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Abstract 

The mite, Oppia nitens, is a true soil dweller, one of many organisms that perform vital functions 

to support ecosystem services. Environment and Climate Change Canada and International 

Organization for Standardization recently completed a standardized protocol for Oppia nitens. 

Therefore, O. nitens is among the battery of soil invertebrates for toxicity testing, but its 

applicability is limited by the dearth of information on its responses to and interactions with 

contaminants in soil, and how soil affects its biology and ecology.  The main objective of this 

study was to assess the responses of O. nitens to cadmium (Cd), a model chemical that is 

potentially toxic to this species, and to understand how habitat quality influences O. nitens’ 

reproduction and bioenergetics upon exposure to Cd in soil.    

Firstly, a critical review of the literature on the biology and ecology of O. nitens with notes on its 

response to metals and pesticides in soil was done. Also, the possible mechanisms on how O. 

nitens could respond to cadmium was proposed. This study, for the first time, gave detailed 

information on the bionomics (biology and ecology) of O. nitens, thus supporting existing 

knowledge on the applicability of O. nitens as test organisms in soil ecotoxicology.   

The toxicity and uptake of cadmium, as cadmium oxide (CdO) in standard soil was assessed on 

adult O. nitens and maternal transfer of Cd from adult to juvenile mites (tritonymphs) was 

estimated. According to the results, Cd as an oxide caused low toxicity compared to Cd as salts 

for both survival (LC50 = > 700 mg Cd kg-1) and reproduction (EC50 = 392 mg Cd kg-1 and 

EC25 = 215 mg Cd kg-1). The uptake of Cd by adult and juvenile mites was via the ingestion of 

total Cd and not via dermal adsorption of dissolved Cd in pore water. Adult O. nitens maternally 

transferred about 39 to 52 % (average of 46 %) of their Cd body burden to juveniles while the 

maternally acquired Cd in the juveniles accounted for 41 % of their Cd body burden.   

Finally, the influence of habitat quality on the reproduction and bioenergetics of O. nitens upon 

exposure to Cd was investigated. Mites raised in high and low habitat quality soils were exposed 

to Cd in neutral (artificial) soil for 28 days to assess their reproduction and energy reserves, 

including the activities of glucose metabolism enzymes, glucose-6-phosphate dehydrogenase and 

pyruvate kinases. Cd was found to alter the carbohydrate reserves of the mites that were exposed 

to 0–700 mg Cd kg-1 and reduced energy production by inhibiting the activities of glucose 
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metabolism enzymes. Upon exposure of the mites from low and high habitat quality to 

concentrations equivalent to EC25 and EC50 of Cd, we found habitat quality to directly 

influence mite’s reproduction but not bioenergetics. This study, thus, supports previous 

knowledge of how habitat quality can modulate metal-induced toxicity on O. nitens. The 

findings from this research thus suggests the incorporation of maternal transfer in setting soil 

quality guidelines for soil invertebrates and also the inclusion of habitat characterization in 

procedures for ecological risk assessment of contaminated sites. 
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1. Introduction 

Cadmium (Cd) is a highly toxic heavy metal that is introduced into the environment via mining 

and smelting activities (Thornton, 1988). The anthropogenic input of cadmium into the soil is the 

most significant source of cadmium availability to soil biota and humans (Loganathan et al., 

2012). Cadmium causes toxicity to organisms in the soil, which include invertebrates, plants, and 

microbes, thereby affecting soil ecosystem functions (Van Straalen et al., 1989; Das et al., 1997; 

Vig et al., 2003).  

Soil invertebrates significantly accumulate Cd from the soil, and like any other metal, the 

accumulation from soil depends on toxicokinetics and toxicodynamic processes. Toxicokinetic 

(uptake and elimination) of Cd depends on both the physicochemical desorption in soil water and 

the physiology of the invertebrate, such as exposure route, maternal transfer, degree of 

sclerotization and moulting activities (for soil microarthropods), and Cd compartmentalization in 

storage sites (Ardestani et al., 2014). The toxicodynamics of Cd involves Cd binding to cellular 

proteins (e.g., metallothionein and phytochelatin) (Wang et al., 2010a), energy utilization for 

detoxification, and the induction of metabolic and antioxidant enzymes (Maria et al., 2014). The 

habitat in which soil organisms live could also influence metal toxicokinetics and 

toxicodynamics. For example, a high quality habitat could mediate the toxicity caused by metals 

to soil invertebrates by providing the soil invertebrate with micronutrients or energy to subsidize 

the toxicity of metal (Jegede et al., 2019b).  However, laboratory-based exposure data that are 

used to set environmental soil quality guidelines (SQGE) for metals does not usually account for 

variations that are caused by toxicokinetics and toxicodynamic factors.   

Therefore, this research was done to assess some toxicokinetic and toxicodynamic factors (i.e., 

uptake route, maternal transfer, and bioenergetics), and habitat quality as an ecological factor, 

that could influence cadmium toxicity in a standard soil invertebrate, Oppia nitens (ISO, 2019).  
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The research objectives and hypotheses are; 

 To conduct a critical review of the biology and ecology of the test organism, O. nitens, 

and how it responds to chemicals, especially heavy metals in soil.  

 To assess the uptake, toxicity, and maternal transfer of cadmium in O. nitens using an 

artificial OECD soil as test soil.  

H0: Maternal transfer of cadmium in O. nitens is negligible, and cadmium does not cause 

significant toxicity on life history responses of the mites.  

 To assess if habitat quality could mediate the response of O. nitens to cadmium at 

concentrations that are expected to cause 25 and 50 % (i.e., EC25 and EC50 respectively) 

reduction in reproduction of the mites. 

H0: Habitat quality does not influence O. niten’s response to cadmium toxicity.    

The critical review of the literature associated with the first objective is presented as section 2.7 

in chapter 2, and was published in the journal, Environmental Toxicology and Chemistry. The 

research associated with the second objective is presented as chapter 3, and was published in the 

journal, Environmental Pollution. The research associated with the third objective is presented as 

chapter 4, and the results will be submitted to the journal, Soil Biology and Biochemistry. 
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2. Literature Review 

2.1 Introduction 

The soil serves as a habitat to below-ground organisms and plants. Soil also acts as a repository 

of several contaminants, such as heavy metals. Mining and smelting activities have introduced 

heavy metals into the soil at concentrations that are toxic to the below-ground soil organisms, 

such as invertebrates and microbes, as well as plants and humans (Tyler et al., 1989; Godt et al., 

2006). Canada is one of the top metal mining hubs in the world, with a production of more than 

60 minerals and metals that was valued at $44 billion in 2017 (NRC, 2019). Metal mining in 

Canada includes gold, zinc, uranium, copper, nickel, and cobalt (Figure 2-1). Despite the 

considerable contribution of the metal mining industry to the economy of Canada, we cannot 

deny metal pollution in soil and its associated effect on the environment.  

 

 

Figure 2-1. A map of Canada showing the geographic location of metal mines, smelters, and 

refineries that produce copper (Cu), lead (Pb), and zinc (Zn). Modified from NRC (2017). 
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There has been an increase in global Cd production (Figure 2-2), which is related to the 

processing of ores that are rich in copper (Cu), lead (Pb), and mostly zinc (Zn). According to 

Chizhikov (1966) and Nriagu (1980), the Cd associated with the production of zinc ore 

(sphalerite, ZnS) ranges from 0.2 – 0.7 % by weight, and this estimate of Cd input into the 

environment is higher than the amount that is realized solely due to the mining of Cd minerals.  

 

Figure 2-2. A time series on the world production of cadmium as reported by the U.S. 

Geological Survey (2012). Data before 1937 represent only a subset of countries. Modified from 

Cullen and Maldonado (2014).   
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Cadmium is persistent in the soil; as such, it has the potential to become bioavailable to soil 

invertebrates and plants. For instance, the half-life of cadmium in soil could range from 15 to 

1,100 years with a relatively high transfer coefficient between the soil and the soil organisms 

(Vig et al., 2003).  Cadmium mostly occurs naturally in the soil at very low concentrations. 

However, the anthropogenic input of cadmium into the soil has elevated the level of cadmium to 

concentrations that are potentially toxic to plants, soil invertebrates, microbes, and humans 

(Loganathan et al., 2012). Cadmium that results from anthropogenic input predominantly occurs 

as cadmium oxide (CdO) (Chlopecka et al., 1996). The mode of toxic action of cadmium to soil 

organisms, including humans, is linked to the generation of reactive oxygen species (ROS) 

(Lopez et al., 2006). Therefore, the bioaccumulation of cadmium by soil invertebrates and other 

organisms is of concern because it is a non-essential metal that can cause oxidative damage in 

cellular compartments and tissues (Zhang and Reynolds, 2019). 

Cadmium is highly toxic to soil invertebrates (Van Straalen et al., 1989). The current CCME soil 

quality guideline (SQG) of Cd to soil invertebrates is 10 mg kg-1 in agricultural land use and 22 

mg kg-1 in commercial and industrial land use (CCME, 1999). Cd toxicity to soil invertebrates 

includes the inhibition of fecundity, hatching, and growth (Seniczak et al., 2009; Goncalves et al. 

2015) as well as other sub-organismal effects such as oxidative damage and inhibition of energy 

metabolism (Wang et al. 2010b; Gomes et al., 2018). Cd reduces invertebrate reproduction and 

survival (Van Straalen et al. 1989) and ultimately affects the ecosystem functions and services of 

soil invertebrates. 

2.2 Bioavailability of cadmium and other heavy metals to soil invertebrates 

The fraction of a heavy metal that could cause toxicity to soil invertebrates is termed 

“bioavailability.” The bioavailability of metals to soil invertebrates is governed by two factors: 

(1) the organism’s physiological processes relating to the uptake of metal from soil, and (2) the 

physicochemical processes relating to the properties of soil and the metal in question (McCarthy 

and Mackay, 1993). Metal uptake from the environment can be termed “environmental 

bioavailability” because it is the first process that needs to occur before any metal gets into the 

internal compartment of the organism from the environment. The route of uptake of metal from 
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the soil is different between soil invertebrates and depends on physiology, microhabitat, trophic 

guilds, and food specificity (Peijnenburg, 2002). 

Metal uptake via food depends on an invertebrate’s rate of food consumption and its preference 

for a particular food in its habitat (Hopkin, 1989). For instance, soil oribatid mites that are 

grazers accumulate metals at a high rate from fungi (Siepel, 1995; Skubala et al., 2016). Fungi 

sequester metals from heavy metal contaminated sites (Roth, 1992; Skubala et al., 2016) and soil 

oribatid mites that are grazers have a preference for fungi because these mites have high activity 

of the enzyme, chitinase that can digest fungi (Siepel, 1995; Siepel and Ruiter‐Dijkman 1993). 

The quality of food or habitat encourages soil invertebrates to feed (Hope, 2001); thus, high 

quality habitats lead to an increase in uptake rate of metal contaminated food. Oribatid soil mites, 

O. nitens in a high quality habitat soil have a higher internal zinc concentration than mites in low 

habitat quality soil do, suggesting a high uptake of zinc for mites in high quality habitat (Jegede 

et al. 2019b).  

Soil invertebrates with hard cuticles, like mites and beetles, predominantly accumulate metals 

from the soil by ingesting contaminated soil particles or organic matter rather than dermal 

adsorption via soil solution. For instance, Jegede et al. (2019b) assessed zinc (ZnO) availability 

in O. nitens across 18 soils and found total zinc rather than free zinc (Zn2+) or extractable zinc 

(CaCl2-extractable zinc) to predict internal zinc concentration in the mites. Also, the uptake of 

cadmium and lead by Folsomia candida, a partially sclerotized soil invertebrate, was strongly 

explained by the total metal pool in soil, suggesting uptake to be predominantly via ingestion of 

soil (Vijver et al., 2001). Vijver et al. (2003) also found total Cd pool to predict the uptake of Cd 

by larvae of the beetle (Tenebrio molitor) from OECD and field soils. In soft-bodied soil 

invertebrates, metal uptake is mostly predicted by water-soluble or pore water metal 

concentration. The “Pore water hypothesis’’ states that exposure to contaminants occurs mainly 

through the solution phase, or indirectly by phases that are in equilibrium with the pore water 

(Van Gestel and Ma, 1988).  However, the partitioning of metal into solution phase is governed 

by soil properties such as pH, clay content, organic matter content, and cation exchange capacity 

(CEC). For example, Lock et al. (2000) investigated the uptake of zinc and cadmium from 

OECD soil by the enchytraeid, Enchytraeus albidus and found uptake to be via water-soluble Cd 
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and Zn concentration, with pH, organic matter content and CEC governing the partitioning of the 

metals between the soil solid phase and pore water. Thus, the result of Lock et al. (2000) 

suggests “pore water hypothesis” of metal uptake to hold for soft-bodied soil invertebrates. 

Similarly, in OECD soil that was spiked with cadmium, Crommentuijin et al. (1997) found 

water-soluble Cd concentration strongly predicted the internal Cd level in F. candida. Thus, the 

authors suggest uptake to be via dermal adsorption of soluble Cd, which was driven by soil pH, 

and organic matter content. 

Soil pH and CEC correlate with equilibrium partitioning of metals between solid soil phase and 

pore water (Buchter et al., 1989; Jansen et al., 1997). However, for Cd in soils, pH and organic 

matter content are probably the most critical factors governing the partitioning of Cd between solid 

soil phase and pore water (Lee et al., 1996). Besides, the speciation of cadmium in soil could 

influence the equilibrium partitioning of cadmium into the soil solid phase or pore water. For 

example, the chloride anion (Cl-) in CdCl2-dosed soil reduces the soil pH to favour desorption into 

pore water rather than binding to clay, organic matter or forming complexes with metal 

oxyhydroxides (Fe, Mn). Soil pH could predict the free ion activity [Cd2+] of cadmium but [Cd2+] 

and likewise [Zn2+], does not often correlate with internal metal concentration in soil invertebrates 

(Jegede et al. 2019b). It is difficult to measure the biosorption of free metal ion (Me2+) from pore 

water to soil biota (Plette et al., 1999). However, a biotic ligand model (BLM) for terrestrial system 

predicts the binding of Me2+ to soil invertebrates but soil factors such as pH, dissolved organic 

matter (DOM), and ionic strength still govern the activity of Me2+in soil solution or pore water 

(Plette et al., 1999).  

2.3 Toxicokinetics of cadmium in soil invertebrates 

Most soil invertebrates steadily accumulate but slowly eliminate cadmium (Ardestani et al., 

2014; Keshavarz-Jamshidian et al., 2017). However, Cd toxicokinetics in soil invertebrates seem 

to depend on the biology of the organism, route of exposure (Ardestani et al., 2014), and abiotic 

factors like temperature (Abdel-Lateif et al., 1998; Donker et al., 1998) including pH and 

competition between H+ and Cd2+ to biotic ligands (Peijnenburg et al. 1999). Cd toxicokinetics in 

soil invertebrates can be modelled via either a one- or two-compartment toxicokinetic model 

(Skip et al., 2014) because Cd storage sites represent a second compartment. Cd is usually 
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compartmentalized in tissues like the hepatopancreas or bound to metallothionein (MT). For 

example, soil invertebrates like Helix pomatia, the isopod P. scaber, and O. nitens 

compartmentalize Cd in their hepatopancreas or proventricular gland (Dallinger and Wieser, 

1984; Dallinger and Prosi, 1988; Ludwig et al., 1992). About 85–95 % of Cd in the 

hepatopancreas of the terrestrial snail, H. pomatia was bound to MT (Dallinger et al., 1997). 

Table 2-1 shows a comparison of Cd toxicokinetic parameters, uptake (𝑘1) and elimination (𝑘2) 

rate constants for some soil invertebrates. 



 

 
 

9
 

Table 2-1. A review of toxicokinetics of cadmium in some soil invertebrates.  

Species Soil 

type 

Cd  

(mg kg-1) 

Uptake 

(day) 

Elimination 

(day) 

 k1  

(gs gbw
-1 day-1) 

 k2  

(day-1) 

Model Soil 

pH 

References 

EF AS 5–56500 1–28 1–100 0.046 0.093 1 5.84 [1],[2],[3] 

EF FS 0.084–325  1–42 1–100 0.86 1.22 1 5.67 [2],[4],[5] 

EA AS 0.2–1000 1–63 1–21 0.89 0.019 1 5.40 [6],[7] 

EA NS 22104 14–224 14–224 0.037 0.0065 1 5.50 [8] 

FC NS 4.1–18.2 1–21 1–21 0.665 0.30 1 5.50 [9] 

LR FS 4.46–63.2 0–21 0–18 0.54 0.67 1,2 6.52 [10],[11],[12] 

EC pw 0.3–92 1–35 
 

0.089 0.23 1 5.10 [15] 

PS f 4.10–9.51 14–63 18 0.0096 0.18 1,2 
 

[13],[14] 

ON NS 15.5–506 49 
 

0.026 
 

1 5.50 [17] 

PP f 16.8–4000 30–63 40–65 0.033 0.015 1,2 
 

[14],[16] 

Soil invertebrate species: EF = Eisenia fetida, EA = Eisenia andrei, FC = Folsomia candida, LR = Lumbricus rubellus, EC = Enchytraeus 

crypticus, PS = Porcelio scaber, ON = Oppia nitens, PP = Platynothrous peltifer. 

 

AS = Artificial soil, FS = Field soil, NS = Natural soil, pw = pore water, f = food 

k1 = Average uptake rate constant [gs (gram soil) gbw
-1 (gram body weight) day-1] unless other units were used, k2 = Average elimination rate 

constant (day-1), Model = bioaccumulation kinetics Model (1 = one-compartment model, 2 = two-compartment. model). 

