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Abstract

Tropospheric Emissions: Monitoring of Pollution (TEMPO) is a satellite-based remote sens-

ing air quality instrument destined for geostationary orbit over North America beginning

in 2022. TEMPO will take hourly measurements with unprecedented resolution which will

greatly benefit air quality forecasting, monitoring of emission sources, and health impact

studies related to air quality. The field of regard of TEMPO contains a significant portion

of Canada, including regions of particular interest such as major population centers and the

Alberta oil sands. However, the standard retrieval algorithms that will be used to process

TEMPO data do not explicitly account for some of the challenges that exist for measure-

ments over Canada, such as pervasive snow cover, shallow lines of sight, and limited daylight

hours. With the ultimate goal of creating new or optimized algorithms that address these

challenges and allow Canada to take full advantage of TEMPO, standard retrieval algorithms

for nitrogen dioxide and ozone have been replicated and studied. These algorithms use dif-

ferential optical absorption spectroscopy (DOAS), the technique that will be used to create

the standard TEMPO products, and they will serve as a baseline for comparison with future

algorithms. The SASKTRAN radiative transfer framework, developed at the University of

Saskatchewan, has been utilized to calculate air mass factors, key quantities in the DOAS-

style retrieval, using three complementary methods which are all in agreement with each

other. End-to-end retrievals modelled after cutting-edge algorithms used by modern instru-

ments have been implemented, and they have been used to conduct a preliminary sensitivity

study that quantifies the major sources of uncertainty in DOAS retrievals using synthetic

TEMPO measurements.
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1 Introduction

The atmosphere of the Earth is made primarily of nitrogen and oxygen, which together

account for over 99 % of dry air. Most of the remaining 1 % is argon, a non-reactive gas, with

well under 0.05 % of the atmosphere belonging to the remaining species which are collectively

referred to as trace gases. Despite their low concentrations, trace gases have a tremendous

impact on life on Earth. Greenhouse gases, which include water vapour in addition to trace

gases such as carbon dioxide and methane, trap heat in the atmosphere by absorbing infrared

radiation that would otherwise escape into space. Aerosols, referring to larger particles such

as desert dust and forest fire smoke, cool the Earth by reflecting sunlight away before it can

be absorbed. Trace gases affect more than just temperature: ozone absorbs harmful solar

ultraviolet rays before they reach the surface, and many trace gases that pollute air near the

surface have significant negative impacts on human health. Because life as we know it is tied

so intricately to the trace gases found in our atmosphere, monitoring the composition of the

atmosphere is crucial.

The importance of this task is augmented by the fact that manmade emissions contribute

significantly to atmospheric composition; accurately determining and predicting the impact of

human activity on climate is arguably the biggest task of atmospheric study in modern times.

Careful measurements are necessary to identify atmospheric conditions that pose a threat to

human health and ways of life so that policy changes can be put into place which will begin to

rectify such conditions. Continued measurements are necessary to evaluate the effectiveness

of policy changes, and also to provide constraints for atmospheric models. These models

are powerful tools which are used to understand the atmosphere and to attempt to predict

the future, potentially allowing dangerous conditions to be mitigated before they occur.

Additionally, measurements and models are important for everyday activities, as air quality
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forecasting systems around the world warn citizens about unhealthy atmospheric conditions.

Poor air quality due to manmade pollution is a significant contributor to mortality; it is

estimated that globally in 2015, exposure to particles with aerodynamic diameter less than

2.5 µm (PM2.5) accounted for 4.2 million deaths and 103.1 million disability-adjusted life-

years (DALYs), and exposure to ozone accounted for 254 000 deaths and 4.1 million DALYs,

where DALYs are an estimate of the years lost to ill health, disability, or premature death

(Cohen et al., 2017).

The discovery of the ozone hole in 1985, followed by the Montreal protocol of 1987, high-

lights the destructive potential of anthropogenic emissions, the ability of global policy to

mitigate this destructive potential, and the importance of measuring atmospheric composi-

tion. In 1974 it was predicted that chlorofluorocarbons (CFCs), which were being widely

used as coolants and spray can propellants, could deplete stratospheric ozone. Because the

molecules are extremely stable, it was proposed that they would live long enough to be trans-

ported to the stratosphere, where they would be broken apart by solar radiation, at which

point the chlorine atoms would react destructively with the ozone layer (Molina & Rowland,

1974). This was verified in 1985 when dramatic losses in ozone over the Antarctic were

discovered using a ground-based spectrometer (Farman, Gardiner, & Shanklin, 1985). Data

from satellite instruments such as the Total Ozone Mapping Spectrometer (TOMS) played

a crucial role in validating their conclusions and demonstrating the extent of the so-called

ozone hole. In the Montreal protocol of 1987, many countries agreed to phase out ozone de-

pleting substances, and decades later the ozone hole is showing signs of recovery. It is worth

noting that the conclusion that the ozone hole is healing is non-trivial, and is the result of

decades of meticulous, continuous measurement of ozone concentrations and careful analysis

by many international scientific experts (World Meteorogical Organization, 2018).

Today many different trace gas measurement techniques are employed regularly. In situ tech-

niques, in which the measurement is made at the same location as the instrument, are used

on the surface for air quality measurements, and on aircraft or high altitude balloons to take

measurements higher up in the atmosphere. In situ measurements give very accurate results,

but they cannot practically be used to cover large areas. Remote sensing techniques, in
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which the measurement is made at some distance from the instrument, overcome some of the

limitation of in situ techniques. Remote sensing techniques utilize spectroscopy, which takes

advantage of the fact that different molecules absorb light better at certain wavelengths and

therefore leave a distinct signature on the light that passes through. Careful measurements

of sunlight that has interacted with the atmosphere therefore contain information about the

composition of the atmosphere. Spectrometers which perform such measurements can be

placed on aircraft or high altitude balloons for short term measurements, but also on the

ground or in orbit around the Earth for long term measurements. Ground-based remote

sensing is an effective option for taking frequent and long term measurements in areas of

interest such as large cities, but like in situ techniques it is not practical to use to cover

large areas. Space-based remote sensing is more difficult, but it is the only option that can

continuously cover large regions, even the entire globe. Having measurements that are taken

on a global scale is essential for understanding the chemistry and the transport mechanisms

of the atmosphere, and for answering the big questions regarding global climate change.

Atmospheric composition has been measured from space since 1970 when the American

backscatter ultraviolet ozone experiment was launched. While instrument quality has cer-

tainly increased steadily over the decades, until now all space-based measurements have been

made from polar orbits, in which the satellite orbits over the poles while the Earth spins

underneath it. Polar orbits permit global coverage, but are fundamentally limited to one

measurement per day in any given location. The newest generation of space-based atmo-

spheric composition instruments will fly in geostationary orbits, in which the satellite orbits

at the same rate that the Earth rotates and therefore appears to hover over a single location.

From geostationary orbits, coverage will be continental, not global, but many measurements

can be taken per day at the same location. Tropospheric Emissions: Monitoring of Pollution

(TEMPO) is the name of the instrument designed by the National Aeronautics and Space

Administration (NASA) which will take such measurements over North America, planned

for launch in 2022.

The purpose of this thesis is to begin the process of developing algorithms for analyzing

TEMPO measurements of the atmosphere over Canada. These algorithms, known as re-
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trievals, are given measurements of sunlight which has passed through the atmosphere, and

are tasked with extracting information about the composition of the atmosphere. While

TEMPO has inherited such algorithms from similar instruments which came before it, and

these official algorithms will be used to analyze all TEMPO measurements including those

over Canada, they fail to address some of the key challenges that are specific to these north-

ern measurements. The primary challenges include taking measurements over scenes with

pervasive snow cover and limited daytime hours, while viewing these scenes from a shallow

angle as opposed to from above. The first step in addressing these unique challenges, and

also the scope of this thesis, is to establish and test existing algorithms as a baseline for

comparison with future experimental algorithms. Section 2 contains background information

that is pertinent to such algorithms, including information on TEMPO itself, on radiative

transfer, which refers to the study of light propagating through a medium such as the at-

mosphere, and on differential optical absorption spectroscopy (DOAS), the primary retrieval

technique used by the existing algorithms. Section 3 describes the implementation of existing

DOAS algorithms, and Section 4 describes the application of these algorithms in two recent

studies. Firstly, one step of the algorithm was utilized by Environment and Climate Change

Canada (ECCC) for their analysis of new satellite measurements over the Alberta oil sands,

and secondly a sensitivity study was performed on synthetic TEMPO measurements which

highlights major sources of uncertainty.
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2 Background

2.1 Solar Backscatter Instruments

Measurements of trace gases in the atmosphere date back as far as 1840, when German-Swiss

chemist Christian Friedrich Schönbein made semi-quantitative measurements of ozone using

chemical techniques (Platt & Stutz, 2008). Spectroscopic techniques were not applied until

the 1920s, when French physicists Fabry and Buisson discovered that ozone was responsible

for the absorption of ultraviolet sunlight, and correctly determined that the total vertical

column is equivalent to a layer of pure ozone approximately 3 mm thick (1921). Their tech-

niques were soon improved upon by Gordon Dobson (Dobson & Harrison, 1926), who would

go on to make many important contributions to the study of atmospheric ozone including

the invention of the Dobson spectrometer. These spectrometers measured ultraviolet sun-

light at discrete wavelengths and determined ozone amounts from ratios of these intensities.

This measurement concept was first sent to space in 1970 with the Backscatter Ultravio-

let ozone experiment which flew aboard the American Nimbus-4 satellite. This experiment

spawned the Solar Backscatter Ultraviolet and TOMS series of instruments, which begin-

ning in 1978 provided multiple-decade global ozone data products (Platt & Stutz, 2008).

In 1995 the Global Ozone Monitoring Experiment (GOME) started the next generation of

satellite-based spectrometers, which moved away from the discrete wavelength concept and

instead measured a wide spectrum at a modest spectral resolution. Different techniques such

as differential optical absorption spectroscopy (DOAS) were required to analyze these mea-

surements, which now contained information on a variety of trace gases in addition to ozone

(Burrows et al., 1999).

TEMPO is built on the heritage of the satellite-based solar backscatter instruments that
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precede it, notably the instruments listed in Table 2.1. The majority of these instruments

are nadir, pointing at the Earth, but some, such as the Optical Spectrograph and InfraRed

Imaging System (OSIRIS) developed at the University of Saskatchewan, are limb instruments,

pointing just above the surface of the Earth looking sideways through the atmosphere. Nadir

instruments excel at mapping total columns with high horizontal spatial resolution, and they

include information that extends right down to the surface, which is necessary to address

concerns regarding air quality. The primary weakness of nadir measurements is that they

contain very little information about the vertical distribution of the trace gas species be-

ing measured, so they must rely on assumptions and approximations which fundamentally

limit the precision of the concentration measurement, regardless of the quality of the spec-

troscopic measurement. Limb instruments lack horizontal spatial resolution and boundary

layer information, but excel at obtaining vertical distribution information, which reduces

their dependence on assumptions and approximations.

Since GOME, the basic concept for nadir sounders has not changed: measure backscattered

sunlight with a downward-pointing spectrometer placed in a sun-synchronous polar orbit

that permits global coverage. Technological advancements have steadily improved spatial

resolution, but temporal resolution is fundamentally limited to one measurement per day

in sun-synchronous orbits, meaning that a single instrument is incapable of providing data

useful for understanding diurnal variations. This limitation is overcome by the upcoming

generation of geostationary instruments, which are capable of taking hourly measurements

across entire continents.

2.2 TEMPO

TEMPO is an ultraviolet-visible solar backscatter spectrometer, designed to measure con-

centrations of trace atmospheric species over North America from a geostationary orbit.

With a nominal ground pixel size of 2.1 × 4.4 km near the center of its field of regard

(FOR), it has unmatched spatial resolution, and along with its counterparts Sentinel-4 and

the Geostationary Environment Monitoring Spectrometer (GEMS) which will fly over Eu-

rope and Asia respectively, it has unprecedented temporal resolution. TEMPO evolved from
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Instrument Orbit View
Wavelengths
(nm)

Ground
Pixel (km)

Operation

GOME (Burrows et al., 1999) polar nadir 240-790 40 × 320 1995-2011

OSIRIS (Llewellyn et al., 2004) polar limb 280-800 N/A
2001-
present

SCIAMACHY (Bovensmann
et al., 1999)

polar both
240-1700
1940-2040
2265-2380

30 × 240 2002-2012

OMI (Levelt et al., 2006) polar nadir 270-500 15 × 30
2004-
present

GOME-2 (Munro et al., 2016) polar nadir 240-790 40 × 10
2006-
present

OMPS (Flynn, Seftor, Larsen, &
Xu, 2006)

polar both 250-380 50 × 50
2011-
present

TROPOMI (Veefkind et al.,
2012)

polar nadir
270-500
675-775
2305-2385

7 × 7
2017-
present

GEMS (Kim et al., 2019) geo nadir 300-500 3.5 × 8 2020

TEMPO (Zoogman et al., 2017) geo nadir
290-490
540-740

2.1 × 4.4 2022

Sentinel-4 (Gulde et al., 2014) geo nadir
305-500
750-775

8 × 8 2023

Table 2.1: Satellite-based solar backscatter instruments.

the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission concept, which

was conceived following the 2007 National Research Council Decadal Survey “Earth Science

and Applications from Space”. Originally planned for launch in between 2013 and 2016,

GEO-CAPE aimed to address ocean coastal biophysics and atmospheric pollution chemistry,

specifically the effects of anthropogenic activity in these systems. TEMPO has been designed

to meet as many of the pollution-related requirements of this original mission while keeping

costs down by partnering with a commercial geostationary satellite platform (Zoogman et al.,

2017).

TEMPO measures light from 290-490 nm and from 540-740 nm with a spectral resolution

of approximately 0.6 nm and with spectral sampling of approximately 0.2 nm. It takes

images along the latitudinal direction and uses a scan mirror to step across the continent
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in the longitudinal direction. The total FOR has a height of 4.82◦, spanning latitudes from

20◦N to 60◦N, and a width of 8.38◦, which encompasses the width of the continent. See

Figures 2.1 and 2.2 for visualization of the FOR. TEMPO data products will include ozone

(profile and total column), NO2, SO2, H2CO, C2H2O2, H2O, BrO, IO, aerosol properties,

cloud parameters, ultraviolet B radiation, and foliage properties (Zoogman et al., 2017). The

instrument was completed by Ball Aerospace and Technologies Corporation in December of

2018 (Atkinson, 2018), and Maxar Technologies was secured as the host satellite provider in

July of 2019, with an anticipated launch in 2022 (Northon, 2019).

Figure 2.1: Side profile of the orbit and field of regard of TEMPO.

The motivation for TEMPO includes more accurate population exposure monitoring, more

effective emission-control strategies, and improved emission inventories, databases that track

pollution emissions from significant sources which are used to inform regulatory action and

to drive atmospheric models. These goals will be met as the sources, sinks, and transport

mechanisms of key pollutants are characterized through measurements of their concentration

with sufficient precision, resolution, and coverage. The high spatial resolution of TEMPO will

allow for emission sources to be resolved down to a sub-urban scale, and the high temporal

resolution will allow for diurnal variation to be monitored and studied in addition to seasonal

variation and long term trends. (Zoogman et al., 2017).

The motivation for analyzing TEMPO data over Canada includes the base reasons listed

above, but also extends to more specific objectives such as assimilation with the current
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Figure 2.2: TEMPO field of regard. Each box represents 125 by 125 pixels.

air quality forecast managed by ECCC, monitoring emissions over the oil sands, conducting

health impact studies, and tracking aerosols from forest fires. However, there are several

challenges standing in the way of retrieving accurate trace gas quantities over Canada. The

first challenge is the northern latitude of Canada and its relation to the geostationary orbit

that TEMPO will fly in. As illustrated by Figure 2.1, the northern edge of the FOR skims

the surface, in contrast to the southern region where the line of sight is much closer to the

local vertical. With these large viewing zenith angles (VZAs) over Canada, the curvature of

the Earth and the atmosphere have a larger effect on the radiative transfer. SASKTRAN, the

radiative transfer model developed at the University of Saskatchewan (Bourassa, Degenstein,

& Llewellyn, 2008; Dueck, Bourassa, & Degenstein, 2017; Zawada et al., 2015), is currently

well equipped to investigate these effects as it is able to perform radiative transfer calculations

with both a fully spherical atmosphere and a plane-parallel atmosphere. The solar zenith

angle (SZA) will also be large as a result of the northern latitudes in Canada, especially during

winter, which will contribute further to any spherical effects and also significantly reduce

signal-to-noise ratio (SNR) as fewer photons will reach the detector. One final challenge that

is unique to the Canadian portion of the FOR of TEMPO is the presence of snow. Snow is
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challenging for tropospheric retrievals because it often interferes with the interpretation of

clouds and aerosols, the dependence of the reflective properties on age, depth and landscape

is not well understood, and snow cover data products can be unreliable. Many algorithms

simply flag results over snow as unreliable, but such an approach would render most of the

winter data unusable.

2.3 Radiative Transfer

The field of radiative transfer deals with the propagation of light through a medium, includ-

ing processes such as absorption, emission and scattering. It originated in the beginning of

the 20th century when some of the underlying concepts were developed by astrophysicists,

such as the early atmospheric scattering calculations performed by Schuster (1905). Chan-

drasekhar published a book mid-century which would become the standard for the field,

describing radiative transfer in atmospheres as a branch of mathematical physics (1950),

and the application of radiative transfer to remote sensing of the atmosphere of the Earth

was first suggested by Kaplan when he described the possibility of inferring temperatures

and water vapour concentrations from infrared radiation viewed by an aircraft or a satellite

(1959). Accurate modelling of radiative transfer is a crucial component of the retrievals used

for all solar backscatter instruments.

2.3.1 Radiance

Modelling of radiative transfer is done primarily with the radiometric quantity known as

spectral radiance. Consider radiant energy dEΩ̂ in the spectral window from λ to λ + dλ

passing through area dA over a time interval dt and propagating in direction Ω̂ within the

solid angle dΩ as shown in Figure 2.3. The angle between Ω̂ and the normal to dA is labelled

θ. Spectral radiance I is then defined as the radiant power per unit solid angle per unit

projected area per unit wavelength,

I =
dEΩ̂

dt dΩ dA cos θ dλ
, (2.1)
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Figure 2.3: Radiance visualization.

where the projected area is the area of dA projected onto the plane perpendicular to Ω̂. The

SI unit for spectral radiance is W/sr/m3, but alternative units which are more compatible

with instrument measurements such as photons/s/sr/cm2/nm are frequently used. Spectral

radiance has the useful property that it remains constant as it propagates through a vacuum,

which means that any changes to radiance are always due to interaction with a medium.

Spectral radiance is also intuitively compatible with instrument measurements: by integrat-

ing over solid angle, wavelength, time, and area, all of which can be defined for a given

measurement made by a given instrument, the number of photons entering the system can

be calculated. These integration regions are typically small enough that the radiance can be

assumed to be approximately constant, so the integration becomes multiplication which can

easily be reversed. Therefore instruments which count photons can easily estimate radiance.

A second useful radiometric quantity, called spectral irradiance, exists and can be defined

in a similar fashion, considering the radiant energy dE in the spectral window λ to λ + dλ

passing through area dA over a time interval dt from all directions. It can also be defined

relative to the spectral radiance: the normal component of the spectral radiance integrated
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over the entire hemisphere:

F =
dE

dt dAdλ
=

∫
2π

I cosθ dΩ . (2.2)

Irradiance is used to describe approximately collimated light such as direct sunlight, as

specifying the angular dependence of direct sunlight within its angular width of about half a

degree is unnecessary for most radiative transfer applications. For brevity, the spectral prefix

will be dropped from both radiance and irradiance for the remainder of this document, but

unless is it stated otherwise the spectral dependence will remain implicit.

Assuming that emissions and terrestrial sources are negligible, which is a good assumption

in ultraviolet and visible wavelengths during the daytime, all radiance in the atmosphere

originates from the sun. Therefore it is often convenient to normalize the radiance by di-

viding it by the incident solar irradiance. This is beneficial for atmospheric remote sensing

applications because most of the spectral features of the solar spectrum, which contain in-

formation on the solar atmosphere, disappear after normalization, and information from the

Earth’s atmospheric species remain. Inelastic processes such as Raman scattering, which is

discussed in Section 2.3.4, are responsible for the faint solar signal that remains. This ratio

I(λ)/F (λ) has been called the reflectance spectrum, but there is some ambiguity since this

same name has also referred to the quantity πI(λ)/µ0F (λ), where µ0 is the cosine of the

SZA. In more recent publications the direct ratio I(λ)/F (λ) goes by different names such as

the sun-normalized radiance (van Geffen, Eskes, Boersma, Maasakkers, & Veefkind, 2019) or

simply the normalized spectrum (Bucsela et al., 2013), differentiating it from the quantity

πI(λ)/µ0F (λ). The ratio I(λ)/F (λ) will be called the normalized radiance for the remainder

of this document.

