth expert Et using the connection matrix 
Mt of the FCMs or NCMs we for the initial state vectors 
X1, X2, …, Xn get the resultant state vectors or hidden 
patterns to be t

1Y = (1, a2, …, an), t
2Y = (a1, 1, a3, …, an) and 

so on  t
nY = (a1, a2, …, an-1, 1). 

 
 Now we give the sample  representation of how the 
Kosko-Hamming distance is calculated this distance can 
be found provided at that time of comparison both the 
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experts work only on the same initial state vector 
otherwise the Kosko-Hamming distance cannot be found 
or it is meaningless.  So if we compare the jth expert with 
a pth expert 1  j, p  t, we denote it by dk( j p

i iY ,Y ) and find 
that value. 
 
 That value can be found for i = 1, 2, …, n.  So we can 
say for the ith initial state vector how close or how far the 
two experts j and p are in their predictions, however 
keeping in mind that the experts opinions show his 
ignorance or capabilities in tackling the problem and it 
also varies from expert to expert and problem to problem. 
 
 This is tabulated in the following form. 
 
Hidden pattern of the initial state vectors given by the 
experts and K-H distance 
 
Initial 
state 
vector 

E1 
… 

Ei 
…

Et dk(E1,E2) … dk(Et–1,  
Et) 

X1 1
1Y  … i

1Y  … t
1Y 1

1n  … t
1n  

X2 1
2Y  … i

2Y  … t
2Y 1

2n  … t
2n  

    …   …     …   
Xn 1

nY  … i
nY  … t

nY 1
nn  … t

nn  
 
 
 This table is called one initial on state vectors K–H 
distance comparison table.   
 
 Note that i

jY   gives the resultant state vector of the 
initial state vector Xj for the ith expert in the above table;  
1 i  t and 1  j  n. 
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However it is pertinent to keep on record that these 
initial vectors X1, X2, …, Xn  are by no means given any 
form of even sample representations of the resultant by the 
resultant of the initial state vector X1, …, Xn.  That is we 
want to keep on record that if X1 + X2 = (1 1 0 0 … 0) = 
X1,2 then  
 
 X1 M1 + X2M1 (X1 + X2) M1 
 
  ( 1

1Y + 1
2Y ) in general.   

 
This is true for every Xi, i = 1, 2, …, n and for every 

one of the connection matrices M1, …, Mt, so we are 
forced to work with 2n vectors  with entries from n-vectors 
in {(a1, a2, …, an) | ai  {0, 1}, 1  i  n}.   

 
Now we can work with initial state vectors 

 
   X1,2  = (1 1 0 0 … 0), 
   X1,3 = (1 0 1 0 … 0), 
   X1,4  = (1 0 0 1, 0 … 0) and 
   so on X1,n  = (1, 0, …, 0, 1). 
 
Likewise 
 
   X2,3 = (0, 1, 1, 0, …, 0), 
   X2,4 = (0, 1, 0, 1, 0, …, 0) 
and so on 
 
   X2,n = (0, 1, 0, …, 0, 1). 
  
   Xt, n = (0, …, 0, 1, 0, …, 1), 
   Xt+1, n = (0, 0, …, 0, 1, 0, …, 1) 
and so on. 
 
 Xn–1, n   = (0, 0, …, n–1, n). 
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 We also work with three on state which gives nC3 
number of such states.   
 

Four number on state of nodes gives nC4 number of 
such initial state vectors and so on. 
 
 Finally we get nCn–1 number of such state vectors. 
 
 However we see if Xi has resultant Yi and Xj has 
resultant Yj then  
 

XiM + XjM  Yi + Yj 
 
because of this only we are forced to work in a different 
way to arrive at a solution. 
 
 We will illustrate this situation by an example. 
 
Example 3.1:  Let 
 

 M = 

0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 1 1 1 0

 
 
 
    
    
 
 

    
 
 
 
  
  

 

 
be a matrix associated with a problem involving 10 
concepts c1, c2, …, c10. 
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 Let X1 = (1 0 0 0 0 0  0 0 0 0) be the given initial state 
vector where only the C1 node is in the on state and all 
other nodes are in the off state. 
 
 We find X1M = (0 0 0 0 0 1 1 –1 1) (after updating and 
thresholding we get Y1)  Y1 = (1 0 0 0 0 0 1 1 0 1)  
( denotes the vector has been updated and thresholded). 
 
 We find Y1M = (0 0 0 0 0 0 2 3 0 3)  Y2 = (1 0 0 0 0 
0 1 1 0 1) = Y1    … I 
 
 Thus the hidden pattern is a fixed point. 
 
 Next let us take X2 = (0 1 0 0 0 0 0 0 0 0) we see only 
the node C2 is in the on state and all other nodes are in the 
off state.  We find the resultant of the state vector X2 on 
the dynamical system M. 
 
 X2 M = (0 0 0 0 0 0 1 1 1 0) 
    (0 1 0 0 0 0 1 1 1 0) = T1 (say) 
 
 T2M  (0 0 0 0 0 0 3 2 3 0)  (0 1 0 0 0 0 1 1 1 0)  
  = T2 (= T1)    … II 
 
 
 Using equations I and II we get 
 X1 M + X2M = Y1 + T1  
 = (1 0 0 0 0 0 1 1 0 1) + (0 1 0 0 0 0 1 1 1 0) 
 = (1 1 0 0 0 0 0 0 1 1)       III 
 
 Now consider X1 + X2 = (1 0 0 0 0 0 0 0 0 0) + (0 1 0 0 
0 0 0 0 0 0 0) 
 = (1 1 0 0 0 0 0 0 0 0). 
 
 We find the effect of X1 + X2 on the dynamical system 
M. 
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 (X1 + X2) M  = (0 0 0 0 0 0 2 2 0 1)  
      (1 1 0 0 0 0 1 1 0 1) = S1 (say) 
 
 S1M = (0 0 0 0 0 0 4 3 0 3)  (1 1 0 0 0 0 1 1 0 1) 
 = S2 (= S1)          IV 
 
 Hence this is also a fixed point. 
 

However III and IV are distinct so in general while 
working with FCM or NCM we see for the dynamical 
system M: (X1 + X2) M  X1M + X2M. 
 
 This forces us to find the Kosko-Hamming distance for 
every 2n elements in the set  
A = {(a1, …, an) | ai  {0, 1}, 1  i  n}. 
 
 Hence we have to find dk for two vectors in A provided 
they are resultant of the same basic initial state vector used 
by both experts but only the dynamical system used by 
them viz the connection matrices used by the concerned 
two experts are different.  
 
 Further we cannot as in case of vector spaces think if 
we work for the state vectors which forms a basis set we 
will get the resultant for other vectors.  This is clearly 
proved in the example.   
 

So it is not very difficult to write a program to find 
using the matrix which serves as the dynamical system for 
the FCM (or NCM) and find the appropriate Kosko-
Hamming distance of the resultant state vectors which are 
the hidden patterns of the state vectors. 
 
 So for the Kosko-Hamming distance function we in the 
first place should have two distinct dynamical systems 
given by two different experts working on the same 
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problem with same number of nodes.  Secondly for dk to 
be defined at that time both experts should have worked 
only with the same initial state vector.  
  
 Only under these conditions we will be in a position to 
define dk and compare them. 
 
 We will illustrate the situation by an example or two. 
 
Example 3.2:  Let E1 and E2 be any two experts working 
on the same problem with same number of nodes.  Let 
them work with seven nodes c1, c2, …, c7.   
 

Let G1 be the directed graph given by the expert E1. 
 
 
 
G1 =  
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 Let M1 be the connection matrix associated with the 
graph G1 which is as follows: 
 

C6 

C1 

C5 

C4 

C7 
C3 

C2 

1 

–1 
1 

1 
  1 
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M1 = 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

c c c c c c c
c 0 0 0 1 1 1 1
c 0 0 0 0 0 0 0
c 1 0 0 0 0 0 0
c 0 0 0 0 0 0 0
c 1 0 0 0 0 0 0
c 0 0 0 0 0 0 0
c 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
  

. 

 
 
 Let G2 be the directed graph given by the second 
expert E2 using the same set of concepts C1, C2, …, C7. 
 
 
G2 = 
 
  
  
 
  
 
 

 
 
 
 
 
 
 
 
 Let M2 be the connection matrix associated with the 
graph G2 which is as follows: 
 

C4 

C1 

C6 

C3 

C5 C7 

C2 
1 

1 

1 

–1 

–1 

–1 



Kosko Hamming distance in FCMs and NCMs  139 
 
 
 
 
 
 

M2 = 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

c c c c c c c
c 0 1 1 1 0 0 1
c 0 0 0 0 0 0 0
c 1 0 0 0 0 0 0
c 1 0 0 0 0 1 0
c 0 0 0 0 0 0 0
c 0 0 0 1 0 0 1
c 1 0 0 0 0 1 0

  
 
 
 
 
 
 
 

 
   

. 

 
 
 Now using these two matrices M1 and M2 of the FCM 
we work for the Kosko-Hamming distance between them. 
 
 Let X1 = (1 0 0 0 0 0 0) be the initial state vector. To 
find the effect of X1 on the dynamical system M1 and M2 
respectively. 
 
 X1 M1 = (0 0 0 1 1 1 –1)  
    (1 0 0 1 1 1 0) = Y1 
 
 Y1 M1 = (2 0 0 1 1 1 –1)  
      (1 0 0 1 1 1 0) = Y2 (= Y1). 
 
 X1 M2 = (0 1 –1 1 0 0 –1)  (1 1 0 1 0 0 0) = Z1 
 
 Z1 M2 = (1 1 –1 1 0 1 –1)    (1 1 0 1 0 1 0) = Z2 
 
 Z2M2  (1 1 0 1 0 1 0) = Z3 (= Z2). 
 
 X1M1 gives the hidden pattern as (1 0 0 1 1 1 0) and 
X1M2 gives the hidden pattern as (1 1 0 1 0 1 0).   
 

We see dk((1 0 0 1 1 1 0) (1 1 0 1 0 1 0)) = 2. 
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 So from the Kosko-Hamming distance we see for the 
state vector X1 = (1 0 0 0 0 0 0) both the experts do agree 
or approximately close in their predictions.   
 

Now let us consider the on state of the vector S1 = (0 0 
0 1 0 0 0). 
 
 To find the effect of S1 on M1 and M2. 
 
 S1M1 = (1 0 0 0 0 0 0)  (1 0 0 1 0 0 0) = (P1 say) 
 P1M1 = (1 0 0 1 1 1 –1)  (1 0 0 1 1 1 0) = (P2 say) 

P2M1 = (2 0 0 1 1 1 0)  (1 0 0 1 1 1 0) = P3 (= P2). 
 
S1M2 = (1 0 0 0 0 1 0)  (1 0 0 1 0 1 0) = R1  
R1M2 = (1 1 –1 2 0 1 –1)  (1 1 0 1 0 1 0) = R2  
R2M2 = (1 1 –1 2 0 1 –2)  (1 1 0 1 0 1 0) = R3 (= P2). 
 
We find dk(E1, E2) 
= dk((1 0 0 1 1 1 0), (1 1 0 1 0 1 0)) 
= 2. 
 
Now we will find the Kosko - Hamming distance 

between the two experts opinion for the state vector  
S1 = (1 0 0 1 0 0 0).  We find both S1M1 and S1M2 in the 
following. 

 
Consider  
S1M1 = (1 0 0 1 1 1 –1)  (1 0 0 1 1 1 0) = T1  
T1M1 = (1 0 0 1 1 1 0) = T2 (=T1)  … I 
 
S1M2 = (1 1 –1 1 0 1 –1)  (1 1 0 1 0 1 0) = P1 (say) 
 
P1M2 = (1 1 –1 1 0 1 –1)  (1 1 0 1 0 1 0) = P2  
 
Now dk ((1 0 0 1 1 1 0), (1 1 0 1 0 1 0))  = 2. 
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We see the effect or resultant of the initial state vectors 
(1 0 0 0 0 0 0), (0 0 0 1 0 0 0) and (1 0 0 1 0 0 0) using M1.  
The hidden pattern of all the three vectors are (1 0 0 1 1 1 
0), (1 0 0 1 1 1 0) and (1 0 0 1 1 1 0) respectively.  That is 
the hidden pattern of all the three initial state vectors are 
the same in case of the dynamical system M1 given by the 
first expert.   

 
The hidden pattern associated with the initial state 

vector (1 0 0 0 0 0 0), (0 0 0 1 0 0 0) and (1 0 0 1 0 0 0) 
using the M2 are (1 1 0 1 0 1 0), (1 1 0 1 0 1 0), (1 1 0 1 0 
1 0) respectively. In case of the matrix M2 or the second 
expert E2 also we see the hidden patterns of the three 
vectors are the same. 

 
Consider 
A1 = (0 0 0 0 0 1 0) to be the initial state vector for 

which we wish to find the hidden pattern using M1. 
 
A1M1 = (0 0 0 0 0 0 0)  (0 0 0 0 0 1 0) a fixed point 

with no change. 
 

Now we find A1M2 = (0 0 0 1 0 0 –1)  (0 0 0 1 0 1 0) = 
A2 

 
A2M2 = (1 0 0 1 0 1 0)  (1 0 0 1 0 1 0) = A3 
 
A3M2 = (1 1 –1 2 0 1 –1)  (1 1 0 1 0 1 0) = A4 
 
A4M2 = (1 1 –1 1 0 1 –1)  (1 1 0 1 0 1 0) = A4 
 
We see  
dk(E1, E2) = dk((0 0 0 0 0 1 0), (1 1 0 1 0 1 0) = 3. 
 
Now we find the effect of B1 = (0 0 0 0 0 0 1) on the 

dynamical systems M1 and M2. 
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B1M1 = (–1 0 0 0 0 0 0)   (0 0 0 0 0 0 1) no change. 
 