 

[1] Conder et al., 2002. [2] Spurgeon and Hopkins, 1999. [3] Lock and Janssen, 2001. [4] Nahmani et al., 2009. [5] Li et al., 2009. [6] Smith et al., 

2010. [7] Peijnenburg et al., 1999a. [8] Yu and Lanno, 2010. [9] Broerse et al., 2012. [10] Vijver et al., 2005. [11] Vijver et al., 2003. [12] Giska et 

al., 2014. [13] Vijver et al., 2006b. [14] Crommentuijn et al., 1994. [15] Peijnenburg et al., 1999b. [16] Janssen and Bergema, 1991. [17] 

Keshavarz-Jamshidian et al., 2017.
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2.4 Maternal transfer of cadmium in soil invertebrates     

Maternal transfer of metals through egg deposition is a toxicokinetic mechanism by which 

female organisms eliminate metals to reduce their metal body burden (Tsui and Wang, 

2004a,b). Cadmium is a non-essential metal that could be transferred from parents to offspring 

by Cd deposition in the egg. However, no study has reported maternal transfer of Cd in soil 

invertebrates. Maternal transfer of Cd from adult mayflies, Centroptilum triangulifer to eggs 

was rare as it was only observed in < 3 % of individual adults that transfer Cd to eggs with no 

discernable Cd burden in eggs (Xie et al., 2009). In Daphnia magna, < 10 % of Cd was 

maternally transferred from adult to offspring (Yu and Wang, 2002; Tsui and Wang, 2007). 

2.5 Responses of soil invertebrates to cadmium 

Cadmium is highly toxic to soil invertebrates, and the toxicity affects reproduction, growth, 

and survival (Spurgeon et al., 1994). Cadmium could also cause toxicity to soil invertebrates 

at sub-cellular levels such as the disruption of calcium (Ca2+) homeostasis, oxidative, 

mitochondrial and DNA damage, epigenetic alterations, alteration of metal responsive 

proteins, impairment of gene expression and cell cycle arrest (Wang et al., 2010b; Novais et 

al., 2012; Maria et al., 2014; Srut et al., 2017; Gomes et al. 2018). Also, Cd can disrupt energy 

metabolism and allocation for critical physiological processes, thus leading to an adverse 

outcome in the organism (Novais et al., 2013; Gomes et al., 2018). 

2.5.1 Effect on reproduction, growth, and survival 

Soil invertebrates are sensitive to cadmium, and the toxicity of Cd on their life history is 

significant with consequences for population growth (Van Straalen et al. 1989). For 

example, Cd was 5-, 4- and 11-times more toxic (i.e., the effect on survival) than copper, 

zinc, and lead respectively to O. nitens that were exposed to these metals in artificial soil for 

35 days (Owojori and Siciliano, 2012). The authors also reported a reduction in juvenile 

production of O. nitens, having an EC50 of 137 mg kg-1 compared to Cu (2,896 mg kg-1), 

Zn (1562 mg kg-1), and Pb (1678 mg kg-1). Cd lowered cocoon production in the earthworm 

Eisenia fetida after the earthworms were exposed to Cd for 56 days in OECD soil (Spurgeon 

et al., 1994). The authors reported an EC50 of 46.3 µg Cd/g compared with 53.3, 1940, and 

276 µg for Cu, Pb, and Zn, respectively. Besides, cocoon production was a more sensitive 
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endpoint to Cd toxicity than cocoon viability and mortality (Spurgeon et al., 1994). 

Similarly, Owojori and Siciliano (2012) reported juvenile production in O. nitens to be a 

more sensitive endpoint to Cd than mortality.  

In a study by Crommentuijn et al. (1993), Cd retarded the growth of the collembola, F. 

candida in OECD soil and delayed their reproduction after 9 weeks. According to the 

authors, the effect on reproduction of F. candida was not direct but rather a consequence of 

the reduced growth that caused the delay in reproduction. However, growth was a more 

sensitive endpoint to Cd with the EC50 (F. candida’s growth) at 256 µg Cd/g lower 

compared to the EC50 on reproduction (> 326 µg Cd/g) and survival (850 µg Cd/g). The 

growth efficiency of Porcellio scaber (a terrestrial isopod) after ingesting Cd-contaminated 

food was 27 % compared with 48 % in control isopods (Khalil et al., 1995). Nursita et al. 

(2005) reported the toxicity of Cd on a species of collembola, Proisotoma minuta to have a 

significant effect on growth and reproduction. The EC50 of Cd (125 µg Cd/g) on 

reproduction of P. minuta indicates Cd as the most toxic of all the metals tested on the 

collembola followed by Zn (283 µg Zn/g) and Cu (696 µg Cu/g). An embryotoxicity study 

of Cd to the enchytraeid, Enchytraeus crypticus found Cd significantly decreased hatching 

success across all tested concentrations of Cd (1.6 to 50 mg kg-1) in LUFA 2.2 soil 

(Goncalves et al. 2015). According to the authors, hatching success of E. crypticus (EC50 = 

3.1 mg kg-1) was a more sensitive endpoint compared to reproduction (EC50 = 35 mg kg-1). 

Cd also reduces the fecundity of the oribatid mite, Archegozetes longisetosus when exposed 

to Cd at 130 µg/g of food (Seniczak et al., 2009). Cadmium was observed to cause a decline 

in the population growth of the oribatid mite, Platynothrus peltifer (instantaneous 

population growth rate, r = 0.38) while the population growth of collembola, Orchesella 

cincta remained stable (r = 0.6) because Cd affected the reproduction of P. peltifer with 

relatively less effect on O. cincta’s reproduction (Van Straalen et al., 1989). 
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2.5.2 Effect on sub-organismal responses 

2.5.2.1 Molecular and biochemical responses 

Cadmium induces metallothionein (MT) in cellular compartments; thus, much of the 

internal Cd in soil invertebrates is bound by metallothionein to form Cd-MT complex 

(Dallinger et al., 1997). This mechanism of Cd interaction with MT is the central role of Cd 

detoxification in soil invertebrates (Stürzenbaum et al., 2004). However, the internally free 

Cd2+ still causes toxicity upon binding with biological molecules in cells. Cd in LUFA 2.2 

soil (29.5 and 40.3 mg kg-1) induced (~500 fold change compared to control) the expression 

of mtc (a metallothionein-like motif-containing protein) gene in F. candida (Nota et al. 

2011). However, there was no significant change in the expression of hsp20 (heat shock 

protein) gene (Nota et al. 2011). Cd (5 and 25 mg kg-1) caused significant induction in the 

expression of mt (metallothionein) gene in E. fetida that were exposed to Cd in OECD soil 

with 6 and 10 % organic matter (OM), but the induction was not significant in OECD soil at 

a higher (14 %) OM content (Irizar et al., 2015). Also, the transcription of cat (catalase) 

gene, i.e., the enzyme responsible for the breakdown of hydrogen peroxide (H2O2) to 

oxygen and water was inhibited in E. fetida, but the inhibition was only significant in OECD 

soil (10 % OM) (Irizar et al., 2015). An assumption from this study is that soil with high 

OM content might have provided E. fetida with enough food to subsidize stress via Cd 

detoxification, despite the earthworm in high OM soil accumulating more Cd.  

Catalase (CAT) activity in F. candida was reduced after days of exposure to 60 mg kg-1 of 

Cd in LUFA 2.2 soil (Maria et al., 2014). In the study (Maria et al., 2014), the activities of 

other cellular antioxidants like glutathione-s-transferase (GST) and metallothionein (MT) 

increased, but activities were not high enough to prevent lipid peroxidation (LPO) in the 

collembola after 4 days of exposure to Cd. The onset of LPO in the collembola at 4 days of 

exposure to Cd could be attributed to the inhibition of CAT activity. Cd at low 

concentrations induced the activity of catalase (CAT), and superoxide dismutase (SOD) in 

the earthworm Eisenia fetida; however, high concentrations inhibited the enzymes (Zhang et 

al., 2009). CAT breaks down H2O2 into water and oxygen, thus preventing the buildup of 

peroxide, which can cause LPO. LPO could occur from the direct effect of Cd on lipid since 

Cd can generate ROS by indirectly contributing to the stepwise reduction of superoxide 
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radical (Cuypers et al., 2010). Cd through binding with the cellular antioxidant, glutathione 

(GSH) can reduce the activity of GST because of substrate depletion. Cd (100mg Cd kg-1) 

significantly depleted GSH levels and disrupted the activity of GST in the enchytraeid, E. 

albidus (Novais et al., 2011).                   

Wang et al. (2010b) also report Cd to cause the up/down-regulation of some proteins that 

are crucial to the physiological and metabolic processes in the earthworm, E. fetida. Some 

of the regulated proteins include heat shock protein (HSP, involved in protein folding), 

superoxide dismuthase (SOD, an antioxidant against superoxide radicals), calcium-ion 

binding protein (involved in regulating intracellular Ca2+) and also proteins that are involved 

in glucose metabolism and Tricarboxylic Acid Cycle (TCA). Also, Cd disrupts Ca2+ 

homeostasis in the embryo of Enchytraeus crypticus by competing intracellularly with Ca2+ 

to reduce Ca2+ efflux, thus leading to embryotoxicity (Gomes et al. 2018). In addition to the 

Ca2+ imbalance, Cd affected energy metabolism pathways such as TCA and oxidative 

phosphorylation (Gomes et al. 2018). Low levels of Cd induced epigenetic alteration on the 

epigenome of the earthworm, Lumbricus terrestris, by increasing DNA methylation in loci 

that are susceptible to methylation (Srut et al., 2017). 

2.5.2.2 Bioenergetics response 

Energy is a variable that is conserved across all levels of biological organization. It reflects 

the health status of organisms and productivity across trophic levels (Forbes et al., 2017). 

The energy acquired by soil invertebrates via feeding is usually stored as carbohydrate, 

lipid, and protein reserves (Figure 2-3A). These reserves are metabolized and allocated for 

various physiological processes such as reproduction, growth, and maintenance (Figure 2-

3).  Exposure to heavy metals alters cellular energy acquisition, metabolism, and allocation 

in soil invertebrates (Novais et al., 2013). Alteration in the above bioenergetic processes 

involves a series of molecular mechanisms that cause cascades of metabolic processes 

leading to reduced fitness such as reproduction and growth of the organism (Ankley et al., 

2010; Forbes et al., 2017). For example, a change in energy allocation might shift energy 

budgeting to somatic maintenance and detoxification processes, at the cost of reproduction 

and growth. According to Krebs and Loeschcke (1994), more energy is usually budgeted for 
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processes like heat-shock protein production during stress at the cost of reproduction. 

However, organisms have different metabolic strategies for coping with stress. 

Cd depleted the cellular energy of E. albidus that was exposed to EC50 (6 mg Cd kg-1) and 

EC90 (150 mg Cd kg-1) of cadmium (Novais et al., 2013). From the study, a significant 

change in cellular energy was caused by a depletion in carbohydrate reserve and an 

elevation in electron transport activity, which is a measure of the amount of energy 

consumed during cellular respiration.  Holmstrump et al. (2011) found no correlation 

between glycogen reserve and Cd body burden in the earthworm, Dendrobaena octaedra, at 

a metal-contaminated site. Despite a high Cd body burden in ground beetles, Pterostichus 

oblongopunctatus that were collected from a metal-polluted site, no change in the beetles’ 

total energy reserves (i.e., carbohydrate, lipid, and protein) was observed (Bednarska et al. 

2013). The observations from Holmstrump et al. (2011) and Bednarska et al. (2013) suggest 

that some soil invertebrates might have a different strategy of coping with high metal 

concentration without a metabolic cost of energy utilization on metal detoxification. 

  

 

 

 

 

 

 

 



 

15 
 

 

Figure 2-3. (A) A summary of energy acquisition and metabolism to yield ATP (Adenosine 

triphosphate), designated by the numbers of ATP produced, which is allocated for 

physiological processes (modified from Sokolova et al., 2012). (B) Dynamic energy 

budgeting in animals (Modified from Kooijman, 1986, 2000). Energy enters the organism as 

food and is assimilated at a rate of 𝑝̇𝐴 into the metabolic reserve, 𝐸. The arrows represent 

energy fluxes. The energy is then mobilized at the rate of 𝑝̇𝐶 for allocation to cover somatic 

maintenance (𝑝̇𝑀), structure (𝑝̇𝐺), reproduction or maturity (𝑝̇𝑅), and maturity maintenance 

(𝑝̇𝐽). The letter 𝑘 denotes a constant fraction of the energy reserve being allocated for 

growth and cost of somatic maintenance with maintenance having priority over growth. The 

remaining fraction, 1 − 𝑘 is allocated for maturity, reproduction and cost of maturity 

maintenance. 𝑘 > 1 − 𝑘 because much of the energy reserve in animals are allocated for the 

cost of somatic maintenance during chemical stress to keep the organism alive. 
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2.6 Soil Habitat Quality 

Toxicants cause stress to soil invertebrates in their habitat, but soils with high quality will 

provide soil invertebrates with resources to combat the toxicant’s stress. The quality of soil 

as habitat is a function of the soil's intrinsic factors such as pH, organic matter (OM), and 

soil moisture (Jegede et al., 2019b). Soil habitat where intrinsic factors do not support the 

biological and physiological fitness of soil invertebrates can be considered as a low habitat 

quality soil. These factors can either modulate the bioavailability of metals to soil 

invertebrates (i.e., toxicokinetics) or how soil invertebrates handle metal stress (i.e., 

toxicodynamics).    

Soil organic matter (OM) and pH are considered the most critical soil factors that influence 

the bioavailability of inorganic and organic chemicals to soil invertebrates (van Gestel, 

1992). According to Van Gestel et al. (1995), the bioavailability of metals to soil organisms 

is governed by soil factors that alter the concentration of the metals in soil pore water, and 

such factors include OM, clay content, iron oxides, and pH. Artificial soil of low pH (4.0) 

and OM (10 %) increases Zn2+ bioavailability to Eisenia fetida, thus causing a significant 

reduction in survival and cocoon production (Spurgeon and Hopkins, 1996). In a study by 

Bradham et al. (2006), natural soils of low pH had higher lead (Pb) toxicity on the 

earthworm, E. andrei. In the study, E. andrei in low pH soils had significant internal Pb and 

Pb bioavailability, which corresponded to a high amount of Pb2+ in soil pore water. High 

moisture content in artificial soil potentiates Zn toxicity on F. candida and O. nitens by 

favouring the availability of Zn2+ in soil pore water to the organisms (Owojori and Siciliano, 

2015). 

Soil habitat quality alters O. nitens’s toxicodynamic responses to Zn irrespective of the high 

Zn body burden in the mites. Zn (1500 and 14000 mg kg-1) did not affect the glucose 

metabolic enzymes, glucose-6-phosphate dehydrogenase (G6PDH) and lactate 

dehydrogenase (LDH) activities in mites of high quality habitat soil but significantly 

increased the activities of the enzymes in mites of low habitat quality, indicating cellular 

stress (Jegede et al., 2019b). There was no significant change in the expression of 

metallothionein (mt) and catalase (cat) genes in E. fetida that were exposed to Cd at high 
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OM (14 %). In contrast, a significant induction of mt and inhibition of cat gene was 

observed in E. fetida at low OM (6 and 10 % OM) (Irizar et al., 2015). The high OM might 

have provided the earthworm with energy to resist the oxidative damage of Cd. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

18 
 

2.7 Oppia nitens C.L. Koch, 1836 (Acari: Oribatida): Current status of its bionomics 

and relevance as a model invertebrate in soil ecotoxicology1  

2.7.1 Preface 

A critical review of literature on the biology and ecology of Oppia nitens was done to 

provide information on its bionomics and responses to chemicals in soil. The review 

highlighted its functions and contribution to ecosystem services. A possible molecular 

mechanism on how the mites could tolerate cadmium in soil was proposed. 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
1 Fajana HO, Gainer A, Jegede OO, Awuah KF, Princz JI, Owojori OJ, Siciliano SD. 2019a. Oppia nitens C.L. Koch, 1836 

(Acari: Oribatida): Current status of its bionomics and relevance as a model invertebrate in soil ecotoxicology. 

Environmental Toxicology & chemistry, 38(12): 2593–2613. https://doi.org/10.1002/etc.4574  
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2.7.2 Abstract 

The oribatid soil mite Oppia nitens C.L. Koch, 1836, is a model microarthropod in soil 

ecotoxicity testing. This species has a significant role in supporting soil functions and as a 

suitable indicator of soil contamination. Despite its significance to the environment and 

ecotoxicology, however, very little is known of its biology, ecology, and sub-organismal 

responses to contaminants in the soil. In this review, we give detailed and critical insight 

into the biology and ecology of O. nitens concerning traits that are crucial to its adaptive 

responses to contaminants in soil. We used a species sensitivity distribution model to rank 

the species sensitivity to heavy metals (cadmium and zinc) and neonicotinoids (imidacloprid 

and thiacloprid) compared to other standardized soil invertebrates. Although the 

International Organization for Standardization (ISO) and Environment and Climate Change 

Canada (ECCC) are currently standardizing a protocol for the use of O. nitens in soil 

toxicity testing, we believe that O. nitens is limited as a model soil invertebrate until its 

molecular pathways associated with its response to contaminants are better understood. 

These molecular pathways can only be elucidated with information from the mites’ genome 

or transcriptome, which is currently lacking. Despite this limitation, we propose a possible 

molecular pathway to metal tolerance and a putative adverse outcome pathway (AOP) to 

heavy metal toxicity in O. nitens. 