2.3.2 Absorption

Absorption occurs when a photon is incident on a molecule and the molecule absorbs the

energy of the photon, leaving the molecule in a higher energy state. The energy levels of a

molecule are quantized, so absorption will only occur if a higher energy state exists such that
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the difference in energy between the high energy state and the current state is equal to the

energy of the photon. Thus the energy levels of a molecule define a set of absorption lines

at specific wavelengths. After absorbing the photon, the excited molecule can dissociate into

smaller molecules, or it can relax back into a lower energy state by emitting a photon or

interacting with neighbouring particles.

Quantized molecular energy levels can be characterized by three different types of energy:

electronic, vibrational, and rotational. Energy differences between electronic states are the

largest, with purely electronic transitions often corresponding to ultraviolet and visible light.

Purely vibrational transitions have lower energy and are typically in the infrared region, and

purely rotational transitions have even lower energy, extending into the microwave region.

Transitions of different types occur simultaneously, which results in absorptions bands con-

taining many lines in close proximity. For example, a large electronic transition will combine

with many smaller vibrational transitions to create a family of absorption lines near the

wavelength corresponding to the pure electronic transition.

Ozone absorption is a crucial component of radiative transfer, as it significantly changes the

intensity of radiation in the atmosphere, in contrast to many other gases which leave unique

absorption signatures but have a negligible impact on the net radiant energy. The strongest

absorption occurs in the Hartley bands at wavelengths in the 200 nm to 300 nm range, causing

very little radiation in this window to reach the surface. Weaker absorption also occurs in

the Huggins bands from 300 nm to 360 nm and the Chappuis bands from 440 nm to 1180 nm.

These absorption bands correspond to electronic transitions in ozone which are immediately

followed by dissociation into diatomic oxygen and oxygen atoms. This photodissociation

plays a key role in atmospheric chemistry, and the reaction releases heat which drives the

temperature in the upper atmosphere.

For an absorption event to occur, the photon energy must match the energy level difference to

within some finite precision which is determined by several physical processes. This is called

line broadening, as it creates a small window around the central wavelength in which absorp-

tion can occur. While natural line broadening, due to quantum uncertainty associated with
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the lifetime of the excited state, does exist, it is negligible when compared to the following

two processes. In the lower atmosphere, line broadening is dominated by collisions between

the absorbing molecule and other molecules, which perturbs the energy levels and therefore

broadens the line. In the upper atmosphere the Doppler effect becomes important as well,

as the decrease in pressure results in fewer collisions which reduces collisional broadening.

In Doppler broadening, the thermal velocity of the absorbing molecules is large enough to

induce small Doppler shifts.

The absorption of a given molecule, accounting for all of these effects, is characterized by a

quantity called the absorption cross section, which specifies the probability of a photon of a

given wavelength being absorbed by a molecule at a given temperature and pressure. Cross

sections have units of area, which lends itself to the analogy where the absorption event is

likened to a random projectile striking a target: the probability of success is proportional

to the area of the target. The absorption cross section will be represented by σ(λ), explic-

itly showing the wavelength dependence but leaving implicit any temperature or pressure

dependence, which is much weaker.

The cross section gives the probability of interaction with a single molecule; a new quantity

is needed to characterize the probability of interaction with a medium. The absorption

extinction k(r, λ) is the product of the cross section σ(λ) and the volume number density

n(r),

k(r, λ) = n(r)σ(λ) (2.3)

where n(r) is simply the number of molecules per unit volume. Although it is written here

without position dependence, the cross section σ(λ) has a slight dependence on position

through its dependence on temperature and pressure. The extinction has units of inverse

length, and represents the probability that a photon will be absorbed per unit length travelled

by the photon.

Closely related to the extinction is the optical depth, a unitless quantity which represents

the probability a photon will be absorbed anywhere along a given path. The optical depth
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τC(λ) for path C is calculated by integrating the extinction along the path:

τC(λ) =

∫
C

k(l, λ)dl . (2.4)

The optical depth represents the attenuation of radiation along a path: each unit of optical

depth corresponds to a reduction of the radiance by a factor of 1/e. This property will

be referred to as Beer’s law, although it also goes by Bouguer’s law, Lambert’s law, or a

combination of the three names. Mathematically this can be written as

IC(λ) = I0(λ)e−τC(λ) , (2.5)

or

ln IC(λ) = ln I0(λ)− τC(λ) , (2.6)

where I0(λ) is the original radiance and IC(λ) is the radiance after it has been attenuated

by absorption.

2.3.3 Rayleigh Scattering

Rayleigh scattering describes the interaction between a photon and a molecule which is much

smaller than the wavelength of the photon. Classically, the incident oscillating electric field

induces an oscillating electric dipole moment on the small molecule, which modifies the

incident field, resulting in radiation being scattered in all directions. The induced dipole

description is only valid when the molecule is small, so different theory is required for larger

molecules. The polarizability of a molecule is represented by the parameter α, which is

the constant of proportionality between the induced dipole moment and the applied electric

field, with units of volume. Solving for the electric field given randomly polarized light with

wavelength λ incident on a molecule with polarizability α gives the scattering cross section,

σs(λ) =
α2128π5

3λ4
, (2.7)
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and the scattering phase function,

p(Θ) =
3

16π
(1 + cos2 Θ) , (2.8)

which describes the angular distribution of the scattered radiation, where Θ is the scattering

angle, as shown in Figure 2.4. The scattering phase function is normalized over the solid

angle sphere, so that its integral over any solid angle region represents the probability that

a scattered photon will pass through that region. The scattering cross section is inversely

proportional to wavelength to the power of four, a dependence which is responsible for the

blue color of the sky, as the blue end of the spectrum is more likely to be scattered than the

red end of the spectrum due to its shorter wavelength.

Figure 2.4: Rayleigh scattering phase function for randomly polarized light, as dis-
played in Equation (2.8). Scattering is most probable in the forward (Θ = 0◦) and
backward (Θ = 180◦) directions. The phase function has azimuthal symmetry such
that scattering into any direction within a cone of constant scattering angle is equally
likely.

These two terms can be used to create a scattering source term, which describes the scattering

contribution per unit length along a line of sight. Consider a scattering volume dV with

thickness ds along direction Ω̂ and cross sectional area dA perpendicular to Ω̂ which is

scattering incoming irradiance I ′(Ω̂′)dΩ′, resulting in outgoing radiance dIs,Ω̂′(Ω̂) within

solid angle dΩ, shown in Figure 2.5. The volume contains scattering particles with number

density n.
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Figure 2.5: Scattering source visualization.

The incident power dP ′ on the volume dV is given by

dP ′ = I ′(Ω̂′) cos Θ dAdΩ′ . (2.9)

The scattering optical depth dτscat, which is equal to the fraction of the incident power that

will be scattered, is the product of the scattering extinction kscat and the path length of the

incident beam within the volume:

dτscat = kscat dl = nσscat
ds

cos Θ
. (2.10)

The total scattered power is therefore dP ′dτscat, and p(Θ)dΩ is the fraction of this scattered

power that is scattered into the solid angle dΩ. Therefore the scattered power in solid angle

dΩ, denoted dP , is given by

dP = dP ′ dτscat p(Θ)dΩ = kscatI
′(Ω̂′)p(Θ) dAdΩ dΩ′ ds . (2.11)

The corresponding outgoing radiance dIs,Ω̂′ is then given by

dIs,Ω̂′(Ω̂) =
dP

dAdΩ
= kscatI

′(Ω̂′)p(Θ)dΩ′ ds . (2.12)

The outgoing radiance due to scattering within segment ds from all incoming directions is
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found by integrating the previous expression over the solid angle sphere:

dIs(Ω̂) = k

(
ω0

∫
4π

I ′(Ω̂′)p(Θ)dΩ′
)
ds ≡ kJ(Ω̂)ds , (2.13)

where ω0 is the single scatter albedo, defined as the ratio between the scattering extinc-

tion kscat and the total extinction k = kscat + kabs which accounts for both scattering and

absorption, and where the defined term J(Ω̂) is called the scattering source term.

2.3.4 Rotational Raman Scattering

Rotational Raman scattering is inelastic scattering where energy is exchanged between the

photon and the molecule, resulting in a change in the quantum rotational state of the molecule

and a change in the wavelength of the photon. Rotational Raman scattering by diatomic

nitrogen (N2) and oxygen (O2) is of interest for remote sensing in ultraviolet and visible

wavelengths as these processes introduce non-negligible features to measured spectra.

Rotational Raman transitions will only occur when a certain set of selection rules are met.

The gross selection rule, which specifies the general physical properties that must exist in or-

der for the phenomena to occur, is that the polarizability of the molecule must be anisotropic.

Linear molecules such as N2 and O2 meet this criteria. The specific selection rule, which gov-

erns the allowed quantum number transitions, for linear molecules requires that ∆J = 0,±2,

where J is the quantum number for the total angular momentum of the molecule. Note that

the J = 0 transitions correspond to Rayleigh scattering and are not of interest here. The

following theory is based on the work of Chance and Spurr (1997).

The rotational Raman transitions that are relevant for atmospheric radiative transfer occur

when the N2 and O2 molecules are in the Λ = 0 electronic state (denoted Σ), where Λ is

the quantum number representing the projection of the electronic angular momentum on the

internuclear axis. They are described using Hund’s case b, a limiting case in which the spin-

orbit coupling is assumed to be negligible and only the spin-rotation coupling is accounted

for. Under these assumptions, the relevant good quantum numbers (in addition to Λ) are

J , N , and S, where N describes the total angular momentum excluding contributions from
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spin, and S describes the angular momentum from spin. The spin quantum number is S = 0

for N2 and S = 1 for O2, and the remaining allowed quantum numbers are N = Λ,Λ + 1, . . .

and J = |N − S|, |N − S|+ 1, . . . , N + S, with the further constraint J ≥ 0.

For a Hund’s case b molecule in a Σ state, cross sections for a scattering event following a

transition from a state described by N and J to a state described by N ′ and J ′ are given by

σN,J→N ′,J ′(λ) =
256π5

27λ4
γ2f(N, J)b(N,N ′, J, J ′) , (2.14)

where the change in energy of the scattered photon ∆E is equal to the difference between

the energy of the initial and final states: ∆E = E(N, J) − E(N ′, J ′). Here, γ represents

the polarizability anisotropy of the scattering molecule; Chance and Spurr have provided

empirical functions for N2,

γN2 × 1025 = −6.01466 +
2385.57

186.099− σ2
, (2.15)

and for O2,

γO2 × 1024 = 0.07149 +
45.9364

48.2716− σ2
, (2.16)

where σ is the wavenumber in units of µm−1.

The fractional population of the initial state f(N, J) is given by

f(N, J) =
g(N)(2J + 1) exp(−E(N, J)/kT )

Z
, (2.17)

where g(N) is the nuclear spin statistical weight factor, k is the Boltzmann constant, T is

the temperature, and Z is the state sum which is the sum of the numerator in Equation

(2.17) over all states. Finally, b(N,N ′, J, J ′) is called a Placzek-Teller coefficient, which for

a Hund’s case b molecule is given by

b(N,N ′, J, J ′) = (2N + 1)(2N ′ + 1)(2J ′ + 1)

N 2 N ′

0 0 0

2N 2 N ′

J ′ S J


2

, (2.18)
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where the last two terms follow the standard definitions for 3-j and 6-j Wigner coefficients

respectively.

For N2, the case b formulation is sufficient, but for O2 the spin-rotation coupling causes

deviations from this limiting case. To find the necessary corrections to the state energies and

the Placzek-Teller coefficients, perturbation theory must be applied while adding the energy

of the spin-rotation interaction to the Hamiltonian. This calculation is outside the scope of

this thesis.

2.3.5 Ground Reflectance

Ground reflectance is described by a function called the bidirectional reflectance distribution

function (BRDF). The BRDF B(Ω̂, Ω̂′) captures the full angular dependence of a surface’s

reflective properties, defining the reflectivity for every combination of incoming directions Ω̂′

and outgoing directions Ω̂ over the hemisphere. It is defined as the ratio of the outgoing

radiance to the incoming power density:

B(Ω̂, Ω̂′) =
dI(Ω̂)

I(Ω̂′)µ(Ω̂′)dΩ′
. (2.19)

where µ(Ω̂′) is the cosine of the zenith angle made by direction Ω̂′. The differential terms

dI(Ω̂) and dΩ′ account for the fact that the radiance I(Ω̂) in any given direction is made up of

outgoing contributions dI(Ω̂) resulting from infinitesimal solid angles dΩ′ from all incoming

directions Ω̂′. Therefore the total I(Ω̂) can be found by integrating over the hemisphere:

I(Ω̂) =

∫
2π

dI(Ω̂)

dΩ′
dΩ′ . (2.20)

Substituting Equation (2.19) into Equation (2.20) gives an expression for the outgoing radi-

ance in terms of the BRDF and the incoming radiance:

I(Ω̂) =

∫
2π

B(Ω̂, Ω̂′)I(Ω̂′)µ(Ω̂′)dΩ′ . (2.21)
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If a surface is illuminated by collimated light, the outgoing radiance I(Ω̂) can be calculated

without an integral,

I(Ω̂) = B(Ω̂, Ω̂′)µ(Ω̂′)F (Ω̂′) , (2.22)

where Ω̂′ is the direction of the incident light and F (Ω̂′) is the incoming collimated irradiance.

Since the BRDF describes reflection only, the outgoing energy should never exceed the in-

coming energy. Consider a differential surface with area dA illuminated by collimated light

F (Ω̂′), and define the albedo a(Ω̂′) as the ratio of outgoing to incoming power:

a(Ω̂′) ≡

∫
2π

(
µ(Ω̂)I(Ω̂)dA

)
dΩ̂

µ(Ω̂′)F (Ω̂′)dA
. (2.23)

To conserve energy this ratio must not exceed one. Substituting for I(Ω̂) using Equation

(2.22) and simplifying produces the constraint,

a(Ω̂′) =

∫
2π

µ(Ω̂)B(Ω̂, Ω̂′)dΩ̂ ≤ 1 , (2.24)

which must be met by every physical BRDF for every incoming direction.

The BRDF is bound by Helmholtz reciprocity, which requires that incident and reflected rays

of light behave identically if the direction is reversed. As a result, swapping incoming and

outgoing directions leaves the BRDF unchanged: B(Ω̂, Ω̂′) = B(Ω̂′, Ω̂). A consequence of

this is that the constraint shown in Equation (2.24) also applies when the integral is taken

over all incoming directions.

2.3.6 Equation of Radiative Transfer

The differential form of the equation of radiative transfer is

dI

ds
= −k(s)I(s) + J(s) , (2.25)
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where the first term represents losses in radiance due to extinction k(s), which accounts for

radiation being both absorbed and scattered, and the second term represents gains in radi-

ance due to the source term J(s). In general the source term consists of elastic scattering,

emissions, and inelastic scattering, but for the present work only elastic scattering is consid-

ered. Note that the inelastic scattering background in Section 2.3.4 is not included for the

purpose of explicit forward modelling, as SASKTRAN is not currently capable of modelling

inelastic scattering, but rather because it is used in DOAS retrievals (see Section 3.2). A

diffuse radiance field has five dimensions, three spatial and two directional, and must satisfy

Equation (2.25) equation in every direction at every point in space.

The integral form of this equation, now with the spatial and directional coordinates shown ex-

plicitly, takes the following form, based on the theoretical development presented by Bourassa

et al. (2008):

I(r, Ω̂) =

∫ 0

s1

k(rs)J(rs, Ω̂)e−
∫ 0
s k(rt)dtds+ Ĩ(rs1 , Ω̂)e

−
∫ 0
s1
k(rs)ds (2.26a)

J(r, Ω̂) = ω0(r)

∫
4π

I(r, Ω̂′)p(r, Ω̂, Ω̂′)dΩ′ (2.26b)

Ĩ(r, Ω̂) =

∫
2π

B(r, Ω̂, Ω̂′)I(r, Ω̂′)µ(Ω̂′)dΩ′ . (2.26c)

The radiance I(r, Ω̂) at point r in direction Ω̂ is the sum of the line integral of all source

terms J(rs, Ω̂) along the line of sight, which starts at r and points opposite to the direction

Ω̂, and the ground contribution Ĩ(rs1 , Ω̂), which is zero if the line of sight does not terminate

at the ground. Note that rs ≡ r + sΩ̂ is a point along the line of sight where s is negative,

and the point rs1 represents the termination of the line of sight either at the ground or at

the defined top of atmosphere.

The source term J(r, Ω̂) consists of scattered light, as defined in Section 2.3.3, and the

ground term Ĩ(r, Ω̂) consists of reflected light, as defined in Section 2.3.5. All contributions

are attenuated back to the observer according to Beer’s law, as defined in Section 2.3.2,

using the total extinction k(r), which is the sum of the scattering extinction kscat(r) and

the absorption extinction kabs(r). The equations are heavily coupled: to find the radiance
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at a given point in a given direction, the source functions at all points along the line of

sight must be known, and to know the source function at a given point, the radiance in all

directions at that point must be known. Solving these equations in a realistic atmosphere is no

simple task, calling for carefully selected approximations and advanced numerical techniques.

Three different methods for solving this equation, all of which are currently implemented in

SASKTRAN, will be described in the upcoming sections.

2.3.7 Successive Orders Method

The successive orders method uncouples the integral equations by calculating source functions

and radiances one order of scattering at a time. It is a Neumann series solution where each

term in the series has a physical interpretation: a radiance field representing all sunlight that

has been scattered a specific number of times. The primary advantage of this method over

the discrete ordinate method is that it is not constrained to a plane-parallel atmosphere; it is

compatible with a spherical atmosphere, or any atmosphere in theory, which better represents

the true atmosphere of the Earth.

Direct sunlight is represented by the initial radiance field I0(r, Ω̂):

I0(r, Ω̂) = F0(Ω̂0)e
−

∫ 0
s2
k(r+tΩ̂0)dt

δ(Ω̂− Ω̂0) , (2.27)

where F0(Ω̂0) is the incident solar irradiance at the defined top of atmosphere, Ω̂0 is the

direction of this irradiance, s2 is a negative number such that r + s2Ω̂0 is the point where

the irradiance that reaches point r enters the atmosphere, and δ(Ω̂− Ω̂0) is a delta function

that constrains the field to a single direction, ignoring the small angular dependence of the

incident sunlight. The delta function has the following fundamental property:

∫
Ω

f(Ω̂)δ(Ω̂− Ω̂0)dΩ =

f(Ω̂0) Ω̂0 ∈ Ω

0 Ω̂0 /∈ Ω

, (2.28)

where f(Ω̂) is an arbitrary function and Ω is an arbitrary solid angle region.
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Source terms Jn(r, Ω̂) and ground terms Ĩn(r, Ω̂) are computed using the radiance field of

the previous order, and radiance fields In(r, Ω̂) for n ≥ 1 are computed using the source

terms and ground terms of the same order:

In(r, Ω̂) =

∫ 0

s1

Jn(rs, Ω̂)k(rs)e
−

∫ 0
s k(rt)dtds+ Ĩn(rs1 , Ω̂)e

−
∫ 0
s1
k(rs)ds (2.29a)

Jn(r, Ω̂) = ω0(r)

∫
4π

In−1(r, Ω̂′)p̄(r, Ω̂, Ω̂′)dΩ′ (2.29b)

Ĩn(r, Ω̂) =

∫
2π

B(r, Ω̂, Ω̂′)In−1(r, Ω̂′)µ(Ω̂′)dΩ′ . (2.29c)

To solve these equations numerically, a number of discretizations need to be made. The atmo-

sphere must be divided into suitable cells to facilitate the line integrals required for Equation

(2.29a). Grids must be chosen for the source terms, specifying the positions, incoming direc-

tions, and outgoing directions at which to calculate the terms for each order. The radiance

field can be calculated at a given position and incoming direction by tracing a line of sight

through the atmosphere and dividing it into segments according to the atmospheric cells,

and then interpolating in order to get the source terms and atmospheric properties that are

necessary to integrate each segment. The source terms can be calculated at each position by

integrating over all incoming directions while scattering them into all outgoing directions.

It would be computationally expensive to fully specify a three dimensional atmosphere and

a three dimensional grid for the source terms, and to follow this full process for each order of

scattering, so approximations will be necessary for most applications. Approximations such

as a horizontally homogeneous atmosphere or carefully selected lookup tables in the place of

explicit calculations can speed up calculations significantly without seriously compromising

accuracy.