Now B1M2 = (–1 0 0 0 0 –1 0)  (0 0 0 0 0 0 1) no 

change. Thus dk(E1, E2) = dk((0 0 0 0 0 0 1), (0 0 0 0 0 0 
1)) = 0. 

 
That is the distance between these two resultant 

vectors is zero.  That is for the initial state vector B1 we 
see both the experts agree upon the effect that is why the 
Kosko-Hamming distance is zero. 

 
Thus Kosko-Hamming distance measures how far two 

experts agree on the effect of a initial state vector or how 
much they disagree upon it.   

 
Such type of study is new and for the first time authors 

study this as it would throw light on the deviations from 
one expert to another while analyzing the problem using 
FCMs or NCMs. 

 
Let us now study the same situation for NCMs for the 

same problem by the experts E3 and E4. Now let G3 be the 
neutrosophic directed graph given by the expert E3. 

 
 
 
 
 
 
               = G3  
 
 
 
 

 

C3 

C1 

C4 

C6 

C7 C5 

C2 

–1 

–1 
–1 

–1 



Kosko Hamming distance in FCMs and NCMs  143 
 
 
 
 
 
 

 Let M3 be the neutrosophic connection matrix 
associated with the neutrosophic directed graph which is 
as follows: 
 

M3 = 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

c c c c c c c
c 0 I 1 1 1 0 0
c I 0 I 0 0 0 0
c 1 I 0 0 I 0 0
c 1 0 0 0 0 0 0
c 1 0 0 0 0 0 0
c 0 0 0 0 I 0 1
c 1 0 0 0 0 0 0

 
 
 
 
 
 
 
 

 
  

. 

 
 
 Let G4 be the directed neutrosophic graph given by the 
forth expert on the same problem. 
 
 
G4 = 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Let M4 denote the neutrosophic connection matrix 
associated with the neutrosophic directed graph G4.  

–1 

–1 

–1 

–1 
–1 

C4 

C1 

C6 C3 
C5 C7 

C2 
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M4 = 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

c c c c c c c
c 0 1 0 1 I 0 1
c 0 0 0 0 I 0 I
c 1 0 0 0 0 0 0
c 1 0 0 0 0 0 0
c I I 0 0 0 0 0
c 0 0 0 1 0 0 1
c 1 I 0 0 0 1 0

 
 
 
 
 
 
 
 

 
   

. 

 
 Now we will find the on state of the node C1 alone.  
That is let X1 = (1 0 0 0 0 0 0).  To find the effect of X1 on 
M3 and M4. 
 
 X1M3  = (0 I –1 1 1 0 0)  (1 I0 1 1 0 0) = Y1 (say) 
 

Y1M3  = (0 I –1 1 1 0 0)  (1 I0 1 1 0 0) = Y1 (say) 
 

Y2M3  = (1 I –1 +I 1 1+I 0 0)  (1 I I 1 I 0 0) = Y3 
(say) 

 
Y3M3  = (1 I I 1 I 0 0)  Y4 (=Y3 say). 
 
Thus the hidden pattern is a fixed point. 
 
Now consider  
X1M4 = (0 1 0 1 I 0 –1)  ( 1 1 0 1 I 0 0) = Z1 say 
 
Z1M4 = (I, 1+I, 0, 1, I+I, 0, –1 + I)  (1 I 0 1 I 0 I) = 

Z2 (say) 
 
Z2M4 = (1 I 0 1 I 0 I) = Z3 (=Z2) say is a fixed point.   
 
Now we have not yet defined Kosko-Hamming 

distance or for that matter Hamming distance in case of 
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neutrosophic n-tuples of the form (a1, a2, …, an) where  
ai  {Z2  I, Z  I or R  I and so on} 1  i  n.   

 
We define this now in the following. 
 
Let x = (x1, …, xn) and y = (y1, …, yn)  {Z2  I, (or 

Z  I or Q  I or R  I} we define the Hamming 
distance d(x, y) = d ((x1, …, xn), (y1, …, yn)) = t where t a 
positive integer denotes the  number of places in which x 
differs from y, 0  t  n.   

 
We will illustrate this situation. 
 
Let x = (I, 0, 1, I+1, I, 1, 0) and y = (1, 0, I, 1 + I, I, I, 

0) then the Hamming distance d(x, y) = 3.  This is the way 
Hamming distance is defined.   

 
Let x = (1, 1, 1, 1, I, I, I, 0, 1 + I) and y = (2, 3, 4, 1, I, 

1+I, 3+5I, 7I, 8). 
 
Now d(x, y) = 7.  Thus the Hamming distance between 

x and y is 7 that is x differs from y in seven places.   
 
Now to define Kosko-Hamming distance we need two 

state vectors associated with two NCMs working on same 
initial state vector over the same problem using the same 
number of concepts.  This is a basic need for one to define 
the Kosko-Hamming distance for two resultant vectors.  
Such study helps one to compare how far two experts 
agree or disagree over the same nodes influence on their 
respective dynamical systems.  Thus in this case from the 
example we see  

dk(E3, E4) = dk((1, I, I, 1, I, 0, 0), (1, I, 0, 1, I, 0, I)) = 2, 
which shows they agree on majority of the nodes and 
disagree only on the two nodes.  
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Nothing prevents us from comparing the experts Ei and 

Ej where one of them work on the NCMs and other work 
using FCMs but both work on the same problem with 
same set of nodes. 

 
We now find for the initial state vector X3 = (0 0 1 0 0 

0 0) the effect of X3 on M3 and M4 respectively. 
 
X3M3 = (–1, I, 0, 0, I, 0, 0)  (0, I, 1, 0, I, 0, 0) = Y1 

(say) 
 
Y1M3 = (2I–1, I, I, 0, I, 0, 0)  (I, I, 1, 0, I, 0, 0) = Y2 

(say) 
 
Y2M3 = (2I–1, 2I, 0, I, I, 0, 0)  (I, I, 1, I, I, 0, 0) = Y3 

(say) 
 
Y3M3 = (I, 2I, 0, I, I, 0, 0)  (I, I, 1, I, I, 0, 0) = Y4 

(=Y3) (say); clearly the hidden pattern is a fixed point. 
 
Now we find  
X3M4 = (–1, 0, 1, 0, 0, 0, 0)  (0 0 1 0 0 0 0) = X3  
 
So as far as X3 on the dynamical system M3 is 

concerned we see it is fixed point. 
 
Now we find  
 
dk (E3, E4) 
 
= dk((I, I, 1, I, I, 0, 0), (0, 0, 1, 0, 0, 0, 0)) = 4. 
 
Thus we see both the experts have different opinion as 

far as the node C3 is concerned. 
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Consider the on state of the node X7 = (0 0 0 0 0 0 1) 

to find the effect of X7 of the dynamical systems M3 and 
M4. 
 

X1M3 = (–1 0 0 0 0 0 1)  (0 0 0 0 0 0 1) 
is a fixed point. 
 
X7M4  =  (–1 I 0 0 0 –1 0)    (0 I 0 0 0 0 1)  = P1(say) 
 
P1M4  =  (–1 I 0 0 I –1 I)   (0 I 0 0 I 0 I)  = P2 say 

 
P2M4  =  (–1+I, 2I, 0, 0, I, –I, I)  

   (I, I, 0, 0, I, 0, 1)    
=  P3 (say) 
 

P3M4  =  (I–1, 3I, 0, 0, I, 0, 0)  
  (I, I, 0, 0, I, 0, 1)    
=   P4 (say) = P3. 
 

Thus  
 
dk(E3, E4)  

 
= dk((0, 0, 0, 0, 0, 0,1), (I, I, 0, 0, I, 0, 1)) 
= 3. 
 

This is the way comparisons are performed between 
M3 and M4. 

 
We will tabulate in a table of the four experts two of 

them working using FCMs and two using NCMs on the  
same problem. 
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Ci E1 E2 E3 
(1000000) (1001110) (1101010) (1II1100) 
(0100000) (0100000) (0100000) ((I1III00) or 

(I10II00)) 
(0010000) (0010000) (0010000) (II10I00) 
(0001000) (1001110) (1101010) (1I01100) 
(0000100) (1001110) (0000100) (1000100) 
(0000010) (1001110) (1101010) (1I01I10) 
(0000001) (0000001) (0000001) (0000001) 
(1100000) (1101110) (1101010) (11I1100) 
(1000100) (1001110) (1101010) (1I01100) 
(0110010) (1111110) (1101010) (I11II00) 
(1111000) (1111110) (1111010) (1111I00) 

 
 
 

 
E4 dk(E1, E2) dk (E1, E3) dk (E1, E4) 
(1I0II0I) 2 3 5 
(I10II0I) 0 4 or 3 4 
(0010000) 0 3 0 
(I101I0I) 2 1 4 
(II0010I) 3 2 3 
(II0II10) 2 2 4 
(0I00I01) 0 0 2 
(1101I0I) 1 2 3 
(1I0110I) 2 2 3 
(1111I1I) 2 3 2 
(1111I0I) 1 2 3 
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dk(E2, E3) dk(E2, E4) dk(E3, E4) 
4 3 4 

4 or 3 4 2 
3 0 3 
3 4 4 
1 3 3 
2 4 2 
0 2 2 
3 3 3 
3 4 1 
4 3 4 
2 3 1 

 
 However one has to work with 7C1 + 7C2 + 7C3 + … + 
7C5 + 7C6 number of possible state vectors and find the 
relative 6 columns to compare them. 
 
 For the 11 initial vectors state vectors tabulated above 
we see experts one and two agree very rarely for the 
maximum Kosko-Hamming distance in 3.  So also experts 
1 and 3 agree in this manner.  However experts E1 and E4 
does not agree on the initial state vector (1 0 0 0 0 0 0). 
 
 Expert E2 and E3, E2 and E4, and E3 and E4 disagree on 
certain initial state vectors as the Kosko-Hamming 
distance is four.  
 
 So we can study and analyse these in a special way to 
arrive at a result.  It is pertinent to define a norm for 
acceptance or rejection or reanalysis of a node.  This is 
carried out in the following way. 
 
 Suppose (c1, …, cn) are the n concepts under study and 
E1, E2, …, Et as the t experts working with it.   
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If dk(Ei, Ej) < n
2    we do not re analyse.  

 
 If dk(Ei, Ej)  n

2    we analyse them and see why the 
underlying node is giving a result of this form 1  i, j  t.  
A special mention about that node will be made in the 
study and conclusions of the problem.   
 

Now this technique can be made for merged FCMs and 
merged NCMs also.  For we take each experts opinion and 
when we have a common node we study the Kosko-
Hamming distance between them. 
 
 Incase we get several integrated complete FCMs and 
NCMs we study the Kosko-Hamming distance between 
them.   
 

Such study is illustrated here from the examples given 
in chapter II of this book.  Consider the merged graphs of 
the four experts working with the concepts {C1, C2, …, 
C12}. 
 
 We only use the graphs of the I, II, III and IV of the 
four experts.  
 
 
 
 
 
              I 
 
 
 
 
 
 

C2 C1 

C10 

C7 C11 
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Let MI be the directed graph given by the first expert.   
 

The connection matrix associated with the graph I is as 
follows: 
 

MI =

1 2 7 10 11

1

2

7

10

11

c c c c c
c 0 1 0 0 0
c 0 0 1 0 1
c 0 0 0 1 0
c 1 0 0 0 0
c 0 0 1 0 0

 
 
 
 
 
 
  

. 

 
 

Let the graph given by the second expert be denoted by 
II which is as follows: 

 
 
 
 
 
 
                II 
 
 
 
 
 
 
 
Using the second experts graph II we have the 

following connection matrix of the second expert. 
 
 

C5 C4 

C12 C10 

C7 
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MII = 

4 5 7 10 12

4

5

7

10

12

c c c c c
c 0 0 0 1 0
c 1 0 1 0 0
c 0 0 0 1 0
c 0 0 0 0 0
c 0 1 0 1 0

 
 
 
 
 
 
  

. 

 
 
 Now we work with the on state of the node C7 alone 
using MI in the initial state vector and all other nodes are 
in the off state. 
 
 Consider X7 = (00100) 
 
 X7MI  =  (00010)     (00110) = Y1 (say) 
 Y1MI  =  (10010)     (10110) = Y2 (say) 
 Y2MI  =  (11010)     (11110) = Y3 (say) 
 Y3MI  =  (11111)  =   Y4 (say) 
 Y4MI    (11111)  = P1. 
 
 The hidden pattern is a fixed point given by P1. 
 
 Now we find  
 X7MII  =  (00010)    (00110) = Y1 (say) 
 Y1MII  =  (00010)  =  Y2 (say) 
  (00110) = Y3 (=Y1) = Q1. 
 
 Hence the fixed point is the hidden pattern given by 
Q1.  Obvious we cannot find the Kosko-Hamming between 
the  two experts. 
 
 So we expand the state vectors to the final form.  
Authors by the term expand mean the missing nodes in all 
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the 12 nodes will be put with zeros as the value. Now P1 is 
expanded as c

1P  follows. 
 
 P1 = (c1, c2, c7, c10, c11) 
 = (c1, c2, 0, 0, 0, 0, c7 , 0, 0, c10 , c11 , 0) 
 c

1P = (1 1 0 0 0 0 1 0 0 1 1 0).  
 
 Now Q1 is also expanded as c

1Q  which is as follows:  
Q1 = (c4, c5, c7. c10, c12) 
 

c
1Q  =  (000c4 c5 0 c7 0 0 c10 0 c12) 

 = (0 0 0 0 0 0 1 0 0 1 0 0) 
 dk( c

1P , c
1Q ) = 3. 