2.7.3 Introduction 

Oribatid mites are diverse and ubiquitous microarthropods in soil. They inhabit all kinds of 

soils across the globe, irrespective of soil type, nutrient status, and microclimatic conditions 

(Ivan, 2017). The ubiquity of oribatid mites is due to their ecological position and diverse 

feeding guilds (Behan-Pelletier, 2003). More than 100,000 species of oribatid mites may 

exist (Walter and Proctor, 2013). Their presence dominates the upper organic horizon of 

soil, where densities can reach several hundred thousand individuals per square meter of soil 

(Norton, 1990). They play a significant role in soil nutrient cycling (e.g., organic matter 

decomposition) and contribute to the formation and maintenance of soil structure (Wickings 

and Grandy, 2011). Oribatid mites are a heterogeneous trophic group that are prime 

bioindicators of soil disturbances due to their abundance and diversity in surface soil 
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(Behan-Pelletier, 1999). They are ideal indicators of contamination within surface soils 

because they are primarily found in the organic horizon, where various soil contaminants are 

sequestered. Despite these advantages, many oribatid mite species are not used in soil 

ecotoxity studies due to various limitations that prevent them from being model test 

organisms. Several investigators have evaluated the performance of different species from 

various geographical ranges (e.g., boreal, temperate, tropical) when used for toxicity testing 

and bioindication of pollution (e.g., Seniczak et al., 1996; Köhler et al., 2005; Seniczak et 

al., 2009; Princz et al., 2010; Owojori and Siciliano, 2012; Owojori et al., 2019). With the 

exploration of the inclusion of different species, limitations were identified that precluded 

their inclusion as model test organisms. For instance, Platynothrus peltifer, which was 

initially used in lethal and sub-lethal toxicity testing, is limited by its long developmental 

cycle (>150 days to attain maturity) and by the difficulty in establishing laboratory cultures 

from samples collected from the field (van Gestel and Doornekamp, 1998). In contrast, 

other test species, such as Archegozetes logisetosus (Aoki, 1965; Seniczak et al., 1996; 

Heethoff et al., 2013) and Muliercula inexpectata (Badejo et al., 2002; Owojori et al., 2019), 

are useful for laboratory-based toxicity assays because they have a relatively short 

reproduction cycle and can easily be cultured under laboratory conditions. Moreover, A. 

logisetosus and M. inexpectata are respectively Pan- and Afro-tropical in distribution and 

are thus relevant as test species for tropical ecosystems.  

In contrast, Oppia nitens C.L. Koch, 1836, is a euryoecious microarthropod (i.e., can live 

under variable habitat conditions) and is found in boreal and temperate ecozones. It is 

widely distributed across North America, Europe, and some parts of the Middle East 

(Subias, 2004), occurring in humus-rich forest and agricultural soils, wetlands, and dry 

grasslands (see table 1A of Appendix A). Its pattern of distribution and short reproduction 

cycle (usually 28 days), along with the ease with which researchers can establish 

synchronized cultures under laboratory conditions, make this species favourable for use in 

toxicity testing. Furthermore, it is sensitive to heavy metals, pesticides, organic compounds, 

and salt content in soil (Princz et al., 2010, 2012; Owojori et al., 2012; de Lima e Silva et 

al., 2017). It also has broad applicability to diverse soil types and pH, with limitations in 

reproduction observed at soil pH >7.3 (Princz et al., 2010; Owojori and Siciliano, 2012). 
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Low soil organic matter content may also be a limiting factor for O. nitens (Princz et al., 

2010), but this is not surprising, as oribatid mite community structure in general is driven by 

humus form and type (Maraun and Scheu, 2000). 

2.7.4 Biogeographical distribution of O. nitens 

O. nitens is cosmopolitan in distribution, occupying the Holarctic region (i.e., Nearctic and 

Palaearctic regions). The distribution in the Palaearctic is mostly western (Figure 2-4) but 

extends beyond the Holarctic region to the sub-Antarctic (Subias, 2004). A subspecies of O. 

nitens, O. nitens brachytrichinus Dalenius, 1958, was recorded to be present in the sub-

Antarctic archipelagos, the Crozet Islands (Starý and Block, 1998). Their occurrence could 

be as a result of dispersal from adjacent mainland via phoresy. Lebedeva and Lebedev 

(2008) found Oppia sp. C.L. Koch, 1836, on the plumage of birds in Spitsbergen, an island 

in the Svalbard archipelago in northern Norway. Records indicate the distribution of O. 

nitens from North America (i.e., Canada and USA) to Europe and some parts of the Western 

Mediterranean (Figure 2-4; Table 1A of Appendix A). The circumpolar distribution patterns 

of O. nitens (Figure 2-4) are confirmed by its presence within northern temperate regions, 

spanning boreal and temperate forests, including grasslands. The distribution patterns also 

suggest occurrence in some parts of Norway and Russia (de Jong et al., 2014), although this 

has yet to be confirmed. A molecular taxonomic approach, such as metabarcoding of 

environmental DNA samples (Telfer et al., 2015), should be used to confirm and better 

understand the distribution pattern of O. nitens, especially for regions where its occurrence 

is uncertain. 
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Figure 2-4. Biogeographical distribution of Oppia nitens. Highlighted areas are 

approximate locations from literature where O. nitens can be found in the Holarctic region 

(i.e., Nearctic and Palearctic regions).  

 

2.7.5 Contribution of O. nitens to ecosystem services  

Oppia nitens is an ecosystem engineer, meaning it modifies resource availability in its 

habitat, and its activities influence environmental conditions (Jones et al., 1994; Crain and 

Bertness, 2006). Like other ecosystem engineers, O. nitens alters soil functions that support 

several ecosystem services, benefitting other organisms and humans. Specifically, the 

activities of O. nitens contribute to three of the four categories of ecosystem services: the 

supporting, provision, and regulating services (Prather et al., 2013).  

O. nitens mechanically contributes to the breakdown of plant litter and bioturbation, thus 

aiding decomposition and stability of soil aggregates (Lavelle et al., 2006).  It also 

fragments detritus and recalcitrant plant residues into finer portions, or frass, which is an 

energy source for microorganisms.  Thus O. nitens can selectively activate microbial 

communities and improve the quality of soil organic carbon (Decaëns et al., 2006; Prather et 

al., 2013).  Furthermore, this decomposition process mediated by O. nitens supports 
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secondary production, forms the basis of the detritus food web (Decaëns et al., 2006; 

Lavelle et al., 2006), and releases locked nutrients like nitrogen and sulphur into the soil, 

which are used by other organisms and especially microorganisms. More importantly, O. 

nitens restructures and alters nutrient availability by releasing feces rich in micronutrients. 

Therefore, O. nitens directly influences soil status by feeding on plant residues and releasing 

nutrients from high-quality litters into the soil. 

O. nitens also likely contributes to climate and water regulation services. For example, by 

contributing to soil bioturbation through its continuous movement, O. nitens is helping to 

form and stabilize soil aggregates, thus aiding carbon storage and climate regulation 

(Decaëns et al., 2006). Carbon sequestration in stabilized aggregates prevents the release of 

greenhouse gases like CO2 and CH4 (Six et al., 2000; Mangalassery et al., 2013).  Aggregate 

stabilization is also crucial in controlling soil erosion (Barthes and Roose, 2002).  

Furthermore, although O. nitens’ contribution to water infiltration is not acknowledged, it 

should not be discounted as it is a dominant soil microarthropod, especially in the Canadian 

boreal forests, and as such, it likely contributes to water regulation through decreasing 

filtration and creating structural porosity.   Like other soil biota, O. nitens could regulate 

water infiltration, run-off rate, and storage in soils (USDA, 2001).  

Finally, O. nitens plays a significant role in maintaining the soil food web. For example, like 

other soil invertebrates, O. nitens augments primary production by constantly releasing 

nutrients in the rhizosphere, stimulating mutualistic rhizosphere organisms (i.e., bacteria and 

fungi), and producing plant growth promoters (Lavelle et al., 2006). Also, the fungivorous 

nature of O. nitens and its occasional feeding on potentially pathogenic nematodes protects 

plants from diseases.  Furthermore, O. nitens are also prey for several soil invertebrates, 

including predatory mites.  Thus, the supporting and regulating services (Prather et al., 

2013) provided by O. nitens (Figure 2-5) are essential for maintaining several other 

ecosystem services. 
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Figure 2-5. The supporting and regulatory contribution of Oppia nitens to the provision of 

ecosystem services. 

 

2.7.6 Biology of O. nitens 

2.7.6.1 Feeding  

Oribatid mites are particulate feeders with diverse feeding guilds that vary across life stages. 

Their feeding habits can be categorized based on analysis of their gut contents (Schuster, 

1956), type of digestive enzymes mainly carbohydrase (Siepel and Ruiter-Dijkman, 1993), 

and, recently, analysis of the stable isotope ratio (specifically 15N to 14N ratio) of their tissue 

(Schneider et al., 2004b). Schuster (1956) identified three main categories of feeding guilds 

in oribatid mites based on their gut contents: macrophytophagous mites, microphytophagous 

mites, and mites with no specialized feeding habits. Macrophytophagous mites feed on dead 

plant materials that are either woody or non-vascular in origin; microphytophagous mites 

feed on soil microflora such as fungi, algae, lichen, and bacteria; and the non-specialized 
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groups feed on either plant remains or soil microflora. Some groups of oribatid mites, 

however, are polyphagous: they feed on plant remains, microflora, and also act as predators 

or scavengers (Walter, 1987).  

O. nitens is a polyphagous fungivore, preferentially grazing on organic debris and fungus, 

although selective feeding of lichen, raw humus, and carrion have been observed (Seniczak 

and Stefaniak, 1978). This species shows a preference for some types of fungi (Stefaniak 

and Seniczak, 1981). For example, Singh et al. (1996) reported that O. nitens strongly 

prefers leaf litter mixed with dried mushrooms as opposed to leaf litter or dried mushrooms 

alone, and it also has very little preference for granulated yeast. Nevertheless, O. nitens has 

been successfully cultured in the laboratory on a single diet of baker’s yeast, Saccharomyces 

cerevisiae (Princz et al., 2010).   

In the absence of preferred food sources, O. nitens’ feeding habits vary from herbivory to 

predation and cannibalism. For example, Stefaniak and Seniczak (1981) observed 

cannibalism under laboratory conditions when specimens of O. nitens were provided with 

the fungus Trichothecium roseum as a food source. Furthermore, stable isotope analysis of 

tissue found that Oppiidae had high 15N to 14N ratio, indicating they consume animal tissue, 

either as scavengers or predators, in addition to plants (Schneider et al., 2004a). Gan et al. 

(2014) reported that O. nitens has δ15N of ~ 4 ‰, which is in a range of the threshold 

designated for predators or scavengers (Schneider et al., 2004b).  

O. nitens also have an efficient microflora in their alimentary canal that can digest 

recalcitrant polysaccharides (Seniczak and Stefaniak, 1978). However, the nature and 

quality of the food material ingested can alter the activity of their gut microflora, either by 

stimulating the microflora to breakdown fungi and plant materials or by inhibiting the 

activity of the microflora (Stefaniak and Seniczak, 1981). For instance, fungi with 

antimicrobial potentials, such as Penicillium sp., can reduce gut microbial activities, which 

in turn may affect the breakdown of fungal materials such as chitin and lectin.  O. nitens has 

carbohydrase as its primary digestive enzyme. However, it is unclear whether the mites’ 

enzymes or the enzymes of the symbiotic gut microflora provoke the enzymatic activity in 

the guts. 
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2.7.6.2 Life history of O. nitens 

O. nitens is a k-selected organism with low metabolic rate (Siepel, 1994). Like other k-

selected organisms, it has a relatively long life span. The life history of microarthropods can 

be explained by reproduction, development, synchronization, and dispersal (Siepel, 1994). 

Although not fully understood, the reproductive mode of O. nitens is thought to be through 

parthenogenesis; however, records of spermatophores are evident in laboratory cultures 

(Sengbusch and Sengbusch, 1970; Stefaniak and Seniczak, 1981; Kummel, 1982; Alberti et 

al., 1991). Evidence of males and females has been observed in laboratory cultures (ECCC, 

2018), but no evidence of sexual dimorphism. Variants in colouration have been observed in 

laboratory cultures, although the reasons for this are also uncertain. In some cases, adults are 

milky-white following eclosion, and they do not mature into the dark brown cuticle typical 

of adult O. nitens. These variants seem less sclerotized, fail to reproduce (ECCC, 2018), and 

are not to be used for toxicity tests. It is unknown whether this variation is a factor of stress, 

malnutrition, or genetics.  

O. nitens is iteroparous, i.e., members of this species have multiple reproductive cycles, 

laying eggs more than once throughout their lives. Iteroparity is a common oviposition 

mechanism in oribatid mites and most soil microinvertebrates (Siepel, 1994). Oviposition 

pattern is an important life history trait as it influences energy allocation in organisms. The 

fact that O. nitens is iteroparous allows the mites to conserve energy between reproduction 

and adaptive responses. The gap between successive ovipositions reduces the energy flux 

that occurs during reproduction, thereby allocating more energy for cellular maintenance 

and detoxification. Hence, iteroparity confers an advantage to O. nitens to cope with stress 

from either natural or environmental stressors.  

In contrast, microinvertebrates that lay all their eggs once in a lifetime (i.e., semelparity) 

expend greater energy during the one-time oviposition event, leading to less energy 

allocation for cell maintenance and survival (Siepel, 1994); hence, they are more susceptible 

to stress from either natural or environmental stressors. The average number of eggs laid by 

sexually mature O. nitens in laboratory culture is 1 egg/female/day (personal observation). 

These mites prefer to lay eggs around and within crevices and may also hide their eggs deep 
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inside their food (Sengbusch and Sengbusch, 1970). Specimens in laboratory cultures have 

also been noted laying eggs in and around the yeast granules provided as a food source 

(personal observations). The approximate gross reproduction rate (i.e., number of 

offspring/adult) has been reported at 2.7 juveniles per adult from 0 – 28 days life cycle 

(Princz et al., 2010). The low fecundity is not surprising, as oribatid mites are characterized 

by slow metabolism and development, longer life spans, and a limited capacity for 

population growth (Lebrun and van Straalen, 1995; Norton and Behan-Pelletier, 2009).  

The developmental time from egg to adult for most oribatid mites ranges from 23 to 360 

days, depending on temperature and food quality (Sengbusch and Sengbusch, 1970). 

However, the development of O. nitens from egg to adult takes about 40 to 45 days at 20℃ 

(Michael, 1898; Sengbusch and Sengbusch, 1970). Based on an unpublished data, newly 

emerged adult O. nitens start to lay eggs on plaster of Paris substrate within 6 days at 22–

23℃ with a few grains of baker’s yeast as food (Figure 2-6). Sengbusch and Sengbusch 

(1970) also reported an average of 8 days before egg laying in cultures maintained at 20℃ 

and fed with Protococcus sp. (a green algae). Eggs are oval, whitish, and translucent (Figure 

2-7), with sizes ranging from 90 to 150 μm, and they hatch within about a week after being 

laid (Sengbusch and Sengbusch, 1970; Seniczak, 1975; Princz, 2014). When cultured in a 

laboratory between 20-23°C with baker’s yeast as a constant food source, O. nitens were 

observed to undergo a larval stage about 8 days after oviposition and then three nymphal 

stages (i.e., the protonymph, deutonymph, and tritonymph stages), lasting approximately 1 

week each  (personal observation; ECCC, 2018).  

Larvae have three pairs of legs, and the nymphs are whitish in colour (Figure 2-7). 

Protonymphs are approximately 200 μm long by 105 μm wide, and tritonymphs are 

approximately 372 μm long by 195 μm wide (Seniczak, 1975). The egg-laying capacity of 

O. nitens is greatest at 12 to 18 days; after that, a greater number of the eggs hatch (Figure 

2-6). Each stage of maturation between the instars is characterized by a quiescence period 

(i.e., the pre-ecdysial stage). At the pre-ecdysial stage, successive immature stages remain 

dormant without feeding for a few days (usually 2 to 3 days). The pre-ecdysial stage is a 

way of conserving energy in preparation for moulting, as moulting consumes energy and 
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nutrients (Murphy and King, 1992). In the final nymphal stage, the tritonymphs undergo a 

final moulting phase before emerging as adults. The newly emerged adult has a semi-

translucent golden-brown or light amber colouration. Post-ecdysis, and within a week 

(ECCC, 2018), the light amber cuticle becomes melanized and sclerotized into the typical 

dark red-brown colour of adult O. nitens, which usually measures about 510 µm long and 

290 µm wide (Michael, 1884) (Figure 2-7). 

 

Figure 2-6. Dynamics in egg-laying and hatching capacity of Oppia nitens after 28 d in 

substrate of plaster of Paris and fed with grains of baker’s yeast in the laboratory at 21℃ 

(unpublished data). 

 

 

 

 

 

 

 

 



 

29 
 

 

Figure 2-7. Developmental stages of Oppia nitens and the period between successive 

stages. The developmental period (in days), estimates are based on data from Sengbusch and 

Sengbusch (1970), Princz et al. (2010), and a 2-years observation of laboratory-cultured 

Oppia nitens. The broken arrow indicates egg laying.   

 

Environmental factors such as temperature and diet can influence O. nitens’ life history. For 

example, Stefaniak and Seniczak (1981) found that a diet of Penicillium chrysogenum and 

P. roseo-purpureum prolongs developmental time and maturation of juveniles by 30 to 32 

days, while a diet of P. spinulosum and P. viridatum reduces it to about 26 days. For 

cultures at 20°C ± 3°C that are fed baker’s yeast, mature adult O. nitens take about 26 to 28 

days to recruit their first generation through all developmental cycles (Princz et al., 2010). 