2.3.8 Monte Carlo Method

The Monte Carlo method is a non-deterministic method that can be used to solve the equation

of radiative transfer in a spherical atmosphere to an arbitrary precision. It traces photons

along random paths through the atmosphere, guided by appropriate probability distributions,

in such a way that the desired radiance is equal to the expectation value of the radiance from
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each path. The primary advantage of the Monte Carlo method compared to the successive

orders method is that its accuracy is not sensitive to spatial and angular grids, as these grids

are not necessary for this technique. The primary disadvantage is that many photon paths

must be traced in order to reduce the uncertainty in the final radiance, which typically results

in much longer computation times. The following theory is based on the work of Zawada et

al. (2015), which describes the Monte Carlo implementation in SASKTRAN.

Monte Carlo integration, described in Appendix B, can be used to evaluate the integrals in

Equation (2.29) which define the radiance and source terms of a particular scattering order.

It is convenient to first transform Equation (2.29a) under the change of variables from path

length s to transmission T (s) = e−
∫ 0
s k(rs)ds,

In(r, Ω̂) =

∫ 1

T (s1)

Jn(rs(T ′), Ω̂)dT ′ + Ĩn(rs1 , Ω̂)T (s1) , (2.30)

where the inverse function s(T ) describes path length as a function of transmission, which

cannot be determined analytically. Since Ĩn(rs1 , Ω̂) is independent of T , this can be rewritten

as two integrals,

In(r, Ω̂) =

∫ 1

T (s1)

Jn(rs(T ′), Ω̂
′)dT ′ +

∫ T (s1)

0

Ĩn(rs1 , Ω̂
′)dT ′ , (2.31)

which can then be combined into a single integral,

In(r, Ω̂) =

∫ 1

0

J∗n(r, Ω̂, T ′)dT ′ , (2.32)

using the piecewise source function,

J∗n(r, Ω̂, T ) =

Ĩn(rs1 , Ω̂) T ≤ T (s1)

Jn(rs(T ), Ω̂) T > T (s1)

. (2.33)

It is also helpful to split the BRDF B(r, Ω̂, Ω̂′) found in Equation (2.29c) into two parts:
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a0(r, Ω̂), the albedo of the BRDF for outgoing direction Ω̂,

a0(r, Ω̂) =

∫
2π

µ(Ω′)B(Ω,Ω′)dΩ′ , (2.34)

and b(r, Ω̂, Ω̂′), a probability density function (PDF) which is normalized over the solid angle

hemisphere:

b(r, Ω̂, Ω̂′) =
µ(Ω̂′)B(r, Ω̂, Ω̂′)

a0(r, Ω̂)
. (2.35)

No such rearrangement is necessary for the phase function p(r,Θ), which is already nor-

malized over the solid angle sphere. With all of these changes, Equation (2.29) takes the

following form:

In(r, Ω̂) =

∫ 1

0

J∗n(r, Ω̂, T )dT (2.36a)

Jn(r, Ω̂) = ω0(r)

∫
4π

In−1(r, Ω̂′)p̄(r, Ω̂, Ω̂′)dΩ′ (2.36b)

Ĩn(r, Ω̂) = a0(r, Ω̂)

∫
2π

In−1(r, Ω̂′)b(r, Ω̂, Ω̂′)dΩ′ (2.36c)

J∗n(r, Ω̂, T ) =

Ĩn(rs1 , Ω̂) T ≤ T (s1)

Jn(rs(T ), Ω̂) T > T (s1)

. (2.36d)

These integrals can be evaluated using Monte Carlo integration:

In(r, Ω̂) =
〈
J∗n(r, Ω̂, T )

〉
T∼uni(0,1)

(2.37a)

Jn(r, Ω̂) = 4πω0(r)
〈
In−1(r, Ω̂′)

〉
Ω̂′∼p(r,Ω̂,Ω̂′)

(2.37b)

Ĩn(r, Ω̂) = 2πa0(r, Ω̂)
〈
In−1(r, Ω̂′)

〉
Ω̂′∼b(r,Ω̂,Ω̂′)

. (2.37c)

Note that the incident radiation I0(r, Ω̂) requires no Monte Carlo evaluation, as it can be

determined without an integral in the same way as the successive orders method, as done

in Equation (2.27). In order to fill the sample spaces to estimate the expectation values in

Equation (2.37), rays are traced backwards out of the instrument. This is physically valid, as

scattering and reflection events are equally probable when the directions are reversed, and it
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ensures that only rays that terminate at the instrument are traced. To begin, a scatter point

or a ground reflectance point is selected along the line of sight by generating T according

to Equation (2.37a). Solar irradiance is scattered through this point into the observer, with

appropriate reductions for absorption and scattering, and the resulting radiance is taken as

a sample of I1(r, Ω̂). From the scatter point, a new propagation direction is selected by

sampling Ω̂′ according to Equation (2.37b) if the point is in the air, or Equation (2.37c) if

the point is on the ground. Choosing a propagation direction from the ground can be done

following the process for sampling a two-dimensional PDF described in Appendix B. A new

scatter or reflection point is selected from this new line of sight in the same manner, the

solar irradiance is scattered through both points to the observer, and the resulting radiance

is taken as a sample of I2(r, Ω̂). This process is continued up until a maximum order of

scatter has been reached, or until the radiance contribution becomes negligible. This process

is illustrated in Figure 2.6. By reusing the ray history from a sample of In to sample In+1, the

computation time is reduced by a factor of n. A consequence of this is that the samples are

no longer independent, but this can be accounted for when the variance of the total radiance

is estimated. This entire process is repeated, creating new sets of samples for each scatter

order which are independent from the previous sets, until a suitable sample space has been

created for In(r, Ω̂) for each order n.

2.3.9 Discrete Ordinates Method

In the discrete ordinates method, an approximate analytic solution is formed for the equation

of radiative transfer in a plane-parallel atmosphere. This method is typically much faster

than the successive orders or Monte Carlo methods, but suffers some accuracy loss due to the

plane-parallel approximation. These accuracy losses are reduced in modern implementations,

but these improved algorithms are not available in SASKTRAN and are outside the scope of

this thesis. The method described here is based on the linearized discrete ordinates radiative

transfer (LIDORT) package (Spurr, Kurosu, & Chance, 2001).

The plane-parallel approximation reduces the equation from five dimensions to three, as

horizontal homogeneity is assumed in the atmospheric properties and therefore in the radiance
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Figure 2.6: Monte Carlo ray tracing visualization, showing the shared ray history of
one set of radiance samples.

field, leaving one vertical coordinate and two directional coordinates. The vertical coordinate

is chosen to be optical depth τ such that the top of the atmosphere is τ = 0. Taking µ and φ,

the zenith cosine and azimuth angle, as the directional coordinates, the equation of radiative

transfer takes the form,

µ
dI(τ, µ, φ)

dτ
= I(τ, µ, φ)− J(τ, µ, φ) , (2.38)

where the source term J(τ, µ, φ) is the sum of scattered diffuse light,

Jdiffuse(τ, µ, φ) = ω(τ)

∫ 2π

0

∫ 1

0

p(τ, µ, φ;µ′, φ′)I(τ, µ′, φ′)dµ′dφ′ , (2.39)

and scattered sunlight,

Jbeam(τ, µ, φ) = F�ω(τ)p(τ, µ, φ;−µ0, φ0)e−τ/µ0 , (2.40)

where µ0 and φ0 represent the direction of the sun.

The azimuth dependence is removed by expanding the radiance and the BRDF in a cosine
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Fourier series,

I(τ, µ, φ) =
2N−1∑
m=0

Im(τ, µ) cosm(φ0 − φ) (2.41)

B(µ, φ, µ′, φ′) =
2N−1∑
m=0

Bm(τ, µ) cosm(φ− φ′) , (2.42)

and expanding the phase function in a Legendre polynomial series,

p(τ, µ, φ;µ′, φ′) = p(τ, cos Θ) =
2N−1∑
l=0

βl(τ)Pl(cos Θ) , (2.43)

where the scattering angle Θ is defined by

cos Θ = µµ′ +
√

(1− µ2)(1− µ′2) cos(φ− φ′) . (2.44)

This generates 2N equations,

µ
dIm(τ, µ)

dτ
= Im(τ, µ)−

∫ 1

−1

Dm(τ, µ, µ′)Im(τ, µ′)dµ′ − F�
2π
e−τ/µ0(2− δm0)Dm(τ, µ, µ0) ,

(2.45)

one for each Fourier component, where the auxiliary quantities Dm(τ, µ, µ′) are defined by

Dm(τ, µ, µ′) ≡ 2πω0(τ)
2N−1∑
l=m

βl(τ)Pm
l (µ)Pm

l (µ′) . (2.46)

The addition theorem for Legendre polynomials was used to express the Legendre polyno-

mials Pl(cos Θ) in terms of the associated Legendre polynomials Pm
l (µ), which have been

normalized in such a way that the sum in Equation (2.46) has no coefficients. The integral

in Equation (2.45) is evaluated by a quadrature sum with 2N Gauss-Legendre quadrature

abscissae µi and weights ai, where i and j take the values ±1, . . . ,±N , and where the positive

and negative indices correspond to upward and downward radiance respectively. This creates

a system of 2N linear equations to be solved for each of the Fourier components,

µi
dImi (τ)

dτ
= Imi (τ)−

∑
j

ajD
m(τ, µi, µj)I

m
j (τ)− F�

2π
e
− τ
µ0 (2− δm0)Dm(τ, µi, µ0) , (2.47)
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where Imi (τ) = Im(τ, µi).

The problem can be solved by splitting up the atmosphere into K homogeneous layers,

finding the general solutions of the 2N systems of 2N equations within each layer, and

applying appropriate boundary conditions. The boundary conditions are shown in Equation

(2.48), where the layer with subscript p is bound by optical depths τp−1 and τp, and where

τ0 = 0 is the top of the atmosphere.

Imi,1(τ0) = 0 i < 0 (2.48a)

Imi,p(τp) = Imi,p+1(τp) p = 1, . . . , K − 1 (2.48b)

Imi,K(τK) = π(1 + δm0)
N∑
j=1

ajµjBm(µi,−µj)Im−j,K(τK)

+F�µ0e
− τK
µ0 Bm(µi,−µ0)

i > 0 (2.48c)

The three boundary conditions state that the downward diffuse radiance is 0 at the top of

the atmosphere, that the radiance is continuous at each layer boundary, and that the upward

diffuse radiance at the surface consists of the reflection of the downward diffuse radiance and

the reflection of the direct solar beam, both according to the BRDF.

2.3.10 Weighting Functions

Continuous Weighting Functions

It is often helpful to use radiative transfer models to calculate not only the radiance, but also

derivatives of the radiance, which are known as weighting functions. The weighting function

wp(z) is defined here as the functional derivative of the radiance I[p(z)] with respect to p(z),

wp(z) =
∂I

∂p
(z) , (2.49)

where p(z) could be any altitude-dependent atmospheric property that affects the calculation

of I[p(z)]. Note that this formulation assumes that the property p(z) is horizontally homo-

geneous. Functional derivatives are formally defined by the integral of their product with an
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arbitrary function, denoted φ(z) here:

∫
∂I

∂p
(z)φ(z)dz ≡ lim

ε→0

I[p(z) + εφ(z)]− I[p(z)]

ε
, (2.50)

or equivalently: ∫
∂I

∂p
(z)φ(z)dz =

d

dε
I[p(z) + εφ(z)]

∣∣∣∣
ε=0

. (2.51)

The weighting function can be isolated by choosing the delta function δ(z′−z) as the arbitrary

function:

wp(z) =
∂I

∂p
(z) =

d

dε
I[p(z′) + εδ(z − z′)]

∣∣∣∣
ε=0

. (2.52)

The term weighting function can also refer to functional derivatives of the logarithm of the

radiance, rather than the radiance itself. Weighting functions of this type will be denoted

ωp(z), and differ from the previous weighting functions by a factor of I[p(z)]:

ωp(z) =
d

dε
ln I[p(z) + εδ(z − z′)]

∣∣∣∣
ε=0

=
1

I[p(z)]

d

dε
I[p(z) + εδ(z − z′)]

∣∣∣∣
ε=0

=
wp(z)

I[p(z)]
. (2.53)

Discrete Weighting Functions

Due to the complexity of the radiative transfer calculation, it is not feasible to calculate an-

alytical weighting functions from an analytical profile properties; the properties are typically

specified in a discretized form, and the resulting weighting functions are also discretized.

If the property p(z) is represented by the vector p containing discrete points pi, then the

radiance can be written as I(p) ≡ I[p(z)], and the Jacobian of I(p) becomes a sensible way

to define a set of discrete weighting functions:

wip ≡
∂I(p)

∂pi
. (2.54)

Consider the case where the property p(z) is represented by constant values pi within homo-

geneous layers defined by the altitude boundaries zi−1 and zi. The derivative of the radiance

with respect to pi now represents the response of the radiance to a constant perturbation to

31



p(z) within layer i, which can be written as

wip =
∂I(p)

∂pi
= lim

∆p→0

I[p(z) + ∆pφi(z)]− I[p(z)]

∆p
, (2.55)

where φi(z) is equal to one within layer i and zero elsewhere, as depicted in Figure 2.7a.

Combining Equation (2.55) with the functional derivative definition in Equation (2.50) gives

the following expression relating the discrete and continuous weighting functions:

wip =

∫
wp(z)φi(z)dz (2.56)

Similarly, if the property p(z) is represented by linear interpolation between points pi defined

at altitudes zi, the derivative of the radiance with respect to pi represents the response of the

radiance to a triangular perturbation to p(z). This can also be expressed using Equations

(2.55) and (2.56), but with φi(z) defined as the triangular function depicted in Figure 2.7b.

(a) Homogeneous layers. (b) Linear interpolation.

Figure 2.7: Shape functions for discretized weighting functions.

These definitions of the discretized weighting function are useful for retrievals based on non-

linear minimization, in which the values pi are being adjusted to find the best match between

the modelled radiance I(p) and the measured radiance. However, it is important to note that

these derivatives are not true samples of the continuous weighting function, due to the shape

function φi(z) being unnormalized. The relationship between discrete weighting functions

32



and samples of the continuous weighting function is given by

wip =

∫
wp(z)φi(z)dz ≈ wp(z

i∗)

∫
φi(z)dz ≡ wp(z

i∗)∆zi (2.57)

where ∆zi is the integral of φi(z) and zi∗ is an altitude representing φi(z).

2.4 Differential Optical Absorption Spectroscopy

Differential optical absorption spectroscopy (DOAS) is a technique used to extract trace gas

concentrations from measurements of light. The technique is defined by the separation of

broadband spectral features from the narrow features which are of interest. DOAS takes

on many different forms: it can be active or passive, done in the lab or in the atmosphere,

done with direct light or scattered light, and ground-based or space-based. All methods

utilize something similar to the spectral fitting described in Section 2.4.2, but only the more

complex arrangements that measure scattered light require the air mass factor (AMF) cor-

rection described in Section 2.4.4. The focus of this document is on DOAS with space-based

measurements of scattered light, but much of the theory is applicable to other arrangements.

2.4.1 Slant Column Densities

The slant column density (SCD) is a quantity that is fundamental to the DOAS method,

as the first step is always to extract the SCD from the measured spectra. Before the SCD

is defined, first consider the definition of the closely related vertical column density (VCD),

denoted V :

V =

∫ H

0

n(z)dz . (2.58)

The VCD is the integral of the number density n(z) along a vertical path, representing

the amount of a given species present in a vertical column per unit horizontal area. Note

that the VCD is a function only of the location and the atmospheric state; it is completely

independent of any measurement being made, in contrast to the SCD which depends on both

the atmospheric state and the measurement parameters. The SCD is the integral of the

number density along what is called the slant path, which is the weighted average of all light
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paths that contributed to a given measurement. Note that in the ultraviolet-visible spectrum

these light paths can be varied and complex: most paths consist of a single scattering or

reflection event, but a non-negligible portion of the signal will consist of paths with multiple

scattering or reflection events, as shown in Figure 2.8. One helpful way to visualize the SCD

is to consider individual photons: if you could trace the path of each individual measured

photon and integrate the number density along these paths, the average of all these integrals

would be equal to the SCD. If L represents the slant path with differential segments dl(λ),

then the SCD S(λ) can be represented by the integral

S(λ) =

∫
L

n(l)dl(λ) . (2.59)

Note that this integral is not a strict line integral, as it captures both the integration and

the averaging described above, but it is helpful notation nonetheless. The SCD is wavelength

dependent, as it is a function of the slant path which is shaped by many scattering, absorption

and reflection events, all of which are wavelength dependent.

Figure 2.8: Illustration of the integration paths for the SCD and the VCD. Note that
the true integration path of the SCD is an average over many more paths than are
shown here.
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2.4.2 Spectral Fitting

The SCD is useful because can be readily computed from radiance measurements with little

computational effort. As shown in Figure 2.9, a trace gas leaves a unique spectral absorption

signature that is visible in the normalized radiance spectrum. For each trace gas of interest,

a wavelength window is chosen in which the absorption is strong enough to show above

measurement noise and in which the spectral features vary rapidly. Because a single SCD

will be derived from the spectrum within this window, the wavelength dependence of the SCD

must be ignored. The window must be small enough that the SCD wavelength dependence is

negligible, but large enough to acquire sufficient signal for the following analysis. Because the

absorption features vary much more rapidly than other wavelength dependent processes, such

as Rayleigh scattering which is responsible for the gentle downward slope of the radiance in

Figure 2.9, they can be easily distinguished from each other. Note that this step is completely

decoupled from any radiative transfer analysis: all of the information regarding the radiative

transfer is contained in the AMF correction that is applied later in the algorithm.

To calculate the SCD, a simplified radiance model is fit to the measurement. This model

accurately describes absorption processes using Beer’s law, but represents the slow changing

features empirically with a low order polynomial:

I(λ) =

(∑
i

piλ
i

)
e−τ(λ) . (2.60)

The optical depth τ(λ) in this model accounts for all of the absorbing species seen by the

light entering the instrument; in other words it is the optical depth along the slant path.

This optical depth is the product of the SCD S and the cross section σ̄(λ),

τ(λ) =

∫
L

n(l)σ(λ, l)dl = Sσ̄(λ) , (2.61)
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Figure 2.9: Spectral fitting example, showing a noisy measurement, the best fit using
Equation (2.63), as well as the low order polynomial term from Equation (2.63). The
NO2 cross sections, which are responsible for most of the features in this wavelength
window, are included for reference.

where σ̄(λ) is the average cross section weighted by the number density along the slant path:

σ̄(λ) =
1

S

∫
L

n(l)σ(λ, l)dl =

∫
L

n(l)σ(λ, l)dl∫
L

n(l)dl
. (2.62)

The position dependence of the cross section is due to its dependence on temperature and

pressure, and is generally quite weak. In practice this average cross section is approximated

since the exact slant path is not known. Combining Equations (2.60) through (2.62), and

generalizing the equations to include multiple absorbing species, results in the following

radiance model, often referred to as the DOAS equation:

I(λ) =

(
N∑
i=0

piλ
i

)
exp

(
−

M∑
j=1

Sjσj(λ)

)
. (2.63)
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For any given spectral window, there are typically multiple absorbing species that have a

significant effect on the radiance. All of these must be a part of the spectral fit, even

when the goal is to retrieve the SCD for only one species. For example, the Version 2.1

Ozone Monitoring Instrument (OMI) NO2 Standard Product (SP2) algorithm fits NO2, water

vapour, and ozone cross sections in the 405-465 nm window in order to retrieve NO2 SCDs

(Bucsela et al., 2013).

Optimal coefficients pi and Sj can be found using a non-linear least squares optimization al-

gorithm such as the Levenberg-Marquardt algorithm, minimizing the following cost function:

Φ(β) =
N∑
k=1

(
yk − I(λk,β)

σk

)2

, (2.64)

where β is a vector containing coefficients pi and SCDs Sj, and where yk are the sun-

normalized radiance measurements taken at wavelengths λk with uncertainties σk, which

are not to be confused with the absorption cross sections σj(λ). A covariance matrix corre-

sponding to β can also be found during the leasts squares optimization (see Appendix C),

and the square roots of its diagonal entries corresponding to the SCDs can be taken as the

uncertainty estimates of the SCDs.

A common alternative to the non-linear DOAS equation in Equation (2.63) is the linear

variant, which fits to the logarithm of the radiance rather than the radiance itself:

ln I(λ) =
N∑
i=0

piλ
i −

M∑
j=1

Sjσj(λ) . (2.65)

The spectral fitting is now a linear least squares problem, which is much more straightforward

than its non-linear counterpart. However, the non-linear DOAS is required under certain

conditions, such as when the Ring Effect technique described in Section 2.4.3 is applied

(Bucsela et al., 2006).
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2.4.3 Ring Effect

The Ring Effect refers to the filling in of the solar Fraunhofer lines when sunlight is observed

through the atmosphere, an effect which was first recorded in the 1960s by by Grainger and

Ring (1962). The primary cause was not immediately established, but it has since been

shown that the Ring effect is primarily caused by inelastic molecular scattering, including

rotational Raman scattering. The Ring Effect is important for NO2 retrievals, as the Ring

signal is an order of magnitude larger than the NO2 absorption signal (Marchenko et al.,

2015).