 
This is the way we find in case of several experts for 

which we wish to work with merged FCM or NCMs find 
the Kosko-Hamming distance for expanded resultant 
vectors. 

 
It is pertinent to keep on record in this case not all the 

nodes are comparable we may have one or two which 
happens to be common are comparable.  

 
Let us consider the experts II and IV the connection 

matrices given by them are 
 

MII = 

4 5 7 10 12

4

5

7

10

12

c c c c c
c 0 0 0 1 0
c 1 0 1 0 0
c 0 0 0 1 0
c 0 0 0 0 0
c 0 1 0 1 0

 
 
 
 
 
 
  

 

 
and  
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MIV = 

3 6 8 9 10 12

3

6

8

9

10

12

c c c c c c
c 0 1 0 1 0 0
c 0 0 0 0 1 1
c 0 0 0 1 0 0
c 0 0 0 0 0 1
c 0 1 1 0 0 0
c 0 0 0 0 0 0

 
 
 
 
 
 
 
 
  

. 

 
The nodes c10 and c12 are common for both the experts 

II and IV.  So we can find the resultant for the initial state 
vectors. 

 
A1 = (00010), A2 = (00001) and A3 = (00011) in case 

of expert II and B1 = (000010), B2 = (000001) and  
B2 = (000011) in case of expert IV we calculate the 
resultant in the following. 

 
A1MII  (00010) 
A2MII = (01010)  (01011) = X1 say 
X1MII =(11110)  (11111) = X2 say 
X2M1 = (11111) = X3 (=X2). 
 
Now 
A3MII = (01010)   (01011) = Y1 say 
Y1MII = (11110)  (11111) = Y2 (say) 
Y2MII  3 (=Y2). 
 
Thus we see in case of both A2 and A3 the hidden 

pattern of the dynamical system M2 is a fixed point infact 
the same resultant (11111). 

 
Now we find the hidden B1 = (000010) using MIV 

which is as follows: 
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 B1MIV = (011000)   (011010) = Z1 
 Z1MIV = (011011) = Z2 
 Z2MIV  (011111) = Z3 (=Z2). 
Thus the hidden pattern is a fixed point. 
 
Now we expand the resultant vectors of the dynamical 

system MII and MIV. 
 

e
2X  = (000110100101) 
e
2Y  = (000110100101) 
e
2Z  = (000001011101) 

 
dk( e

2X , e
2Z ) = ((000110100101) (000001011101)) = 6. 

 
The extended Kosko-Hamming distance is 6. 
Now let B2 = (000001) 
B2MIV  (000001) = T1. 
 

   e
1T  = (000000000001) is the extended state vector of T1 
 
Now dk( e

2Y , e
1T ) 

= ((000110100101) (000000000001)) 
= 4.  Thus the extended Kosko-Hamming distance is 4. 
 
Now we proceed on to use the Kosko-Hamming 

distance for two merged FCMs where the merging of 
different set of experts is carried out. 

 
Consider the two dynamical system of the merged 

FCMs given by the merged connection matrices MD and 
MK given in chapter two of this book. 

 
Let {C1, C2, …, C10} be the 10 attributes we find the  

10 attributes we find the Kosko-Hamming distance using a 
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few of the initial state vectors.  Let dk (MD, Mk) denote the 
Kosko-Hamming distance is not on two experts but on 
their merged FCMs. 

 
We tabulate as follows: 
 

Ci Hidden 
patterns given 
by MK 

Hidden pattern 
given by MD 

dk(MD, 
MK) 

(100…0) (1110I1III0) (1110III000) 3 
(010…0) (0110I1III0) (011IIIIIII) 3 
(0010…0) (0010IIIIII) (0110IIIIII) 1 
(00010…0) (0II1IIIIII) (00010IIIII) 3 
(000010…0) (0110111111) (0000100000) 7 
(0000010…0) (0000010000) (00000110I0) 2 
(0000001000) (0110I11111) (0000011010) 5 
(0000000100) (0110I11111) (000I0111I0) 5 
(0000000010) (0110I1II1I) (000001010) 6 
(0000000001) (0110I1I0I1) (000I000I11) 8 
(1100…0) (1110I1III0) (1110III0I0) 2 
(10010…0) (1111I01I111) (1101IIII1I) 4 
(1000110000) (111111I111) (1100111I0) 5 
(0100000001) (0110I1I1I1) (011I I I I I I1) 3 
(0000110000) (00I011I1I1) (000011I010) 4 
(0000001001) (0110I11111) (000I011I11) 6 
(0000000110) (0110I11111) (000I011111) 4 
(0000000101) (011001I111) (000I01I1I1) 4 
(1101101100) (1110I1I111) (1111111111) 3 
(0001110001) (0110I1II11) (000I011111) 7 
(0000000111) (0110I1I111) (000I011111) 5 
(0000011110) (0110I11111) (000I011111) 3 
(0011101110) (0111111111) (0111111111) 0 

 
It is pertinent to mention that the about example is in 

no way connected with any of the problems.  It is just 
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constructed for the example sake.  Only this is an illustrate 
example. 

 
Now one more quality of this notion is it can be used 

in finding the most influential / vital node.  So the dk(ci, cj) 
can also predict the influential node describe in chapter III 
of this book. 

 
Now finally we can also use this concept in New 

Average FCMs and New Average NCMs which will be 
developed in chapter V of this book.  Thus this notion will  
also be used in finding the Kosko-Hamming distance 
between every expert and the average FCMs value given 
by all the experts.   

 
If the Kosko-Hamming distance is small or negligible 

we need not find the hidden pattern for each of the experts 
but only FCM or New Average NCM which will save both 
time and economy.   

 
Thus we will be using this concept in the last chapter 

of this book.   
 
We suggest the few problems. 

 
Problems: 
 

1. Find some special features enjoyed by Kosko-
Hamming distance on NCMs and FCMs. 

 
2. Construct a real world problem model using 

FCMs with 10 experts, and use the concept of 
Kosko-Hamming distance on the experts 
opinion. 
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3. Study the same model using NCMs  with same 
number of experts mentioned in problem 2. 

 
4. Distinguish between Hamming distance and 

Kosko-Hamming distance. 
 

5. Prove Kosko-Hamming distance aids in finding 
the influential nodes. 

 
6. Illustrate problem 5 by some examples. 

 
7. Construct a real world problem model and 

obtain the Kosko-Hamming distance table. 
 

8. Develop any other property related with 
Hamming-Kosko distance. 

 
9. Use Kosko-Hamming distance to study the 

merged FCMs model. 
 
10. Use Kosko-Hamming distance to study the 

mixed merged FCMs and NCMs models. 
 

11. Obtain some FCMs and NCMs models and use 
Kosko-Hamming distance to study a few 
properties associated with it. 

 
12. Prove some interesting results on Kosko-

Hamming distance for extended (expanded) 
hidden patterns. 

 
13. Study the problem 12 on a real world model. 

 
14. Using Kosko-Hamming distance predict a 

problem on two experts E1 and E2 who work 
with FCM and NCMs respectively. 



 
 
 
 
 
Chapter Four 
 
 

 
 
NEW AVERAGE FCMS AND NEW 
AVERAGE NCMS 
 
 
 
 
In this chapter authors for the first time introduce two 
types of New Average FCMs and NCMs, one is a New 
Simple Average FCMs (NSAFCMs) and another is New 
Average FCMs.  The analogue for NCMs is also carried 
out in this book.  We make some simple assumptions 
before we define the new average FCMs and new average 
NCMs.   
 

We redefine or rename the concepts in such a way that 
all these FCMs or NCMs take values from the set {0, 1} or 
{0, 1, I} respectively.  Only such study will nullify the 
draw back of canceling of two opinions of the two expert 
if one is –1 and other is +1.  So this is over come and we 
use this concept of new average FCMs and NCMs only 
under this basic assumption.   

 
We now describe define and develop first the notion of 

Average Simple FCMs.   



160 New Techniques to Analyse the Prediction of Fuzzy Models 
 
 
 
 
 
 
 
 
 

Let us suppose n experts work on a problem with the 
same set of attributes c1, c2, …, ct.   

 
All the n experts choose to work with FCMs using 

only these t attributes. 
 

 Let M1, M2, …, Mn be the n connection matrices where  

M = 
n

i
i 1

1 M
n 
  given by the n-experts who use only 0 or 1 as 

edge weights.  
 
 

aij = 
ij

ij

n1 if a x x
2
n0 if a x x
2

       


       

 

 
 
 We see M = (aij); aij  {0, 1}; 1  i, j  t. 
 
 We call M the new average dynamical system of the 
new average simple FCM as the entries are 0 or 1.   
 

This FCM associated with the connection matrix M is 
defined as the New Average Simple FCMs (NASFCMs). 
 
 Now instead of FCMs all the m experts work on the 
problem using NCMs with values from the set {0, 1, I} 
using the same t attributes {c1, c2, …, ct} and if N1, N2, …, 
Nm are the neutrosophic matrices then we find 
 
 

     N = 
m

i
i 1

1 N
m 
  = (aij) 
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aij = 

ij

ij

ij

ij

m1 if a x yIand x with y x
2

mI if a x yIand y with x y
2
m m0 if a x yIand x with y
2 2

m ma bI if a x yIand x and y
2 2

        
         


              


               

 

  
 
  

Now N = (aij) is called the New Simple Average 
dynamical system of the new simple average neutrosophic 
matrices N1, N2, …, Nm. 
 
  

Now we can also use the mixed new average simple 
FCM and NCM whose dynamical system is defined as 
follows: 
 
 
 

Let T = (N M)
2
  

   
 

          = ij ijn m
2
 

 
 

 

 
 where  
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tij =  

ij ij

ij ij

ij ij

n m
1 if 0.5

2
n m

0 if 0.5
2

n m
I if 0.5I (neutrosophicpart)

2
1 I if both neutrosophic part and realpart is 0.5
(1 i, j t)














 

  




 

 
 Now T has the values from the set {0, 1, I} so T is 
associated with the New Average simple mixed FCMs and 
NCMs. 
 
 We will first illustrate this by an example before we 
proceed onto define New Average FCMs, New Average 
NCMs and New average mixed FCMs and NCMs.   
 

However we keep on record, this example is just an 
illustration and is not a resultant of working with any real 
world problem. 
 
Example 4.1:  Let us consider some 6 attributes  
{c1, c2, c3, c4, c5, c6} related to one problem.  Four experts 
agree to work with the problem using FCMs.   
 

All of them agree to work on these 6 attributes using 
the weights of the graphs to be either 0 or 1 only.   

 
Let G1 be the directed graph given by the first expert 

on the problem. 
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 G1 =  
 
 
 
 
 
 
 
 
 
 
 
 Let M1 be the connection matrix associated with the 
direct graph G1 which is as follows: 
 
 

M1 = 

1 2 3 4 5 6

1

2

3

4

5

6

c c c c c c
c 0 0 0 0 0 1
c 1 0 1 1 0 0
c 0 0 0 0 0 0
c 0 0 0 0 1 0
c 0 1 0 0 0 1
c 0 0 0 0 0 0

 
 
 
 
 
 
 
 
  

. 

 
 
 Let G2 be the directed graph given by the second 
expert using the nodes c1, c2, …, c6.  
 

C2 C3 C1 

C5 

C6 C4 
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 G2 =  
 
 
 
 
 
 
 
 
 
 
 The connection matrix of the graph G2 be M2 which is 
as follows: 

M2 = 

1 2 3 4 5 6

1

2

3

4

5

6

c c c c c c
c 0 0 1 0 0 0
c 0 0 0 1 0 0
c 1 1 0 0 0 0
c 0 0 0 0 1 1
c 0 0 0 1 0 0
c 0 0 0 0 1 0

 
 
 
 
 
 
 
 
  

. 

 
 Let G3 be the directed graph given by the third expert 
which is as follows: 
 
 
 G3 =  
 
 
 
 
 
 
 
 

C3 C1 

C4 

C6 

C2 C5 

C2 C1 

C4 

C5 

C3 C6 
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 Let M3 be the connection matrix associated with the 
graph G3 which is as follows: 
 
 

M3 = 

1 2 3 4 5 6

1

2

3

4

5

6

c c c c c c
c 0 1 0 0 0 0
c 0 0 1 0 0 0
c 0 0 0 1 0 0
c 0 0 0 0 1 0
c 0 0 0 1 0 0
c 1 0 0 1 1 0

 
 
 
 
 
 
 
 
  

. 

 
 
 Let G4 be the directed graph 
 
 
 
 G4 =  
 
 
 
 
 
 
 
 
 
 
 
 Let M4 be the connection matrix related with G4 which 
is as follows: 
 
 

C2 C1 

C4 

C6 

C3 C5 
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M4 = 

1 2 3 4 5 6

1

2

3

4

5

6

c c c c c c
c 0 0 0 0 0 1
c 0 0 0 1 0 0
c 1 0 0 1 0 0
c 0 1 0 0 0 0
c 0 0 0 1 0 1
c 0 0 0 0 1 0

 
 
 
 
 
 
 
 
  

. 

 
 
 Now we find the average of the FCMs which is 
defined as the new simple defined as the New Simple 
Average FCMs (NSAFCMs) by finding  
 

1
4

(M1 + M2 + M3 + M4) 

 
  

= 

0 1 1 0 0 2
1 0 2 3 0 0
2 1 0 2 0 01
0 1 0 0 3 14
0 0 0 3 0 2
1 0 0 1 3 0

 
 
 
 
 
 
 
 
  

 

 
 

 = 

0 0.25 0.25 0 0 0.5
0.25 0 0.5 0.75 0 0
0.5 0.25 0 0.5 0 0
0 0.25 0 0 0.75 0.25
0 0 0 0.75 0 0.5

0.25 0 0 0.25 0.75 0

 
 
 
 
 
 
 
 
  

 = (mij). 