Similarly, Yu et al. (1997) observed a developmental time from adult to juveniles to be 

within 14 to 21 days at 23°C and a humidity of 85% ± 5%. However, a reproduction cycle 

of 28 days has been recommended as a full life cycle for soil toxicity tests with O. nitens 

(Princz et al., 2010), as this timeframe enables differentiation between the initial mature 

adults and their successive generation of progeny. 
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2.7.6.3 Influence of soil properties on the life history of O. nitens 

Intrinsic soil properties, such as pH and the quality and quantity of organic matter, influence 

the life history of O. nitens.  Princz et al. (2010) reported that high organic matter (>6%) in 

soils was associated with increased juvenile production in O. nitens, while soil pH (ranging 

from 3.9 to 6.1) had insignificant effect on juvenile production. Owojori and Siciliano 

(2012) found low pH soil suitable for juvenile production but that higher pH (>7.3) 

compromises it. Interestingly, oribatid mites can regulate internal pH in the spherites within 

their proventricular glands to maintain optimum pH for reproduction (Ludwig et al., 1992). 

Mites in soils with high organic matter (OM) are likely to ingest contaminants that are 

bound to the OM. However, the high OM might also serve as food source and provide more 

energy reserve needed to combat toxicity from the contaminants (Jegede et al., 2019b).   

2.7.7 O. nitens in soil ecotoxicology 

2.7.7.1 Traits of O. nitens influencing toxicokinetics and toxicodynamics 

To understand how O. nitens interacts with soil contaminants, it is helpful to consider the 

impact of certain traits of this species; i.e., its physiological, morphological, and ecological 

attributes (Baird and Van den Brink, 2007). Specifically, three categories of traits are 

considered key to O. nitens’ response to soil contamination: its body size and diet, intrinsic 

sensitivity, and life history characteristics (van Straalen, 1993; Rubach et al., 2012; Gainer 

et al., 2018).  

 

Exposure is necessary for toxic effects to occur. Therefore, the mites’ body size and diet are 

key because they determine degree of exposure (Rubach et al., 2011; Gainer et al., 2018; 

Princz et al., 2018). First, small body sizes are associated with high levels of exposure to 

contaminants due to the larger surface area to volume ratio (de Bello et al., 2010; Hedde et 

al., 2012; Andriuzzi et al., 2016; Gainer et al., 2018; Princz et al., 2018), and O. nitens is 

one of the smallest of the standardized test invertebrate species in soil ecotoxicology (Table 

2-2). Second, the diet of soil invertebrates is key to their oral exposure to contaminants, 

especially when they ingest soil in addition to their primary food source (Gainer et al. 2018). 

Although the preferred diet of O. nitens is fungi, these mites also feed on dead organic 

matter (Norton, 1994; Behan-Pelletier, 1999; Schneider et al., 2004b). In field conditions, 
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they may get exposed to contaminants through ingestion of contaminated algae, other 

detritus, or carcasses (Seniczak et al., 2017). The degree of exposure through the ingestion 

of contaminated diet varies with age as only active stages of O. nitens feed. 

The intrinsic sensitivity of O. nitens, that is, its internal toxicokinetic processes, also 

influences its responses to contaminants. In O. nitens, the degree of sclerotization, reflected 

between the nymphal and adult stages, likely influences the degree of dermal absorption and 

elimination of chemicals. Immature mites are not fully sclerotized and have soft cuticles, 

which make them susceptible to both predation and absorption of contaminants via their 

cuticle (Behan-Pelletier, 1999). In contrast, melanization of the cuticle allows for 

sequestration of minerals, including metals. Indeed, compartmentalization of lead within 

spherites of the proventricular glands in oribatid mites has been documented and contributed 

to detoxification mechanisms (Ludwig et al., 1992). Hugueir et al. (2015) hypothesized that 

dermal absorption in adult mites primarily occurs through exoskeleton gaps on their legs.  

Rubach et al. (2011) identified a link between complete sclerotization and high elimination 

rates for aquatic arthropods. Thus, we suggest O. nitens also may have high elimination 

rates because of moulting activities, which allow these mites to eliminate contaminants 

sequestered in their cuticles. Juvenile O. nitens frequently undergo moulting throughout 

their nymphal stages. Thus, the immature stages have greater capacity to eliminate 

contaminants via ecdysis. Numerous gut enzymes such as cellulase, glucanase, chitinase, 

trehalase, and amylase have been identified in oribatid mites (Schneider et al., 2004a). 

However, no literature currently exists on activities of biotransformation enzymes. Gut 

microflora of O. nitens could influence contaminant’s biotransformation. 

Traits related to toxicodynamics also influence responses to contaminated soils. For 

example, sclerotization of O. nitens, associated with internal toxicokinetics and 

toxicodynamics, affects the storage of contaminants. Although not currently quantified, O. 

nitens likely sequester contaminants in their exoskeleton, as observed in other terrestrial 

invertebrates (Schmidt and Ibrahim, 1994) and other sclerotized invertebrates (Alikhan et 

al., 1990; Keenan and Alikhan, 1991; Alcorlo et al., 2006). Certain organics, like 

perfluorinated alkyl sulfonates, may accumulate within O. nitens exoskeletons, as these 
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chemicals preferentially bind to proteins (Jones et al., 2003), and the chitinous arthropods 

exoskeletons contain high levels of proteins. However, this remains to be confirmed (Princz 

et al., 2018). Storage and compartmentalization of metals in specialized proteins, like 

metallothionein or midgut electron-dense granules, occur within oribatid mites (Chamobates 

borealis, Nothrus silvestris and Rhyostrititia duplicate), although the extent to which metals 

are sequestered is species-specific and likely a mechanism for detoxification (Ludwig et al., 

1992; Hugueir et al., 2015; Keshavarz-Jamshidean et al., 2017). Lipid content also 

influences the toxicity of organic contaminants. Based on findings from Gainer et al. (2018), 

O. nitens, like other oribatid mites, has relatively high lipid contents compared to other 

standardized soil invertebrates in soil ecotoxicology (Table 2-2), which influences the 

partitioning of hydrophobic organic chemicals into organisms (Belfroid et al., 1996).  

Other morphological, ecological, life history, and physiological traits of O. nitens influence 

the mite’s response or susceptibility to chemicals, relative to other standardized soil 

invertebrates (Table 2-2). For instance, based on evidence from aquatic invertebrate studies, 

maternal transfer could be another excretion route for O. nitens, especially for metals and 

organics (Keteles and Fleeger, 2001; Conley et al., 2009; Cid et al., 2010). However, the 

small clutch size of O. nitens (Table 2-2) reduces the maternal transfer of contaminants via 

egg laying.  Gaseous exchange via body surface (i.e., cutaneous respiration) is another trait 

that favours the absorption of volatile organics into the internal compartment of the mites. 

Furthermore, the active movement of O. nitens is a physiological trait that enables the mite 

to rapidly avoid contaminated soil patches relative to less active or sedentary organisms like 

earthworms and enchytraeids (Ezzatpanah, 2012).  

Another biological mechanism of coping with toxicity or stress is via energy allocation 

between life history processes and cellular maintenance (Kooijman, 2000; Smolders et al., 

2004; Muller et al., 2010). For example, O. nitens may delay oviposition, concentrating 

resources and energy into survival, detoxification, and cellular maintenance upon exposure 

to contaminants in soil.
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Table 2-2. Traits of Oppia nitens relative to other standardized soil invertebrates in soil ecotoxicology   

O. n = Oppia nitens; H. a = Hypoaspis aculeifer; F. c = Folsomia candida; E. f = Eisenia fetida; E. c = Enchytraeus crypticus 

F = female; *Average lipid content of spp. of Antarctic Oribatid mites. 1Seniczak (1975b); 2Princz et al. (2010); 3Convey (1992); 4Spieksma 

(1990); 5 Ludwig et al. (1992); 6Jansch et al. (2005); 7Fountain and Hopkin (2005); 8Holmstrup et al. (2002); 9Davies (1927); 10Elvira et al. (1996); 
11Reinecke and Voljoen (1991); 12Krauss et al. (2000); 13 Wågman et al. (2001); 14Mendes and Valente (1953); 15Vijver et al. (2005); 16Westheide 

and Graefe (1992); 17Rodriguez and Verdonschot (2001). Note: Data or traits without reference were based on personal observation. 
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2.7.7.2 Responses of O. nitens to contaminants in soil  

Although more studies have focused on other soil invertebrate species (especially the 

earthworm, Eisenia fetida; springtail, Folsomia candida; enchytraeid, Enchytraeus 

crypticus) (Figure 1A of Appendix A), a list of contaminant toxicity to O. nitens is gradually 

building. Yu et al. (1997) likely conducted the first assessment of contaminant toxicity to O. 

nitens; they found that this species was not sensitive to Bacillus thuringiensis toxins in 

transgenic cotton and potato plants. Since this study, many others have been published on 

the toxicity of metals, pesticides, and organic compounds on O. nitens. 

2.7.7.2.1 Metals.  

The toxic effect of metals to O. nitens is predominantly influenced by soil type, speciation, 

and the amount of metal bound to organic matter (Jegede et al., 2019b).  Owojori and 

Siciliano (2012) assessed O. nitens’ response to four metals (cadmium, zinc, copper, and 

lead) in OECD artificial reference soil. Considering the metals’ effects on survival and 

reproduction, Cd was the most toxic metal to the mites, having the lowest median lethal 

concentration (LC50) value, 603 mg kg-1, and the lowest reproduction median inhibitory 

concentration (EC50) value, 137 mg kg-1. Keshavarz Jamshidian et al., (2017) reported a 

higher reproduction EC50 value of 345 mg kg-1 Cd in LUFA 2.2, a natural reference soil. 

Cadmium has been linked to deleterious effects on the community structure of mites in 

metal-contaminated soils (Khalil et al., 2009). It is the most toxic of the four metals (i.e., 

cadmium, zinc, copper, and lead) to other soil invertebrates such as the springtails, F. 

candida and Proisotoma minuta (Fountain and Hopkin 2001; Nursita et al., 2005), and the 

earthworm E. fetida (Spurgeon et al. 1994). 

Zinc (Zn) is an essential metal but is toxic to O. nitens at high concentrations.  In a metal-

contaminated site risk assessment, Owojori and Sciliano (2015) identified Zn as the metal of 

concern. Owojori and Siciliano (2012) also reported a reproduction EC50 value of 1562 mg 

kg-1 for zinc to O. nitens in OECD artificial soil with pH 6 and 10% organic matter. Jegede 

et al. (2019b) found that in natural agricultural soil with a lower pH of 3.4, the reproduction 

EC50 values for Zn to O. nitens ranged from 103 to 499 mg kg-1. They also found that zinc 

toxicity to O. nitens varied depending on soil properties. For example, comparing sandy and 
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loamy soils, the authors found the reproduction EC50 values for Zn to O. nitens to be 646 

and 8,700 mg kg-1, respectively. Most toxicity studies on the effect of Zn to O. nitens have 

been based on single generation exposure. More recently, a multigenerational response of 

the mite population to Zn (mostly below 800 mg kg-1 of zinc in natural soil) was modelled 

using a population growth rate approach. Population growth rate shows subsequent 

generations of O. nitens to be more sensitive to Zn than their parents (Jegede et al. 2019a).  

Like zinc, copper (Cu) is an essential metal that is toxic to O. nitens at high concentrations. 

Owojori and Sciliano (2012) found the reproduction EC50 value of Cu was 2,896 mg kg-1 in 

OECD artificial soil, but (O.O. Jegede et al., in preparation) found it ranged from 1050 to 

26,000 mg kg-1 in sandy and loamy soils.  

Owojori and Siciliano (2012) also found that lead (Pb) has less effect on the survival of O. 

nitens than the other three metals (Cd, Cu, and Zn), with an LC50 value of about 6,700 mg 

kg-1 in OECD artificial soil; however, O. nitens reproduction is sensitive to Pb. They also 

estimated the reproduction EC50 for Pb was 1,678 mg kg-1 in artificial soil. However, (O.O. 

Jegede et al., in preparation) found it ranged from 1,360 to 21,000 mg kg-1 in five different 

natural soils with contrasting physicochemical properties, especially cation exchange 

capacity (CEC) and organic carbon (OC) content.  

The toxicity of nickel and cobalt to O. nitens indicates that nickel is more toxic than cobalt 

and could be as toxic as cadmium, with reproduction EC50 values ranging from 133 mg kg-1 

to 3,600 mg kg-1 in five natural soils of contrasting physicochemical properties (O.O. Jegede 

et al., in preparation). When assessing the toxic effect of lanthanum (La), a rare-earth metal, 

on O. nitens, Li et al., 2018 reported to having a reproduction EC50 of 1,500 mg kg-1 (based 

on total concentration), 10.2 mg kg-1 (pore water concentration), and 15.6 mg kg-1 (CaCl2 

extractable concentration). 
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2.7.7.2.2 Pesticides. 

Few studies have reported the response of O. nitens to pesticides. de Lima e Silva et al., 

(2017) assessed the toxic effect of two neonicotinoids (thiacloprid and imidacloprid) on O. 

nitens. They found that the LC50 value of thiacloprid was >1,000 mg kg-1, whereas the 

EC50 value for effect on reproduction was 76 mg kg. However, when the mites were 

exposed to imidacloprid, the LC50 value was 360 mg kg-1, and reproduction EC50 value 

was 119 mg kg-1. This indicates that thiacloprid has a more significant reproductive effect 

than imidacloprid but less effect on mite survival. Results available for other pesticides 

generally showed low sensitivity of O. nitens to pesticides. For example, when O. nitens 

was exposed to the insecticide chlorantraniliprole (a ryanoid), no effect on survival and 

reproduction at concentrations >1,000 mg kg-1 were noted (Lavtizar et al., 2016). Similarly, 

when O. nitens was exposed to the herbicides imazapyr and triclopyr, toxicity could not be 

determined at concentrations above 4,000 mg a.i.kg/dry weight for imazapyr, while triclopyr 

only had an effect at EC25 level when the concentration was 1500 mg kg-1 (Jimmo et al., 

2018). 

2.7.7.2.3 Other organic compounds. 

The toxicity of organic compounds to O. nitens have been assessed in a number of studies. 

Owojori et al. (2011) reported the toxicity of three organic contaminants (phenanthrene, 

benzo[a]pyrene, and geraniol) to O. nitens. Phenanthrene was very toxic to O. nitens with 

LC50 and reproduction EC50 values of 388 and 95 mg kg-1, respectively. For geraniol, a 

reproduction EC50 value of 283 mg kg-1 was reported (Owojori and Siciliano, 2012). In 

contrast, benzo[a]pyrene, showed no toxicity to O. nitens, even at concentrations above 

1,600 mg kg-1.  

Princz et al. (2018) assessed the toxicity of a persistent organic pollutant, perfluorooctane 

sulfonate (PFOS), to O. nitens, and they reported reproduction EC50 values of the PFOS in 

coarse and fine soil were 23 and 95 mg kg-1, respectively. In another study, Hernandez 

(2014) examined the toxicity of four organic fire retardants (firesorb, fireaide, One Seven 

Class A, and M51) on O. nitens in OECD artificial and LUFA 2.2 soils; they  found the 

toxicities varied among the different chemicals, with their reproduction EC50 values 
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ranging from 2,462 to >8,600 mg kg-1. Fireaide demonstrated no toxicity to O. nitens, even 

at a concentration above 10,000 mg kg-1 in both OECD artificial and LUFA 2.2 soils.  

In a study with petroleum hydrocarbon-contaminated soil (about 250,000 mg kg-1 TPH 

[Total petroleum hydrocarbon]), Princz et al. (2012) found no mortality of O. nitens; 

however, they observed reproduction was substantially impacted relative to control. Gainer 

et al. (2018) assessed the toxicity of lubricating oil, a 50/50 mixture of F2/F3 petroleum 

hydrocarbons, to O. nitens in OECD artificial soil (10% peat) and reported a reproduction 

EC50 value of 1210 mg kg-1. 

2.7.7.3 Avoidance response of O. nitens to soil contaminants  

Although a standardized protocol for the avoidance response of O. nitens is not available, 

some studies have assessed the avoidance response of the mites to several contaminants. 

Most of these studies adapted protocols for earthworms or collembola (ISO, 2006, 2008), 

and results available show promise of a standard avoidance test for O. nitens in the near 

future.  The first-ever information on avoidance of O. nitens to contaminants was the work 

of Owojori et al. (2011), who assessed the influence of soil properties and duration of test on 

avoidance response of O. nitens to eight chemicals (copper, zinc, cadmium, lead, 

phenanthrene, benzo[a]pyrene, geraniol, and boric acid). The authors found no significant 

effect of soil properties on avoidance response of O. nitens to these chemicals, thus 

suggesting avoidance response to be a feasible test in screening contaminated soil from 

large areas of contrasting soil properties. They also reported that significant avoidance could 

be achieved after only 6 hours of introducing mites into contaminated soil. However, 

reliable results may require 24 hours to achieve. It should be noted that current guidelines 

for the avoidance response of earthworms and collembola recommend a test duration of 48 

hours and Frankenbach et al. (2014) could even show that 24 h is enough while testing a 

number of spiked and contaminated soils. Hence, the avoidance response of O. nitens is a 

rapid toxicity test to screen contaminated soils.  