One consequence of the Ring Effect is that the sun-normalized radiance is no longer com-

pletely free of solar spectrum information, as solar features leak out to nearby wavelengths

and are therefore not completely eliminated when the radiance is divided by the solar irradi-

ance. This extra information can be accounted for without significantly changing the DOAS

method by modelling the Ring Effect as a pseudo-absorber, as has been done in the OMI

NO2 algorithms (Bucsela et al., 2006; Bucsela et al., 2013). An effective cross section σR(λ),

also known as the differential Ring spectrum, is calculated and its amplitude cR is included

as another parameter to fit in the non-linear least squares minimization problem:

I(λ) =

(
N∑
i=0

piλ
i

)
exp

(
−

M∑
j=1

Sjσj(λ)

)
(1 + cRσR(λ)) (2.66)

The calculation of the effective cross section σR(λ) is described by Chance and Spurr (1997).

The rotational Raman cross sections, representing the probability of transitions between

quantum rotational states, are computed for diatomic nitrogen and diatomic oxygen. An

incident solar irradiance spectrum is prepared which matches the resolution of the measuring

instrument. The Raman cross sections are convolved with this solar spectrum to produce

the Ring source spectrum. This spectrum is divided by the same solar spectrum, and then

a low order polynomial is fit and subtracted to produce the differential Ring spectrum. The

differential Ring spectrum contains the necessary information about the rotational Raman

transitions as well as the incident solar spectrum.
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2.4.4 Air Mass Factors

The SCD is not a pure measurement of the state of the atmosphere, as it depends on external

factors such as the position of the observer, the position of the sun, and the ground reflectance.

In order to decouple the measurement from these factors, the SCD must be converted into the

VCD, which is a function of atmosphere alone. This is the purpose of the AMF, a quantity

which is defined as the ratio between the SCD and the VCD:

A(λ) =
S(λ)

V
. (2.67)

The AMF inherits the same weak wavelength dependence as the SCD, which is usually ignored

by calculating the AMF at a single wavelength near the center of the wavelength window used

for the spectral fit. The wavelength dependence will be dropped for the remainder of this

section. The overall strategy for DOAS in a scattering atmosphere is to find the SCD through

spectral fitting, calculate the AMF using the process described below, and divide them to

calculate the VCD. The calculation of the AMF is complicated, requiring complex radiative

transfer calculations and underinformed assumptions about the state of the atmosphere, so

the AMF is often the largest source of error in DOAS retrievals.

AMFs are calculated from quantities known as box-AMFs or scattering weights. The box-

AMF ai is defined as the ratio of the portions of the SCD and the VCD that lie within a

single layer:

ai =
si

vi
=

∫
Li
n(l)dl∫ zi

zi−1

n(z)dz

, (2.68)

where Li is the portion of the slant path L that lies within the discrete layer i between

altitudes zi−1 and zi, as illustrated in Figure 2.10.

By definition the total SCD S and the total VCD V are the sum of the partial SCDs si and

39



Figure 2.10: Illustration of the integration paths for the partial SCD si and the partial
VCD vi. Note that the true integration path of the partial SCD is an average over many
more paths than are shown here.

partial VCDs vi over all layers,

S =
∑
i

si V =
∑
i

vi , (2.69)

which makes the total AMF A an average of all box-AMFs weighted by the partial VCDs:

A =
1

V

∑
i

viai (2.70)

If the absorber number density is assumed to be approximately constant within each layer,

the box-AMFs become mostly independent of the number density profile:

ai =
si

vi
=

∫
Li
n(l)dl∫ zi

zi−1

n(z)dz

≈

∫
Li
nidl∫ zi

zi−1

nidz

=

∫
Li
dl∫ zi

zi−1

dz

. (2.71)

This is advantageous because the same box-AMFs can be used to process many scenes with

different absorber profiles. Typically, an AMF lookup table is used, which contains box-AMF

profiles which can be combined with any absorber profile, and which span an appropriate
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range of relevant variables such as SZA, VZA, relative azimuth angle, surface albedo, and

surface pressure. The lookup table is necessary because calculating the box-AMFs directly

requires a radiative transfer calculation which would be too time consuming for most oper-

ational algorithms. With this framework, calculating the AMF for a given scene is a three

step process: first take the parameters of the scene and linearly interpolate on the AMF table

to acquire the box-AMFs ai, then choose an a priori absorber density profile to acquire the

partial VCDs vi, then finally use Equation (2.70) to calculate the AMF.

Equivalence of Air Mass Factors and Weighting Functions

Box-AMFs can be calculated with most radiative transfer models because they are closely

related to weighting functions, and are equivalent under certain circumstances. A qualita-

tive argument can be made for this equivalency. Weighting functions are a measure of the

sensitivity of the radiance to the addition of extra absorbers in a layer, and box-AMFs are a

measure of the amount of measured light that passed through the layer. Therefore, if more

light has passed through a layer, the addition of extra absorbers in that layer should result

in a larger change in absorption and therefore a larger change in radiance.

To show this equivalence mathematically, the following argument is presented, based on the

work of Rozanov and Rozanov (2010). First, we define the continuous AMF as a limiting

case of the box-AMF:

A(z) = lim
∆zi→0

ai = lim
∆zi→0

∫
Li
n(l)dl∫ zi

zi−1

n(z)dz

=
n(l)dl

n(z)dz
=
dl

dz
, (2.72)

where ∆zi = zi− zi−1 and where interval (zi−1, zi) contains z even as ∆zi goes to zero. Note

that in this limiting case, the number density terms cancel and the continuous AMF A(z) is

completely independent of the number density profile n(z).

To go in the opposite direction and calculate a finite box-AMF given the continuous AMF,

this result dl = A(z)dz can be used as a change of variables in Equation (2.68) to show that

a box-AMF is a continuous weighted average of the continuous AMF within a layer:
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ai =

∫
Li
n(l)dl∫ zi

zi−1

n(z)dz

=

∫ zi

zi−1

n(z)A(z)dz∫ zi

zi−1

n(z)dz

. (2.73)

Consider the radiance I[k(z)] resulting from the extinction profile k(z) at some single wave-

length λ which will be dropped from the notation for this argument. The weighting functions

ωk0(z) can be used to Taylor expand the logarithm of the radiance ln I[k(z)] around ln I[k0(z)],

ln I[k(z)] = ln I[k0(z)] +

∫ H

0

ωk0(z)∆k(z)dz +O(∆k2) , (2.74)

where k0(z) is the base extinction profile and ∆k(z) is a small perturbation such that k(z) =

k0(z) + ∆k(x). Note that the weighting functions ωk0(z) are derivatives of the logarithm of

the radiance, not the radiance itself.

A similar equation can be constructed by applying Beer’s law. The integral of the extinction

along the slant path computes the optical depth for the entire measurement, so the relation-

ship between the radiance without absorbers I[k = 0] and the true radiance with absorbers

I[k(z)] can be written as

I[k(z)] = I[k = 0]−
∫
L

k(l)dl . (2.75)

Forming the same equation for the base profile k0(z) and subtracting,

ln I[k(z)] = ln I[k0(z)]−
∫
L

∆k(l)dl , (2.76)

and performing a change of variables using the continuous AMF definition found in Equation

(2.72),
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ln I(k) = ln I(k0)−
∫ H

0

∆k(z)A(z)dz , (2.77)

we now have an equation of the same form as the Taylor expansion in Equation (2.74).

Comparing the two equations, it is evident that if the perturbation ∆k(z) is made sufficiently

small, the AMFs are equal to the weighting functions up to a sign:

A(z) = −ωk0(z) . (2.78)

Substituting this result into Equation (2.73), the box-AMF ai is equal to the discretized

weighting function ωik0 ,

ai = −

∫ zi

zi−1

n(z)ωk0(z)dz∫ zi

zi−1

n(z)dz

= −
∫
ωk0(z)φi(z)dz = −ωik0 , (2.79)

where the normalized shape function,

φi(z) =

n(z)/vi zi−1 < z < zi

0 else

, (2.80)

is zero outside layer i and has the shape of the number density profile n(z) within. While this

precise shape function is required for mathematical equivalence, in practice the discretization

is typically insensitive to the chosen shape function, and the use of a simple triangular or

rectangular shape function as discussed in Section 2.3.10 will result in negligible change. The

sensitivity to the chosen shape function increases as the gradient of the weighting function

ωk0(z) increases, which may become a problem if the gradient of the number density n(z)

is also high, as this would make the true shape function φi(z) highly asymmetrical and

a symmetric shape function would sample ωk0(z) at the wrong altitudes within the layer.
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These conditions can occur near the ground over polluted scenes with low surface albedo, as

the low albedo causes the weighting function to rapidly decrease and the pollution causes the

number density to rapidly increase. Under these circumstances it may be easier to decrease

the width of the layers rather than alter the discretization shape function.

Air Mass Factors and Clouds

The presence of clouds significantly affects the calculation of AMFs. Below the clouds the

box-AMFs decrease and above the clouds they increase as the cloud scatters sunlight away

from the Earth. To account for clouds, a second AMF lookup table is created which assumes

complete cloud cover. Over partially cloudy scenes, an interpolation is performed between

the clear-sky table and the cloudy-sky table as first suggested by Martin et al. (2002),

ai = waicloudy + (1− w)aiclear , (2.81)

where w is the fraction of the measured radiance that was scattered by clouds, a value

that is typically larger than the geometric cloud fraction due to the high reflectivity of

clouds. To calculate box-AMFs for cloudy scenes two additional parameters are required:

the cloud radiance fraction and the cloud pressure, both of which can typically be estimated

by performing a separate retrieval on the same measurement. The algorithms used to derive

these parameters are outside the scope of this thesis.

It is important that the calculation of the cloudy-sky AMF table uses the same set of as-

sumptions as the cloud parameter retrievals. For example, the SP2 algorithm assumes that

clouds are Lambertian reflectors with an albedo of 0.8, which is the same assumption used

by the OMI cloud algorithm (Bucsela et al., 2013). This is particularly important when

aerosol is not accounted for explicitly because weakly absorbing aerosols have an effect on

the measured radiance similar to that of clouds, so in reality the cloud radiance fraction and

the cloud pressure are effective parameters that account for clouds and aerosols together.
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Air Mass Factor Uncertainty

Estimating the uncertainty in the AMF is an inexact science which requires many assumptions

and approximations, and which has been done with a wide variety of approaches. The method

described here is based on the error analysis for the SP2 algorithm described by Bucsela et al.

(2013), but it is very similar to the more modern NO2 data product from the Tropospheric

Monitoring Instrument (TROPOMI) described by van Geffen et al. (2019). The concept is

straightforward: estimate an uncertainty for each AMF input that the AMF is sensitive to,

and propagate it through the AMF equation by taking its derivative with respect to that

parameter to find the corresponding uncertainty in the AMF. Combining Equations (2.70)

and (2.81) and changing to a vector notation gives the following expression for the AMF:

A =
vT (wacloudy(pc) + (1− w)aclear(as))

V
, (2.82)

where v is a vector containing the partial VCDs vi, V is the sum of all partial VCDs vi,

acloudy and aclear are vectors containing box-AMFs aicloudy and aiclear, and where the depen-

dence on cloud pressure pc and surface albedo as is shown explicitly. The four inputs that

will be considered for uncertainty analysis are v, w, pc, and as, as other inputs have an

insignificant effect. An uncertainty must be estimated for each of the four inputs, a single

value σX for each of the scalar inputs X = w, pc, as representing the standard deviation of the

assumed normal distribution, and a covariance matrix Σv for the vector input v representing

the assumed multivariate normal distribution. These uncertainties are linearly propagated

through Equation (2.82) as discussed in Appendix A.2:
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σ2
Aw =

(
∂A

∂w

)2

σ2
w

∂A

∂w
=
vT (acloudy(pc)− aclear(as))

V
(2.83a)

σ2
Apc

=

(
∂A

∂pc

)2

σ2
pc

∂A

∂pc
=
wvT

V

∂acloudy

∂pc
(2.83b)

σ2
Aas

=

(
∂A

∂as

)2

σ2
as

∂A

∂as
=

(1− w)vT

V

∂aclear

∂as
(2.83c)

σ2
AV

= (∇vA)TΣv(∇vA) ∇vA =
wacloudy(pc) + (1− w)aclear(as)− Au

V
, (2.83d)

where u is a vector the same size as v containing ones. Note that the partial derivatives of

the box-AMFs, ∂acloudy/∂pc and ∂aclear/∂as, must be estimated numerically. To compute

the total AMF uncertainty σA, the uncertainties are assumed to be independent so that the

variances can be summed,

σ2
A = σ2

Aw + σ2
Apc

+ σ2
Aas

+ σ2
AV

, (2.84)

although this assumption is certainly an approximation, as the retrieval of cloud parameters

is sensitive to the assumed surface albedo.

2.4.5 Stratosphere-Troposphere Separation

The troposphere and the stratosphere are the two lowest temperature-defined layers of the

Earth’s atmosphere. The troposphere is the lowest layer, and is primarily heated by the

surface so that temperature decreases as altitude increases. The top of the troposphere is

defined by the tropopause, the altitude where this cooling stops and the temperature is

relatively constant with altitude, which ranges from about 9 km at the poles to about 17 km

at the equator. The stratosphere begins at the tropopause and extends to about 50 km or

55 km - this region is primarily heated by the absorption of ultraviolet sunlight by the ozone

layer, which causes the temperature to increase with altitude. The stratosphere is very stable,

lacking the turbulence that produces such rapidly changing weather in the troposphere. The
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distinction between stratosphere and troposphere is important for remote sensing because the

sources and the behaviour of trace gases can change significantly from one region to the other.

Ozone and NO2, for example, occur naturally in the stratosphere and do not typically have

any rapidly changing horizontal structure. In the troposphere, however, they are primarily

produced by human activity, and the combination of sporadic sources and turbulence results

in significant horizontal structure.

If a stratosphere-troposphere distinction is not necessary, the total VCD V can be calculated

by dividing the SCD S by the AMF A, and its uncertainty σV is calculated by propagating

the uncertainties of the SCD σS and the AMF σA:

V =
S

A
σ2
V =

(σS
A

)2

+

(
SσA
A2

)2

. (2.85)

However, if the distinction is necessary, which is the case for NO2 where the polluting tro-

pospheric component is of interest due to human health concerns, it is necessary to estimate

the stratospheric component of the VCD Vs, as well as to compute separate AMFs for the

troposphere At and the stratosphere As. The tropospheric VCD Vt and its uncertainty σVt

is then given by

Vt =
S − VsAs

At
σ2
Vt =

(
σS
At

)2

+

(
AsσVs
At

)2

+

(
VsσAs
At

)2

+

(
VtσAt
At

)2

. (2.86)

Computing the tropospheric and stratospheric AMFs is done by picking a tropopause altitude

and then applying Equation (2.70) to the layers above and below this altitude separately. The

estimation of of the stratospheric column has been done using several different techniques.

In early algorithms such as the NO2 algorithm for GOME, the stratospheric component

was assumed to be constant longitudinally, and was estimated using measurements over the

Pacific where the troposphere was assumed to contain minimal NO2 pollution (Martin et

al., 2002). A similar strategy was adopted for the OMI NO2 Standard Products, but the

measurements were taken from low-pollution locations all over the globe, and more complex
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processes such as planetary wave analysis (Bucsela et al., 2006) or image processing (Bucsela

et al., 2013) replaced the assumption of longitudinal invariance for the purpose of extending

the stratospheric field over polluted regions. The low pollution measurements can also be

assimilated into a chemical transport model (CTM) to extend the stratospheric field over

polluted regions, as has been done for the Dutch OMI NO2 (DOMINO) product (Boersma,

Eskes, & Brinksma, 2004) and the TROPOMI NO2 product (van Geffen et al., 2019). The

most robust method is to use collocated limb measurements to measure the stratospheric

column directly, either with a single instrument with nadir and limb modes as has been

done with the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography

(SCIAMACHY) (Beirle, Kuhl, Pukite, & Wagner, 2010), or with two separate instruments

as has been done with with OMI and OSIRIS (Adams et al., 2016). However, this is not

always possible as collocated limb measurements are not always available.
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3 DOAS Algorithm Development

3.1 Slant Column Densities

Two SCD fitting algorithms have been implemented, following the method outlined in Section

2.4.2. The current implementations are based on OMI algorithms for NO2 (Bucsela et al.,

2013) and total column ozone (Veefkind, de Haan, Brinksma, Kroon, & Levelt, 2006), but

they are easily extendible to other similar algorithms. The least squares minimization for

both implementations is done using the Levenberg-Marquardt algorithm via the curve fit

function from the optimize module of the Python package SciPy, which is a wrapper around

the lmder algorithm from the FORTRAN library MINPACK, based on the work of Jorge

Moré (1978). Analytic Jacobians of Equations (3.1) and (3.2) with respect to the fitting

parameters are supplied to curve fit to speed up the algorithm by replacing the numerical

Jacobian estimation, since expressions for the derivatives exist and their evaluation does not

require significant additional computational effort.

NO2 Slant Column Densities

The NO2 algorithm uses the radiance model described by Equation (2.66) in the spectral

window from 405 nm to 465 nm with a fifth order polynomial, three species (NO2, O3, and

H2O), and an optional Ring spectrum. This results in ten fitted parameters: polynomial

coefficients p0 through p5, SCDs S
NO2

, S
O3

, and S
H2O

, and Ring amplitude cR. All cross

sections are taken at a temperature of 220 K; this is not accounted for in the SCD stage of

the DOAS algorithm, but a temperature correction is applied to the AMF. The model is
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given by

I
NO2

(λ) =

(
5∑
i=0

piλ
i

)
exp

(
−S

NO2
σ
NO2

(λ)− S
O3
σ
O3

(λ)− S
H2O

σ
H2O

(λ)
)

(1 + cRσR(λ)) .

(3.1)

Ozone Slant Column Densities

The ozone algorithm utilizes the spectral window from 331.6 nm to 336.6 nm, and adds an

effective temperature to the SCD fitting. The Ring correction described in Veefkind et al.

(2006) has not been implemented. The effective temperature is equal to the weighted average

of the temperature along a vertical profile with the ozone concentration as the weights, which

is typically quite close to the temperature at the peak of the ozone layer in the stratosphere.

There are five fitted parameters: polynomial coefficients p0 through p2, ozone SCD S
O3

, and

effective temperature Teff. The model is given by

I
O3

(λ) =

(
2∑
i=0

piλ
i

)
exp

(
−S

O3
σ
O3

(λ, Teff)
)
, (3.2)

where the temperature dependence of the cross section σ
O3

(λ, Teff) has been linearized to

decrease computation time. It is implemented as a linear interpolation or extrapolation

between ozone cross sections at two reference temperatures, T1 = 228 K and T2 = 243 K:

σ
O3

(λ, Teff) =

(
T2 − Teff

T2 − T1

)
σ
O3

(λ, T1) +

(
Teff − T1

T2 − T1

)
σ
O3

(λ, T2) . (3.3)

3.2 Ring Effect

The implemented Ring effect spectrum follows Chance and Spurr (1997). The first step,

described in Section 2.3.4, consists of calculating the rotational Raman cross sections for N2

and O2. Tabulated values which accompany Spectroscopy and Radiative Transfer of Planetary

Atmospheres by Chance and Martin (2017) are used. The tabulated values include the initial

state energy, the transition energy, and the Placzek-Teller coefficient for every rotational
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Raman line with an intensity greater than 0.1% of the strongest line, and they include the

necessary corrections for O2. The resulting cross sections are displayed in Figure 3.1. The

line broadening described by Chance and Spurr is currently neglected.

(a) N2 (b) O2

Figure 3.1: Rotational Raman cross sections with an excitation wavelength of 440 nm
at a temperature of 250 K. The O2 lines account for deviation from the Hund’s case b
basis.

The second step is to use these cross sections to produce the differential Ring spectrum, as

described in Section 2.4.3. For the convolution of the cross sections and the solar spectrum,

Han et al. calculated the cross sections at a single center wavelength (2011), as opposed to

calculating it at many wavelengths across the spectral region of interest. This significantly

affects the low-frequency behaviour of the source spectrum, as seen in Figure 3.2. However,

when a fitted polynomial is removed to produce the differential Ring spectrum as shown in

Figure 3.3, this approximation has a reasonably small effect. Both the simplified convolution

and the full convolution are available in the current implementation, but the full convolution

is preferred, since the claim by Han et al. that the simplified convolution has negligible effects

on the retrieval has not been verified, and rapid calculation of Ring spectra is not currently

a priority.
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(a) Solar spectrum. (b) Rotational Raman source spectrum.