 



New Average FCMs and New Average NCMs  167 
 
 
 
 
 
 
 

 We see if mij  0.25 put 1  
 

if mij < 0.25 put 0.  
 

 We see M   = 

1 2 3 4 5 6

1

2

3

4

5

6

c c c c c c
c 0 1 1 0 0 1
c 1 0 1 1 0 0
c 1 1 0 1 0 0
c 0 1 0 0 1 1
c 0 0 0 1 0 1
c 1 0 0 1 1 0

 
 
 
 
 
 
 
 
  

. 

 
 M is defined as the new average simple dynamical 
system associated with the new average simple FCMs.  
 

We work with a few attributes in the on state using all 
the 5 dynamical systems in the following. 
 
 Let us now work with the dynamical system given by 
the first expert with the following initial state vectors. 
 
    X1 = (1 0 0 0 0 0) 
    
    X2 = (0 1 0 0 0 0) 
 
    X3 = (0 0 1 0 0 0) 
 
    X4 = (0 0 0 1 0 0) 
 
    X5 = (0 0 0 0 1 0) 
 
    X6 = (0 0 0 0 0 1) 
 
    X1,2 = (1 1 0 0 0 0) 
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X3,6 = (0 0 1 0 0 1) 

X4,5 = (0 0 0 1 1 0) 

X1,3,5 = (1 0 1 0 1 0) 

X2,4,6 = (0 1 0 1 0 1). 

 We will be working only with these 11 initial state 
vectors in case of all the experts as well as M the 
dynamical system of NASFCMs. 

 Let table 1 denote the initial set of state vectors in the 
first column and the second column the hidden pattern 
using the dynamical system M1. 

Table 1 

X1 = (1 0 0 0 0 0) 
X2 = (0 1 0 0 0 0) 
X3 = (0 0 1 0 0 0) 
X4 = (0 0 0 1 0 0) 
X5 = (0 0 0 0 1 0) 
X6 = (0 0 0 0 0 1) 
X1,2 = (1 1 0 0 0 0) 
X3,6 = (0 0 1 0 0 1) 
X4,5 = (0 0 0 1 1 0) 
X1,3,5 = (1 0 1 0 1 0) 
X2,4,6 = (0 1 0 1 0 1) 

(1 0 0 0 0 1) 
(1 1 1 1 1 1) 
(0 0 1 0 0 0) 
(1 1 1 1 1 1) 
(1 1 1 1 1 1) 
(0 0 0 0 0 1) 
(1 1 1 1 1 1) 
(0 0 1 0 0 1) 
(1 1 1 1 1 1) 
(1 1 1 1 1 1) 
(1 1 1 1 1 1) 

 Now we work with same set of initial vectors and 
obtain the hidden pattern using M2 which is given in table 
2 in the following. 
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Table 2 

 
X1 = (1 0 0 0 0 0) 
X2 = (0 1 0 0 0 0) 
X3 = (0 0 1 0 0 0) 
X4 = (0 0 0 1 0 0) 
X5 = (0 0 0 0 1 0) 
X6 = (0 0 0 0 0 1) 
X1,2 = (1 1 0 0 0 0) 
X3,6 = (0 0 1 0 0 1) 
X4,5 = (0 0 0 1 1 0) 
X1,3,5 = (1 0 1 0 1 0) 
X2,4,6 = (0 1 0 1 0 1) 

(1 1 1 1 1 1) 
(0 1 0 1 1 1) 
(1 1 1 1 1 1) 
(0 0 0 1 1 1) 
(0 0 0 1 1 1) 
(0 0 0 1 1 1) 
(1 1 1 1 1 1) 
(1 1 1 1 1 1) 
(0 0 0 1 1 1) 
(1 1 1 1 1 1) 
(0 1 0 1 1 1) 

 
 Now using the dynamical system M3 given by the 3rd 
expert we use the 11 initial values X1, X2, …, X1,3,5 and 
X2,4,6, find the hidden pattern and tabulate in table 3 in the 
following.  
 

Table 3 
 

X1 = (1 0 0 0 0 0) 
X2 = (0 1 0 0 0 0) 
X3 = (0 0 1 0 0 0) 
X4 = (0 0 0 1 0 0) 
X5 = (0 0 0 0 1 0) 
X6 = (0 0 0 0 0 1) 
X1,2 = (1 1 0 0 0 0) 
X3,6 = (0 0 1 0 0 1) 
X4,5 = (0 0 0 1 1 0) 
X1,3,5 = (1 0 1 0 1 0) 
X2,4,6 = (0 1 0 1 0 1) 

(1 1 1 1 1 0) 
(0 1 1 1 1 0) 
(0 0 1 1 1 0) 
(0 0 0 1 1 0) 
(0 0 0 1 1 0) 
(1 1 1 1 1 1) 
(1 1 1 1 1 0) 
(1 1 1 1 1 1) 
(0 0 0 1 1 0) 
(1 1 1 1 1 0) 
(1 1 1 1 1 1) 

 
 Now we use the dynamical system given by the fourth 
expert M4 and find the hidden pattern for all the 11 initial 
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state vectors and tabulate in the table 4 which is as 
follows. 
 

Table 4 
 

X1 = (1 0 0 0 0 0) 
X2 = (0 1 0 0 0 0) 
X3 = (0 0 1 0 0 0) 
X4 = (0 0 0 1 0 0) 
X5 = (0 0 0 0 1 0) 
X6 = (0 0 0 0 0 1) 
X1,2 = (1 1 0 0 0 0) 
X3,6 = (0 0 1 0 0 1) 
X4,5 = (0 0 0 1 1 0) 
X1,3,5 = (1 0 1 0 1 0) 
X2,4,6 = (0 1 0 1 0 1) 

(1 1 0 1 1 1) 
(0 1 0 1 0 0) 
(1 1 1 1 1 1) 
(0 1 0 1 0 0) 
(1 1 1 1 1 1) 
(0 1 0 1 1 1) 
(1 1 0 1 1 1) 
(1 1 1 1 1 1) 
(0 1 0 1 1 1) 
(1 1 1 1 1 1) 
(0 1 0 1 1 1) 

 
 
 Now we find the hidden pattern using the new average 
simple FCM for the 11 initial state vectors and give them 
in the following table 5. 
 

Table 5 
 

X1 = (1 0 0 0 0 0) 
X2 = (0 1 0 0 0 0) 
X3 = (0 0 1 0 0 0) 
X4 = (0 0 0 1 0 0) 
X5 = (0 0 0 0 1 0) 
X6 = (0 0 0 0 0 1) 
X1,2 = (1 1 0 0 0 0) 
X3,6 = (0 0 1 0 0 1) 
X4,5 = (0 0 0 1 1 0) 
X1,3,5 = (1 0 1 0 1 0) 
X2,4,6 = (0 1 0 1 0 1) 

(1 1 1 1 1 1) 
(1 1 1 1 1 1) 
(1 1 1 1 1 1) 
(1 1 1 1 1 1) 
(1 1 1 1 1 1) 
(1 1 1 1 1 1) 
(1 1 1 1 1 1) 
(1 1 1 1 1 1) 
(1 1 1 1 1 1) 
(1 1 1 1 1 1) 
(1 1 1 1 1 1) 
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 From the table 5 we see the thresholding value 0.25 
ought to be changed.   
 

So now we in the average matrix put mij = 1 if mij  
0.5 and mij = 0 if mij < 0.5. 
 
 So the modified M is denoted by M. 
 

M = 

1 2 3 4 5 6

1

2

3

4

5

6

c c c c c c
c 0 0 0 0 0 1
c 0 0 1 1 0 0
c 1 0 0 0 0 0
c 0 0 0 0 1 0
c 0 0 0 1 0 1
c 0 0 0 0 1 0

 
 
 
 
 
 
 
 
  

. 

 
 Now using this M we find the hidden pattern of the 11 
initial state vectors and tabulate them in the following 
table 6 which is as follows: 
 

Table 6 
 

X1 = (1 0 0 0 0 0) 
X2 = (0 1 0 0 0 0) 
X3 = (0 0 1 0 0 0) 
X4 = (0 0 0 1 0 0) 
X5 = (0 0 0 0 1 0) 
X6 = (0 0 0 0 0 1) 
X1,2 = (1 1 0 0 0 0) 
X3,6 = (0 0 1 0 0 1) 
X4,5 = (0 0 0 1 1 0) 
X1,3,5 = (1 0 1 0 1 0) 
X2,4,6 = (0 1 0 1 0 1) 

(1 0 0 1 1 1) 
(1 1 1 1 1 1) 
(1 0 1 1 1 1) 
(0 0 0 1 1 1) 
(0 0 0 1 1 1) 
(0 0 0 1 1 1) 
(1 1 1 1 1 1) 
(1 0 1 1 1 1) 
(0 0 0 1 1 1) 
(1 0 1 1 1 1) 
(1 1 1 1 1 1) 
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 Now we use the concept of Kosko-Hamming distance 
to study the closeness or distance of each of the experts in 
the predictions.  We write under the columns dk(Ei, Ej) the 
Kosko-Hamming distance of the 11 hidden patterns of the 
experts Ei and Ej, 1  i, j  4 (Ei, A) means the Kosko-
Hamming distance between the 11 hidden patterns of the 
expert Ei and the NASFCMs, 1  i  4. 
 
 This is given in the following table 7.  However table 5 
is not useful as the hidden pattern of all the 11 initial state 
vectors is (1 1 1 1 1 1). 
 

Table 7 
 

 dk(E1,E2) dk(E1,E3) dk(E1,E4) dk(E1,A) 
X1 = (1 0 0 0 0 0) 
X2 = (0 1 0 0 0 0) 
X3 = (0 0 1 0 0 0) 
X4 = (0 0 0 1 0 0) 
X5 = (0 0 0 0 1 0) 
X6 = (0 0 0 0 0 1) 
X1,2 = (1 1 0 0 0 0) 
X3,6 = (0 0 1 0 0 1) 
X4,5 = (0 0 0 1 1 0) 
X1,3,5 = (1 0 1 0 1 0) 
X2,4,6 = (0 1 0 1 0 1) 

4 
2 
5 
3 
3 
2 
0 
4 
3 
0 
2 

4 
2 
2 
4 
4 
5 
1 
4 
4 
1 
0 

3 
4 
5 
4 
0 
3 
1 
4 
2 
0 
2 

2 
0 
4 
3 
3 
2 
0 
3 
3 
1 
0 

 
 
dk(E2,E3) dk(E2,E4) dk(E2,A) dk(E3,E4) dk(E3,A) dk(E4,A) 

1 
2 
3 
1 
1 
3 
1 
0 
1 
1 
2 

1 
2 
0 
3 
3 
1 
1 
0 
1 
0 
0 

2 
2 
1 
0 
0 
0 
0 
1 
0 
1 
2 

2 
2 
3 
3 
4 
2 
2 
0 
2 
1 
2 

3 
2 
2 
1 
1 
3 
1 
1 
1 
2 
0 

1 
4 
1 
3 
3 
1 
1 
1 
1 
1 
2 
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 We see from the table 7 the deviation of each of the experts 
from the average A is very less.  Now we find A  the average of 
all the four experts for all the 11 hidden pattern and compare it 
A in the following table. 
 

Table 8 
 

Xi A  A dk(A, A ) 
X1 = (1 0 0 0 0 0) 
X2 = (0 1 0 0 0 0) 
X3 = (0 0 1 0 0 0) 
X4 = (0 0 0 1 0 0) 
X5 = (0 0 0 0 1 0) 
X6 = (0 0 0 0 0 1) 
X1,2 = (1 1 0 0 0 0) 
X3,6 = (0 0 1 0 0 1) 
X4,5 = (0 0 0 1 1 0) 
X1,3,5 = (1 0 1 0 1 0) 
X2,4,6 = (0 1 0 1 0 1) 

(1 1 1 1 1 1) 
(0 1 1 1 1 1) 
(1 1 1 1 1 1) 
(0 1 0 1 1 1) 
(1 1 1 1 1 1) 
(0 1 0 1 1 1) 
(1 1 1 1 1 1) 
(1 1 1 1 1 1) 
(0 1 0 1 1 1) 
(1 1 1 1 1 1) 
(1 1 1 1 1 1) 

(1 0 0 1 1 1) 
(1 1 1 1 1 1) 
(1 0 1 1 1 1) 
(0 0 0 1 1 1) 
(0 0 0 1 1 1) 
(0 0 0 1 1 1) 
(1 1 1 1 1 1) 
(1 0 1 1 1 1) 
(0 0 0 1 1 1) 
(1 0 1 1 1 1) 
(1 1 1 1 1 1) 

2 
1 
1 
1 
3 
1 
0 
1 
1 
1 
0 

 
 We see except for the initial state vector X5 all the 
deviations or 0, 1 and only one two.  Thus there is not much of 
deviation as per the Kosko-Hamming distance between the 
hidden patterns of the average A  and that of the hidden pattern 
got from the NASFCMs. 
 
 Thus we by using NASFCMs can save time and economy.  
Now in the following table we give the value of dk(E1, A ), 
dk(E2, A ), dk(E3, A ) and dk(E4, A ) in the following. 
 

Table 9 
 

 dk(E1, A ) dk(E2, A ) dk(E3, A ) dk(E4, A ) 
X1 = (1 0 0 0 0 0) 
X2 = (0 1 0 0 0 0) 
X3 = (0 0 1 0 0 0) 
X4 = (0 0 0 1 0 0) 
X5 = (0 0 0 0 1 0) 
X6 = (0 0 0 0 0 1) 
X1,2 = (1 1 0 0 0 0) 

4 
1 
5 
2 
0 
3 
0 

0 
1 
1 
0 
0 
0 
0 

1 
1 
3 
2 
4 
2 
1 

1 
3 
0 
2 
0 
0 
1 
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X3,6 = (0 0 1 0 0 1) 
X4,5 = (0 0 0 1 1 0) 

X1,3,5 = (1 0 1 0 1 0) 
X2,4,6 = (0 1 0 1 0 1) 

4 
2 
3 
3 

1 
0 
1 
2 

0 
2 
1 
0 

0 
0 
0 
2 

 
 Except for the first expert as in case of dk(E,A) we see the 
deviation is not very high. 
 