Most soil organisms do not avoid all contaminant groups and classes, as already shown for 

earthworms and collembola (Owojori et al., 2014; Gainer et al., 2019a, b). The results from 



 

38 
 

Owojori et al. (2011) showed similar response between reproduction and avoidance (i.e., 

similar values of reproduction and avoidance EC50s) of O. nitens to copper, zinc, 

benzo[a]pyrene, and phenanthrene.  A recent study assessed the avoidance behaviour of O. 

nitens to lubricating oil. The mites avoided the lubricating oil at concentrations above 1,000 

mg kg-1, although the LC50 value was more than 10,000 mg kg-1 TPH (Gainer et al., 2019a). 

Gainer et al. claim that O. nitens avoidance behaviour is as sensitive as plant growth 

because both avoidance EC50 and plant growth measurements were in the same range of 

magnitude. Thus, avoidance tests can be used as a rapid screening for hydrocarbon-

contaminated soils in place of plant toxicity assessment, which takes a longer time. There is 

a paucity of literature on the influence of life history on avoidance response of O. nitens, but 

it appears that life history has no discernible influence on avoidance response of O. nitens 

when given a choice between control and NaCl, phenanthrene, or copper-contaminated soil 

(Gainer et al., 2019a,b). 

2.7.7.4 Toxicokinetics of contaminants in O. nitens 

Mites generally are known to be high accumulators of metals (Skubala and Kafel, 2004). 

Few studies have assessed contaminant accumulation in O. nitens, partly due to the species’ 

small size, which makes assessing accumulation in traditional survival or reproduction 

assays challenging. However, a few studies have assessed metal accumulation in this 

species. Owojori and Siciliano (2012) assessed the biota to soil accumulation factor (BSAF) 

of Zn, Cu, Cd, and Pb in O. nitens after 35 days of mite exposure in OECD artificial soil 

(10% OM). The BSAF of zinc was the highest (1.07) compared to Cd (0.71), Cu (0.12), and 

Pb (0.42). The high BSAF of Zn can be attributed to its essentiality in physiological 

processes. Zn started to cause a toxic effect in O. nitens at ~2000 µg Zn/g dry body weight 

(Owojori and Siciliano, 2012; Jegede et al., 2019b). The toxicokinetics of cadmium to O. 

nitens after a 7-week exposure in LUFA 2.2 soil showed O. nitens to be a steady 

accumulator of Cd with reduced elimination or depuration. Lethal body estimates ranged 

from 44 to 91 µg Cd/g dry body weight (Keshavarz Jamshidian et al., 2017). 
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2.7.7.5 Response of O. nitens to contaminants compared to other soil invertebrates 

Table 2A of Appendix A presents the response of O. nitens to contaminants in comparison 

with other soil invertebrate species used in soil ecotoxicity testing. Since soil properties 

could influence the toxicity of chemicals, we only compared data for the same type of soils. 

The sensitivity of O. nitens to metals depends on the type of metal in question, whether 

essential or non-essential. It appears O. nitens is more sensitive to non-essential metals 

when compared with other soil invertebrate species (i.e., E. fetida and Enchytraeus 

crypticus/E. albidus). For example, O. nitens is more sensitive to nickel than are F. candida, 

E. fetida, and E. albidus/crypticus. For cobalt, an essential metal, O. nitens is less sensitive 

compared to E. fetida and E. albidus/crypticus (Table 2A of Appendix A). In the case of Cd 

and Pb, using reproduction as the endpoint, O. nitens appears to be more sensitive than F. 

candida but showed similar sensitivity with the oligochaete species.  

The response of O. nitens to Zn is interesting because, first, Zn is an essential metal, and 

second, it is mimicked by Cd. Based on survival as an endpoint, O. nitens is more sensitive 

to Zn than F. candida. However, O. nitens is less sensitive to Zn based on reproduction 

when compared with F. candida, E. fetida, and E. crypticus or albidus (Table 2A of 

Appendix A). A similar trend in the sensitivity of O. nitens to Zn was observed for Cu, 

except for the predatory mite, Hypoaspis aculeifer, whose sensitivity to Cu is less compared 

to O. nitens (Table 2A of Appendix A). For the rare-earth metal, lanthanum, O. nitens is the 

least sensitive in term of survival and reproduction compared to F. candida and E. 

albidus/crypticus (Table 2A of Appendix A). 

All available studies on O. nitens’ response to pesticides show the mite to be less sensitive 

to pesticides than other soil invertebrates (de Lima e Silva et al., 2017; Jimmo et al., 

2018).  In fact, for some neonicotinoid pesticides, O. nitens is less sensitive by several 

orders of magnitude (de Lima e Silva et al., 2017).  Greater sensitivity has been observed for 

O. nitens to some organic compounds (Table 2A of appendix A). For example, the 

reproduction of O. nitens was about five times more sensitive to PFOS than was F. candida 

(Princz et al., 2018). O. nitens was also observed to be more sensitive to petroleum 

hydrocarbons than were F. candida, E. crypticus, and H. aculeifer (Gainer et al., 2018). 
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The sensitivity of O. nitens relative to other standardized soil invertebrates can also be 

ranked using a species sensitivity distribution (SSD) (Posthuma et al., 2001). Here, we 

generated an SSD for Cd and Zn with robust toxicity data from one of the most 

comprehensive reports on Cd and Zn toxicity to soil invertebrates (Lock and Janssen, 

2001a,b) and other available data on Cd and Zn (see Table 3). Also, the sensitivity of O. 

nitens to neonicotinoids (imidacloprid and thiacloprid) relative to other soil invertebrates 

was generated using the data from de Lima e Silva et al. (2017). The few numbers of species 

used in generating the SSD might decrease community representativeness (Dowse et al., 

2013). However, the SSD shows O. nitens to be the least sensitive species (i.e., most 

tolerant) to Cd relative to other standardized soil invertebrate species, considering 

reproduction as the endpoint (Figure 2-8A). Considering Cd toxicity on survival, E. fetida 

was the least sensitive species, followed by F. candida and O. nitens (Figure 2-8B); 

however, this finding might vary between metals and soil types. A similar pattern, as 

observed for the sensitivity of O. nitens to Cd, was observed for Zn (Figure 2-8C and D). 

O. nitens seems to be the least sensitive species (i.e., most tolerant) to neonicotinoids 

(imidacloprid and thiacloprid) relative to other standardized soil invertebrates based on 

reproduction and survival as endpoints (Figure 2-9). O. nitens is not affected by the 

concentration of Cd, Zn, and the neonicotinoids that will potentially affect 25% of the soil 

invertebrate taxa (i.e., hazard concentration [HC25]) (Figure 2-8 and 9).  

Hence, the varying sensitivity of O. nitens to soil contaminants is key to capture a wide 

range of toxicity of chemicals to soil invertebrates, thus allowing a robust risk assessment of 

chemicals in soil. 
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Figure 2-8. Species Sensitivity Distribution (SSD) of model soil invertebrates from (A) 

reproduction EC50 values of Cd with HC25 = 43.60 (22.97–82.76) mg kg-1 (B) survival 

LC50 values of Cd with HC25 = 260.52 (180.15–376.77) mg kg-1 (C) reproduction EC50 

values of Zn with HC25 = 263.83 (161.56–430.84) mg kg-1 (D) survival LC50 values of Zn 

with HC25 = 680.54 (258.62–1790.79) mg kg-1. The data used to generate SSD were from 

Lock and Janssen (2001a,b); Owojori and Siciliano (2012); and *H.O. Fajana et al., in 

preparation. All the toxicity data were based on standardized soils (OECD and LUFA 2.2) 

and test duration of 14 – 84 days. *EC50 for Cd to Oppia nitens = 392.48 mg kg-1 in OECD 

soil, pH = 6.2, organic matter = 10%.
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Figure 2-9. Species Sensitivity Distribution (SSD) of model soil invertebrates from (A) 

reproduction EC50 values of imidacloprid with HC25 = 0.255 (0.009–7.575) mg kg-1 (B) 

survival LC50 values of imidacloprid with HC25 = 0.945 (0.061–14.679) mg kg-1 (C) 

reproduction EC50 values of thiacloprid with HC25 = 0.775 (0.065–9.215) mg kg-1 (D) 

survival LC50 values of thiacloprid with HC25 = 4.548 (0.126–164.289) mg kg-1. The data 

used to generate SSD were from de Lima e Silva et al. (2017). Note: All the toxicity data 

were based on standardized soils (OECD and LUFA 2.2). 
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2.7.8 Standardized test methods for O. nitens 

Soil ecotoxicology has taken on a central role in global regulatory frameworks for risk 

assessment of contaminated soils from environmental chemicals of concern, and to regulate 

the authorization of chemicals such as pesticides. This has in part been accomplished 

through the development of standardized toxicological tools or tests that can be used to 

inform risk assessment and management processes. The organizations responsible for 

standardization efforts primarily include, but are not limited to, the International 

Organization for Standardization (ISO), the Organization for Economic Co-operation and 

Development (OECD), Environment and Climate Change Canada (ECCC) (Biological Test 

Method series), and American Society for Testing and Materials (ASTM) International. 

When used together, the suite of standardized tests enables a ‘test battery’ approach that 

reflects the structural and functional complexity of soils. This approach allows for the 

consideration of different exposure routes, varied trophic levels, toxicokinetics, and 

toxicodynamics, while taking into consideration interactions between the exposure medium 

(soil) and the pollutants (Beck et al., 2005; Princz et al., 2012; van Gestel., 2012; 

Frankenbach et al. 2014). This, in turn, is meant to support a holistic representation of 

effects, ultimately allowing for the maintenance and protection of ecosystem structure (e.g., 

biodiversity), processes (i.e., function), and services.  

Standardization efforts ensure comparisons between toxicity tests, providing specific 

requirements or guidance associated with different aspects of the tests (e.g., species, 

materials, test parameters, and endpoints). A significant advantage of standardization is that 

it validates the test method (including requirements or guidance therein). The validation 

then prompts an in-depth approach involving discussion among scientists within the field, 

the consideration of practical aspects ensuring broader applicability of the method, and 

Ring-testing to ensure conformity and comparability of the proposed method (Römbke et 

al., 2018). This in-depth approach ensures applicability of the test method across numerous 

chemical substances (e.g., new and existing), and within various field exposure scenarios, to 

either characterize risk or assist with developing remediation requirements. 
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The development of a new oribatid mite test method came as a result of a workshop held by 

Environment Canada in 2003 (EC, 2004). The workshop marked the completion of the first 

series of soil toxicity test methods suited to agronomic species and habitats, which was held 

to expand the applicability of soil toxicity methods to other habitats (e.g., boreal and 

northern regions, wetlands), thus prioritizing the need for a second generation of soil 

toxicity test methods. Subsequently, a series of potential new plant and soil invertebrate 

species were recommended, one of which included the use and application of the oribatid 

mite, O. nitens (Princz et al., 2010; Princz et al., 2012; Princz 2014). Although the test 

method was originally developed for assessing contaminated soils within boreal ecosystems, 

O. nitens has since shown applicability in diverse soil types, reflective of its generalist and 

ubiquity in the Holarctic region. Moreover, as cited within this review, the species has also 

been used in the assessment of spiked chemical substances in soils (e.g., metals and 

pesticides).  

O. nitens also meets the criteria for a ‘desirable’ test species (Stephenson, 2003; Römbke et 

al., 2006; van Gestel 2012) because of its (1) ecological relevance to temperate and northern 

ecozones, (2) ability to represent functional and taxonomical diversity (adding to the overall 

diversity of the available test battery of species), (3) intimate contact with the soil 

environment and contaminants within, (4) varied contaminant tolerance (as demonstrated 

through studies to date), (5) varied routes of exposure (e.g., dermal and oral), and its (6) 

amenability to life cycle tests (e.g., Jegede et al. 2019a). 

As part of method research and standardization efforts, numerous studies were conducted 

with O. nitens in various soils (e.g., boreal and agricultural) and horizons to gauge the 

overall adult survival and reproductive output (ECCC, 2018). Elements of the method 

research included optimizing culturing techniques, analyzing life cycles to characterize time 

to maturation and oviposition, and age-synchronization. Although studied, sexual 

dimorphism in O. nitens was not exhibited. However, analyses of sex ratios demonstrated 

equivalent ratios of both males (49 ± 11%) and females (51 ± 11%) in random reproduction 

tests (ECCC 2018). The test design was optimized to balance practical aspects with 

elements of standardization, such as requiring fifteen (15) age-synchronized adults to reduce 

test variability and minimize the total number of organisms required for a test. Method 
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validation included an international ring-test, involving laboratories across Canada and 

Europe, coordinated by Environment and Climate Change Canada (ECCC, 2019). The ring-

test assessed the reproductive success of O. nitens in a series of control soils (e.g., artificial 

and field soils), as well as sublethal effects of the reference toxicant, boric acid, in field-

collected sandy loam soil and the standard LUFA 2.2 field soil. The results from the 

international ring-test demonstrated suitable inter-laboratory variability of ≤ 30% for effects 

on reproduction when O. nitens was exposed to the reference toxicant. 

The control performance data derived from the international ring-test, together with data 

accumulated from the method research, provided enough information to derive test validity 

criteria for adult survival (i.e., > 70% adult survival in control soils) and juvenile production 

(i.e., > 30 live individuals) (ECCC, 2019). These values reflect the life history traits of the 

species and enables applicability to different soil exposure scenarios, ranging from 

standardized soil types (e.g., artificial soil) to natural soils. The standardization efforts 

resulted in two harmonized standardized test methods: one specific to Canadian 

environments (ECCC, 2018), and one generalized to global application (ISO, 2019). The 

standard test method comprises a 28-day test to evaluate effects on O. nitens reproduction, 

although adult mortality may also be evaluated. The test is conducted at a mean temperature 

of 20 ± 2°C in suitable vials (e.g., 30 mL glass shell vials) containing approximately 20 g of 

soil at optimum moisture content (ECCC, 2019). The test requires fifteen (15) age-

synchronized adults (8-10 days post eclosion) in each replicate test vessel, with a minimum 

of five replicates per treatment (ECCC, 2018; ISO, 2019). Test endpoints include assessing 

test validity criteria and the number of live adults and juveniles within each treatment. The 

test can be conducted as a single- or multiple-concentration test in order to determine the 

percentage effect concentration estimated for the inhibition of reproduction (e.g., ECx or 

ICx) (ECCC, 2018; ISO, 2019).  

As demonstrated through the initial method research to the increasing number of available 

studies cited herein, the test has proven effective for assessing contaminants in soil, whether 

in contaminated field soils or soils spiked with chemical substances. The standardization of 

O. nitens as a test species contributes to the current test battery available for plants and soil 
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organisms and fulfills the need for including additional arthropods in standardized soil 

testing (Römbke et al., 2006; van Gestel, 2012). 

2.7.9 Future perspectives on O. nitens as a model organism in soil ecotoxicology 

2.7.9.1 Sub-organismal responses of O. nitens to xenobiotics in soil 

In toxicology, sub-organismal approaches are diagnostic tools to explain how organisms 

respond to stress from xenobiotics. There are reasonable data on the sub-organismal 

responses (i.e., cellular, biochemical, or molecular responses) of soil invertebrate models 

used in soil ecotoxicology (Spurgeon et al., 2004, 2010; Swain et al., 2004; Nota et al., 

2009; Novais et al., 2011; Qiao et al., 2015; Gomes et al., 2018). Little is known of O. 

nitens’ inherent adaptive mechanisms to xenobiotics. Available toxicity data on survival and 

reproduction of O. nitens has revealed certain underlying mechanisms that govern its 

response to chemical stress. For instance, O. nitens can sequester a substantial amount of 

heavy metals from contaminated soils with little effect on survival, even across generations 

(Owojori and Siciliano, 2012; Keshavarz Jamshidian et al., 2017; Jegede et al., 2019a,b). 

The mites likely have a higher capacity for storage (e.g., internally, but also via 

redistribution to the cuticle), as well as a high expression of metallothionein (Keshavarz 

Jamshidian et al., 2017).  

 

The activity of the enzyme lactate dehydrogenase (LDH) in O. nitens reveals the possibility 

of this biomarker as an early warning of zinc toxicity. LDH also shows how mites respond 

to zinc contamination in soils of varying physicochemical characteristics (Jegede et al., 

2019b). High LDH activity was observed at high zinc concentration (14,000 mg kg-1) for 

mites in soils of low organic carbon and cation exchange capacity (CEC) (Jegede et al., 

2019b). This is the first report on a sub-organismal or biochemical response of O. nitens to 

xenobiotics. This finding stresses the need for more detailed studies incorporating sub-

organismal endpoints (e.g., gene expression, protein, and metabolite profiling using a high-

throughput omics approach) to better understand the molecular responses of O. nitens to 

xenobiotics. The small size of the mites might be a limitation to getting reasonable 

homogenate or tissues for biochemical or molecular assays, but this could be overcome by 

optimizing the number of mites required for a toxicity test.  
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2.7.9.2 Sequencing of the O. nitens genome 

The genome provides insight into how genes influence life functions, life history, and 

maintenance of an organism. Knowing the genome of Caenorhabditis elegans and 

Drosophila melanogaster makes these organisms important animal models in both medicine 

and toxicology. We believe sequencing the genome of O. nitens will provide better 

mechanistic insight into how this organism responds to stress in soil. This will also help us 

to identify novel and key genes that drive adaptive responses and will possibly solve the 

mystery behind its efficient metal sequestration. Complete genomes or transcriptomes of 

other model soil invertebrates (e.g., F. candida) are available, with the molecular data 

revealing vital genes and pathways involved in adaptive responses, xenobiotics-induced 

apoptosis and epigenetic effects, and possible horizontal gene transfer from their 

microbiomes (C. elegans Sequencing Consortium, 1998; Castro-Ferreira et al., 2014; 

Zwarycz et al., 2015; Faddeeva-Vakhrusheva et al., 2017). Recently, O. nitens’ 

mitochondrial gene, cytochrome oxidase subunit 1 (COI), was sequenced, but for taxonomic 

purposes (i.e., DNA metabarcoding) (Telfer et al., 2015).  