Figure 3.2: An example solar spectrum and its corresponding rotational Raman source
spectrum, calculated by convolving the solar spectrum and the rotational Raman cross
sections for air molecules. The full convolution calculates the cross sections across the
window, whereas for the approximation they are calculated at a single wavelength.

3.3 Air Mass Factors

Tools for calculating AMFs were developed in Python, using three separate engines avail-

able within SASKTRAN: the high resolution (HR) engine which uses the successive orders

method, the Monte Carlo (MC) engine, and the discrete ordinates (DO) engine. SASKTRAN

is built in C++, but it is typically accessed via a python interface; the HR and DO AMFs

were implemented in python using the standard interface, but the MC AMFs had to be

implemented in the core C++ engine. These tools can be used both for direct calculation

of AMFs for a specific scene, as well as for creating AMF lookup tables. Currently, lookup

tables are implemented using the Python package xarray for its built-in multidimensional

linear interpolation and its ability to easily export tables as netcdf files.
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(a) Differential Ring spectra. (b) Differential Ring spectra difference.

Figure 3.3: An example solar spectrum and its corresponding rotational Raman source
spectrum, calculated by convolving the solar spectrum and the rotational Raman cross
sections for air molecules. The full convolution calculates the cross sections across the
window, whereas for the approximation they are calculated at a single wavelength.

3.3.1 Box Air Mass Factors Via Weighting Functions

The HR and DO box-AMFs are calculated by first calculating weighting functions, and then

transforming them into box-AMFs. Both engines have built-in weighting functions, described

by Zawada et al. for the HR engine (2015), and derived for the discrete ordinates method by

Spurr et al. (2001). These weighting functions win are the response of the radiance I[n(z)] to

a triangular perturbation in the number density n(z), which can be written in terms of the

continuous weighting function, following the notation used in Section 2.3.10:

win =

∫
∂I

∂n
(z)φi(z)dz , (3.4)

where the shape function φi(z) is a symmetric triangle centered on zi such that φi(zi) = 1

and
∫
φi(z)dz = ∆zi. The altitudes zi and the corresponding widths ∆zi are user-specified.

As discussed in Section 2.3.10, this is approximately equal to the value of the continuous
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weighting function evaluated at zi multiplied by the width:

win ≈ ∆zi
∂I

∂n
(zi) . (3.5)

The continuous AMF is equal to the negative of the functional derivative of the logarithm of

the radiance with respect to extinction (see Section 2.4.4), which can be expressed as

A(z) = −∂ ln I

∂k
(z) = − 1

I[n(z)]

1

σ(z)

∂I

∂n
(z) , (3.6)

where the factor of I[n(z)] accounts for the logarithm and the cross section σ(z) accounts for

the change from extinction k(z) to number density n(z). If the layer is sufficiently thin, and if

the gradients of the continuous AMF A(z) and the number density n(z) are sufficiently small,

then the sample A(zi) is a good approximation of the box-AMF ai for the layer containing

zi. Combining this with Equations (3.5) and (3.6) gives the following expression, which is

the basis for the HR and DO box-AMFs:

ai ≈ − win
I[n(z)]σ(zi)∆zi

. (3.7)

The weighting functions win are calculated at the midpoint of each AMF layer, with the

weighting function width ∆zi equal to half the width of the layer. These parameters are

chosen to keep the triangular perturbation entirely within the layer, which prevents issues in

the bottom layer where a wider perturbation would be clipped by the ground.

The built-in weighting functions were tested against a finite-difference scheme, in which a

triangular perturbation was added to the number density profile to compute a finite-difference

derivative. The built-in HR weighting functions have only been verified for limb viewing

geometries (Zawada et al., 2015), and it was found that the they were not sufficiently accurate

for computing AMFs with a nadir viewing geometry, therefore finite-difference weighting

functions must be used. The built-in weighting functions for the DO engine were found

to agree well with their finite-difference counterparts, which means the built-in option is

preferred, as it is faster and does not depend on the chosen finite difference parameters.
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Example box-AMF profiles for all four methods are shown in Figure 3.4. The figure also

illustrates how DO and HR box-AMFs agree for small SZAs and VZAs, but begin to deviate

as these values grow due to the plane-parallel assumption made by the DO engine. The DO

box-AMFs can be computed much more quickly, motivating their use for first order work and

for scenes with small SZAs and VZAs, but the use of the HR engine is necessary for accurate

work with large zenith angles.

(a) Mexico City (SZA 26.5◦, VZA 22.8◦) (b) Fort McMurray (SZA 44.7◦, VZA 65.3◦)

Figure 3.4: Box-AMF comparison between the HR and DO engines, as well as be-
tween built-in and finite-difference weighting functions, showing typical examples at the
northern and southern extents of TEMPO’s field of regard on a summer afternoon.

3.3.2 Monte Carlo Air Mass Factors

The MC engine was originally motivated as a means of verifying the radiances produced

by the HR engine, which are sensitive in both accuracy and computation time to certain

engine parameters, in particular those related to diffuse profiles, which are vertical profiles

of scattering source terms. Specifically, HR calculations are sensitive to the incoming and

outgoing angular resolutions chosen for each diffuse point within the diffuse profiles, as well as

the density and placement of the profiles (Zawada et al., 2015). The MC engine is independent

of these parameters, and can be used to determine optimal settings for HR that achieve
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reasonable accuracy and computation time. The motivation for calculating box-AMFs with

the MC engine is the same, as it allows HR engine parameters to be chosen with confidence.

It also provides verification for the assumptions described in Section 3.3.1 regarding the

shape of the weighting function perturbation and the approximate equality of the discrete

and continuous AMFs, as the MC method does not rely on these assumptions.

Total Air Mass Factors

The basis of the MC AMF algorithm is the calculation of the SCD alongside the radiance,

after which it is a simple matter to divide the SCD by the VCD to get the AMF. The SCD

can be calculated alongside the radiance by integrating the number density along each photon

path that is traced, and combining these integrals in the appropriate way.

Consider the radiance I(r, Ω̂) in an arbitrary direction Ω̂ at an arbitrary point in the at-

mosphere r. There is a SCD that is associated with this radiance, which will be denoted

SI(r, Ω̂); note that this is the same SCD that is discussed in Section 2.4.1, except that it has

now been extended to an arbitrary location in the atmosphere and an arbitrary direction,

not just the location and direction where the measurement is being taken. This SCD is equal

to the average of the number density integrals along all contributing photon paths. Note

that it is impractical to trace individual photon paths and take a strict average, but if all

contributing light paths can be parameterized in some way, the SCD can be computed by

taking a weighted average, with weights equal to the radiance contribution associated with

each path.

For the following work, however, it will be necessary to work instead with the product of the

SCD and the corresponding radiance, W I(r, Ω̂) = I(r, Ω̂)SI(r, Ω̂), which will be referred to

as the weighted SCD. The weighted SCD can also be computed by considering all contributing

paths, but now they must be combined with a simple sum, rather than a weighted average.

The radiance I(r, Ω̂) can be divided into many contribution, each of which can be multiplied

by the number density integral along its corresponding light path; the weighted SCD is the

sum of this product over all contributions. Order-specific radiances In(r, Ω̂) also have a

corresponding weighted SCD, W I
n(r, Ω̂), which shares the definition of W I(r, Ω̂) but with
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the added condition that every contributing light path has exactly n scattering or reflection

events. Additionally, the weighted SCD concept can be extended to source terms, defining

W J
n (r, Ω̂) and W Ĩ

n(r, Ω̂) corresponding to Jn(r, Ω̂) and Ĩ(r, Ω̂) respectively, as these source

terms are also made up of many radiance contributions for which the same calculation can

be made.

The weighted SCD can be calculated following the same strategy used to calculate the radi-

ance, as described in Section 2.3.8, where radiance terms of one order are used to calculated

source terms of the next order, which are subsequently used to calculate radiance terms

of that same order. Firstly, the weighted SCD WI0(r, Ω̂) corresponding to direct sunlight

I0(r, Ω̂) is the product of that radiance with a single line integral:

W I
0 (r, Ω̂) = I0(r, Ω̂)S(r, Ω̂0, s2) , (3.8)

where S(r, Ω̂, s) represents the following integrated number density:

S(r, Ω̂, s) ≡
∫ 0

s

n(r + tΩ̂)dt . (3.9)

Secondly, weighted SCDs associated with source terms are calculated by integrating the

weighted SCDs associated with all incoming contributions:

W J
n (r, Ω̂) = ω0(r)

∫
4π

W I
n−1(r, Ω̂′)p̄(r, Ω̂, Ω̂′)dΩ′ (3.10)

W Ĩ
n(r, Ω̂) = a0(r, Ω̂)

∫
2π

W I
n−1(r, Ω̂′)b(r, Ω̂, Ω̂′)dΩ′ . (3.11)

Note that these equations match Equations (2.36b) and (2.36c), where the source terms

themselves are calculated by integrating the incoming contributions. The piecewise function

can be defined in the same way, matching Equation (2.36d):

W J∗

n (r, Ω̂, T ) =

W
Ĩ
n(r + s(T )Ω̂, Ω̂) T ≤ T (s1)

W J
n (r + s(T )Ω̂, Ω̂) T > T (s1)

. (3.12)
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Similarly, Equation (2.36a) is mirrored here to calculate the weighted SCD W I
n(r, Ω̂) corre-

sponding to higher order radiance terms In(r, Ω̂), but now one additional term is required.

To understand this additional term, first consider Equation (2.36a), which states that the

radiance In(r, Ω̂) consists of infinitesimal contributions J∗n(r, Ω̂, T )dT . Each contribution

J∗n(r, Ω̂, T )dT represents the light that is scattered into the line of sight at the point r+s(T )Ω̂.

As illustrated in Figure 3.5, the corresponding weighted SCD, W J∗
n (r, Ω̂, T ), accounts for all

of the incoming light paths that lead to the point r+ s(T )Ω̂, but it does not account for the

final segment that the light must traverse from the final scatter point r + s(T )Ω̂ to r. To

account for this final segment, the product of its number density integral S(r, Ω̂, s(T )) and

its corresponding radiance contribution J∗n(r, Ω̂, T )dT must be included:

W I
n(r, Ω̂) =

∫ 1

0

(
W J∗

n (r, Ω̂, T ) + S(r, Ω̂, s(T ))J∗n(r, Ω̂, T )
)
dT . (3.13)

Figure 3.5: Illustration of the paths that are accounted for by each term in the
weighted SCD calculation in Equation (3.13). Note that W J∗

3 (r, Ω̂, T ) accounts for
many paths leading to the point r + s(T )Ω̂, not just the one shown here.

Equations (3.10), (3.11), and (3.13) can be evaluated with Monte Carlo integration, producing
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the following equations, which are analogous to Equation 2.37:

W I
n(r, Ω̂) =

〈
W J∗

n (r, Ω̂, T ) + S(r, Ω̂, s(T ))J∗n(r, Ω̂, T )
〉
T∼uni(0,1)

(3.14a)

W J
n (r, Ω̂) = 4πω0(r)

〈
W I
n−1(r, Ω̂′)

〉
Ω̂′∼p(r,Ω̂,Ω̂′)

(3.14b)

WĨn
(r, Ω̂) = 2πa0(r, Ω̂)

〈
W I
n−1(r, Ω̂′)

〉
Ω̂′∼b(r,Ω̂,Ω̂′)

. (3.14c)

The sample spaces in Equations (2.37) and (3.14) can be filled simultaneously using common

ray tracing, which introduces correlation between terms, but greatly reduces computation

time. Let N ray traces be performed following the technique described in Section 2.3.8.

Each trace, indexed here by j, produces radiance samples In,j, as before, but also weighted

SCD samples Wn,j for each order of scattering n. To reduce complexity in the current imple-

mentation, all orders are summed at the time the sample is taken, resulting in two samples, Ij

and Wj, for every ray trace. This means that order-specific SCDs and their variances cannot

be computed, but it eliminates the need to keep extensive correlation information between

orders. The means, the variances, and the covariance of I(r, Ω̂) and W (r, Ω̂) are computed

with the following running sums, following the results from Appendix B.3:

W =
1

n

n∑
j=1

Wj Var(W ) =
1

n− 1

(
1

n

n∑
j=1

W 2
j −W 2

)
(3.15)

I =
1

n

n∑
j=1

Ij Var(W ) =
1

n− 1

(
1

n

n∑
j=1

I2
j − I2

)
(3.16)

Cov(I,W ) =
1

n− 1

(
1

n

n∑
j=1

IjWj − IW

)
. (3.17)

The final SCD is then the ratio of W and I,

SI =
W

I
, (3.18)
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with variance given by the following linear approximation derived in Section A.3:

Var(SI) =
W 2

I2

(
Var(W )

W 2
− 2

Cov(W, I)

WI
+

Var(I)

I2

)
. (3.19)

As a final step, the SCD SI(r, Ω̂) and its variance are divided by the VCD to calculate the

AMF and its variance.

Box Air Mass Factors

A small change to the process described in Equations (3.8) through (3.19) allows for box-

AMFs to be computed in the place of the total AMF. Replacing Equation (3.9) with an

integral that is constrained to a single layer,

Si(r, Ω̂, s) ≡
∫ 0

s

n(r + tΩ̂)φi(r + tΩ̂)dt , (3.20)

where φi(r) is equal to one when r is within layer i and zero otherwise, results in a layer-

specific SCD. The box-AMF of this layer is then equal to the layer-specific SCD divided by

the VCD within the layer. This can be done concurrently for many layers. If the layers

are small enough that the number density does not change significantly within the layer,

box-AMFs can be approximated by replacing the SCD with the path length,

Si(r, Ω̂, s) ≡
∫ 0

s

φi(r + tΩ̂)dt , (3.21)

and by dividing by the vertical thickness of the layer rather than the VCD.

Example box-AMF calculations are shown in Figure 3.6, alongside HR box-AMFs for com-

parison. The figure illustrates how at one million photon paths traced, the MC AMFs appear

to have converged to a reasonably smooth solution. It also demonstrates the motivation for

the MC box-AMFs, which is to verify the HR box-AMFs and to help choose reasonable HR

parameters: here it can be seen that with a single diffuse profile, the HR box-AMFs are

underestimated by about 1%, which is corrected by introducing 4 additional diffuse profiles.
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Figure 3.6: Comparison between HR and MC AMFs. The highlighted regions show
the estimated standard deviation of the MC AMFs. The conditions match those in
Figure 3.4b.

3.4 Retrievals

End-to-end retrieval algorithms have been implemented, utilizing all of the tools previously

described in this section. Two algorithms are currently implemented, corresponding to the

SP2 algorithm (Bucsela et al., 2013) and the OMI total ozone algorithm (Veefkind et al.,

2006) referenced in Section 3.1. The implementations are object oriented, designed to allow

for any individual piece of the algorithm to be changed with little effort. For example, by

default box-AMF profiles are provided to the algorithm via lookup tables, but it is relatively

simple to replace this piece of the algorithm with direct scene-by-scene box-AMF calculations,

which would be prohibitively slow for large datasets but which may be useful for verification

on a smaller scale. Retrievals over cloudy scenes have not yet been implemented, but the

structure is all in place for when this becomes necessary.
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Ozone Total Column Retrieval

The ozone total column retrieval utilizes a cloud-free version of Equation (2.82) to calculate

the total AMF,

A =
vTaclear(as)

V
, (3.22)

and Equation (2.85), repeated here, to calculate the VCD and its uncertainty:

V =
S

A
σ2
V =

(σS
A

)2

+

(
SσA
A

)2

. (3.23)

A thorough AMF uncertainty analysis following Equations (2.83) and (2.84) has not been

implemented for ozone, although it will a simple matter to copy this over from the NO2

retrieval when it is required. In summary, the implemented retrieval consists of the following

steps:

1. Perform a spectral fit to retrieve the ozone SCD and its uncertainty (see Section 3.1).

2. Calculate the box-AMF profile (see Section 3.3).

3. Acquire an a priori ozone profile.

4. Calculate the total AMF and assume a constant percent uncertainty using Equation

(3.22).

5. Calculate the VCD and its uncertainty using Equation (3.23).

NO2 Tropospheric Column Retrieval

The NO2 tropospheric column retrieval introduces a temperature correction to the AMF

calculation,

A =
vTα(T )aclear(as)

V
, (3.24)

where α(T ) is the temperature correction factor, a diagonal matrix with elements αi =

1− 0.003(T i − T0), and where T i is the temperature in layer i and T0 is the temperature of

the cross sections used for the spectral fitting, in this case 220 K. The temperature correction

factor accounts for the effects of this constant temperature cross section, and the value
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0.003 was determined empirically by analyzing synthetic radiance data (Bucsela et al., 2013).

Equation (3.24) is applied twice, once for the tropospheric AMF and once for the stratospheric

AMF, with each of them only using atmospheric layers from their respective regions.

In the following uncertainty analysis, several constant uncertainties are assumed based on

suggestions from Bucsela et al. (2013). For the tropospheric AMF At, the uncertainty

σAt is calculated using cloud-free variants of Equations (2.83) and (2.84) that include the

temperature correction factor:

σ2
Aas

=

(
∂A

∂as

)2

σ2
as

∂A

∂as
=
vTα(T )

V

∂aclear

∂as
(3.25a)

σ2
AV

= (∇vA)TΣv(∇vA) ∇vA =
α(T )aclear(as)− Au

V
(3.25b)

σ2
At = σ2

Aas
+ σ2

AV
, (3.26)

where the uncertainty σas in the surface albedo as is assumed to be a constant 0.015.

The stratospheric AMF As has a smaller uncertainty, as it is much less sensitive to uncer-

tainties in ground reflectance, and the stratospheric NO2 profile has much less variability

then its tropospheric counterpart. The uncertainty σAs is assumed to be a constant 2 %. The

retrieved tropospheric column is then given by Equation (2.86), repeated here:

Vt =
S − VsAs

At
σ2
Vt =

(
σS
At

)2

+

(
AsσVs
At

)2

+

(
VsσAs
At

)2

+

(
VtσAt
At

)2

, (3.27)

where the uncertainty σVs of the stratospheric column Vs is assumed to be a constant

2× 1014 cm−2. In summary, the implemented retrieval consists of the following steps:

1. Perform a spectral fit to retrieve the NO2 SCD and its uncertainty (see Section 3.1).

2. Calculate the box-AMF profile and its derivative with respect to albedo (see Section

3.3).

3. Acquire an a priori NO2 profile and its covariance matrix.

4. Calculate the tropospheric AMF and its uncertainty, assuming an uncertainty of 0.015

for the albedo using Equations (3.24) and (3.25).
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5. Calculate the stratospheric AMF and assume a 2 % uncertainty using Equation (3.24).

6. Calculate the VCD and its uncertainty, assuming an uncertainty of 2× 1014 cm−2 for

the stratospheric column using Equation (3.27).
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4 DOAS Applications

4.1 TROPOMI Validation Campaign

The tools described in Section 3.3 were used to develop an AMF lookup table that was used

by collaborators at Environment and Climate Change Canada (ECCC) for their validation

campaign for TROPOMI over the oil sands in Alberta. The ECCC validation campaign

consisted of comparing TROPOMI NO2 data with ground based remote measurements and

in situ aircraft measurements, and the results were published in late 2018 (Griffin et al.,

2018). These AMFs were requested by ECCC to facilitate future improvements, such as

accounting for aerosols and non-Lambertian ground reflection features, especially over snow.

Preliminary results showed minor improvements with the new AMFs before implementing

any of these new features. These results are shown in Figure 4.1, which is an early variant of

Figure 2 from Griffin et al. (2018), received from Griffin via personal communication during

the preparation of the publication. The figure illustrates a low bias in the TROPOMI NO2

data product over the snow-covered oil sands which is improved by using new AMFs in the

place of the TROPOMI AMFs. The left plots compare the original TROPOMI VCDs with

the in situ aircraft VCDs, the middle plots compare the recalculated VCDs with the aircraft

VCDs, and the right plots compare AMFs from all three methods for every scene. In the

right plot, it can be seen that the aircraft AMFs, which are considered the most accurate

measurement in this scenario, compare better with the new AMFs than with the original

TROPOMI AMFs. The TROPOMI AMFs are consistently biased high, resulting in the low

bias of the TROPOMI VCDs. The top row in Figure 4.1 was made using AMFs calculated by

ECCC, and the bottom row was made using AMFs calculated with SASKTRAN as part of the

present work. The SASKTRAN AMFs compare slightly better with the aircraft AMFs than
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the ECCC AMFs, although the improvement is small enough that it should be interpreted

as verification of the SASKTRAN AMFs, rather than as a significant upgrade.

Figure 4.1: Comparison between TROPOMI data and aircraft measurements, using
TROPOMI AMFs, ECCC AMFs, and SASKTRAN AMFs. Early iteration of Figure 2
of Griffin et al. (2018), received from Griffin via personal communication.