 Thus we have defined NASFCMs and shown using the new 
technique of Kosko-Hamming distance we see the deviations 
are considerably small so we have no problem of using 
NASFCMs instead of working with several experts.  This gives 
equal importance to each and every expert.  Further this saves 
time and economy so this new model will serve as a better one.  
 
 Next we proceed onto define the notion of New Average 
Simple NCMs.  We assume NCMs take values only from the set 
{0, 1, I}. 
 
 Suppose we have n experts who wish to work only with the 
NCMs, then to find the New Average Simple NCMs 
(NASNCMs).   
 

Let {c1, c2, …, ct} be the t-concepts associated with the 
problem and m-experts work with the problem using only the 
NCMs model.  To find the new average simple NCMs.  Let N1, 
N2, …, Nm be the m-connection neutrosophic matrices given by 
the m-experts.   
 

Let N = 
m

i
i 1

1 N
m 
  

 
= (nij) we see if nij  m

2   ; 
then put nij = 1 (nij real) 
 
if nij = t + sI where t, s are real  then  
 put nij = 1 if t  s  
 = I if t < s 
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if nij is real and nij < m
2    put 0. 

 
Thus N takes values from the set {0, 1, I}. 
 
Using N we can find the hidden pattern and N is 

defined as the New Average Simple dynamical NCM 
system. 

 
We will illustrate this situation by an example. 
 

Example 4.2:  Let C = {C1, C2, C3, C4, C5} be the five 
attributes associated with the problem.   
 

Let E1, E2 and E3 be the three experts who work with 
the problem using the NCMs  model and using the five 
attributes. 
 
 Let G1 be the neutrosophic graph given by the first 
expert which is as follows. 
 
 
 
 G1  

  
 
 
 
 
 
 
 
 
 
 
 
 Let N1 be the neutrosophic connection matrix associated 
with the neutrosophic graph G1 

C2 C1 

C4 

C5 

C3 
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    N1 = 

1 2 3 4 5

1

2

3

4

5

c c c c c
c 0 I 0 1 0
c 0 0 1 0 I
c 0 1 0 0 0
c 0 0 0 0 1
c 0 0 0 0 0

 
 
 
 
 
 
  

. 

 
 Let G2 be the neutrosophic directed graph associated 
with the NCM given by the second expert which is as 
follows: 
 
 
 
 G2 
 
 
 
 
 
 
 
 
 
 
 Let N2 be the connection matrix associated with 
neutrosophic directed graph G2; 
 
 

    N2 = 

1 2 3 4 5

1

2

3

4

5

c c c c c
c 0 0 0 0 0
c 0 0 0 0 1
c 1 0 0 0 0
c 0 I 1 0 0
c 0 0 1 0 0

 
 
 
 
 
 
  

. 

C2 C1 

C3 

C5 

C4 
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 Let G3 be the graph associated with third expert E3 
which is as follows: 
 
 G3  
 
 
 
 
 
 
 
 
 
 The neutrosophic connection matrix associated with 
the graph G3 is as follows: 
 
 

    N3 = 

1 2 3 4 5

1

2

3

4

5

c c c c c
c 0 1 0 0 0
c 1 0 0 0 0
c 0 0 0 1 0
c 0 1 0 0 I
c 0 1 0 I 0

 
 
 
 
 
 
  

. 

 
 
 Let us find the hidden pattern of 12 initial state vectors 
and tabulate them in the following for the NCM given by 
the expert E1. 
 

Table 1 
 

Initial state vectors Hidden pattern 
X1 = (1 0 0 0 0) 
X2 = (0 1 0 0 0) 
X3 = (0 0 1 0 0) 

(1 I I 1 1) 
 (0 1 1 0 I) 
(0 1 1 0 I) 

C2 C1 

C4 

C5 

C3 



178 New Techniques to Analyse the Prediction of Fuzzy Models 
 
 
 
 
 
 
 
 
 

X4 = (0 0 0 1 0) 
X5 = (0 0 0 0 1) 
X1,2 = (1 1 0 0 0) 
X1,3 = (1 0 1 0 0) 
X1,4 = (1 0 0 1 0) 
X1,5 = (1 0 0 0 1) 
X45 = (0 0 0 1 1) 
X34 = (0 0 1 1 0) 
X2,4 = (0 1 0 1 0) 

(0 0 0 1 1) 
(0 0 0 0 1) 
(1 1 1 1 I) 
(1 1 1 1 1) 
(1 I I 1 1) 
(1 I I 1 1) 
(0 0 0 1 1) 
(0 1 1 1 1) 
(0 1 1 1 1) 

 
 
 Now in table 2 we give for the 12 initial state vectors the 
hidden pattern given by the second expert using the dynamical 
system N2 which is as follows: 
 

Table 2 
 

Initial state vectors Hidden pattern 
X1 = (1 0 0 0 0) 
X2 = (0 1 0 0 0) 
X3 = (0 0 1 0 0) 
X4 = (0 0 0 1 0) 
X5 = (0 0 0 0 1) 
X1,2 = (1 1 0 0 0) 
X1,3 = (1 0 1 0 0) 
X1,4 = (1 0 0 1 0) 
X1,5 = (1 0 0 0 1) 
X4,5 = (0 0 0 1 1) 
X34 = (0 0 1 1 0) 
X2,4 = (0 1 0 1 0) 

(1 0 0 0 0) 
 (1 1 1 0 1) 
(1 0 1 0 1) 
(1 I I 1 1) 
(1 0 1 0 1) 
(1 1 1 0 1) 
(1 0 1 0 1) 
(1 I I 1 1) 
(1 0 0 0 1) 
(1 I I 1 1) 
(1 I 1 1 1) 
(1 I 1 0 1) 

 
 
 We now find the 3rd expert opinion the neutrosophic 
matrix N3 and tabulate the hidden pattern of the 12 initial 
state vectors in the following table 3. 
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Table 3 
 

 
Initial state vectors Hidden pattern 

X1 = (1 0 0 0 0) 
X2 = (0 1 0 0 0) 
X3 = (0 0 1 0 0) 
X4 = (0 0 0 1 0) 
X5 = (0 0 0 0 1) 
X1,2 = (1 1 0 0 0) 
X1,3 = (1 0 1 0 0) 
X1,4 = (1 0 0 1 0) 
X1,5 = (1 0 0 0 1) 
X4,5 = (0 0 0 1 1) 
X34 = (0 0 1 1 0) 
X2,4 = (0 1 0 1 0) 

(1 1 0 0 0) 
 (1 1 0 0 0) 
(1 1 1 1 I) 
(1 1 0 1 I) 
(1 1 0 I 1) 
(1 1 0 0 0) 
(1 1 1 1 I) 
(1 1 0 1 I) 
(1 1 0 I 1) 
(1 1 0 1 1) 
(I I 1 1 I) 
(0 1 0 1 I) 

 
 
 Next we find the average of the three NCMs N1, N2, 
N3. 
 

    N = 1
3

(N1 + N2 + N3) 

 

   = 

0 1 I 0 0.33 0
0.33 0 0.66 0 I

0 0.33 0 0.33 0.33
0 1 I 0 0 1 I

0.33 0.33 0 I 0

 
 
 
 
   
  

. 

 
 We after thresholding put 1 if   0.33 
 
 I if  = I 
 0 if   < 0.33 finally 1 if  = 1 + I. 
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N = 

0 1 0 1 0
1 0 1 0 I
0 1 0 1 1
0 1 0 0 1
0 0 0 I 0

 
 
 
 
 
 
  

. 

 
 Now N is known as the New Average Simple NCMs 
dynamical system.   
 

Now we find the hidden pattern of all the 12 initial state 
vectors and tabulate them in table 4 in the following. 
 

Table 4 
 

Initial state vectors Hidden pattern 
X1 = (1 0 0 0 0) 
X2 = (0 1 0 0 0) 
X3 = (0 0 1 0 0) 
X4 = (0 0 0 1 0) 
X5 = (0 0 0 0 1) 
X1,2 = (1 1 0 0 0) 
X1,3 = (1 0 1 0 0) 
X1,4 = (1 0 0 1 0) 
X1,5 = (1 0 0 0 1) 
X4,5 = (0 0 0 1 1) 
X34 = (0 0 1 1 0) 
X2,4 = (0 1 0 1 0) 

(1 1 1 1 1) 
(1 1 1 1 1) 
(1 1 1 1 1) 
(1 1 1 1 1) 
(I I I I 1) 

(1 1 1 1 1) 
(1 1 1 1 1) 
(1 1 1 1 1) 
(1 1 1 1 1) 
(1 1 1 1 1) 
(1 1 1 1 1) 
(1 1 1 1 1) 

 
 From the hidden pattern we see all the nodes come to 
on state for every initial vector.  This is not any form of 
good prediction.   
 

So review of the results forces us to change the 
thresholding function from 1 if   0.33 to “1 if   0.5.  
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Now we redo the matrix N and denote it by N which is as 
follows: 
 

N = 

1 2 3 4 5

1

2

3

4

5

c c c c c
c 0 1 0 0 0
c 0 0 1 0 I
c 0 0 0 0 0
c 0 1 0 0 1
c 0 0 0 I 0

 
 
 
 
 
 
  

. 

 
 Now we find the hidden pattern for all the 12 initial 
vectors. 
 

Table 5 
 

Initial state vectors Hidden pattern 
X1 = (1 0 0 0 0) 
X2 = (0 1 0 0 0) 
X3 = (0 0 1 0 0) 
X4 = (0 0 0 1 0) 
X5 = (0 0 0 0 1) 
X1,2 = (1 1 0 0 0) 
X1,3 = (1 0 1 0 0) 
X1,4 = (1 0 0 1 0) 
X1,5 = (1 0 0 0 1) 
X4,5 = (0 0 0 1 1) 
X34 = (0 0 1 1 0) 
X2,4 = (0 1 0 1 0) 

(1 1 1 I 1) 
(0 1 1 I I) 
(0 0 1 0 0) 
(0 1 1 1 1) 
(0 I I I 1) 
(1 1 1 I I) 
(1 1 1 I 1) 
(1 1 1 I 1) 
(1 1 1 I 1) 
(0 1 1 1 1) 
(0 1 1 1 1) 
(0 1 1 1 1) 

 
 Now we will use the Kosko-Hamming distance defined in 
chapter III to find the distance or how far two experts agree or 
disagree also how far they agree or disagree from the New 
Average Simple Neutrosophic Cognitive Maps model and the 
average of the three experts 12 hidden patterns in the following. 
Let A  denote the average and A denote the hidden of the 
NASNCMs. 
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 Now we find dk(Ei, Ej), dk(A, E1), dk( A , Ei) and dk(A, A ) in 
the following. 
 
 

 dk(E1,
E2) 

dk(E1, 
E3) 

dk(E2, 
E3) 

dk(E1, 
A) 

dk(E2,
A) 

X1 = (1 0 0 0 0) 
X2 = (0 1 0 0 0) 
X3 = (0 0 1 0 0) 
X4 = (0 0 0 1 0) 
X5 = (0 0 0 0 1) 
X1,2 = (1 1 0 0 0) 
X1,3 = (1 0 1 0 0) 
X1,4 = (1 0 0 1 0) 
X1,5 = (1 0 0 0 1) 
X4,5 = (0 0 0 1 1) 
X3,4 = (0 0 1 1 0) 
X2,4 = (0 1 0 1 0) 

4 
2 
2 
3 
2 
2 
2 
0 
3 
3 
2 
3 

4 
3 
2 
3 
3 
3 
1 
3 
3 
2 
2 
2 

1 
2 
3 
3 
2 
2 
3 
3 
2 
2 
2 
1 

3 
1 
2 
2 
3 
1 
1 
2 
3 
2 
0 
0 

4 
3 
2 
3 
2 
3 
1 
2 
3 
3 
2 
3 

 
dk(E3, A) A  dk(E, A ) dk(E2, A ) dk(E3, A ) dk(A, A ) 

3 
4 
4 
3 
3 
3 
2 
2 
1 
2 
3 
2 

(11000) 
(11100) 
(1110I) 
(10011) 
(10001) 
(11100) 
(11101) 
(1II11) 
(10I01) 
(10011) 
(0I111) 
(01111) 

 

4 
2 
1 
1 
1 
2 
1 
0 
2 
1 
2 
0 

1 
1 
2 
2 
1 
1 
1 
0 
1 
2 
1 
3 
 

0 
0 
1 
2 
2 
1 
2 
3 
3 
1 
2 
2 

4 
3 
3 
2 
3 
2 
1 
2 
3 
3 
1 
0 

 
 
 This is only an illustrative example and is not a real world 
model in which we have worked.  This is more to explain the 
working so the answers may be little deviant.  Any interested 
reader can work with the real world model. 
 
 We on similar lines work with some problem which has say 
C = {c1, …, cn} concepts with s + t experts work using the set C 
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with s of them work using the FCMs and t of them work on the 
problem with NCMs.  We find the mixed new average FCMs 
and NCMs where we add all the s + t, n  n matrices and divide 
it by s + t we use some suitable parameter  so that using  the 
Mixed New average NCM and FCM is obtained such that the 
entries are from the set {0, I, 1} only.  This working is similar to 
that of NASFCMs and NASNCMs. 
 