 

The current trend in ecotoxicology focuses on adverse outcome pathways (AOPs) in 

response to chemical stressors (Ankley et al., 2010). Therefore, sequencing the complete 

genome of O. nitens will facilitate further studies to establish the AOPs of common soil 

toxicants for O. nitens. For example, heavy metals reduce juvenile production (an adverse 

outcome at individual level), but no established molecular initiating or key events leading to 

the adverse outcome in the mites. However, a putative AOP (Figure 2-10) can be established 

based on known key events for arthropods, such as alteration in bioenergetics, which might 

lead to reduced egg production (Nisbet et al., 2000; Jager et al., 2005) and adverse outcomes 

both at the individual and population levels. These adverse outcomes would ultimately 

affect ecosystem services. 
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Figure 2-10. A putative adverse outcome pathway (AOP) for heavy metal toxicity on Oppia 

nitens showing adverse outcomes at the individual, population, and ecosystem level. aJegede 

et al. (2019b); bKramer et al. (2011); cOwojori and Siciliano (2012); dJegede et al. (2019a). 

 

Furthermore, understanding O. nitens’ genome can also clarify underlying molecular 

mechanisms for xenobiotics and other environmental stressors on O. nitens; hence, enable a 

robust risk assessment of contaminants in the soil environment via omics approaches (i.e., 

transcriptomics, metabolomics, and proteomics) (Simoes et al., 2018).    

Lastly, we envisage a molecular pathway to understanding mechanisms of metal tolerance 

in O. nitens. Information from such a molecular framework will improve our knowledge of 

metal tolerance in arthropods, and possibly vertebrates, since most metal-responsive 

genes/regulatory proteins are conserved across organisms (Janssens et al., 2009). Therefore, 

we propose a potential pathway to metal tolerance in O. nitens by considering a possible 

metal-responsive gene, AtPCS1 (Clemens et al., 1999; Ha et al., 1999; Vatamaniuk et al., 

1999), which encodes phytochelatin synthase (AtPCS1), which is an enzyme that mediates 

phytochelatin synthesis, which in turn is a peptide needed for metal detoxification in plants 

and some fungi (Cobbett and Goldsbrough, 2002). Interestingly, a homolog of AtPCS1, ce-

pcs-1, was found and linked to cadmium tolerance in C. elegans, as ce-pcs-1 knockout C. 
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elegans shows high sensitivity to Cd (Vatamaniuk et al., 2001); this was the first study to 

show the role of phytochelatins in an animal. Other studies have reported the induction of 

phytochelatins in invertebrates such as the earthworm, Lumbricus rubellus, in response to 

arsenic at both laboratory and field exposures to contaminated soil (Liebeke et al., 2013). 

The rationale for considering involving phytochelatins-dependent detoxification pathway in 

metal tolerance of O. nitens is that because oribatid mites have evolved to feed on fungi, 

there might be a horizontal transfer of phytochelatin synthase gene(s) from fungi to the 

mites. For example, Tetranychus urticae, a species of spider mites, was reported to acquire 

carotenoid biosynthesis genes from fungi via horizontal gene transfer (Bryon et al., 2017). 

Phytochelatin synthase genes seem not to be transcriptionally regulated in animals, as seen 

with C. elegans and L. rubellus (Cui et al., 2007; Liebeke et al., 2013). Hence, a proteomics 

approach can be used to measure the level of phytochelatins in the mites’ tissue to support 

phytochelatin synthase gene expression. Other intermediate metabolites involved in the 

stepwise synthesis of phytochelatins from glutathione (e.g., cystathionine) should be 

measured using a metabolomics approach (Hughes et al., 2009).  

We conclude that along with the physiological detoxification mechanism in oribatid mites 

(Ludwig et al., 1992) and the metallothioneins (MTs)/glutathione (GSH) detoxification 

pathway, O. nitens might also have another metal detoxification mechanism: the 

phytochelatin-dependent pathway. When the mite is exposed to a high metal concentration, 

a functional phytochelatin synthase could mediate this pathway (Figure 2-11). 

Understanding the O. nitens genome is thus vital to confirming this pathway to metal 

tolerance in the mites. 
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Figure 2-11. Potential mechanisms of metal tolerance in Oppia nitens, given an additional 

detoxification pathway, the phytochelatin-dependent pathway, which is mediated by 

phytochelatin synthase (PCS) at high metal concentration. 
 

2.7.10 Conclusions 

To summarize the results of our review, first of all, detailed knowledge of the biology and 

ecology of O. nitens supports the species’ suitability as a model organism in soil 

ecotoxicology and is the foundation for developing toxicity responses to chemical stressors. 

Oppia nitens’ response and sensitivity to different classes of chemicals relative to other 

standardized soil invertebrates is crucial to developing a robust risk assessment of chemicals 

in soil. The complete genome and transcriptome of O. nitens is needed to understand its 

molecular responses to xenobiotics in soil and to establish a molecular pathway leading to 

the mites’ metal tolerance and adverse outcome to a contaminant’s toxicity. When exposed 

to high metal concentrations, O. nitens might have a functional phytochelatin synthase that 

mediates a phytochelatin‐dependent detoxification pathway. 
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3. Uptake, toxicity, and maternal transfer of cadmium in the oribatid soil mite, Oppia nitens: 

Implication in the risk assessment of cadmium to soil invertebrates2 

3.1 Preface 

The toxicity of cadmium was investigated on adult Oppia nitens to determine the effect of cadmium 

on reproduction (i.e., juvenile production) and life history (i.e., fecundity and juvenile recruitment) 

in OECD artificial soil. The maternal transfer of cadmium from adult to juvenile (tritonymphs) mites 

was also assessed to estimate maternal transfer ratio (𝜏).  

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
2 Fajana HO, Jegede OO, James K, Hogan NS, Siciliano SD. (2020). Uptake, toxicity, and maternal transfer of cadmium in the 

oribatid soil mite, Oppia nitens: Implication in the risk assessment of cadmium to soil invertebrates. Environmental Pollution, 
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3.2 Abstract 

Cadmium (Cd) is a heavy metal of concern in contaminated sites because of its high toxicity to soil 

biota and humans. Typically, Cd exposure is thought to be dominated by dissolved Cd in soil pore 

water and, thus, dermal uptake. In this study, we investigated the uptake, toxicity, and maternal 

transfer of Cd in a standard soil invertebrate, the oribatid mite (Oppia nitens), which is common to 

boreal and temperate ecozones. We found total soil Cd predicted Cd uptake in adult and juvenile O. 

nitens with no significant uptake from pore water by juvenile mites. Cadmium significantly 

inhibited juvenile production and recruitment as well as reduced adult fecundity. Adult O. nitens 

maternally transferred 39 to 52 % of their Cd body burden to juveniles (tritonymphs) while the 

maternally-acquired Cd accounted for 41 % of the juvenile internal Cd load. Our results suggest 

that dermal adsorption of metal ions is not important for O. nitens and that maternal transfer of Cd 

in soil invertebrates has ecological and toxicological implications for populations of soil 

invertebrates. Maternal transfer should be incorporated as a criterion in setting environmental soil 

quality guidelines (SQGE) for cadmium and other non-essential heavy metals. 

3.3 Introduction 

Cadmium (Cd) is a toxic heavy metal that is introduced into the environment primarily through 

mining and smelting activities (Thornton, 1988). Although there are pedogenic contributions of Cd 

from parent materials in the soil, the anthropogenic sources pose a greater environmental threat 

because they are more accessible to plants, soil biota, and humans (Loganathan et al., 2012). The 

non-essentiality of Cd makes it internally available because it is not used for any physiological 

processes, thus favouring binding to cellular receptors, and induce toxicity by generating reactive 

oxygen species (Lopez et al., 2006). However, much of the internal Cd in soil invertebrates are 

bound by metallothionein to form Cd-MT complex (Dallinger et al., 1997). This mechanism of Cd 

interaction with MT is the central role of Cd detoxification in soil invertebrates (Stürzenbaum et al., 

2004).  

Cadmium can be 10-fold more toxic to soil invertebrates than other heavy metals like zinc, copper, 

and lead (Spurgeon et al., 1994; Owojori and Siciliano, 2012). Cadmium reduces the reproduction 

and survival of populations of soil invertebrates even at low concentration (Crommentuijn et al., 
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1994). For instance, Cd inhibits hatching success of the enchytraeids, Enchytraeus crypticus, at a 

concentration as low as 3.1 mg kg-1 (i.e., EC50 of Cd for hatching) (Goncalves et al., 2015).  

Cadmium toxicokinetics varies among soil invertebrates and does not necessarily reach a plateau in 

some soil invertebrates. The oribatid mite, Platynothrus peltifer, slowly accumulates Cd and 

reaches steady state within 80 days; thus, indicating equilibrium between uptake and elimination 

(Janssen et al., 1991; Crommentuijn et al., 1994). In contrast, Oppia nitens steadily accumulates Cd 

with reduced elimination and after seven weeks, steady state was not reached (Keshavarz-

Jamshidian et al., 2017). Despite this continuous accumulation, it took longer for significant 

toxicity to be reached in O. nitens (Keshavarz-Jamshidian et al., 2017).  

Maternal transfer is a mechanism of eliminating metals and contaminants in female adult organisms 

(Tsui and Wang, 2004a,b). Currently, there is no literature regarding the maternal transfer of metals, 

including Cd in O. nitens. Furthermore, maternal transfer of Cd has previously not been 

investigated in any soil invertebrate species. However, maternal transfer accounts for 11–15 % of 

the total loss of elemental mercury and 32–41 % for methylmercury in the aquatic invertebrate 

Daphnia magna (Tsui and Wang, 2004b). As maternal transfer reduces metal burden in adult 

animals, it, in turn, increases the metal load in offspring across generations (Nagle et al., 2001). 

Hence, maternal transfer is important in multigenerational exposure of organisms to contaminants 

such as metals (Tsui and Wang, 2004a; Lam and Wang, 2006). For example, populations of O. 

nitens that were continuously exposed to zinc for generations were more impacted (i.e., reduced 

biological fitness) than the population that was exposed to zinc just for one time. The high impact 

of zinc on the continuously exposed population of O. nitens might be caused by maternal transfer of 

Zn which increase the zinc burden in the mites; thus, causing more toxicity and reduce their 

tolerance niche for metals across generations (Jegede et al., 2019a). Maternal transfer in organisms 

is predominantly influenced by contaminant concentration in adults (i.e., maternal body burden) 

(Lam and Wang, 2006). Additional factors influencing maternal transfer include clutch size, 

number of neonates/juveniles produced, and season, especially in invertebrates (Lam and Wang, 

2006; Hamilton et al., 2006). 

Soil invertebrates accumulate metal by either ingesting contaminated food (algae or fungi), soil, and 

organic matter, or dermally adsorbing metal ions in soil solution through their cuticle. 
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Accumulation depends on the uptake or bioavailability of the metal in soil (Vijver et al., 2001) and 

the uptake of Cd from soil by soil invertebrates is mostly related to the total soil Cd concentration. 

For example, the total Cd pool in soil strongly predict Cd uptake in the collembola Folsomia 

candida (Vijver et al., 2001). However, in soft bodied soil invertebrates like earthworms and 

enchytraeids, Cd uptake is relative and depends on Cd partitioning between pore water and soil. 

According to Oste et al. (2001), Cd uptake by earthworms is not solely predicted by the total Cd 

pool, i.e., there are other factors such as pH that could influence the dissolution of Cd in pore water 

as [Cd2+] to become available for dermal adsorption. Zinc uptake by O. nitens is speculated to relate 

to total soil zinc pool rather than free zinc ion activity [Zn2+] in soil solution (Jegede et al., 2019b). 

According to the authors, O. nitens may have consumed zinc from the total zinc pool in soil and 

organic matter via ingestion. 

Cadmium could exists in various forms or species in the environment such as sulfides, oxides, 

carbonates or complexes with minerals and particulate organic matter (Roberts et al., 2005; Sparks, 

2005). Anthropogenic input of Cd in soil is predominantly in the oxide form (Chlopecka et al., 

1996). Thus, it is logical to assess the toxicity of Cd to mites using the predominant environmental 

form in contaminated sites, i.e., cadmium oxide (CdO).  

In Canada, the Canadian Council of Ministers of the Environment (CCME) determines federal soil 

quality guidelines.  The CCME Cd soil quality guideline for environmental health is set at 10 mg 

kg-1 (residential land use) based on the soil contact pathway, which derives the guideline value by 

combining soil invertebrate and plant datasets (CCME, 1999). The datasets were combined due to a 

limited number of literature values for soil invertebrates meeting minimum data requirements. 

Notably, the soil invertebrate dataset was limited to two soft-bodied organisms, earthworm and 

collembola with five (5) species of earthworms (Dendrobaena rubida, Lumbricus rubellus, E. 

fetida, and E. andrei) and one collembolan, F. candida species (Environment Canada 1999). In 

addition, the United States Environment Protection Agency (USEPA) Ecological Soil Screening 

Level (Eco-SSL) for Cd derives a soil invertebrate screening value from an earthworm species, E. 

andrei, a collembolan species F. candida, and a nematode (Plectus acuminatus) (USEPA, 2005). In 

light of this, it is important to include toxicity data from other species of soil invertebrates such as 
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the oribatid mite (O. nitens), which is a completely sclerotized invertebrate, in deriving soil quality 

guidelines for cadmium and other heavy metals.  

Oppia nitens is a standard soil invertebrate in toxicity testing (Princz et al., 2010; ISO, 2019; 

ECCC, 2018). O. nitens is completely sclerotized and found in soils that are rich in organic matter. 

Despite their small size, approximately 510 µm in length and 290 µm in breath (Michael, 1884), O. 

nitens bioaccumulate soil metals (Owojori and Siciliano, 2012; Keshavarz-Jamshidian et al., 2017) 

and as such, they are good indicators of metal pollution at contaminated sites.    

The goal of this study was to examine Cd toxicity, as CdO, to the soil invertebrate, O. nitens, for 

use in environmental protection at contaminated sites. Also, for the first time, we assessed maternal 

transfer of a non-essential metal, Cd in a soil invertebrate.   

3.4 Materials and Methods 

3.4.1 Test chemical and soil 

Cadmium oxide (CdO) ≥ 99.99 % trace metal basis (Sigma-Aldrich, Canada) was used as the test 

chemical. The test soil used was an artificial OECD (Organization for Economic Co-operation and 

Development) soil that is made up of 10 % sphagnum peat, 20 % kaolinite clay, 70 % sand (a 

mixture of 45 % fine sand and 25 % coarse sand), and 0.5 % powdered CaCO3 to stabilize pH. The 

pH (in 0.01 M CaCl2) of the OECD soil was stabilized from 5.84 to 6.50 before use. The OECD 

soil has an optimal water holding capacity (% WHC) of 68.5 %. The WHC of the OECD soil was 

determined following the method described in Annex C of the ISO 11268-1 (ISO, 2012).   

3.4.2 Toxicity testing of cadmium on O. nitens in OECD soil  

Specific quantities of air-dried OECD soil were spiked with different concentrations of CdO to give 

22, 44, 88, 175, 350, and 700 mg of Cd kg-1 of dry soil. The dosed soils were stirred using a 

wooden spatula, and the soil moistened to 60 % of its WHC with ultra-pure water. About 25 g of 

the Cd-dosed soil was added to a glass vial, and equilibrated for 24 hours before mites were 

introduced into the dosed soil. Fifteen (15) age synchronized adult O. nitens (8-d post eclosion) 

were introduced into each treatment in replicates of four. The synchronized adult mites were 

progeny of a mite culture that was established in the laboratory for 2 years. The vial containing the 

dosed soil and adult mites were kept in a temperature-controlled chamber at 20–21 ℃ and % 
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relative humidity of 60 %. The mites were fed grains of baker’s yeast and water ad libitum at an 

interval of 7 days for 28 days test duration. We ended the test after 28 days, and the mites were 

extracted from the Cd-dosed soil using a modified Berlese-Tullgren heat extractor set at 32℃. The 

extracted adult and juvenile mites were counted on a dissecting microscope to estimate adult 

survival and juvenile production. The reproduction data (refer to Table S2 of supplementary data) 

was used to estimate effective concentrations (ECx) of Cd that will inhibit reproduction by 25 % 

(EC25) and 50 % (EC50). The adult and juvenile mites that survived were stored in Eppendorf 

tubes at -80 ℃ for metal analysis.   

3.4.3 Validation of ECx and determination of maternal transfer 

Two experimental setups for toxicity testing, each consisting of control, EC25, and EC50 of Cd in 

OECD soil were conducted. Age synchronized adult mites were introduced into each set-up. After 

14 days, adult mites (six replicates per treatment) were extracted from the first set-up and 

transferred to an uncontaminated Plaster of Paris (POP) substrate. These mites were then fed grains 

of baker’s yeast and water ad libitum at an interval of seven days for another 14 days in the POP to 

account for egg-laying (total number of eggs laid) and juvenile recruitment (number of juveniles per 

total number of eggs laid). After 28 days, adult and juvenile mites were extracted from the second 

set-up to account for survival and juvenile production. The extracted adult and juvenile mites from 

both set-ups were stored in Eppendorf tubes at -80 ℃ for metal analysis to estimate maternal 

transfer. 