The AMF tables sent to ECCC were calculated using the DO engine, with 500 m spacing up

to an altitude of 12 km. One table was calculated for clear conditions, and one for cloudy

conditions, with entries corresponding to every combination of the applicable parameters

defined in Table 4.1. Since this work was published, in continued collaboration with ECCC,

the table has been recalculated using the HR engine, which is more computationally expensive

but more accurate, especially at high zenith angles, and extended to an altitude of 50 km.

Aerosol properties are currently being incorporated into the table to facilitate its use in the
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analysis of measurements taken over forest fires.

Parameter Values
Solar Zenith Angle (◦) 0, 30, 50, 60, 65, 70, 73, 76, 78, 80
Viewing Zenith Angle (◦) 0, 30, 50, 60, 65, 70, 72
Solar-Viewing Azimuth Angle Difference (◦) 0, 30, 60, 90, 120, 150, 180
Surface Pressure (kPa) 60, 80, 90, 100
Surface Albedo (Clear-sky only) 0, .03, .06, .09, .12, .2, .3, .5, .75, 1
Cloud Pressure (kPa) (Cloudy-sky only) 20, 40, 60, 80, 90
Cloud Albedo (Cloudy-sky only) .8

Table 4.1: AMF table parameter definition.

4.2 Simulated TEMPO Sensitivity Study

The purpose of the following study is to begin to quantify and understand the distribution

of the nominal uncertainties in TEMPO retrievals over Canada. Four sources of uncertainty

have been considered: SCD uncertainty, stratospheric uncertainty, albedo uncertainty, and

NO2 profile shape uncertainty. The SCD uncertainty is a result of measurement noise, and

is driven primarily by the SNR. In general it is possible to retrieve the albedo from the

measurements themselves, but the NO2 profile shape cannot be retrieved, and must therefore

be taken from an external source such as a climatology. In both cases, uncertainty in the

input data is propagated through to uncertainty the final retrieved quantities. Clouds were

not included in this study, so the uncertainty due to cloud parameters, which is significant

for scenes with significant cloud cover, was not considered. Another challenging source of

uncertainty that was excluded from this study is the identification of snow, particularly

during periods of snowing and melting.

The general method used for this study was to simulate TEMPO measurements (Sections

4.2.1 and 4.2.2), and then to perform a full retrieval with uncertainty analysis on the simulated

measurements (Section 4.2.3). Simulations were performed across the entire FOR of TEMPO,

but at a spatial resolution lower then TEMPO itself, in order to observe continent-wide trends

while keeping computation time reasonable. Four days were analyzed, near each of the four

seasonal solstices and equinoxes, in order to observe the extremes of seasonal effects, and

simulations were performed on two hour intervals in order to observe diurnal variations.
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4.2.1 Synthetic Radiance

Synthetic Radiance Inputs

Synthetic radiances were calculated for this study using the SASKTRAN-HR engine, on a 1◦

latitude by 1.25◦ longitude grid, in the 405 nm to 465 nm window, with a spectral sampling

of 0.2 nm, and a spectral resolution of 0.6 nm. The spatial resolution of this configuration

is much lower than that of TEMPO, but the spectral sampling and resolution are a good

approximation. The atmosphere was defined for each ground location by altitude profiles

in pressure, temperature, ozone concentration, and NO2 concentration, as well as albedos

representing Lambertian ground reflectance. Default SASKTRAN values were used for the

pressure and temperature and ozone profiles, based on the MSIS-90 model by Hedin (1991)

and the Labow climatology by McPeters, Labow, and Logan (2007) respectively. More de-

tailed and realistic data products were used for NO2 profiles and albedos, as the retrieval is

much more sensitive to these parameters. The NO2 profiles were taken from a global simu-

lation of tropospheric chemistry performed using NASA Goddard Earth Observing System

Model version 5 Earth System Model (GEOS-5 ESM) with GEOS-Chem as a chemical model

(G5NR-Chem) at a resolution of 12.5 km (Hu et al., 2018). The albedos were taken from

a climatology of Lambert-equivalent reflectivity (LER) based on over five years of GOME

observations (Koelemeijer, de Haan, & Stammes, 2003). Example tropospheric NO2 columns

across the entire TEMPO FOR are shown in Figure 4.2, example stratospheric columns are

shown in Figure 4.3, and example albedos are shown in Figure 4.4. Figures 4.2 and 4.3, as

well as Figures 4.7 through 4.18 include lines of constant SZA for reference.

Synthetic Radiance Approximations

Explicitly calculating each spectrum was found to be prohibitively computationally expen-

sive, so a series of approximations were used to reduce computation time. Firstly, one pressure

profile and one temperature profile were chosen to represent the entire FOR, which permit-

ted the construction of a lookup table containing radiances calculated in the absence of any

absorbing species. This calculation includes the computationally expensive multiple scatter

analysis, and it can be done at much fewer wavelengths while introducing limited interpola-
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Figure 4.2: NO2 Tropospheric Columns. Hotspots exceeding 5× 1015 cm−2 are seen
over urban locations and over the Alberta oil sands, and increased pollution is seen in
spring and summer.
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Figure 4.3: NO2 Stratospheric Columns. The stratospheric column varies slowly and
smoothly with SZA and latitude.
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Figure 4.4: Lambertian equivalent reflectivity climatology from GOME. Typical
scenes have albedos near 0.04, with much higher values corresponding to snow cover.
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tion errors due to the slowly changing wavelength dependence of Rayleigh scattering. The

lookup table had 24 SZAs and 24 VZAs spanning 0◦ to 90◦, 13 azimuth difference angles

spanning 0◦ to 180◦, 4 albedo values (0.0, 0.1, 0.6, and 1.0), and 4 wavelengths (405 nm,

425 nm, 445 nm, and 465 nm). Linear interpolation was used for all of the angles, and a two

dimensional cubic interpolation was used for the albedos and the wavelengths. This config-

uration minimized computation time, which was driven primarily by the number of required

albedos and wavelengths, and kept interpolation errors under 1 % for zenith angles under

89◦.

Secondly, absorption features were added to the absorption-free radiance spectra I0(λ) using

Beer’s law (see Section 2.3.2),

I(λ) = I0(λ)e−τ(λ) , (4.1)

where the optical depth τ(λ) is the total absorption due to NO2 and ozone,

τ(λ) = τ
NO2

(λ) + τ
O3

(λ) , (4.2)

which can be calculated by integrating their respective extinctions along the slant path,

τ
NO2

(λ) =

∫
L

k
NO2

(λ, l)dl τ
O3

(λ) =

∫
L

k
O3

(λ, l)dl . (4.3)

For ozone, the position dependence of the cross section was ignored, which decouples it from

the slant path integral and allows the optical depth to be calculated as the product of the

cross section and the SCD.

τ
O3

(λ) = σ
O3

(λ)

∫
L

n
O3

(λ)dl = S
O3
σ
O3

(λ) (4.4)

To efficiently approximate the ozone SCD, box-AMFs were combined with the vertical ozone

profile, in the same way that the total AMF is calculated in Equation (2.70), but without

dividing by the total VCD:

S
O3

=
∑
i

si
O3

=
∑
i

aivi
O3
. (4.5)
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The box-AMFs were taken from the table described in Section 4.1, but with the altitude

extended to 50 km and the SZA extended to 90◦.

For NO2, the position dependence of the cross section was not ignored, as this would com-

promise the retrieval, which explicitly accounts for the temperature dependence of the NO2

cross section. The temperature dependence of the NO2 cross section was linearized, in the

same way the ozone cross section was linearized in Section 3.1, and the cross section was

incorporated into the sum over layers:

τ
NO2

(λ) =
∑
i

aivi
NO2

σ
NO2

(λ, T i) , (4.6)

where T i is the average temperature in layer i.

The error introduced by all of the assumptions described above is illustrated in Figure 4.5.

For the nominal scene shown in the figure, the combination of interpolation errors and ne-

glecting temperature and pressure profile variations results in an error in the absorption-free

radiance on the order of 1 %, and the remaining assumptions made while applying the ab-

sorption features does not introduce significant error. Note that most of the additional error

introduced in the second step is due to the difference in ozone profile, as the signature in the

percent difference matches the signature of the ozone cross section. This does not impact the

retrieval significantly because the retrieval extracts ozone alongside the NO2.

After the synthetic radiances were calculated, noise was added. Wavelength-dependent SNRs

were estimated for every scene, following the method described in Section 4.2.2. Then, for

every simulated wavelength, Gaussian noise was added to the radiance values:

Inoise(λ) = I(λ)

(
1 +

z

SNR(λ)

)
, (4.7)

where z is a sample of a standard normal random variable.
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(a) Synthetic radiances. (b) Percent difference.

Figure 4.5: Comparison of synthetic radiances: lookup method versus direct calcula-
tion.

4.2.2 Signal-to-Noise Ratio

Instrument Noise

Estimating measurement noise is a crucial step in the uncertainty analysis process, as noise

estimates are used as uncertainties of radiance measurements, which are propagated through

the spectral fitting process to produce uncertainties in the SCDs, which are one of the pri-

mary contributions to uncertainties in the retrieved VCDs. There are three primary sources

of measurement noise: stray light, dark current, and shot noise. Stray light noise is a conse-

quence of the optical design in which light from outside the intended FOR for a given pixel

is detected by that pixel. Dark current is all electronic noise that exists in the absence of all

incident light. Shot noise, also called Poisson noise, is a consequence of the discrete nature

of light. The emission of a single photon (and therefore the detection of a single photon) is

a random event which is independent of other emission events. As a result, photons arriving

at a detector follow a Poisson process, so that the photons counted by the detector during

its integration time have a variability equal to the square root of the number of photons

counted. This variability would be observed even with a perfectly consistent source and a
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perfectly efficient detector; the only method for reducing shot noise is to increase the num-

ber of counted photons, for example by increasing the integration time so that the relative

variability is reduced.

Stray light and dark current characterization are both important for fine tuning and for

accurately analyzing scenarios with low signal levels, but they are not essential components

of the current study. Therefore for the current study, it is assumed that all noise is shot

noise. This assumption creates a simple relationship between the SNR and the number of

photons counted by the detector. Letting the number of detected photons be n, the SNR

becomes the ratio of the signal n and the noise
√
n:

SNR =
n√
n

=
√
n . (4.8)

The number of photons detected by any given pixel can theoretically be calculated, given

the incident radiance, if sufficient information about the instrument is known, as discussed

in Section 2.3.1. To a good approximation, this can be done using the following formula,

n = ∆t∆Ω ∆A

∫
η(λ)ILS(λ)I(λ)dλ , (4.9)

where ∆t is the integration time, ∆Ω is the solid angle corresponding to the FOR of the

pixel, ∆A is the area of the pixel projected onto the instrument aperture, η(λ) is a fraction

representing the end-to-end efficiency of the detector, ILS(λ) is the instrument line shape of

the pixel, and I(λ) is the incident radiance.

Estimating SNR

SNRs averaged across selected wavelength windows were reported by Zoogman et al. (2017),

and a more detailed breakdown of SNR requirements and margins can be found in presen-

tations from TEMPO Science Team Meetings (Nicks, 2014; 2016). The reported values for

2016 appear to be in reasonable agreement across the different sources, as shown in Figure

4.6. The 2016 Science Team Meeting values were used for the following analysis, as they

were the most detailed and up to date values found (Nicks, 2016).
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Figure 4.6: TEMPO SNR requirements (Nicks, 2014), performance in 2014 (Nicks,
2014), performance in 2016 (Nicks, 2016), and window-averaged performance in 2016
(Zoogman et al., 2017).

SNR does not depend only on the instrument itself, but also on the scene that the instrument

is viewing, and the exact details of the assumed scene associated with the SNR values were

not reported by any of the above sources. A nominal scene was assumed, pointing at the

center of the TEMPO FOR at 36.5◦N latitude and 100◦W longitude, at midday near the

summer solstice, with a SZA of 25◦, a VZA of 42◦, and with albedo values taken from the

GOME LER climatology. Note that this is similar to the scene that is explicitly described

for a nominal ozone profile retrieval test case in Figure 8 of Zoogman et al. (2017).

By comparing radiances from this assumed nominal scene to the reported nominal SNRs,

the instrument can be characterized well enough to estimate SNRs for arbitrary scenes. Let

the radiance of the assumed nominal scene be given by I0(λ), and let n be the number of

corresponding photons detected by a given pixel. Then Equation (4.9) can be approximated

as follows,

n ≈ α(λn)I0(λn) , (4.10)
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Figure 4.7: Average SNR from 405 nm to 465 nm. SNR decreases as SZA decreases
due to increased attenuation. Attenuation also increases with VZA, but the SNR tends
to increase with VZA due to increased scattering into the longer line of sight. SNR is
sensitive to albedo, increasing significantly over snow-covered regions.
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where λn is the central wavelength of the pixel and α(λ) is a constant of proportionality

containing all of the instrument information described in Equation (4.9). Using Equation

(4.8), the SNR associate with this scene and this pixel is then given by

SNR0(λn) =
√
α(λn)I0(λn) , (4.11)

which can be used to solve for α(λn),

α(λn) = I0(λn)SNR0(λn)2 . (4.12)

This was done for every wavelength where the SNR was specified (see Figure 4.6) to determine

the function α(λ), which was then used to estimate the SNR for arbitrary scenes:

SNR(λ) =
√
α(λ)I(λ) . (4.13)

Figure 4.7 shows an example of SNR calculated over the TEMPO FOR using this strategy.

4.2.3 Retrieval and Uncertainty Analysis

The NO2 retrieval algorithm with uncertainty analysis described in Section 3.4 was applied

to the synthetic radiances described in Section 4.2.1 with the estimated SNRs described in

Section 4.2.2.

NO2 Profile Variability

To determine the NO2 profile variability required for the tropospheric AMF uncertainty

analysis, represented by ΣV in Equation (3.25b), a monthly climatology was constructed

from the same GEOS-5 ESM with GEOS-Chem simulation that was used to calculate the

synthetic radiances in Section 4.2.1. A monthly mean µV and a corresponding covariance

matrix ΣV were calculated as follows:

µV =
1

N

N∑
i=1

Vi ΣV =
1

N

N∑
i=1

ViV
T
i − µVµTV , (4.14)
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Figure 4.8: Relative uncertainty in the average tropospheric NO2 VCD in monthly
climatology constructed from the GEOS-5 ESM with GEOS-Chem simulation.
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where N is equal to two times the number of days in the month, and the corresponding

summation i is over two profiles per day taken from the early afternoon, approximately 13:00

and 14:00 local time. The vectors Vi contain NO2 volume mixing ratios (VMRs) defined at

the 24 lowermost hybrid sigma-pressure (HSP) levels, discussed in Appendix D.1, which was

found to be sufficient to cover the troposphere. Scene-specific pressure profiles were taken

from the MSIS-90 model to integrate the VMR-HSP data within the altitude-defined layers

on which the box-AMFs are defined, as discussed in Appendix D.3. The variability of this

climatology is illustrated in Figure 4.8. More precisely, what is shown in this figure is the

relative uncertainty in the tropospheric VCD σV /V , where V is the average tropospheric

VCD, equal to the sum of the elements of µV , and where σ2
V is the variance of V , equal to

the sum of the elements of ΣV as discussed in Appendix B.3. The high relative uncertainty

is found in regions of infrequent pollution - for example a location that has low pollution

throughout an entire month except for one day, when a plume from a nearby source passed

through, will have a low average but a relatively high variability. Lower relative uncertainty is

found in high-pollution regions such as the Alberta oil sands and central USA during spring.

Intermediate Results

Snapshots of the retrieved SCDs, the tropospheric AMFs, and the stratospheric AMFs are

shown in Figures 4.9 through 4.11. The retrieved VCDs are not displayed here, as they

would look nearly identical to the input VCDs that are already shown in Figure 4.2. It is

worth noting that the purpose of this study is not to show that the retrieved VCDs match

the VCDs used to create the synthetic radiances. This result is essentially trivial, as the

exact parameters used to create the synthetic radiances are known, and were used as a priori

information in the retrievals. The purpose, rather, is to examine the relative weight of all

the uncertainty terms. Snapshots of SCD uncertainty and AMF uncertainty are shown in

Figures 4.12 through 4.14.

VCD Uncertainty

The contributions of the intermediate value uncertainties illustrated in Figures 4.12 through

4.14 to the uncertainty in the final retrieved VCD is shown in Figures 4.15 through 4.18.
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Figure 4.9: NO2 SCDs. The SCD is large over polluted scenes such as major cities
and the Alberta oil sands due to increased NO2 concentration, and also grows as the
SZA and VZA increases due to the longer slant path.
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Figure 4.10: Tropospheric AMFs. The tropospheric AMF appears to be primarily
sensitive to surface albedo, as the high reflectivity of snowy scenes increases measure-
ment sensitivity near the surface.
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Figure 4.11: Stratospheric AMFs. In contrast to the tropospheric AMF, the strato-
spheric AMF is slowly varying, is insensitive to surface albedo, and has a strong depen-
dence on SZA and VZA.
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Figure 4.12: NO2 SCD uncertainty. As expected, the SCD uncertainty has a clear
anti-correlation with the SNR in Figure 4.7.
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Figure 4.13: Tropospheric AMF uncertainty due to an albedo uncertainty of 0.015.
This uncertainty is at a maximum over polluted regions with low albedo.
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Figure 4.14: Tropospheric AMF uncertainty due to NO2 profile variability. This
uncertainty correlates well with the relative VCD variability in Figure 4.8.
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The four uncertainties displayed in these figures are the square roots of the variances found

in Equation (4.15), which is a combination of Equations (3.26) and (3.27) describing the

tropospheric VCD uncertainty σVt . The contribution of the SCD uncertainty σS to the

tropospheric VCD uncertainty σVt is found in the top left of Figures 4.15 through 4.18.

The contributions of the stratospheric column uncertainty σVs and the stratospheric AMF

uncertainty σAs are combined and displayed in the top right. The contribution of σAas , the

tropospheric AMF uncertainty due to albedo uncertainty, is found in the bottom left, and

the contribution of σAV , the tropospheric AMF uncertainty due to NO2 profile uncertainty,

is found on the bottom right.

σ2
Vt =

(
σS
At

)2

+

(
AsσVs
At

)2

+

(
VsσAs
At

)2

+

(
VtσAas
At

)2

+

(
VtσAV
At

)2

(4.15)

The uncertainty in the tropospheric VCD σVt is sensitive to the tropospheric AMF At, as

the tropospheric AMF represents the amount of measured light that has interacted with the

troposphere, and therefore the amount of information about tropospheric constituents that

is contained within the measurement. This can be seen in Equation (4.15), where At shows

up in the denominator of every term. Figure 4.10 shows that the highest values of At occur

over northern Ontario and Quebec, especially during winter and spring, where snow cover

increases surface reflectivity and causes more of the light that reaches the troposphere to be

reflected up towards the instrument. The effects are seen in Figures 4.15 through 4.18, where

all four uncertainty contributions are reduced over northern Ontario and Quebec.

The SCD contribution shown in Figures 4.15 through 4.18 is relatively constant in comparison

to the other contributions, remaining around 3× 1014 cm−2 for most scenes. The contribution

drops dramatically over northern Ontario and Quebec during spring and winter where there

is significant snow cover. This is due to the increased albedo; partially through the increase

in tropospheric AMF as discussed above, but also through the decrease in SCD uncertainty

(Figure 4.12) that results from the increase in SNR (Figure 4.7). Similarly, in Figure 4.16

it is evident that the SCD contribution becomes more significant when the sun is low on

the horizon, which can be explained by the decrease in SNR. In Figure 4.15 it can be seen

that the SCD contribution spikes over the heavily polluted oil sands, which at first seems
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counterintuitive, as heavy pollution should result in a larger SCD and therefore less relative

uncertainty for a given SNR. The cause is low albedo: note in Figure 4.4 that the albedo at

the north end of the FOR, including the oil sands, is particularly low. Also note that the

corresponding albedo in spring is much higher, and in Figure 4.17 there is no spike in the

SCD contribution over the oil sands in spring. Low albedo effectively shields the pollution

that resides in the lowermost layers, as most of the light that reaches these layers is absorbed

by the ground and therefore does not return. The result is reduced SCDs, or equivalently

reduced AMFs, and therefore increased relative SCD uncertainty.

The stratospheric contribution is slightly larger than the SCD contribution for nominal scenes,

and increases sharply at high SZAs. Most of the contribution is due to the assumed strato-

spheric VCD uncertainty σVs = 2× 1014 cm−2, with very little impact from the assumed

stratospheric AMF uncertainty σAs = 0.02As. The constant stratospheric VCD uncertainty

has a larger impact on the final uncertainty as the SZA increases, as the measurement be-

comes more sensitive to the stratosphere due to the long light paths travelling nearly hori-

zontally through the stratosphere. This can be seen in Figure 4.11 where the stratospheric

AMF increases sharply at large SZAs: here the information contained in the measurement

becomes dominated by the interactions with stratospheric species, reducing sensitivity to the

tropospheric species. Mathematically, this dependence can be seen in the second term in

Equation (4.15), where the assumed stratospheric VCD uncertainty is scaled by the ratio of

the stratospheric and tropospheric AMFs.