 Here we keep on record that we need not work with values 
in between the interval [0,1] for the dynamical system is 
ultimately only going to give hidden pattern as 0 or 1 the off or 
on state of nodes for otherwise the dynamical system will not 
function.  So under these conditions it is deem fit we can work 
only with NASFCMs NASNCMs and mixed NASFCMs and 
mixed NASNCMs using elements from the set {0, 1, I}. 
 
 Interested reader can work with them using them in the real 
world model.  Here we suggest some problems for the reader. 
 
Problems: 
 

1. Obtain some special features enjoyed by Average New 
Simple FCMs. 

 
2. Show by a real world problem the working of 

NASFCMs. 
 

3. Compare NASFCMs with combined FCMs. 
 

4. Which of the models is better NASFCMs or combined 
FCMs? 

 
5. What are the special features enjoyed by NASNCMs? 

 
6. Exhibit by a real world model the functioning of 

NASNCMs. 
 

7. Compare NASNCMs with combined NCMs. 
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8. Which model is better combined NCMs or NASNCMs. 
 
9. Give a real world model and describe the functioning of 

the mixed new average simple FCMs and NCMs. 
 

10. Compare NASFCMs with the overlapping FCMs. 
 

11. Distinguish both mentioned in problem 10 by applying 
it in the real world problem. 

 
12. Compare FTCMs with NASTCMs. 

 
13. Compare both the model NTCMs with NASNTCMs by 

using it in a real world model. 
 

14. Can NASFCMs be used in predicting the users web 
behavior? 

 
15. Illustrate the working of NASNCMs in the users web 

behavior. 
 

16. Use NASFCMs to study the bonded labour problem. 
 

17. Can the study given problem 16 be done using 
NASNCMs? 

 
18. Using problems (16) and (17) make the mixed 

NASNCMs and NCMs model to study the bonded 
labour problem. 

 
19. Prove these new average models saves time and money. 

 
20. Prove the advantage of using new average models 

eradicates the bias in taking the opinion of only few 
experts. 



 
 
 
 
 
Chapter Five 
 
 

 
 
INFLUENTIAL OR VITAL NODES OF FCMS 
AND NCMS 
 
 
 
 
In this chapter we study the vital or the most influential 
nodes of FCMs and NCMs.  We know when we have a 
graph a vertex which has the maximum number of vertices 
adjacent with it is usually considered as the vital node or 
the most influential node.  
 

In this book we study the nodes in case of FCMs and 
NCMs.  As FCMs and NCMs mainly function on the 
directed graph of the dynamical system we ventured to 
study such nodes.  We saw these graphs are not like usual 
graphs for a node with the maximum number of edges 
incident to it need not in general to be vital node.  This 
was proved by real valued problems using FCMs / NCMs 
model and their associated directed graphs given by the 
experts. 
 
 Further we for these directed graphs of the FCMs 
define most influential node, more influential node,  
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influential node, less influential node, least influential 
node or a passive node in a very different way. 
 
 Let {C1, C2, …, Cn} = C be the set of nodes / attributes 
with which an expert works with the problem using FCMs 
or NCMs.  The expert will give the experts opinion in the 
form of a directed graph say with C1, C2, …, Cn as its 
nodes.  Suppose Ci is a node with maximum number of 
edges adjacent with it then in general Ci is not  defined as 
the most influential node by us; on the contrary we define 
a  node Ci to be the most influential node if the on state of 
the state vector Ci alone say Xi = (0, 0, …, 0, 1, 0, …, 0) 
that is the ith co ordinate alone is in the on state and all 
other nodes are in the off state then we find the effect of Xi 
on the dynamical system and if Xi gives the maximum 
number of on states of the node in the hidden pattern of the 
model which may be a fixed point or a limit cycle then we 
define that node to be the most influential node. The Ci 
which when on and rest of the nodes are in the off states 
gives maximum on states in the resultant vector is defined 
as the most influential node.  However for a given FCMs 
model we can have more than one most influential node. 
Suppose the most influential node Ci whose initial state 
vector is Xi gives r number of on states of r node including 
the ith node Ci (r < n). 
 
 We say the most influential node of the dynamical 
system of the FCMs makes (r–1) nodes on.  Now when we 
study the related graph of the FCMs it may not be the node 
of the graph which has the maximum number of edges 
adjacent to it. 
 
 So by studying the role of the node we can derive 
several important properties about the problem at hand.  
We can have more than one node for a graph of an FCMs 
to be a most influential node.  Now a more influential node 
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of a FCMs will be a node Cj say Xj = (0, …, 0, 1, 0, …, 0)  
only the jth coordinate is in the state and all other co 
ordinates are in the off state.  Suppose the hidden pattern 
of Xj using the dynamical system makes s of the 
coordinate to be in on state and r > s then we have no other 
state vector which can give on state of more than s state 
vectors then we call Cj to be the more influential node of 
the FCMs or NCMs we may have more than one node in C 
to be such more influential nodes.  However the vertices of 
these nodes may not in general contain the maximum 
number of edges incident to it. 
 
 Thus we have now defined the notion of more 
influential node and the most influential node.  Now we 
can define on similar lines the influential node, less 
influent node and so on. 
 
 A node is said to be a more influential node if the on 
state of the node gives the on state of several nodes but the 
number of nodes it makes on is less than that of the most 
influential node.  Next we can go for the just influential 
node and an influential node and so on. 
 
 Hence (number of on state of most influential node) > 
(number of on state of more influential node) > (number of 
on state of just influential node) > (number of on state of 
influential node) > (number of less influential node) > 
(number of least influential node) > (number of non 
influential node) for a given initial state vector.  
 
 This is the way the concept of influential node is 
studied.  Here the authors keep on record that there 
influential nodes of a FCMs or NCMs are not the popular 
nodes called hubs or influential nodes.  These are entirely 
a different concept varying with the problem in hand.  
Further it is proved beyond doubt a node with the 
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maximum number of edges adjacent to it in a directed 
graph given by an expert of the FCMs or NCMs in general 
is not the most influential node but it is the capacity of the 
node after working with the dynamical system gives in the 
hidden pattern with the maximum number of on state of 
the nodes which is addressed in this book as the most 
influential node. 
 
 Thus it may so happen a node with only one edge 
adjacent to it may be the most influential node in that 
problem.  Thus in this study it is very clearly established 
that in the directed graphs of the FCMs or NCMs that is in 
the net working of the problem as given by an expert the 
concept of the most influential node is not the maximum 
number of edges adjacent to it.  So these special class of 
directed graphs (or networks) do not agree with the usual 
concept of influential node; on the other hand a most 
influential node will be node on which or around which 
the problem spins.  So such study is very vital for any one 
who uses FCMs or NCMs.  We are the first one to make 
such a study.  This also answers the long standing question 
of the graph theorists who had doubts about the influential 
nodes of a graph in general. 
 
 Now we have also classified the nodes as “most 
influential”, “more influential”, “just influential”, 
“influential less influential”, least influential” and “not 
influential” etc.,.  Such study throws of new way of 
analysis of the problem which uses FCMs or NCMs 
whatever is said for the directed graphs associated with 
FCMs are also true in case of neutrosophic directed graphs 
associated with the NCMs.  Here we need to study only 
the on state of one and only one node.  For on state of two 
nodes simultaneously  etc does not come under the 
purview of this study.  We will illustrate these situations 
before we describe them more technically.  
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 From table 1 in chapter IV we have 
 

Initial State 
vectors 

Hidden patterns No.of edges 
incident to 

vertices 
X1 = (100000) (100001) 2 
X2 = (010000) (111111) 4 
X3 = (001000) (001000) 1 
X4 = (000100) (111111) 2 
X5 = (000010) (111111) 3 
X6=(000001) (000001) 2 

 
 We see X4 that is the node C4 has only two edges 
incident to it yet it is also a most influential node.  So the 
nodes C2, C4 and C5 are the most influential nodes. 
 
Refer graph G1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Now we remove the node C2 and find the most 
influential node. 

C2 C3 C1 

C5 

C6 C4 
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 The connection matrix  
 

1 3 4 5 6

1

3

4

5

6

c c c c c
c 0 0 0 0 1
c 0 0 0 0 0
c 0 0 0 1 0
c 0 0 0 0 1
c 0 0 0 0 0

 
 
 
 
 
 
  

  = S1. 

 
 We find for X1 = (1 0 0 0 0) the hidden pattern using 
S1. 
 
 X1 = (1 0 0 0 0) gives the hidden pattern as (1 0 0 0 1).  
For X3 = (0 1 0 0 0) we find the hidden pattern using S1.  
The hidden pattern is (0 1 0 0 0).   
 

Using X4 = (0 0 1 0 0) we find the hidden pattern using 
S1 which is (0 0 1 1 1). 
 
 For X5 = (0 0 0 1 0)  we find the hidden pattern using 
S1 to be (00111). 
 
 For X6 = (0 0 0 0 1) we find the hidden pattern using 
S1 to be (0 0 0 0 1). 

C3 C1 

C5 

C6 C4 
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 Thus we see the most influential node of the graph G1 \ 
{C2} is still X4 and X5. 
 
 So the removal of C2 has not collapsed the system.  
Now we find the graph G1 \ {C4}. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Let S2 be the associated connection matrix which is as 

follows. 
 

S2 = 

1 2 3 5 6

1

2

3

5

6

c c c c c
c 0 0 0 0 1
c 1 0 1 0 0
c 0 0 0 0 0
c 0 1 0 0 1
c 0 0 0 0 0

 
 
 
 
 
 
  

. 

 
 Now using X1 = (1 0 0 0 0) we find the hidden pattern 
using S2 which is (1 0 0 0 1). 
 
 Now for X2 = (0 1 0 0 0) we find the hidden pattern 
using S2 which is (1 1 1 0 1). 
 

C2 
C1 

C5 
C6 

C4 

C3 
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 For X3 = (0 0 1 0 0) we using S2 find the hidden 
pattern which is (0 0 1 0 0). 
 
 For X5 = (0 0 0 1 0) we find the hidden pattern using 
S2 which is (1 1 1 1 1).   
 

Now for X6 = (0 0 0 0 1) we find the hidden pattern 
using S2 which is as follows (0 0 0 0 1). 
 
 The most influential node is X5 = (0 0 0 1 0); C5 is the 
most influence  node.  Though C4 is very influential its 
removal has weakened only the most  influential node C2 
but has no impact on the other most influential node C5. 
 
 Now G1 \ {C5} gives the following graph. 
 
 
 
 
 
 
 
 
 
 
 
 
 Let S3 be the connection matrix of the graph G1 \ {C5}. 
 

S3 = 

1 2 3 4 6

1

2

3

4

6

c c c c c
c 0 0 0 0 1
c 1 0 1 1 0
c 0 0 0 0 0
c 0 0 0 0 0
c 0 0 0 0 0

 
 
 
 
 
 
  

. 

C2 C3 C1 

C6 C4 
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 Now X1 = (1 0 0 0 0) on the dynamical system S3 
yields (1 0 0 0 1). 
 
 X2 = (0 1 0 0 0) on S3 yields (1 1 1 1 1). 
 
 X3 = (0 0 1 0 0) on S3 yields (0 0 1 0 0). 
 
 X4 = (0 0 0 1 0) on S3 yields (0 0 0 1 0). 
 
 X6 = (0 0 0 0 1) on S3 yields (0 0 0 0 1) = X6. 
 
 Thus the most influential node X4 becomes a least 
influential node.  However X2 remains as the most 
influential node.   
 
 Thus C5 is most influential vital node for it can also 
affect the most influential node to become a least 
influential node.  
 
 Now we study the graph G2 given in chapter IV. 
 
 

Initial State 
vectors 

Hidden patterns Number of edges 
incident to  the 

vertices 
X1 = (100000) (111111) 2 
X2 = (010000) (010111) 2 
X3 = (001000) (111111) 3 
X4 = (000100 (000111) 4 
X5 = (000010) (000111) 3 
X6 = (000001) (000111) 2 
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 Only the nodes X1 and X3 are the most influential node 
and X2 is more influential node. 
 
 However the nodes X4, X5 and X6 are just influential 
node.  There is no influential node or less influential node 
or least influential node for this particular system. 
 
 Now G2 \ C3 gives the following graph. 
 
 
 
 
 
 
 
 
 
 
 
 
 The related connection matrix R1 of the graph G2 \ C3 
is as follows: 

 

R1 = 

1 2 4 5 6

1

2

4

5

6

c c c c c
c 0 0 0 0 0
c 0 0 1 0 0
c 0 0 0 1 1
c 0 0 1 0 0
c 0 0 0 1 0

 
 
 
 
 
 
  

. 

 
 Now using R1 we find the hidden pattern of X1 = (1 0 0 
0 0) which is (1 0 0 0 0). 
 
 The hidden pattern of X2 = (01000) using the 
dynamical system R1 is (0 1 1 1 1). 

C6 C1 

C4 

C5 C2 
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 The hidden pattern of the node X4 = (0 0 1 0 0) is as 
follows: (0 0 1 1 1). 
 
 Now the hidden pattern of X5 = (0 0 0 1 0) is given by 
(0 0 1 1 1).  Finally the hidden pattern of X6  = (0 0 0 0 1) 
is (0 0 1 1 1). 
 
 Thus more influential node becomes the most 
influential node and all the other three nodes are 
unaffected the removal of the most influential node.  Now 
we see the most influential node viz X1 becomes the least 
influential node. 
 
 Now we remove the other most influential node C1 
from the graph G2.  G2 \ {C1} gives the following graph. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

R2 = 

2 3 4 5 6

2

3

4

5

6

c c c c c
c 0 0 1 0 0
c 1 0 0 0 0
c 0 0 0 1 1
c 0 0 1 0 0
c 0 0 0 1 0

 
 
 
 
 
 
  

. 