The maternal transfer was determined from adult mites that were exposed to 0, EC25, and EC50 of 

Cd for 14 days and left for another 14 days to complete the 28-days reproduction cycle (i.e., mites 

from the first set-up). At the end of the 28-days reproduction cycle, Cd body burden in adults and 

tritonymphs [last nymphal stage of juveniles (refer to Fajana et al., 2019)] was then analyzed. Since 

the concentration of Cd in tritonymphs is wholly due to maternal transfer, then the maternal transfer 

ratio (𝜏) was estimated from equation 1 – 3. These equations assumed that depuration via other 

routes is negligible; hence, this equation can be modified in future studies to correct for depuration 

and excretion via other routes. From the measured Cd body burden in adult mites, we can estimate 

maternally acquired Cd in juveniles using equation 3. 
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𝐶𝑚 =  𝜏(𝐶̅)                     (1) 

𝐶̅ =  𝐶 + 𝐶𝑚                   (2) 

𝐶𝑚 =
𝜏𝐶

1 − 𝜏
                    (3) 

Where 𝐶 represent measured Cd body burden in adult mites (µg g-1 body weight), 𝐶𝑚 represent 

maternally acquired Cd in juvenile mites (µg g-1 body weight), 𝐶̅ stands for absolute internal Cd in 

adult mites before maternal transfer (µg g-1 body weight), and 𝜏 is the maternal transfer ratio 

(dimensionless). When 𝜏 = 0 (No maternal transfer); 𝜏 = 1 (Adult mite transfer all of its body 

burden to offspring). Note that 𝜏 = 1 is not realistic, therefore, the parameter, 𝜏 is only realistic for 

the interval: 0 < 𝜏 < 1. 

3.4.4 Processing of soil samples 

After ending the toxicity test, pore water samples were extracted from the soil by saturating the soil 

to 100 % of its WHC and allowed to attain equilibrium for 7 days at room temperature. The pore 

water was then extracted following the method of Zang et al. (2019). CaCl2 and water-extractable 

Cd were extracted using 0.01 M CaCl2 and ultrapure water respectively, in a ratio of 1:5 (soil: 

solvent), according to Zang et al. (2019). The light fraction organic matter (OM) was extracted from 

the soil by agitating 5 g of the soil sample in 25 ml of ultra-pure water. The OM settled for 24 hours 

after which OM on the surface of the supernatant was separated by decanting the supernatant over a 

0.45 µm filter paper. The OM, as residue on the filter paper, was air-dried and stored for metal 

analysis. 

3.4.5 Metal analysis in soil samples and mite’s tissue  

Total soil Cd, 0.01 M CaCl2-extractable Cd, and water-extractable Cd were analyzed using the 

procedures and methods described in Jegede et al. (2019b). Total soil Cd was analyzed by XRF (X-

ray Fluorescence) in a Thermofisher ARL Optim-X X-ray analyzer, and Montana 2710a soil was 

used as the certified reference material having a recovery > 85 % for Cd. The concentration of Cd 

in pore water was analyzed using a similar method that was described for 0.01 M CaCl2-extractable 

Cd in Jegede et al. (2019b). Mite samples were digested in HNO3/H2O2, and the resulting digest in 2 

% HNO3 was analyzed for Cd in an ICP-MS (Inductively Coupled Plasma Mass Spectrometer) as 
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described by Jegede et al. (2019b). The recovery of Cd from the QA/QC (i.e., lobster 

hepatopancreas from National Research Council, Canada) was 83 %. 

3.4.6 Speciation analysis  

Anions (Cl-, NO3
-, SO4

2-, CO3
2-, PO4

3-) and cations (Na+, Ca2+, K+, Mg2+) were extracted from the 

soil using ultrapure water in a ratio of 1:5 (soil: solvent) according to the procedures and methods 

described in Jegede et al. (2019). The pH of the extract was determined in a Mettler Toledo pH 

meter. The concentration of the ions was analyzed in an IC (ion chromatography) with a Dionex 

ICS-2000 system. DOC (dissolved organic carbon) was measured in a Mandel Total Organic 

Carbon (TOC) analyzer following the method described by Jegede et al. (2019b). The Cd2+ in water 

extract that was used for speciation analysis was analyzed using an Agilent microwave plasma 

atomic emission spectrometer (MP-AES) based on the description in Jegede et al. (2019b). The 

speciation calculation was done using the software, Windermere Humic Aqueous Model version 7 

(WHAM 7) (Tipping et al., 2011).  

3.4.7 Statistics  

The reproduction ECx (EC50 and EC25) for internal Cd concentration in adults was predicted using 

3-parameter Weibull regression with the drc package in R (Ritz et al., 2015). The ECx for other 

measures of Cd in soil were predicted using a simple linear regression model 

(𝐸𝐶𝑥𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐶𝑑 𝑖𝑛 𝑠𝑜𝑖𝑙 =  𝛽0 + 𝛽1𝐸𝐶𝑥𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝐶𝑑 𝑖𝑛 𝑎𝑑𝑢𝑙𝑡 𝑚𝑖𝑡𝑒𝑠) in Sigmaplot 12.0. The dose-

response curves were plotted using a global curve fitting for 4-parameter logistic regression in 

Sigmaplot 12.0. The uptake (𝑘) or bioavailability of Cd from soil was also predicted from a simple 

linear regression model (𝐶𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝐶𝑑 𝑖𝑛 𝑚𝑖𝑡𝑒𝑠 = 𝐶0 + 𝐶𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐶𝑑 𝑖𝑛 𝑠𝑜𝑖𝑙 × 𝑘) where 

𝐶𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝐶𝑑 𝑖𝑛 𝑚𝑖𝑡𝑒𝑠 represent internal Cd concentration in adult and juvenile mites (µg Cd g body 

weight-1), 𝐶0 stands for predicted background Cd in mites (µg g-1 body weight), 𝐶𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐶𝑑 𝑖𝑛 𝑠𝑜𝑖𝑙 

represents measured Cd concentration in soil, and 𝑘 is predicted uptake or bioavailability (g soil/g 

body weight).  

The linear regression models were cross-validated using PRESS (predicted residual error sum of 

squares) statistics to estimate predicted coefficient of determination (𝑟𝑃𝑟𝑒𝑑
2 ) based on the total sum 

of square (SSTO); 

 𝑟𝑃𝑟𝑒𝑑
2 = 1 −

𝑃𝑅𝐸𝑆𝑆

𝑆𝑆𝑇𝑂
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One-way analysis of variance (ANOVA) with Tukey post-hoc test was used to determine significant 

differences in toxicity endpoints across treatments. All graphs were plotted using Sigmaplot 12.0. 

Errors associated with Cd body burden in adult and juvenile mites were propagated from the 

uncertainty associated with the certified reference material, lobster hepatopancreas, which is ± 0.13 

µg g-1 body weight for n = 3.   

3.5 Results 

3.5.1 Toxicity of cadmium to O. nitens 

Cadmium had no significant effect on the survival of O. nitens even at the highest Cd concentration 

(LC50 > 700 mg kg -1, based on spiked concentration) in the OECD soil (Figure 1B of Appendix B). 

Judging from the pattern of dose-response curves, mite reproduction as a function of the internal Cd 

concentration in adults seems to give a better dose-response compared to reproduction as a function 

of other Cd concentration in soil (Figure 3-1a-d). Therefore, we estimated the ECx for nominal Cd, 

total Cd, and 0.01 M CaCl2-extractable Cd from a linear relationship between the above measures as 

a function of the internal Cd concentration in adults (refer to table 3B of Appendix B). 
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Figure 3-1. Dose-response relationship from four-parameter logistic regression for Oppia nitens 

reproduction (number of juveniles) as a function of (a) internal Cd concentration (b) nominal Cd 

concentration (c) total Cd concentration in soil (d) measured extractable Cd concentration in soil. 

EC50 and EC25 = Effective concentration causing 50 % and 25 % inhibition respectively in 

juvenile production of the mites after 28 days of exposure to Cd in OECD soil. Data in parentheses 

are the 95 % lower and upper confident interval. 
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3.5.2 Maternal transfer of cadmium from adult to juvenile mites 

The maternal transfer ratio (𝜏) of cadmium was 52 (± 6) % at EC25 and 39 (± 3) % at EC50 (Table 

3-1). These estimates assume that Cd excretion or depuration via other routes is negligible. 

Approximately 41.0 (± 1.2) % of Cd in juvenile mites (tritonymphs) was maternally acquired from 

adults (Table 3-2). 

Table 3-1. Maternal transfer ratio (𝜏) of cadmium (Cd) from adults to juveniles (tritonymphs) after 

14 days exposure of adult Oppia nitens to Cd in OECD soil and 14 days depuration period in POP 

substrate 
 

Measured Cd 

in adult (𝑪) 

 Maternally acquired 

Cd in juveniles (𝑪𝒎) 

Absolute Cd in adults before 

maternal transfer (𝑪̅) 

Maternal 

transfer ratio (𝝉) 

0 0 0 0 n.a 

EC25 1.28 (0.13) 1.41 (0.13) 2.69 (0.18) 0.52 (0.06) 

EC50 2.71 (0.13) 1.76 (0.13) 4.47 (0.18) 0.39 (0.03) 

Data in parentheses are propagated uncertainty from the error associated with standard = 0.13 µg g-1 body 

weight. 

Assumption: Excretion via other mechanism is negligible.  

Cd concentration in adult and juvenile mites are in µg g-1 body weight. 

n.a = not applicable. 

Note: Maternal transfer ratio (𝜏) was derived from equation 1;  𝐶𝑚 =  𝜏(𝐶̅) while absolute Cd in adults 

before the maternal transfer was derived from equation 2; 𝐶̅ =  𝐶 + 𝐶𝑚   
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Table 3-2. Maternally acquired cadmium (Cd), juvenile accumulation, and absolute Cd after 28 

days of Oppia nitens exposure to Cd in OECD soil  
 

Measured 

Cd in adults 

(𝑪)† 

Measured 

Cd in 

juveniles† 

Maternally 

acquired Cd 

in juveniles 

(𝑪𝒎) 

Estimated 

Cd in 

juvenile via 

uptake from 

the soil 

Absolute Cd 

in adults 

before 

maternal 

transfer (𝑪̅) 

The 

proportion of 

Cd in 

juveniles due 

to maternal 

transfer 

0 0 0 0 0 0 n.a 

EC25 4.85 (0.13) 14.48 (0.13) 5.25 (0.14) 9.23 (0.19) 10.10 (0.19) 0.36 (0.01) 

EC50 11.60 (0.13) 16.43 (0.13) 7.42 (0.08) 9.01 (0.15) 19.02 (0.15) 0.45 (0.006)      
Average 0.41 (0.012) 

Data in parentheses are propagated uncertainty from the error associated with standard = 0.13 µg g-1 body 

weight. 

†Values were corrected for background Cd = 2.22 µg g-1 in adult and 1.32 µg g-1 in juvenile mites of control 

soil. Cd concentration in adult and juvenile mites are in µg g-1 body weight. 

n.a = not applicable 

Note: Maternally acquired Cd in juveniles (tritonymph) (𝐶𝑚) was derived from equation 5;  𝐶𝑚 =
𝜏𝐶

1−𝜏
  while 

absolute Cd in adults before maternal transfer (𝐶̅) was derived from equation 2;  

𝐶̅ =  𝐶 + 𝐶𝑚  

 

3.5.3 Validation of predicted ECx  

We validated the effects of Cd exposure at nominal EC25 and EC50 of Cd on mite reproduction, 

survival, fecundity, and juvenile recruitment (Figure 3-2). We found reproduction at the nominal 

EC50 and EC25 to be significantly lower than the reproduction in control mites after 28 days of 

exposure (Tukey: F (2,20) = 13.04, p (EC50) = < 0.001 and p (EC25) = 0.003) (Figure 3-2b). The 

reproduction at EC50 was 50 % lower than control (Figure 3-2b). There was no effect on the survival 

of mites at both EC25 and EC50 (Figure 3-2a). 

Adult mites that were exposed to nominal EC25 and EC50 for 14 days had reduced fecundity 

(eggs/mite) (Figure 3-2c) and a significant reduction in juvenile recruitment (number of juvenile/total 

number of eggs per mites) at EC50 compared to control (Tukey: F(2,13) = 4.45, p = 0.048) (Figure 3-

2d). 
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Figure 3-2. Toxicity of cadmium at EC50 = 392 mg Cd kg-1 and EC25 = 215 mg Cd kg-1 on Oppia 

nitens (a) survival (b) mite reproduction (number of juvenile) after 28 days of exposure, and (c) 

fecundity (number of eggs per mites) (d) juvenile recruitment (number of juveniles per total number 

of eggs laid) after 14 days of exposure in OECD soil.   

 

3.5.4 Uptake of Cd by adult and juvenile mites  

Adult and juvenile mites accumulated available Cd via the ingestion of either contaminated soil 

particles or organic matter. Pore water Cd concentration, water-soluble Cd, free Cd ion activity 

[Cd2+], and fulvic acid-bound Cd are probably not a source of Cd uptake from the soil by mites. For 

example, total soil Cd was the best predictor of Cd uptake, followed by 0.01 M CaCl2-extractable 

Cd, which is a measure of exchangeable Cd, and lastly, Cd bound to light fraction OM (Table 3-3). 

Absolute Cd concentration in adults before maternal transfer gave a better model for uptake than 

measured internal Cd concentration (Table 3-3). 
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Table 3-3. Cadmium uptake by adult and juvenile Oppia nitens from OECD soil after 28 days 
  

𝒌 𝑪𝟎 p r2
Adj r2

Pred 

Total soil Cd 

(mg kg-1) 

Adult† 

Adult‡ 

Juvenile# 

0.014 ± 0.0019 

0.018 ± 0.0015 

0.0071 ± 0.0012 

1.35 ± 0.72 

2.45 ± 0.59 

1.59 ± 0.50 

< 0.001 

< 0.001 

0.003 

0.89 

0.96 

0.83 

0.70 

0.94 

0.27 

0.01 M CaCl2-

extractable Cd 

(mg kg-1) 

Adult† 

Adult‡ 

Juvenile# 

3.28 ± 0.34 

4.34 ± 0.45 

1.52 ± 0.44 

1.897 ± 0.505 

3.31 ± 0.68 

2.04 ± 0.67 

< 0.001 

< 0.001 

0.018 

0.94 

0.94 

0.64 

0.92 

0.64 

-2.61 

Pore water Cd 

(mg l-1) 

Adult† 

Adult‡ 

Juvenile# 

2.30 ± 0.36 

2.93 ± 0.60 

0.91 ± 0.43 

2.73 ± 0.69 

4.51 ± 1.16 

2.56 ± 0.82 

0.001 

0.005 

0.086˟ 

0.87 

0.78 

0.37 

-4.78 

-14.04 

-52.28 

Water soluble 

Cd (mg l-1) 

Adult† 

Adult‡ 

Juvenile# 

6.16 ± 0.91 

7.90 ± 1.52 

2.50 ± 1.10 

2.65 ± 0.66 

4.40 ± 1.10 

2.51 ± 0.80 

0.001 

0.003 

0.073˟ 

0.90 

0.81 

0.41 

-3.41 

-12.22 

-51.74 

Cd bound to 

light fraction 

OM (mg kg-1) 

Adult† 

Adult‡ 

Juvenile# 

0.050 ± 0.005 

0.064 ± 0.0082 

0.022 ± 0.0076 

1.87 ± 0.46 

3.33 ± 0.82 

2.11 ± 0.76 

< 0.001 

< 0.001 

0.036 

0.95 

0.91 

0.54 

0.77 

0.067 

-3.93 

Free Cd activity 

(µM) 

Adult† 

Adult‡ 

Juvenile# 

1.59 ± 0.26 

2.02 ± 0.44 

0.62 ± 0.30 

2.90 ± 0.72 

4.73 ± 1.19 

2.64 ± 0.82 

0.002 

0.006 

0.096˟ 

0.85 

0.77 

0.35 

-26.23 

-67.97 

-236.3 

Fulvic acid-

bound Cd (µM) 

Adult† 

Adult‡ 

Juvenile# 

2.78 ± 0.43 

3.55 ± 0.72 

1.11 ± 0.51 

2.77 ± 0.69 

4.56 ± 1.14 

2.57 ± 0.81 

0.001 

0.004 

0.083˟ 

0.87 

0.79 

0.40 

-8.78 

-25.36 

-95.0 
 𝐶0 = Predicted background Cd in animal (µg g-1 body weight); 𝑘 = Predicted uptake or bioavailability (g soil 

g-1 body weight).  

Measured background Cd = 2.22 µg g-1 in adult and 1.32 µg g-1 in juvenile mites of control soil. 

†Based on measured internal Cd concentration (𝐶) in adults  

‡Based on absolute Cd concentration before maternal transfer (𝐶̅). 
#Measured Cd in juvenile was corrected for maternal transfer. 

˟Model not significant at p > 0.05. r2
Adj and r2

Pred represent adjusted and predicted coefficient of 

determination, respectively.   
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3.6 Discussion 

3.6.1 Toxicity of cadmium to O. nitens 

We expected Cd to affect the survival of the mite at the tested concentrations due to Cd’s high 

toxicity to soil invertebrates (Lock and Janssen, 2001). A study by Owojori and Siciliano (2012) 

reported an LC50 of Cd to O. nitens in OECD soil (10 % OM) to be 603 mg kg-1 and it was the 

most toxic of the metals tested in the study having a toxicity of 5-, 4-, and 11-fold higher than 

copper, zinc, and lead, respectively. However, Owojori and Siciliano (2012) used CdCl2 as test 

metal (as compared to CdO in the present study), and the CdCl2 form may have increased the 

availability of metal in the soil solution to the mites, thereby increasing the toxicity of Cd. The 

higher toxicity of CdCl2 may also be caused by a synergistic effect of salinity and parent metal. For 

example, the LC50 of ZnCl2 on the survival of earthworm (Eisenia fetida) and enchytraeid 

(Enchytraeus albidus) is 2- and 5-fold respectively less than the LC50 of ZnO to these invertebrates 

(Lock and Janssen, 2003). Similarly, Kool et al. (2011) reported the toxicity of ZnCl2 on the 

survival (LC50) of Folsomia candida to be 6-fold more toxic than ZnO. Our findings depict 

cadmium oxide as less toxic than cadmium salts in terms of the effects on survival of O. nitens and 

suggest that current estimates of Cd toxicity may not represent toxicity that occurs from CdO 

deposition. 