The assumed constant albedo uncertainty σas = 0.015 results in a maximum tropospheric

AMF uncertainty on the order of 15 %, as shown in Figure 4.13. However, the resulting

contribution to tropospheric VCD uncertainty is only significant over polluted hotspots with

low albedo, as seen in Figures 4.15 through 4.18. Tropospheric pollution, especially in the

boundary layer near the surface where it is commonly found over emission sources such

as large cities, enhances the sensitivity of the retrieval to albedo. As shown in Equation

(3.24), the tropospheric AMF is effectively an average of all the tropospheric box-AMFs,

weighted by the amount of NO2 in each respective layer. Therefore when the lowest layers,

whose box-AMFs are the most sensitive to albedo, contain high concentrations of NO2, the
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tropospheric AMF becomes more sensitive to the albedo. Although this phenomena only

affects a small percentage of the total scenes, it is significant because these heavily polluted

scenes are typically the most important scenes to monitor. It is also worth noting that

the current analysis shows that the albedo contribution is negligible over unpolluted snowy

scenes, but the assumption of a constant albedo uncertainty does not capture the risk of

snow misidentification, which will need to be addressed properly in future iterations.

The NO2 profile contribution is the most significant, due primarily to the large NO2 profile

variability found in the monthly climatology constructed from the GEOS-5 simulation (see

Figure 4.8). As seen in Figure 4.14, the tropospheric AMF uncertainty due to NO2 profile

uncertainty exceeds 100 % in some regions. The contribution is augmented by high tropo-

spheric pollution and low tropospheric AMFs, as seen in the fifth term of Equation (4.15).

The magnitude of these uncertainties highlights the weakness of the climatology approach to

acquiring a priori NO2 profiles and their uncertainties. The NO2 profile becomes even more

difficult to predict as the spatial resolution of the instrument improves, as pointed out in

the documentation for the TROPOMI NO2 retrieval, where this was stated as the reason for

increasing the tropospheric AMF uncertainty from 10 % to 20 % in some of their preliminary

work van Geffen et al., 2019. In the present study, the NO2 climatology was on a 1◦ latitude

by 1.25◦ longitude grid, which near the center of the FOR of TEMPO equates to an area on

the order of 100 km by 100 km, significantly coarser than the 2.1 km by 4.4 km resolution of

TEMPO.
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Figure 4.15: Tropospheric VCD retrieval uncertainty summary in fall.
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Figure 4.16: Tropospheric VCD retrieval uncertainty summary in winter.
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Figure 4.17: Tropospheric VCD retrieval uncertainty summary in spring.
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Figure 4.18: Tropospheric VCD retrieval uncertainty summary in summer.
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5 Conclusion

The ultimate goal of the work done for this thesis is the creation of retrieval algorithms for

TEMPO measurements that are optimized for use over Canada. To this end, fundamental

tools for DOAS-style retrievals have been researched, implemented, and tested within the

SASKTRAN radiative transfer framework. These tools are based on cutting edge algorithms

used by current missions, and will serve as a baseline for comparison with optimizations

and alternative techniques that will be experimented with in future work. The currently

implemented tools can calculate box-AMF profiles using three different techniques which

are all in agreement, and can perform retrievals that are based on OMI algorithms for NO2

(Bucsela et al., 2013) and ozone (Veefkind et al., 2006). The box-AMF tools have been used

to create AMF tables in collaboration with ECCC, and the retrieval tools have been used in

a sensitivity study that explores the sources of uncertainty in NO2 retrievals.

Box-AMF profiles can now be calculated using all three engines within SASKTRAN: the

HR engine using the successive orders method, the DO engine using the discrete ordinates

method, and the MC engine using the Monte Carlo method. The HR box-AMFs are calcu-

lated via weighting functions through a finite-difference scheme in which the absorber profile

is perturbed within each layer individually, so that a full radiance calculation is required for

every box-AMF layer. The DO box-AMFs are also calculated via weighting functions, but

the existing built-in weighting function calculation was found to be sufficiently accurate so

that a finite-difference scheme was not required. The MC box-AMFs required a completely

different approach: rather than calculating finite-difference weighting functions, which would

be very inefficient when combined with a non-deterministic approach such as Monte Carlo,

box-AMFs are calculated directly by keeping track of the slant path within each layer along-

side the usual radiance calculation. These additions had to be made within the core C++
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engine, in contrast to the other implementations which were done in python via the standard

interface. All three methods were found to be in good agreement: for moderate zenith angles,

where the plane-parallel assumption made by the DO engine has limited effect, HR and DO

agree, and they begin to diverge as the zenith angles grow, as expected. Agreement between

HR and MC was observed as long as the various discretizations within HR were set with

sufficient resolution. Each method has a role: the fastest method, DO, can be used for first

order work or for scenes with small zenith angles, HR should be used for the remaining cases,

and the MC method, which is the slowest, should be used to ensure that the HR settings

are optimized. The box-AMF tools had their first significant usage and validation when a

box-AMF table was provided to ECCC for use in their TROPOMI validation campaign over

the Alberta oil sands (Griffin et al., 2018).

The purpose of the sensitivity study was to begin to quantify the typical distribution of

retrieval uncertainty during realistic conditions. Cloud-free simulations and retrievals were

performed at a reduced spatial resolution across the entire FOR of TEMPO, on four days

near the four seasonal solstices and equinoxes, and on two hour intervals throughout each

day. Four sources of uncertainty were propagated through the retrieval in order to understand

their effect on the final retrieved tropospheric NO2 VCD: uncertainty in the retrieved SCD,

in the assumed stratospheric properties, in the assumed surface albedo, and in the assumed

NO2 profile. It was found that SCD uncertainty contributes only moderately to the final

uncertainty, illustrating that the instrument design and the quality of the spectrographic

measurements is not the bottleneck of the current retrieval strategy. The contribution of

the stratospheric uncertainty was also found to be moderate for most scenes, but it grew

significantly as the sun became low on the horizon, highlighting the decreased tropospheric

sensitivity as the sun sets but also perhaps highlighting the inadequacy of the assumption of

a flat stratospheric column uncertainty under all conditions. Another key observation is that

the combination of low albedo and high tropospheric pollution in certain regions, such as the

oil sands or large cities, results in low tropospheric AMFs, or in other words it greatly reduces

the sensitivity of the retrieval to the troposphere, which amplifies the effects of all sources

of uncertainty. The most significant source of uncertainty in this analysis came from the
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NO2 profile variability, which was estimated by calculating monthly means and covariances

from a GEOS-5 tropospheric chemistry simulation. The large uncertainties indicate that

this climatological approach to acquiring a priori NO2 profiles is potentially insufficient, a

problem that is only amplified by the high spatial resolution of TEMPO. This motivates the

need for some information about the vertical distribution of NO2, sparse as it may be in a

nadir configuration, to be incorporated into the retrieval in order to reduce dependency on

a priori assumptions.

Future work will continue towards the same objective of developing optimized retrieval algo-

rithms for TEMPO measurements over Canada. Some potential directions include expansion

to other retrievals such as SO2 columns and vertical ozone profiles, investigation of the re-

flectivity of snow and how explicit snow information can be incorporated into retrievals, and

experimentation with simultaneous two-dimensional retrievals that leverage the unique con-

figuration of measurements over Canada. Accurate representation of snow reflectivity will

be one of the largest challenges to address. While SASKTRAN is already equipped with

a BRDF for pure snow developed by Kokhanovsky and Breon (2012), the real challenges

are related to accurate snow identification, especially during melting periods, and how snow

reflectivity interacts with physical geography. Two dimensional retrievals have the potential

to be more robust than the traditional one dimensional approach, as they could extract some

vertical information from the atmosphere and reduce dependency on external information as

discussed above. Over Canada, they have a higher chance of success, as lines of sight and

incident solar rays that travel through the atmosphere closer to horizontal have the poten-

tial to contain more vertical information, and the northern latitudes of Canada induce such

conditions. The feasibility of incorporating explicit snow information or performing two di-

mensional retrievals is not yet clear, but both approaches have the potential to help Canada

extract as much useful information as possible out of TEMPO measurements.
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Appendix A

Normal Distributions

A.1 Normal Distribution Definition

Univariate

A normal distribution has the following PDF:

P (X = x) ∝ exp

(
−(x− µ)2

2σ2

)
, (A.1)

where X is the normal random variable, µ is its mean, and σ is its standard deviation. The
standard normal distribution is the normal distribution with µ = 0 and σ = 1, so that the
PDF becomes

P (Z = z) ∝ exp

(
−z

2

2

)
. (A.2)

These two PDFs are related by the transformation z = (x−µ)/σ, so that X can be sampled
by first sampling Z and then calculating X = µ+ σZ. Samples of these distributions can be
characterized by how many standard deviations away from the mean they are. The proba-
bility of X falling within the one-sigma domain (µ−σ, µ+σ), or equivalently the probability
of Z falling within the domain (−1, 1), is constant, approximately 68.4%. Similarly, the
probability of falling within the two-sigma domain is approximately 95.5%, and within the
three-sigma domain is approximately 99.7%.

Multivariate

An N -dimensional multivariate normal distribution has the following PDF:

P (X = x) ∝ exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, (A.3)

where X is the normal random variable, µ is its mean, and Σ is its covariance matrix.
Covariance matrices are always positive semidefinite, which means they have non-negative
eigenvalues and a corresponding set of orthonormal eigenvectors can always be found. There-
fore Σ can be diagonalized so that Σ = SDST where the matrix D has all non-negative entries
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which will be denoted σ2
i , and the matrix S is unitary so that S−1 = ST . The PDF can then

be written as

P (X = x) ∝ exp

(
−1

2
(x− µ)TSD−1/2D−1/2ST (x− µ)

)
, (A.4)

where D−1/2 is a diagonal matrix with entries σ−1
i . The substitution z = D−1/2ST (x − µ)

produces a new PDF,

P (Z = z) ∝ exp

(
−1

2
zTz

)
=

N∏
i=1

exp

(
−z

2
i

2

)
, (A.5)

which describes the standard normal multivariate distribution, where every element of Z is
chosen from an independent standard normal distribution. Therefore X can be sampled by
sampling Z and using the transformation X = µ+ SD1/2Z. Here the vector Z is stretched
by D1/2, which stretches it in the direction of the ith axis by a factor of σi, and then it is
rotated by S. The one-sigma domain of Z is the unit hypersphere, covering all points such
that zTz < 1, and this domain is similarly stretched by D1/2 and rotated by S in order to
produce a hyperellipsoid which defines the one-sigma domain of X.

A.2 Propagation of Normal Distributions

Univariate

Consider a normal random variable X with mean µ and variance σ2, such that X = µ+ σZ
where Z is a standard normal random variable. The corresponding value of a derived quantity
Y = f(X) can be approximated with a first order Taylor expansion,

Y = f(X) = f(µ+ σZ) ≈ f(µ) +
df

dX

∣∣∣∣
X=µ

σZ , (A.6)

so that Y is a normal random variable with mean and variance given by

µY = f(µ) σ2
Y =

(
df

dX

∣∣∣∣
X=µ

)2

σ2 . (A.7)

Multivariate

Consider the m-dimensional equivalent of this process, where a derived quantity Y = f(X) is
to be calculated from a multivariate normal random variable X with mean µ and covariance
matrix Σ. As discussed in Appendix A.1, X can be expressed as X = µ + SD1/2Z, where
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Σ = SDST is the diagonalization of Σ and Z is a vector of independent standard normal
random variables. The first order Taylor expansion is now

Y = f(X) = f(µ+ SD1/2Z) ≈ f(µ) + ∇f(µ)TSD1/2Z = f(µ) + aTZ , (A.8)

where a ≡ D1/2ST∇f(µ). The sum of independent normal distributions is also a normal
distribution, with variance equal to the sum of the variances of the original distributions. The
dot product aTZ is the sum of m normal distributions with variances a2

i , and is therefore
equal to a single normal distribution with variance |a|2. This variance can be expressed in
terms of the original covariance matrix Σ:

σ2
Y = |a|2 = aTa = ∇f(µ)TSD1/2D1/2ST∇f(µ) = ∇f(µ)TΣ∇f(µ) . (A.9)

Note that measurement errors are commonly interpreted as the standard deviation of a nor-
mal distribution, in which case this process describes the error propagation process for quan-
tities derived from measurements. In a typical scenario, the measurements are independent,
in which case Σ is diagonal and Equation (A.9) reduces to

σ2
Y =

m∑
i=1

(
∂f

∂Xi

∣∣∣∣
X=µ

σi

)2

, (A.10)

where σi is the error corresponding to measurement Xi.

A.3 Ratio of Normal Distributions

A useful application of Equation (A.9) is the approximate description of the ratio of two
normal distributions. The ratio of two normal distributions is not normal, although it is
approximately normal if the distribution in the denominator has a standard deviation that
is much smaller than its mean. Consider two dependent normal random variables X and
Y with variances Var(X) and Var(Y ) and with covariance Cov(X, Y ), and also their ratio
R = X/Y . Evaluating Equation (A.9) gives the result

Var(R) =

(
1

Y
− X
Y 2

)(
Var(X) Cov(X, Y )

Cov(X, Y ) Var(Y )

) 1

Y

− X
Y 2


=
X2

Y 2

(
Var(X)

Y 2
− 2

Cov(X, Y )

XY
+

Var(Y )

Y 2

)
.

(A.11)
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Appendix B

Monte Carlo Integration

B.1 Monte Carlo Integration

Monte Carlo integration is a technique which allows definite integrals to be estimated using
a non-deterministic approach. Consider a continuous random variable X with PDF p(x)
on the domain D with measure V . Equation (B.1) states that the integral of the product
of a function f(x) and PDF p(x) is equal to the expectation value of f(X), denoted by
〈f(x)〉x∼p(x), multiplied by the measure of the domain.

I =

∫
D

p(x)f(x)dx = V 〈f(x)〉x∼p(x) (B.1)

To estimate the value of I and its uncertainty σI , first take n samples Xi of X using inverse
transform sampling as described in Appendix B.2, then evaluate fi = f(Xi) for each sample,
and finally use fi to estimate the mean and uncertainty as described in Appendix B.3.

B.2 Inverse Transform Sampling

Univariate

Inverse transform sampling is a method that allows an arbitrary PDF to be sampled using
a random number generator. Consider a continuous random variable X with PDF p(x)
and cumulative distribution function (CDF) P (x) =

∫ x
−∞ p(x

′)dx′. The probability integral
transform states that the random variable Y = P (X) has a uniform distribution, or in other
words, a random variable X can be mapped to a uniform distribution using its CDF.

The inverse of this statement is necessarily true as well: a uniform random variable can be
mapped to any random variable using the inverse CDF. Therefore a random variable X with
CDF P (x) can be sampled by using a random number generator to generate ui from the
uniform distribution uni(0, 1), and calculating xi = P−1(ui). It is likely that an analytical
expression for this inverse will not exist, in which case numerical methods must be used.

Multivariate

To use inverse transform sampling to sample a multi-dimensional PDF, some additional steps
must be taken. Consider two continuous random variables X and Y with joint PDF p(x, y).
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First, one of the variables, y in this example but it could be either, must be averaged out by
defining the marginal distribution function pX(x) and its CDF PX(x):

pX(x) =

∫ ∞
−∞

p(x, y)dy PX(x) =

∫ x

−∞

∫ ∞
−∞

p(x′, y)dy dx′ . (B.2)

The marginal CDF PX(x) can be used to generate a sample xi in the same manner as in the
one dimensional case. To generate the corresponding sample yi, the conditional probability
distribution p(y|x) and its CDF P (y|x) must be defined:

p(y|x) =
p(x, y)

pX(x)
P (y|x) =

1

pX(x)

∫ y

−∞
p(x, y)dy . (B.3)

The conditional CDF P (y|xi) can be used to generate the sample yi as before. Note that
if X and Y are independent, then p(x, y) = pX(x)pY (y) and xi and yi can be generated
independently.

B.3 Estimating Population Mean And Variance

Univariate

Consider a random variable X which draws from a population with mean µ and variance σ2:

µ = E[X] σ2 = Var(X) = E
[
(X − E[X])2] = E

[
X2
]
− µ2 . (B.4)

Now consider n independent samples Xi taken from this population. The sample mean µX
and sample variance σ2

X are defined as follows:

µX =
1

n

n∑
i=1

Xi σ2
X =

1

n

n∑
i=1

(Xi − µX)2 =
1

n

n∑
i=1

X2
i − µ2

X . (B.5)

The expectation value of the sample mean is equal to the population mean,

E [µX ] = E

[
1

n

n∑
i=1

Xi

]
=

1

n

n∑
i=1

E[Xi] =
1

n

n∑
i=1

µ = µ , (B.6)

therefore the sample mean is a good estimate of the population mean. The variance of the
sample mean is equal to the variance of the population reduced by a factor of n,
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Var(µX) = E
[
µ2
X

]
− E[µX ]2

= E

( 1

n

n∑
i=1

Xi

)2
− µ2

= E

[
1

n2

n∑
i=1

n∑
j=1

XiXj

]
− µ2

=
1

n2

n∑
i=1

n∑
j=1

E[XiXj]− µ2

=
1

n2

n∑
i=1

E
[
X2
i

]
+

1

n2

n∑
i=1

∑
j 6=i

E[XiXj]− µ2

=
n

n2

(
σ2 + µ2

)
+
n(n− 1)

n2

(
µ2
)
− µ2

=
σ2

n
.

(B.7)

Because Xi and Xj are independent samples, the expectation value E[XiXj] is equal to
the product of the expectation value of each sample, both of which are equal to µ. The
expectation value E [X2

i ] can be found to be equal to σ2 + µ2 by rearranging the variance
formula in Equation (B.4).

The sample variance σ2
X is a biased estimate of the population variance σ2. This is because

its expectation value is not equal to the population variance:

E
[
σ2
X

]
= E

[
1

n

n∑
i=1

(Xi − µX)2

]
=

1

n

n∑
i=1

E

(Xi −
1

n

n∑
j=1

Xj

)2


=
1

n

n∑
i=1

E
[
X2
i

]
− 2

n2

n∑
i=1

n∑
j=1

E[XiXj] +
1

n3

n∑
i=1

n∑
j=1

n∑
k=1

E[XjXk]

=
1

n

n∑
i=1

E
[
X2
i

]
− 1

n2

n∑
i=1

n∑
j=1

E[XiXj]

=
1

n

n∑
i=1

E
[
X2
i

]
− 1

n2

n∑
i=1

E
[
X2
i

]
− 1

n2

n∑
i=1

∑
j 6=i

E[XiXj]

=
(
µ2 + σ2

)
− 1

n

(
µ2 + σ2

)
− n(n− 1)

n2

(
µ2
)

=
n− 1

n
σ2 .

(B.8)
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Therefore the quantity nσ2
X/(n − 1) is a good estimate of the population variance, and

combining this result with Equation (B.7), the quantity σ2
X/(n − 1) is a good estimate of

the variance of the sample mean. According to the central limit theorem, as the sample size
n grows, the distribution of the sample mean µX becomes more like a normal distribution,
regardless of the nature of the original population. Therefore the square root of the variance
of the sample mean can be safely used as an estimate of the uncertainty of the sample mean.

In summary, an estimate µn of the mean of a population can be made by taking the mean
of n samples, and the corresponding uncertainty σµn can be estimated by calculating the
variance of those samples and dividing by n− 1:

µn =
1

n

n∑
i=1

Xi σ2
µn =

1

n− 1

(
1

n

n∑
i=1

X2
i − µ2

n

)
. (B.9)

Note that these values can be computed by keeping a running sum of Xi and X2
i , avoiding

the need to store every sample individually.

Multivariate

The same analysis is valid for a multivariate population. The random variable X is now a
vector of length m, and its population has mean µ and covariance matrix Σ:

µ = E [X] Σ = Cov (X) = E
[
(X − E [X]) (X − E [X])T

]
= E

[
XXT

]
− µµT .