C3 
C2 

C5 

C6 C4 
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 We find the hidden pattern of the on state of the nodes 
C4, C2, C3, C5 and C6. 
 
 Let X2 = (1 0 0 0 0), to find the hidden pattern of X2 
using R2.  The hidden pattern of X2 is (1 0 1 1 1).   
 

The hidden pattern of the node initial state vector  
X3 = (0 1 0 0 0) is (1 1 1 1 1 ).  For the initial state of  
X4 = (0 0 1 0 0) the hidden pattern is (0 0 1 1 1). 
 
 The hidden pattern for the state vector X5 = (0 0 0 1 0) 
is (0 0 1 1 1).  Finally the hidden pattern for the initial state 
vector X6 = (0 0 0 0 1) is (0 0 1 1 1).  Thus X3 continues to 
be the most influential node even if the most influential 
node C1 is removed. 
 
 So C3 happens to be the better of the two influential 
nodes C1 and C3. 
 
 Now we analyse the graph III of the problem. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Now the influential nodes are tabled using the 
connection matrix M3 of the graph G3 in the following. 

C2 C5 C1 

C4 

C6 C3 
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Initial state 
vectors 

Hidden patterns No.of edges 
incident to 

vertices 
X1 = (100000) (111110) 2 
X2 = (010000) (011110) 2 
X3 = (001000) (001110) 2 
X4 = (000100 (000110) 4 
X5 = (000010) (000110) 2 
X6 = (000001) (111111) 3 

 
 The most influential node is X6, the more influential 
node is X1.  However the vertex C4 which has maximum 
number of edges adjacent to it is the least influential node 
of the system.  Now G3 \ C6 gives the following graph. 
 
 
 
 
 
 
 
 
 
 
 
 
 The matrix of G3 \ C6 is  
 

S1 = 

1 2 3 4 5

1

2

3

4

5

c c c c c
c 0 1 0 0 0
c 0 0 1 0 0
c 0 0 0 1 0
c 0 0 0 0 1
c 0 0 0 1 0

 
 
 
 
 
 
  

. 

C2 C1 

C4 

C5 C3 
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 Now using S1 we find the most influential node from 
the table calculated. 
 
 

Initial State 
vectors 

Hidden patterns No.of edges 
incident to 

vertices 
X1 = (10000) (11111) 1 
X2 = (01000) (01111) 2 
X3 = (00100) (00111) 2 
X4 = (00010) (00011) 3 
X5 = (00001) (00011) 1 

 
 The most influential node now is X1 and the more 
influential node is X2.  
 

So the removal of the most influential node X6 makes 
the more influential node X1 to be the most influential 
node and so on.   

 
Now we remove the node X1 from G3.   

 
We get the following graph G3 \ C1 =  

 
 
 
 
 
 
 
 
 
 
 
 
The connection matrix of the graph G3 \ C1 is as follows: 

C3 C2 

C6 

C5 C4 
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S2 = 

2 3 4 5 6

2

3

4

5

6

c c c c c
c 0 1 0 0 0
c 0 0 1 0 0
c 0 0 0 1 0
c 0 0 1 0 0
c 0 0 1 1 0

 
 
 
 
 
 
  

. 

 
 Now we tabulate the hidden patterns; 
 

Initial State 
vectors 

Hidden patterns No.of edges 
incident to 

vertices 
X2 = (10000) (11110) 1 
X3 = (01000) (01110) 2 
X4 = (00100) (00110) 4 
X5 = (00010) (00110) 3 
X6 = (00001) (00111) 2 

 
 X2 happens to be the most influential node X3 and X6 
are the more influential node.  Removal of the more 
influential node C1 makes the most influential node X6 into 
a more influential node.  
 
 Thus we will now remove X5 from the graph G3. 
 
 G3 \ C5 =   
 
 
 
 
 
 
 
 

C2 C1 

C6 

C4 C3 
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The associated connection matrix of G3 \ C5 is as 
follows: 

 

T1 = 

1 2 3 4 6

1

2

3

4

6

c c c c c
c 0 1 0 0 1
c 0 0 1 0 0
c 0 0 0 1 0
c 0 0 0 0 0
c 0 0 0 1 0

 
 
 
 
 
 
  

. 

 
The table of influential nodes is given in the following: 
 
Initial State 

vectors 
Hidden patterns No.of edges 

incident to 
vertices 

X1 = (10000) (11111) 2 
X2 = (01000) (01110) 2 
X3 = (00100) (00110) 2 
X4 = (00010) (00010) 2 
X6 = (00001) (00001) 2 

 
 Most influential node is X1, the non influential nodes 
are X4 and X6. 
 
 However all the fives nodes have the same number of 
edges incident to it.  So the removal of the least influential 
node into a non influential node.  We call such nodes as 
the most powerful nodes of the dynamical system.  
 
 Powerful nodes in general need not be the most 
influential node.  Likewise the most influential node need 
not be a powerful node.  Thus a most powerful node is a 
node whose deletion makes the most influential node into 
a non influential node. 
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 The more powerful node is that node whose deletion 
makes the more influential node or most influential node 
into a least influential node.  Likewise the other types of 
powerful nodes are defined. 
 

Now we study the graph G4.  
 

Initial State 
vectors 

Hidden patterns No.of edges 
incident to 

vertices 
X1 = (100000) (110111) 3 
X2 = (010000) (010100) 2 
X3 = (001000) (111111) 2 
X4 = (000100) (010100) 5 
X5 = (000010) (010111) 3 
X6=(000001) (010111) 3 

 
The most influential node is C3 and the least influential 

nodes are X4 and X2. 
 
X4 has the most number of edges incident to it C1 is the 

more influential node.  There is no node which is non 
influential.   

 
Let us study the graph G4 with node C3 removed which 

is as follows: 
 
 
 
  
 
 
 
 
 
 

C2 C1 

C5 

C6 C4 
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 The connection matrix of G4 \ C3 is as follows: 
 
 

1 2 4 5 6

1

2

4

5

6

c c c c c
c 0 0 1 0 1
c 0 0 1 0 0
c 0 1 0 0 0
c 0 0 1 0 1
c 0 0 0 1 0

 
 
 
 
 
 
  

 = L1. 

 
 Using L1 we tabulate the hidden pattern of the on state 
of the nodes C1, C2, C4, C5 and C6 in the following table. 
 

Initial State 
vectors 

Hidden patterns No.of edges 
incident to 

vertices 
X1 = (10000) (11111) 2 
X2 = (01000) (01100) 2 
X4 = (00100) (01100) 4 
X5 = (00010) (01111) 1 
X6 = (00001) (01111) 3 

 
 The most influential node is X1, however it has only 2 
edges adjacent to it.   
 

The more influential nodes are X5 and X6 however the 
number of edges adjacent to X5 is only one the least 
number of edges but it is the more influential node.   
 
 However there is no non influential nodes in this case. 
 
 Now we find the graph G4 \ C4 which is as follows: 
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The connection matrix D1 of the graph G4 \ C4 is as 
follows: 
 

D1 = 

1 2 3 5 6

1

2

3

5

6

c c c c c
c 0 0 0 0 1
c 0 0 0 0 0
c 1 0 0 0 0
c 0 0 0 0 1
c 0 0 0 1 0

 
 
 
 
 
 
  

. 

 
 The table of hidden patterns to find the influential node 
is as follows: 
 

Initial State 
vectors 

Hidden patterns No.of edges 
incident to 

vertices 
X1 = (10000) (10011) 2 
X2 = (01000) (01000) 0 
X3 = (00100) (10111) 1 
X5 = (00010) (00011) 2 
X6 = (00001) (00011) 3 

 
 

C2 C1 

C5 

C6 C3 



204 New Techniques to Analyse the Prediction of Fuzzy Models 
 
 
 
 
 
 
 
 
 

 From the table it is clear that the non influential node is 
C2 as there is only zero number of edges incident to it.  
 
 Most influential node is X3 and more influential node 
is X1.   
 

Just influential nodes are C5 and C6.   
 
However C6 has the maximum number of edges 

incident to it and C3 has the least number of edges adjacent 
to it viz.  one edge but it is the most influential node.   

 
However the edge C2 is non influential as it has no 

edge adjacent towards it.  
 
 Consider the graph G4 \ C6 which is as follows: 
 
 
 G4 \ C6 =   
 
 
   
 
 
 
 
 
 
 
  
 
 
 
 Now we give the connection matrix of the graph  
G4 \ C6 and is as follows: 

 

C2 C1 

C5 

C4 C3 



Influential or Vital nodes of FCMs and NCMs  205 
 
 
 
 
 
 
 

 
 

V1  = 

1 2 3 4 5

1

2

3

4

5

c c c c c
c 0 0 0 1 0
c 0 0 0 1 0
c 1 0 0 1 0
c 0 1 0 0 0
c 0 0 0 1 0

 
 
 
 
 
 
  

. 

 
 

 The table of hidden patterns using the dynamical 
system V1 is given by the following table. 
 
 

Initial State 
vectors 

Hidden patterns No.of edges 
incident to 

vertices 
X1 = (10000) (11010) 2 
X2 = (01000) (01010) 2 
X3 = (00100) (11110) 2 
X4 = (00010) (01010) 5 
X5 = (00001) (01011) 1 

 
 
 The most influential node is C3 but the number of 
edges incident to it is 2.   
 

However the node C4 has the highest number of nodes 
adjacent to it how ever it is not even  the most influential 
node only a just influential node. 
 
 Now we study G4 \ C2 directed graph and FCMs 
associated with it. 
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G4 \ C2 = 
 
 
 
 
 
 
 
 
  
 
 The related connection matrix of the graph G4 \ C2 is as 
follows: 
  

W1 = 

1 3 4 5 6

1

3

4

5

6

c c c c c
c 0 0 1 0 1
c 1 0 1 0 0
c 0 0 0 0 0
c 0 0 1 0 1
c 0 0 0 1 0

 
 
 
 
 
 
  

. 

 
 
 Now we get the table of hidden patterns.  
 

Initial State 
vectors 

Hidden patterns No.of edges 
incident to 

vertices 
X1 = (10000) (10111) 3 
X3 = (01000) (11111) 2 
X4 = (00100) (00100) 3 
X5 = (00010) (00111) 3 
X6 = (00001) (00111) 3 

 

C3 C1 

C5 

C6 C4 
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 The most influential node is C3 which has the least 
number of edges adjacent to it.  However C4 which has 3 
edges incident to it however it is a non influential node. 
The more influential node is C1 and the just influential 
nodes are C5 and C6.   
 
 Now we study the case for the NCMs given in example 
4.2. 
 
 Consider the neutrosophic graph G1 \ {C2} which is as 
follows: 
 
 
 G1 \ C2 =  
 
 
 
 
 
 
 
 
 
 The table of the graph G1 is as follows: 
 

Initial State 
vectors 

Hidden patterns No.of edges 
incident to 

vertices 
X1 = (10000) (1II1I) 2 
X2 = (01000) (0110I) 4 
X3 = (00100) (0110I) 1 
X4 = (00010) (00011) 2 
X5 = (00001) (00001) 2 

 
 C1 is the most influential node.  C2 and C3 are more 
influential nodes but C3 has only one edge incident to it 

C1 

C4 

C5 C3 
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but C2 has four edges incident to it.  However X5 is a non 
influential node. 
 
 Now the connection matrix of G1 \ C2 is as follows; 
 

S1 = 

1 3 4 5

1

3

4

5

c c c c
c 0 0 1 0
c 0 0 0 0
c 0 0 0 1
c 0 0 0 0

 
 
 
 
 
 

. 

 
 The table of comparison of influential nodes using 
matrix S1 is as follows: 
 
 

Initial State 
vectors 

Hidden patterns No.of edges 
incident to 

vertices 
X1 = (1000) (1011) 1 
X3 = (0100) (0100) 0 
X4 = (0010) (0011) 2 
X5 = (0001) (0001) 1 

 
 X2 is a special node for C3 which is a more influential 
node is made into a non influential node.  
 
 Now we remove the node C1 from the graph G1 
 
 
 
 
 
 
 
 

C2 

C5 

C3 

C4 
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 The neutrosophic connection matrix of the graph  
G1 \ C1 is as follows: 
 

M1 = 

2 3 4 5

2

3

4

5

c c c c
c 0 1 0 I
c 1 0 0 0
c 0 0 0 1
c 0 0 0 0

 
 
 
 
 
 

. 

 
 The table of hidden pattern using the matrix M1 is as 
follows: 
 

Initial State 
vectors 

Hidden patterns No.of edges 
incident to 

vertices 
X2 = (1000) (110I) 3 
X3 = (0100) (110I) 2 
X4 = (0010) (0011) 1 
X5 = (0001) (0001) 1 

 
 The most influential nodes are C2 and C3.  C3 and C5 
non influential nodes.   
 

More influential node C3 is made into a most 
influential node and so on.   
 

This type of study can be made to study the influential 
nodes as well as powerful nodes of the problem. 
 
 Consider the graph G2 of the example 4.2.  
 

The table of hidden patterns is as follows. 
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Initial State 

vectors 
Hidden patterns No.of edges 

incident to 
vertices 

X1 = (10000) (10000) 1 
X2 = (01000) (11101) 2 
X3 = (00100) (10101) 2 
X4 = (00010) (1II11) 2 
X5 = (00001) (10001) 3 

 
 
 The most influential node is C4 and more influential 
node is C2.  C1 is a non influential node. 
 
 Now we study the system with C1 removed. Consider 
the graph G2 \ C1. 
 
 
 
 
 
 
 
  
 
 
 
 The connection matrix of G2 \ C1 is as follows: 
 
 

P1 = 

2 3 4 5

2

3

4

5

c c c c
c 0 1 0 0
c 0 0 0 1
c I 0 0 1
c 0 0 0 0

 
 
 
 
 
 

. 