(B.10)

The sample mean and sample covariance matrix are now defined as

µX =
1

n

n∑
i=1

Xi ΣX =
1

n

n∑
i=1

(Xi − µX) (Xi − µX)T =
1

n

n∑
i=1

XiX
T
i − µXµTX , (B.11)

where n samples Xi have been taken from the population. Identities equivalent to those
shown in Equations (B.6) through (B.8) take the following forms:

E [µX ] = µ (B.12)

Cov (µX) =
Σ

n
(B.13)
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E [ΣX ] =
n− 1

n
Σ . (B.14)

Therefore the same conclusion can be made: an estimate µn of the mean of the population
can be made by taking the mean of n samples, and the covariance matrix Σµn describing the
uncertainty in this mean can be estimated by calculating the covariance of the samples and
dividing by n− 1:

µn =
1

n

n∑
i=1

Xi Σµn =
1

n− 1

(
1

n

n∑
i=1

XiX
T
i − µnµTn

)
. (B.15)

Note that, like the single variable case, running sums can be kept in order to negate the need
to store every sample individually while retaining the ability to compute the covariance. In
this case there are m(m + 3)/2 running sums that must be kept: Xi,j for j = 1, . . . ,m, and
Xi,jXi,k for j = 1, . . . ,m and k = 1, . . . , j.

Sum of Multivariate

In the event that the sum of the elements of X is a quantity of interest, there are two possible
methods to calculate the variance of the sum. Let the sum be called Y , so that Y = uTX
where u is a vector containing ones. The sample mean is simply the sum of the elements of
the vector sample mean:

µY = uTµX =
m∑
j=1

µX,j. (B.16)

To calculate the variance using the first method, consider Equation (A.9) where the gradient
∇f is equal to u so that the product uTΣXu is simply the sum of the elements of ΣX :

σ2
Y = uTΣXu =

m∑
j=1

m∑
k=1

(
1

n

n∑
i=1

Xi,jXi,k − µX,jµX,k

)
. (B.17)

For the second method method, running sums of the quantities Yi = uTXi and Y 2
i must be

kept, so that the mean and variance are given by

µY =
1

n

n∑
i=1

Yi σ2
Y =

1

n

n∑
i=1

Y 2
i − µ2

Y , (B.18)

which is equivalent to the variance obtained in Equation (B.17):
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σ2
Y =

1

n

n∑
i=1

Y 2
i − µ2

Y

=
1

n

n∑
i=1

(
m∑
j=1

Xi,j

)2

−

(
m∑
j=1

µX,j

)2

=
1

n

n∑
i=1

(
m∑
j=1

m∑
k=1

Xi,jXi,k

)
−

m∑
j=1

m∑
k=1

µX,jµX,k

=
m∑
j=1

m∑
k=1

(
1

n

n∑
i=1

Xi,jXi,k − µX,jµX,k

)
.

(B.19)

The second method is more straightforward and requires fewer running sums to be kept, but
provides no information about the individual elements.
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Appendix C

Levenberg-Marquardt Algorithm

C.1 Least Squares Optimization

Least squares optimization is a powerful tool for evaluating and understanding a set of
measurements. One of the simplest cases is finding the line of best fit for data that is roughly
linear. In this case, least squares optimization returns two import results: the slope and
y-intercept of the line along with their uncertainties, and a measure of the linearity of the
data. More complex models can also be used but the principle is the same: least squares
optimization allows you to calculate optimal model parameters and their uncertainties, while
also providing feedback on how well the model fits the data.

For example, take a simple model f(x, β) with one parameter, β, being fit to N data points
{xk, yk, σk}, where yk are the measurements of the dependent variable at xk, the correspond-
ing independent variable values, and σk are the uncertainties associated with yk. The optimal
value of β is found by minimizing a cost function,

Φ(β) =
N∑
k=1

(
yk − f(xk, β)

σk

)2

≡
N∑
k=1

r2
k(β) , (C.1)

which consists of the sum of the squares of each data points deviation from the model eval-
uated at β. This cost function is not arbitrary, rather it is the result of the assumption that
data points yk are normally distributed around the model fk(β) = f(xk, β) with standard
deviations equal to the uncertainties σk. Under this assumption, the quantity rk, called
the residual, follows a standard normal distribution, and the probability Pk(β) that a sin-
gle measurement (xk, yk) came from a system described by f(x, β) is proportional to the
Gaussian,

Pk(β) ∝ exp

(
−(yk − fk(β))2

2σ2
k

)
, (C.2)

and the probability P (β) that the entire set of measurements came from a system described
by f(x, β) is proportional to the product of all these factors:
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P (β) ∝
N∏
k=1

Pk = exp

(
−1

2

N∑
k=1

(
yk − fk(β)

σk

)2
)

= exp

(
−1

2
Φ(β)

)
. (C.3)

From Equation (C.3) it is evident that minimizing the cost function Φ(β) is equivalent to
maximizing the probability P (β), or in other words picking the parameter β such that the
model has the highest probability of describing the data. The optimal value of β will be
denoted β0. For simple models, β0 can be found by setting the derivative of Φ(β) with
respect to β to 0 and solving for β, but for more complex models recursive strategies such as
the Levenberg-Marquardt Algorithm described in Section C.2 are employed.

Once β0 has been found, an uncertainty can be estimated. Near β0 the cost function can be
approximated with a second order Taylor series,

Φ(β) ≈ Φ(β0) +
dΦ

dβ
(β − β0) +

1

2

d2Φ

dβ2
(β − β0)2 , (C.4)

where the derivatives are evaluated at β = β0. Note that second term is actually equal to 0,
since by definition the first derivative must be 0 at the minimum. If Φ(β) is approximately
quadratic, then P (β) is approximately normal, and we can find the standard deviation σβ
that describes this normal distribution, which can then be interpreted as the uncertainty in
the optimal parameter β0.

Substituting Equation (C.4) into Equation (C.3),

P (β) ∝ exp

(
−1

2

(
Φ(β0) +

1

2

d2Φ

dβ2
(β − β0)2

))
∝ exp

(
−1

4

d2Φ

dβ2
(β − β0)2

)
, (C.5)

and comparing with the form of a normal distribution,

P (β) ∝ exp

(
−(β − β0)2

2σ2
β

)
, (C.6)

it is clear that the uncertainty σβ can be calculated from the second derivative of the cost
function, or from derivatives of the model itself:

1

σ2
β

=
1

2

d2Φ

dβ2
=

N∑
k=1

1

σ2
k

[(
dfk
dβ

)2

− d2fk
dβ2

(yk − fk(β))

]
. (C.7)

For a model f(x,β) with M parameters β, a generalization of Equation (C.7) describes
elements of the inverse covariance matrix Σ−1

β :
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σ−1
ij =

1

2

∂2Φ

∂βi∂βj
=

N∑
k=1

1

σ2
k

[
∂fk
∂βi

∂fk
∂βj
− ∂2fk
∂βi∂βj

(yk − fk(β))

]
. (C.8)

This can be inverted to find the covariance matrix Σβ, and the square root of the diagonal
elements of Σβ serve as uncertainty estimates for β. This is helpful for understanding that
the uncertainty in β depends on the derivatives of the model, but in practice the covariance
matrix may be estimated numerically as a part of the algorithm, avoiding the need to perform
the expensive matrix inversion.

A helpful quantity for determining the quality of the fit is the reduced chi-squared statistic. A
chi-squared (χ2) distribution with k degrees of freedom is a probability distribution describing
the sum of squares of k independent standard normal random variables. Given k samples
of some distribution, the reduced chi-squared statistic χ2

k, which is the chi-squared value of
the samples χ2 divided by the degrees of freedom k, contains information about the sampled
distribution. If χ2

k ≈ 1, the distribution is approximately standard normal; if χ2
k > 1, the

distribution is wider (σ > 1); and if χ2
k < 1 the distribution is narrower (σ < 1).

Note that the cost function Φ(β) is a χ2 distribution, since the residuals rk(β) follow a
standard normal distribution. Degrees of freedom are lost in the fitting process, so Φ(β) is
a chi-squared distribution with k = N −M degrees of freedom, where N is the number of
data points and M is the number of model parameters contained in β. Therefore the value

χ2
N−M =

1

N −M
Φ(β) (C.9)

can be compared to unity to determine the quality of the fit. If χ2
N−M > 1, there are two

plausible explanations: the errors σk have been underestimated, or the chosen model does not
have enough flexibility to capture the trends in the data. Similarly, if χ2

N−M < 1, either the
errors σk have been overestimated, or the model has too much flexibility and is overfitting,
essentially fitting to noise.

C.2 Levenberg-Marquardt Algorithm

The Levenberg-Marquardt algorithm is an iterative approach to solving a non-linear least
squares problem, where the model f(x,β) is non-linear with respect to β. It combines the
strengths of two separate non-linear least squares algorithms: the Gauss-Newton algorithm
and the method of gradient descent.

In the Gauss-Newton algorithm, a value of β is perturbed by an amount δ such that first
order Taylor expansions of f(xk,β + δ) minimizes the cost function Φ. The perturbation δ
is found by taking the Taylor expansion,
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fk(β + δ) ≈ fk(β) +
∑
j

∂fk
∂βj

δj , (C.10)

plugging it into Equation (C.1), and setting the derivatives of Φ with respect to δ to zero,
which produces the matrix equation

JTJδ = JTΣ−1(y − f) , (C.11)

where y is a vector containing measured data points yk, f is a vector containing modelled
data points fk(β), J is the Jacobian matrix containing derivatives evaluated at β,

J =


∂f1/∂β1 ∂f1/∂β2 . . . ∂f1/∂βM
∂f2/∂β1 ∂f2/∂β2 . . . ∂f2/∂βM

...
...

. . .
...

∂fN/∂β1 ∂fN/∂β2 . . . ∂fN/∂βM

 , (C.12)

and Σ is the measurement covariance matrix, which is diagonal for independent measure-
ments:

Σ =

σ
2
1 0

. . .

0 σ2
N

 . (C.13)

Equation (C.11) can be solved for δ. This is highly effective when f(x,β) is nearly linear or
when β is already quite close to the optimal solution, but it can actually increase the value
of the cost function Φ(β) if these conditions are not met. The contribution of Levenberg in
1944 (Levenberg, 1944) was to propose a scale factor to limit on the length of δ to avoid
overstepping the solution in these scenarios.

In the method of gradient descent, δ is chosen in the direction opposite to the gradient of the
cost function, or in other words in the direction of steepest descent. Given a small enough
length of δ, this guarantees that β moves towards the solution at the minimum. This method
is less likely to fail compared to the Gauss-Newton algorithm, but the method is very slow
as you approach the solution. The gradient of the cost function is

∇Φ(β) = −2JTΣ−1(y − f) , (C.14)

so the gradient descent method requires that
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δ ∝ JTΣ−1(y − f) . (C.15)

Since the Gauss-Newton algorithm performs well near the solution, and the gradient descent
method performs well far from the solution, a combination of the two makes intuitive sense.
This was the contribution of Marquardt in 1963 (Marquardt, 1963), suggesting the following
equation to solve for δ which interpolates between the two methods:

(JTJ + λI)δ = JTΣ−1(y − f) . (C.16)

When λ is small, this resembles Equation (C.11) (Gauss-Newton), and when λ is large, it
resembles Equation (C.15) (gradient descent). If δ calculated with small λ brings a satisfac-
tory reduction in Φ, then it is assumed that the solution is nearby. If it does not bring a
satisfactory reduction in Φ, then it is assumed that the solution is far away, and λ can be
increased so that the next δ more closely follows the gradient descent method.
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Appendix D

Vertical Grids

Several different parameterizations of vertical space are commonly used in atmospheric sci-
ence. Within the scope of this thesis, there are pressure grids used in the DOAS literature
such as Bucsela et al. (Bucsela et al., 2013), the hybrid sigma-pressure grid used by the
GEOS-5 ESM model, optical depth grids used by the discrete ordinates radiative transfer al-
gorithm, and altitude grids used by SASKTRAN. This appendix outlines some of the theory
and the methods that were used to convert between grids in this thesis.

D.1 Hybrid Sigma-Pressure Grids

HSP grids are used by global atmospheric models such as GEOS-5 ESM in order to efficiently
account for changes in terrain elevation in the lower atmosphere while leaving the upper
atmosphere unaffected. They have evolved from pure sigma levels σ(L) which represent a
fraction of the total change in pressure from the surface to the defined top of atmosphere, so
that the true pressure P (I, J, L) can be calculated as

P (I, J, L) = σ(L)Psurface(I, J) + (1− σ(L))Ptop , (D.1)

where L is the index for the vertical sigma coordinate and I and J represent a horizontal
location. However, it was found that pure sigma levels caused unphysical terrain signatures
to appear in the stratosphere. The HSP grid was introduced to solve this problem, in which
the lowermost levels are sigma coordinates, the uppermost levels are unchanging pressure
coordinates, and the middle levels are a combination of the two. GEOS-5 uses a 72-level
HSP grid, with 73 edges defined by the constants Ap(L) and Bp(L) displayed in Table D.1
(Yantosca, 2016). Given a surface pressure, the pressures corresponding to each edge can be
calculated as follows:

P (I, J, L) = Ap(L) +Bp(L)Psurface(I, J) . (D.2)

D.2 Integration on Pressure Grids

Vertical profiles of trace gas concentrations are typically specified either as VMRs on pressure
grids, or as number densities on altitude grids. Both forms are easily integrated to compute
VCDs. Calculating the VCD of a trace gas profile that is specified in number density on an

116



L Ap(L) (hPa) Bp(L) L Ap(L) (hPa) Bp(L)
1 0.000000 1.000000 38 6.660341× 101 0.000000
2 4.804826× 10−2 9.849520× 10−1 39 5.638791× 101 0.000000
3 6.593752 9.634060× 10−1 40 4.764391× 101 0.000000
4 1.313480× 101 9.418650× 10−1 41 4.017541× 101 0.000000
5 1.961311× 101 9.203870× 10−1 42 3.381001× 101 0.000000
6 2.609201× 101 8.989080× 10−1 43 2.836781× 101 0.000000
7 3.257081× 101 8.774290× 10−1 44 2.373041× 101 0.000000
8 3.898201× 101 8.560180× 10−1 45 1.979160× 101 0.000000
9 4.533901× 101 8.346609× 10−1 46 1.645710× 101 0.000000

10 5.169611× 101 8.133039× 10−1 47 1.364340× 101 0.000000
11 5.805321× 101 7.919469× 10−1 48 1.127690× 101 0.000000
12 6.436264× 101 7.706375× 10−1 49 9.292942 0.000000
13 7.062198× 101 7.493782× 10−1 50 7.619842 0.000000
14 7.883422× 101 7.211660× 10−1 51 6.216801 0.000000
15 8.909992× 101 6.858999× 10−1 52 5.046801 0.000000
16 9.936521× 101 6.506349× 10−1 53 4.076571 0.000000
17 1.091817× 102 6.158184× 10−1 54 3.276431 0.000000
18 1.189586× 102 5.810415× 10−1 55 2.620211 0.000000
19 1.286959× 102 5.463042× 10−1 56 2.084970 0.000000
20 1.429100× 102 4.945902× 10−1 57 1.650790 0.000000
21 1.562600× 102 4.437402× 10−1 58 1.300510 0.000000
22 1.696090× 102 3.928911× 10−1 59 1.019440 0.000000
23 1.816190× 102 3.433811× 10−1 60 7.951341× 10−1 0.000000
24 1.930970× 102 2.944031× 10−1 61 6.167791× 10−1 0.000000
25 2.032590× 102 2.467411× 10−1 62 4.758061× 10−1 0.000000
26 2.121500× 102 2.003501× 10−1 63 3.650411× 10−1 0.000000
27 2.187760× 102 1.562241× 10−1 64 2.785261× 10−1 0.000000
28 2.238980× 102 1.136021× 10−1 65 2.113490× 10−1 0.000000
29 2.243630× 102 6.372006× 10−2 66 1.594950× 10−1 0.000000
30 2.168650× 102 2.801004× 10−2 67 1.197030× 10−1 0.000000
31 2.011920× 102 6.960025× 10−3 68 8.934502× 10−2 0.000000
32 1.769300× 102 8.175413× 10−9 69 6.600001× 10−2 0.000000
33 1.503930× 102 0.000000 70 4.758501× 10−2 0.000000
34 1.278370× 102 0.000000 71 3.270000× 10−2 0.000000
35 1.086630× 102 0.000000 72 2.000000× 10−2 0.000000
36 9.236572× 101 0.000000 73 1.000000× 10−2 0.000000
37 7.851231× 101 0.000000

Table D.1: Hybrid sigma-pressure grid definition used by GEOS-5.
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altitude grid is intuitive: integrate the number density over altitude from the surface of the
earth to the top of the atmosphere:

V =

∫ H

0

ntrace(z)dz . (D.3)

The hydrostatic equation can be used to perform a change of variables from altitude to
pressure. The equation reads

dp = −nmg dz , (D.4)

stating that the difference in pressure dp across a small vertical distance dz is due to the
weight of the air within dz, where n is the number density of the air, m is the mass of one air
molecule, and g is acceleration due to gravity. In theory, pressure as a function of altitude
could be calculated by combining this equation with the ideal gas law, given a temperature
profile. In the present work, however, pressure and temperature profiles are acquired from
an external source, typically from the MSIS-90 model. It is assumed that these profiles
obey the hydrostatic equation and the ideal gas law to a good approximation, so that the
pressure profile p(z) and the hydrostatic equation can be used together to perform a change
of variables on Equation (D.3):

V =

∫ p(H)

p(0)

− ntrace(p)

mn(p) g(p)
dp . (D.5)

Neglecting the altitude dependence of gravity and defining the VMR ξtrace(p) = ntrace(p)/n(p),
this can be written as

V =
1

mg

∫ p(0)

p(H)

ξtrace(p)dp . (D.6)

Note that the ratio ntrace(p)/n(p) is actually the definition of the mixing ratio, which is only
equivalent to the VMR under the assumption of ideal gas. The equivalence of Equations (D.3)
and (D.6) depends on three assumptions: air is well described by the hydrostatic equation,
air is well described by the ideal gas law, and the change in gravity with altitude is negligible.

D.3 Integration on Hybrid Sigma-Pressure Grids

Consider ξ, a vector of length M containing elements ξj which represent a constant VMR
within the layer j, where j = 1 represents the ground layer and j = M represents the layer
at the top of the defined atmosphere. Let the layer j have boundary pressures pj−1 and pj,
where pj−1 represents the boundary that is lower in altitude but higher in pressure. If Dp is
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a vector of length M containing pressure differences dj = pj−1− pj, then Equation (D.6) can
be evaluated with the dot product

V =
1

mg
DT

p ξ . (D.7)

A variant of this method was used to calculate layer-specific VCDs Vi and their uncertainties,
given NO2 profile information from GEOS-5, which is defined on a HSP grid. Let V be a
vector of length N containing elements Vi, where again i = 1 represents the lowest layer, and
where layer i is defined by boundary altitudes zi−1 and zi with zi−1 representing the lower
boundary. In the present work, these layers have a uniform thickness of 500 m, matching
the grid used to calculate box-AMF tables. An external pressure profile p(z) was used to
calculate the corresponding pressure boundaries pi = p(zi), and the surface pressure p0 from
this external profile was used with Equation (D.2) to calculate the HSP pressure boundaries
pj. An N × M matrix Dp was defined to integrate the VMR profile over pressure while
simultaneously sorting the contributions from each HSP layer into the correct 500 m layers.
The matrix Dp contains elements dij, which represent the pressure overlap of 500 m layer i
and HSP layer j:

dij = max(0,min(pi−1, pj−1)−max(pi, pj)) , (D.8)

which allows the 500 m layer VCDs to be computed as follows:

V ′ =
1

mg
Dpξ . (D.9)

At higher altitudes where the HSP layers become larger than the 500 m layers, the constant
VMR within each HSP layer results in unphysical oscillations in the 500 m layer VCDs, as
illustrated in Figure D.1. The oscillations are smoothed out using the following N × N
matrix,
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Sp =



1
. . . 0

1
0.6 0.2 0.2
0.2 0.4 0.2 0.2

0.2 0.2 0.2
. . . . . .

0.2
. . . . . . . . . 0.2
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

(D.10)

which leaves lower layers untouched and performs a five point moving average on higher
layers without altering the total VCD. The moving average begins at the lowest 500 m layer
that is smaller then one of its overlapping HSP layers. The smoothed 500 m layer VCDs are
computed as follows:

V = SpV
′ =

1

mg
SpDpξ . (D.11)

The covariance matrix Σξ representing the uncertainty in ξ was similarly mapped to a co-
variance matrix ΣV representing the uncertainty in V using the same method:

ΣV =

(
1

mg

)2

SpDpΣξD
T
p S

T
p . (D.12)
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(a) NO2 profile with boxed regions of interest matching the figures below.

(b) Low altitudes: HSP layers are smaller than
the 500 m layers, so no smoothing operation is
necessary.

(c) High altitudes: HSP layers are larger than
the 500 m layers, resulting in unphysical oscilla-
tions which are reduced by a smoothing opera-
tion.

Figure D.1: An example NO2 profile that explicitly shows the original HSP layers and
the derived 500 m layers. For both layer types, number density values were acquired by
dividing the layer-specific VCD by the thickness of the layer in cm.
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