C2 

C5 

C3 

C4 
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 Now the table of hidden pattern using P1 is as follows: 
 
 

Initial State 
vectors 

Hidden patterns No.of edges 
incident to 

vertices 
X2 = (1000) (1101) 2 
X3 = (0100) (0101) 2 
X4 = (0010) (II11) 2 
X5 = (0001) (0001) 2 

 
 
 Removal the node C1 does not alter the most influential 
node.  However C5 happens to be a non influential node.  
Consider G2 \ C2 the graph which is as follows: 
 
 
 
 
 
 
 G2 \ C2  
 
 
  
 

The connection matrix of G2 \ C2 is as follows: 
 
 

W1  = 

1 3 4 5

1

3

4

5

c c c c
c 0 0 0 0
c 0 0 0 1
c 0 0 0 1
c 1 0 0 0

 
 
 
 
 
 

. 

C1 

C5 

C4 

C3 
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The table of hidden patterns is as follows: 
 

 
Initial State 

vectors 
Hidden patterns No.of edges 

incident to 
vertices 

X1 = (1000) (1000) 1 
X3 = (0100) (1101) 1 
X4 = (0010) (1011) 1 
X5 = (0001) (1001) 3 

 
Clearly C5 is the node which has maximum number of 

edges incident to it but it is not the most influential node.  
 
C3 and C4 which has only one edge incident towards it 

happens to be the most influential node.   
 
However C1 happens to be a non influential node. 
 
The node C2 is not a powerful node for the change 

made by it on the NCM is negligible.   
 
Consider the graph G2 \ C3 which is follows: 
 
 
 
G2 \ C3 =  
 
 
 
 
 
 
 
The connection matrix W1 of the graph G2 \ C3 is as 

follows; 

C1 

C5 

C2 

C4 
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W1 = 

1 2 4 5

1

2

4

5

c c c c
c 0 0 0 0
c 0 0 0 0
c 0 I 0 1
c 1 0 0 0

 
 
 
 
 
 

. 

 
 
Now using W1 we find the hidden pattern is as follows. 

 
Initial State 

vectors 
Hidden patterns No.of edges 

incident to 
vertices 

X1 = (1000) (1000) 1 
X2 = (0100) (0100) 1 
X4 = (0010) (1I11) 2 
X5 = (0001) (1001) 2 

 
 
X4 is the most influential node and two nodes X1 and 

X2 are non influential. 
 
Now we study the graph G2 \ C4 which is as follows: 
 
 
 
 
 
 
 
 
 
 
The connection matrix of G2 \ C4 is as follows: 
 

C1 

C5 

C2 

C3 
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T1 = 

1 2 3 5

1

2

3

5

c c c c
c 0 0 0 0
c 0 0 1 0
c 0 0 0 1
c 1 0 0 0

 
 
 
 
 
 

. 

 
 
The table of hidden pattern is as follows. 
 

 
Initial State 

vectors 
Hidden patterns No.of edges 

incident to 
vertices 

X1 = (1000) (1000) 1 
X2 = (0100) (1111) 1 
X3 = (0010) (1011) 2 
X5 = (0001) (1001) 2 

 
C2  is the most influential node.  Thus the removal of 

the most influential node. C4 makes the more influential 
node C2 to be the most influential node and nothing more.  

 
Now consider the graph G2 \ C5 which is as follows. 
 
 
 
 
 
 
G2 \ C5  
 
 
 
 

C1 

C5 

C2 

C3 
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The connection matrix associated with G2 \ C5 is as 
follows: 

 

P1 = 

1 2 3 4

1

2

3

4

c c c c
c 0 0 0 0
c 0 0 1 0
c 0 0 0 0
c 0 I 0 0

 
 
 
 
 
 

. 

 
The hidden pattern of the nodes is given by the 

following table. 
 

 
Initial State 

vectors 
Hidden patterns No.of edges 

incident to 
vertices 

X1 = (1 0 0 0) (1 0 0 0) 0 
X2 = (0 1 0 0) (0 1 1 0) 2 
X3 = (0 0 1 0) (0 0 1 0) 1 
X4 = (0 0 0 1) (0 I I 1) 1 

 
This removal of node C5 makes X4 the most influential 

nodes which has only one edge adjacent to it.   
 
The nodes C1 and C3 are the non influential nodes. 
 
Now we study the graph G3. The table of hidden 

patterns is as follows. 
  

Initial State 
vectors 

Hidden patterns No.of edges 
incident to 

vertices 
X1 = (10000) (11000) 2 
X2 = (01000) (11000) 4 
X3 = (00100) (1111I) 1 
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X4 = (00010) (1101I) 4 
X5 = (00001) (110I1) 3 

 
The least number of edges are incident towards C3 and 

C3 is the most influential node C4 and C5 are more 
influential nodes. 

 
There is no non influential node. 
 
We now study the graph G3 \ C1 which is as follows: 

 
 
 
 
 
 
 
 
 
 
 G3 \ C1. 
 
 The connection matrix of G3 \ C1 is as follows: 
 

B1 = 

2 3 4 5

2

3

4

5

c c c c
c 0 0 0 0
c 0 0 1 0
c 1 0 0 I
c 1 0 I 0

 
 
 
 
 
 

. 

 
 
 The table of hidden pattern is as follows: 

C2 

C5 

C3 

C4 
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Initial State 

vectors 
Hidden patterns No.of edges 

incident to 
vertices 

X2 = (1000) (1000) 2 
X3 = (0100) (111I) 1 
X4 = (0010) (I01I) 4 
X5 = (0001) (10I1) 3 

 
 
 The least number of edges is incident to the node C3 
and it is the most influential node and C2 is the non 
influential node though it has two edges incident towards 
it.  X4 and X5 are more influential nodes. 
 
 Consider the graph  G3 \ C2 is as follows. 
 
 
 G3 \ C2  
 
 
 
 
 
 
 
 
 The connection matrix associated with G3 \ C2 is as 
follows: 
 

E1 = 

1 3 4 5

1

3

4

5

c c c c
c 0 0 0 0
c 0 0 1 0
c 0 0 0 I
c 0 0 I 0

 
 
 
 
 
 

. 

C1 

C4 

C5 

C3 
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 The table of hidden patterns is as follows: 
 
 

Initial State 
vectors 

Hidden patterns No.of edges 
incident to 

vertices 
X1= (1000) (1000) 0 
X3 = (0100) (011I) 1 
X4 = (0010) (001I) 3 
X5 = (0001) (00I1) 2 

 
 X3 is the most influential node and X4 and X5 are more 
influential nodes. 
 
 X1 is non influential node consider the graph G3 \ C3 
which is as follows. 
 
 
 
 
 
 
 
 
 
 The connection matrix associated with G3 \ C3 is as 
follows: 
 
 

Y1 =

1 2 4 5

1

2

4

5

c c c c
c 0 1 0 0
c 1 0 0 0
c 0 1 0 I
c 0 1 I 0

 
 
 
 
 
 

. 

C1 

C5 

C2 

C4 
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 We give the following table of hidden patterns using 
the connection matrix Y1  
 

Initial State 
vectors 

Hidden patterns No.of edges 
incident to 

vertices 
X1= (1000) (1100) 2 
X2 = (0100) (1100) 4 
X4 = (0010) (111I) 3 
X5 = (0001) (11I1) 3 

 
 The most influential nodes are X4 and X5. 
 
 Every node is influential.   
 

This is a unique one in which both the most influential 
nodes have the maximum number of edges incident to it.   
 

Now consider the graph G3 \ C5 which is given in the 
following.  

 
 

 
 
 
 G3 \ C5 =  
 
 
 
 
 
 
 
 The connection matrix of G3 \ C5 is as follows. 
 

C1 

C4 

C2 

C3 
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D1 = 

1 2 3 4

1

2

3

4

c c c c
c 0 1 0 0
c 1 0 0 0
c 0 0 1 0
c 0 1 0 0

 
 
 
 
 
 

. 

 
 The table of comparision of the NCMs associated with 
the graph G3 \ C5 which is as follows: 
 
 

Initial State 
vectors 

Hidden patterns No.of edges 
incident to 

vertices 
X1= (1000) (1100) 2 
X2 = (0100) (1100) 3 
X3 = (0010) (0010) 1 
X4 = (0001) (1101) 2 

 
  The most influential node is X4.  
 

X3 is the non influential node.   
 
 Consider the graph G3 \ C4 which is as follows: 
 
 
 G3 \ C4 
 
 
 
 
 
 
 
 The connection matrix associated with G3 \ C4 is as 
follows: 

C1 

C4 

C2 

C3 
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F1 = 

1 2 3 4

1

2

3

4

c c c c
c 0 1 0 0
c 1 0 0 0
c 0 0 0 0
c 0 1 0 0

 
 
 
 
 
 

. 

 
 The table of hidden pattern is as follows: 
 

Initial State 
vectors 

Hidden patterns No.of edges 
incident to 

vertices 
X1= (1000) (1100) 2 
X2 = (0100) (1100) 3 
X3 = (0010) (0010) 0 
X4 = (0001) (1101) 1 

 
 The most influential node is X5 (C5) which has the 
least number of edges adjacent to it.  However C3 is the 
non influential node. Now having studied about the most 
influential node, more influential node and so on.   
 

From the study of influential node we can also study 
the powerful node the removal of which will collapse the 
system. 
 
 We suggest a few problems. 
 
Problems: 
 

1. Obtain the special contributing feature of the ‘most 
influential node’,‘more influential node’ and so on. 

 
2. Does there exist a directed graph of a FCM or 

NCM which is such that every node has equal 
number of edges incident to it? 
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3. Show using real world problems that a node with 
one edge incident to it can also be a most  
influential node. 

 
4. Prove that in any NCM or FCM removal of a most 

influential node need not result in the collapsing of 
the dynamical system. 

 
5. Prove for real world problem in which FCMs or 

NCMs are used a most influential node in general 
need not be the most powerful node. 

 
6. Find any interesting relation that exist between the 

most influential node and the more powerful node. 
 
7. Can there be a NCM or FCM associated with a real 

world problem in which every node is the most 
influential node? 

 
8. Can there be a NCM or FCM in which every node 

is a most powerful node? 
 
 

9. Let G be the graph associated with a FCM 
 
 
 
 
 
 
 
 
 
 
 
 
 

C2 

C3 

C1 

C5 

C6 

C4 
C7 
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(i) Find the most influential node of the FCMs 
associated with graph G. 

(ii) Find the most influential nodes of G \ Ci;  
1  i  7. 

(iii) Does the FCMs contain most powerful 
nodes? 

 
10. Let G be the directed neutrosophic graph 

associated with the NCM. 
 

G =  
 
 
 
 
 
 
 
 
 
 
 
 
 
(i) Find the most influential node and non 

influential node. 
(ii) Does the NCM have any powerful node 

associated with it? 
(iii) Find the most influential node or any 

powerful node if any for the associated 
graphs of G \ Ci, 1  i  7. 

 
11. Prove or disprove a most influential node is not the 

node with maximum number of edges incident to 
that node. 

C2 

C4 C1 

C5 

C7 

C6 

C3 



224 New Techniques to Analyse the Prediction of Fuzzy Models 
 
 
 
 
 
 
 
 
 

12. Study the powerful nodes of FCMs and NCMs. 
 

13. Can one say the most powerful node is a node with 
the maximum number of edges incident to it? 

 
14. Study question (13) in case of real world problem. 

 
15. Is question (13) true in case of social networking? 

 
16. Can you prove or disprove the fact that in 

networking graph does not function like the 
directed graphs of FCMs or NCMs? 

 
17. Show the concept of influential node in an FCM or 

NCM can help the expert to analyse the problem in 
different angles. 

 
18. Connect the notion of most influential node and the 

Kosko-Hamming distance of the same node given 
by two experts. 

 
19. Prove or disprove the influential nodes of a NCMs 

or FCMs varies from expert to experts. 
 

20. Prove or disprove the notion of most powerful 
node of an NCMs or FCMs is dependent on the 
experts. 

 
21. Prove or disprove the notion of most powerful 

node varies from experts and experts. 
 

22. Prove or disprove the notion of most influential 
node does not depend on NCM or FCMs.   

 
23. Can merging of two FCMs affect the influential 

node? 
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24. Let G1 =  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 and G2 =  
 
 
 
 
 
 
 
 
 
 
 
 

be two directed graphs of FCMs. 
Now merging of G1 with G2 gives a graph with 7 
vertices.  G1 is a graph with 6 vertices G2 is also a 
graph with 7 vertices. 
Now merging of G1 with G2 gives a graph G of 7 
vertices. 

C2 

C3 
C1 

C7 

C5 C6 

C2 

C3 C1 

C4 

C5 C6 
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(i) Find G \ {C7, C6},  G1 \ {C6} and G2 \ {C7}.  
(ii) Does the merged nodes act different from 

usual non merged nodes? 
(iii) Does the merged graphs act differently on 

powerful nodes? 
 

25. Study the influential nodes in case of New Average 
FCMs and New average NCMs. 

 
26. Can one say if G1, G2, …., Gt are  directed graphs 

of the t-FCMs working on n nodes. 
 

(i) Can we say the influentials nodes of the t 
FCMs and NAFCMs are different? 

 
(ii)   Can we say the powerful nodes of the t-FCMs 

and the NAFCMs are different? 
 

27. Study using 5 experts a real world problem using 
same number of nodes. 

 
(i) For this find average and compare the 

influential nodes.  
 

28. Can we establish that NAFCMs nodes which are 
most influential need not be most influential? 

 
29. Study problem 27 in case of NANCMs. 

 
30. Study the status of powerful node in case of 

NAFCMs. 
 

31. Study the status of powerful nodes in case of 
NANCMs. 
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