The derived EC50 for nominal Cd on reproduction (392 mg kg-1) in this study (Figure 3-1b) is 

approximately 3-fold of the value (137 mg kg-1) reported by Owojori and Siciliano (2012) after a 

35-day exposure of mites to Cd in OECD soil. The fact that we used a similar OECD soil suggests 

that CdO is likely less toxic than CdCl2 in terms of reproduction in O. nitens. It is important to note, 

however, that the duration of exposure varies between our study (28 days) and that of Owojori and 

Siciliano (2012) (35 days) and that this difference of one week in test duration might contribute to 

the difference in EC50s. Kool et al. (2011) also reported the EC50 of ZnO (i.e., 1591 mg kg-1) to be 

five times higher than the EC50 of ZnCl2 (i.e., 298 mg kg-1) on the reproduction of F. candida in 

LUFA 2.2 soil. As earlier stated, a probable reason for why Cd salt (e.g., CdCl2) might be more 

toxic than CdO is that the chloride (CdCl2)
 increases the dissolution of Cd in soil solution 

(Backstrom et al. 2004), which is more bioavailable to mites. However, several studies have 

reported that Cd reduces the reproduction of soil invertebrate, resulting in a decline in their 

population in soil (McGrath, 1999; van Straalen et al., 1989; Lock and Janssen, 2001). 



 

66 
 

Though internal metal concentration in invertebrates often relates more to toxicity (Van Straalen, 

1996). Also, for a non-essential metal like Cd, it accumulates and becomes internally free to 

ultimately cause toxicity in a dose-dependent response because no fraction of the metal is utilized 

for physiological processes, except for portions that might bound to proteins such as 

metallothionein (Dallinger et al., 1997). 

3.6.2 Maternal transfer of cadmium in O. nitens 

Adult mayfly (Centroptilum triangulifer) transfers about 46.5 (± 8.8) % of their selenium body 

burden to eggs (Conley at al., 2009). Lam and Wang (2006) also reported adult D. magna 

maternally transferred approximately 19 to 24 % of selenium they accumulated from diet to 

neonates of the F1 generation. Maternal transfer of Cd from adult mayfly, C. triangulifer to eggs 

was rare as it was only observed in < 3 % of individual adults that transferred Cd to eggs with no 

discernable Cd burden in eggs (Xie et al., 2009). In D. magna, < 10 % of Cd was maternally 

transferred from adult to offspring (Yu and Wang; 2002; Tsui and Wang, 2007). We, therefore, 

conclude that the high maternal transfer ratio of Cd in O. nitens is influenced by the toxicokinetics 

of Cd in the mites; O. nitens excrete Cd slowly (Keshavarz-Jamshidian et al., 2017); thus, the best 

route for the mite to depurate their internal Cd is via maternal transfer.  

The maternal transfer is an important route of excretion of contaminants, and while it reduces 

contaminant burden in adult organisms, it could drive transgenerational toxicity of metals (Tsui and 

Wang, 2004a). For instance, continuous multigenerational exposure of O. nitens population to zinc 

inhibits reproduction in mites of successive generations, due to an increase in sensitivity to zinc 

(Jegede et al. 2019a). However, we suggest that maternally acquired zinc in offspring increases the 

internal zinc load of mites in successive generations, and thus, inhibits their reproduction capacity 

or possibly induce teratogenicity in offspring/juveniles. For instance, Matta et al. (2001) 

demonstrated that maternally acquired methylmercury could reduce the reproduction capacity of 

fish offspring. The maternal transfer could also reduce the “metal niche width” (i.e., the metal 

tolerance limit) of subsequent mite populations exposed to metals in contaminated sites (Jegede et 

al. 2019a), thus causing a population decline. 
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3.6.3 Validation of ECx 

The 50 % reduction in the reproduction of mites at EC50 confirms that we accurately predicted our 

EC50, and most ecotoxicity studies do not validate their predicted ECx. Since we derived our 

nominal ECx from the internal Cd ECx (refer to table 3B of Appendix B), it further confirms 

internal Cd concentration in mites to be the best predictor of toxicity. Hence, we suggest internal 

metal concentration in test organisms to be the ideal index for toxicity, especially for non-essential 

metals such as Cd. 

At the estimated EC50 (i.e., 392 mg Cd kg-1), Cd reduced the fecundity of O. nitens and disrupted 

embryological processes leading to hatching, which in turn impacted recruitment and ultimately 

reduced the number of juveniles produced. Cadmium reduced the fecundity of a species of the 

oribatid mite, Archegozetes longisetosus when exposed to 130 µg Cd g of food-1 (Seniczak et al., 

2009). Also, Adult blowflies (Lucilia sericata) exposed to Cd via diet had reduced fecundity (Moe 

et al., 2001). Though we did not account for hatching success, recruitment is an outcome of 

hatching, and a few studies have shown Cd to reduce hatching success in other soil invertebrates. 

For example, Cd reduced hatching in the enchytraeid, E. crypticus, after exposure to Cd in LUFA 

2.2 soil with an estimated EC50 of 3.1 mg Cd kg-1 on hatching success of the enchytraeid 

(Goncalves et al. 2015). Gomes et al. (2018) linked the reduction in hatching success of E. crypticus 

to the disruption of calcium homeostasis during embryogenesis. 

3.6.4 Uptake of Cd from soil by O. nitens 

The result shows absolute Cd concentration in adults before maternal transfer gave a better model 

for uptake than measured internal Cd concentration (Table 3). Hence, we suggest the incorporation 

of maternal transfer to correct for metal bioaccumulation to help predict uptake or bioavailability of 

metals in adult O. nitens. Ideally, pore water Cd concentration should be a source of Cd for 

juveniles because of the soft cuticle of juvenile mites, which might facilitate dermal adsorption. 

However, pore water Cd was insignificant for Cd uptake by juvenile mites (Table 3-3). Total soil 

Cd predicted uptake for the earthworm (Eisenia fetida) in natural soil (Janseen et al., 1997) and the 

authors suggest the rejection of pore water-mediated uptake hypothesis (Van Gestel and Ma, 1988) 

for Cd uptake. Vijver et al. (2003) also found total Cd pool to predict the uptake of Cd by larvae of 

the beetle (Tenebrio molitor) from OECD and field soils. Like the larvae of T. molitor, O. nitens 
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feed on organic matter in soil (Ramos-Elorduy et al., 2002; Fajana et al., 2019). Juvenile O. nitens 

also feed on organic matter at certain stages of their life cycle to store energy as reserve for 

moulting and other developmental processes (Fajana et al., 2019). Across 18 natural soils, total zinc 

strongly predicted Zn uptake by adult O. nitens (Jegede et al. 2019b). Therefore, the contribution of 

dermal adsorption to the uptake or accumulation of Cd from soil is insignificant for juvenile and 

adult O. nitens, and ingestion of Cd via soil water is likely minimal. It is difficult to measure the 

biosorption of free metal ion from pore water to soil biota; however, a biotic ligand model (BLM) 

for terrestrial system (Pelette et al., 1999) can be used to predict the binding of Cd2+ from pore 

water to the mites. 

3.7 The implication of this study in risk assessment of cadmium 

In a typical ecological scenario, cadmium and most other heavy metals predominantly occur as 

oxides in contaminated sites (Chlopecka et al., 1996; Hamilton et al., 2016). Cadmium oxide (CdO) 

causes less toxicity than cadmium chloride to Oppia nitens and possibly to other soil invertebrates. 

Current CCME environmental soil quality guidelines (SQGE) and USEPA Eco-SSL for Cd and 

most metals are derived from literature that was based on metal salt toxicity to soil invertebrates, 

microbes, and plants (CCME, 1999; EC, 1999; USEPA, 2005). Therefore, the threshold for the 

SQGE of Cd to soil invertebrates might not be ecologically relevant and may be overprotective. 

Using metal oxide in soil exposure tests likely provides a more accurate estimate of metal toxicity 

to soil organisms including microbes (Awuah et al., 2019). 

Additionally, if cadmium oxides are less bioavailable than cadmium salts, for both soil 

invertebrates and plants, then SQGE for Cd may need to be revised to account for the discrepancy. 

A limitation of the feasibility of this revision is the lack of data on CdO toxicity to soil 

invertebrates. More research is needed to generate robust toxicity data on metal oxide toxicity to 

soil invertebrates, microbes, and plants.  

To calculate the threshold effects concentration for the soil contact pathway, Environment Canada 

(1999) applies an uncertainty factor of two to account for the potential for Cd to bioaccumulate. 

This uncertainty factor was derived from the geometric mean of bioconcentration factors (BCFs) 

from leaves, shoots, and roots of plants; however, the BCFs for soil invertebrates are 8.5 (EC, 
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1999). The potential for Cd to be maternally transferred across generations means that a population 

of F1 offspring receives 39 to 52 % of their parents' Cd body burden in addition to Cd uptake from 

soil. Therefore, the SQGE for Cd that will protect the populations of O. nitens needs to be adjusted 

for maternal transfer. Our suggestion is to incorporate maternal transfer into ESSD25 or ESSD50 

values, and one would take the average maternal transfer rate and multiply that by the EC25 or 

EC50 from a single generation study. For example, an EC50 of 392 mg Cd kg-1 soil for O. nitens 

would be multiplied by the average maternal transfer ratio (0.46, this study), to derive a 

multigenerational EC50 of 180 mg Cd kg-1 soil which would then be used in the derivation of 

ESSD50 (Figure 3-3). The bioconcentration correction step would no longer be necessary, and we 

would suggest that when possible, maternal transfer be used rather than bioconcentration factors. 

Alternatively, one can generate toxicity data for metals such as ECx to soil invertebrate over 

multiple generations (Jegede et al., 2019a). 

 

Figure 3-3. Incorporating maternal transfer ratio (𝜏) as a safety factor into CCME procedures 

(CCME, 2006) to account for the multigenerational impact of heavy metal to soil invertebrates in 

deriving environmental soil quality guidelines for soil contact in either agricultural, 

residential/parkland, commercial and industrial uses. aAgricultural and Residential/Parkland Land 

Use. bCommercial and Industrial Land Use. SQGSC represents soil quality guidelines for soil 

contact. 
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4. Does habitat quality influence bioenergetics and reproduction of Oppia nitens in response 

to cadmium-induced toxicity?3 

4.1 Preface 

The influence of soil habitat quality on the reproduction and bioenergetics of Oppia nitens was 

investigated after exposure to cadmium in OECD soil. Mite reproduction (i.e., juvenile production) 

was determined. The amount of energy (protein, lipid, and carbohydrate) reserves and the activities 

of glucose metabolism enzymes (glucose-6-phosphate dehydrogenase [G6PDH] and pyruvate 

kinase [PK]) were estimated in the mites.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
3 Fajana HO, Hogan NS, Siciliano SD. Does habitat quality influence bioenergetics and reproduction of Oppia nitens in response to 

cadmium-induced toxicity? (To be submitted to Soil Biology and Biochemistry). 

Hamzat Fajana: Conceptualization, methodology, validation, formal analysis, investigation, data curation, writing (original draft), 

visualization 

Natacha Hogan: Writing (review and editing) 

Steven Siciliano: Conceptualization, resources, writing (review and editing), supervision, project administration, funding acquisition 
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4.2 Abstract 

Soil invertebrates interact with their habitat to provide services that are vital for the soil ecosystem. 

In this study, we evaluated the influence of habitat quality on the reproduction and bioenergetics of 

the oribatid mite, Oppia nitens in response to cadmium-induced toxicity. Adult mites that were 

exposed to cadmium (0–700 mg kg-1) had high carbohydrate reserve at intermediate Cd 

concentrations but without a change in lipid and protein reserve. Cadmium at high concentration (700 

mg Cd kg-1) inhibits the activities of glucose metabolism enzymes, glucose-6-phosphate 

dehydrogenase (G6PDH) and pyruvate kinase (PK) with estimated EC50 of 50.7 and 21.7 mg Cd kg-

1 for PK and G6PDH respectively. Habitat quality influenced mites’ reproduction (i.e., juvenile 

production), but did not directly influence bioenergetics. Our results suggest that cadmium reduces 

energy production in O. nitens, and habitat quality affect the reproduction of O. nitens. We conclude 

that the effect of habitat quality could be more significant than metal concentration on the 

reproduction (i.e., juvenile production) of O. nitens. Hence, habitat characterization of contaminated 

sites could improve the relevance of ecological risk assessment, since the quality of the habitat can 

affect the reproduction of soil invertebrates.    

4.3 Introduction 

Habitat affects the biological and physiological fitness of animals through variation in resources 

and environmental conditions (Bernstein et al., 1991; Pullian, 2000). In the soil, intrinsic factors 

define the quality of the habitat, and these include particle size distribution, clay content, organic 

matter and mineral contents, liquid limit and presence of water stable aggregates. These factors 

influence other soil properties such as porosity, bulk density, water holding capacity (WHC), pH, 

and cation exchange capacity (CEC) (Larney et al., 1988; Miralles et al., 2009). Soil habitats differ 

in their particle size distribution, amount and flow of water and gases, amount of organic matter and 

chemical properties that interact with soil organisms (Wall and Moore, 1999). Soil particle sizes 

and soil bulk density determine the habitable pore spaces or interstices of the soil habitat (Larsen et 

al., 2004). The abundance and activities of soil invertebrates that are euedaphic (i.e., true soil 

dwellers) are attributed to the channels or the networks of their habitable pore spaces or interstices 

(Larsen et al., 2004). Mites are euedaphic soil invertebrates that live in moist interstices and 

therefore need water and other essential resources to thrive. The acquisition of resources such as 
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water, oxygen, and food is only possible if soil invertebrates can move across connected interstices 

in the soil. 

According to Koenning et al., (1996) and Xavier et al. (2014), soils of clay content > 20% cause a 

reduction in the egg-laying capacity of the soil nematode, Rotylenchulus reniformis. The high clay 

content reduces the motility of the soil nematode population and provides low aeration (oxygen) to 

the organism due to the compaction of the soil (Xavier et al., 2014). In a study by Princz et al. 

(2010), natural soils of > 6 % organic matter content increased the reproduction of Oppia nitens. 

However, the cumulative variation in the other soil factors (particle size distribution, 𝑁𝑂3
−, P, C: N, 

pH and sodium adsorption ratio) contribute 68% of the reduction that was observed in the 

reproduction of O. nitens in the natural soils. The intrinsic soil properties (i.e., organic carbon, pH, 

and CEC) contributed more to zinc toxicity on the reproduction of O. nitens (Jegede et al., 2019b).  

The variation in intrinsic factors can either modulate the bioavailability of toxicants to soil 

invertebrates or provide soil invertebrates with resources (i.e., micronutrients and energy) to combat 

chemical stress. For instance, soil organic matter (OM) and pH are critical soil factors that influence 

the bioavailability of inorganic and organic chemicals to soil invertebrates (van Gestel, 1992; 

Fountain and Hopkins, 2005). Soils of low pH (i.e., acidic soils) favour the availability of metals to 

soil invertebrates. Natural soils of low pH induce higher lead toxicity on the earthworm, E. andrei, 

with internal lead concentrations that correspond to high Pb in pore water (Bradham et al. 2006). 

Also, soil moisture potentiates zinc toxicity to the collembola, Folsomia candida and mite, O. 

nitens (Owojori and Siciliano, 2015). CEC and organic carbon (OC) were also suggested as 

important factors that could determine habitat quality of soils because CEC provides 

micronutrients, while OM provides food as an energy source (Jegede et al. 2019).  

In this study, we viewed habitat quality (HQ) in terms of providing resources for soil invertebrates 

to combat chemical stress in soil. Habitat quality often correlates with the availability of food 

resources (Hope, 2001). In the case of soil, food resources are usually measured as OM, which 

varies in quality and quantity.  The oribatid soil mite O. nitens is a euedaphic soil invertebrate that 

interacts with the soil as an ecosystem engineer (Fajana et al., 2019). The quality of habitat 

influences mite's activities in soil. Therefore, it is important to understand habitat pressure, either 

natural or anthropogenic, that might affect the fitness of the mites in soil. 
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In a recent study by Jegede et al. (2019b), O. nitens in a high quality soil showed resilience to Zn-

induced toxicity by maintaining the activities of glucose metabolism enzymes, glucose-6-phosphate 

dehydrogenase (G6PDH) and lactate dehydrogenase (LDH) even at high zinc concentration (14000 

mg Zn kg-1) compared to the mites with disrupted enzyme activities in low HQ soil. The mites in 

high HQ soil might have passively acquired more energy reserves from the surrounding habitat to 

modulate Zn toxicity without a change in bioenergetics.  Here, we hypothesize that mites, O. nitens 

that are reared in high HQ soil, will show more resilience to Cd stress because the mites might have 

passively acquired nutrients or energy, which could be used in adaptive responses against Cd 

toxicity. To investigate the “carry over effect” of habitat quality (O’Connor et al., 2014) or separate 

habitat quality influences on toxicokinetics from toxicodynamics, we exposed mites that are reared 

in low and high HQ soils to Cd on a neutral soil (OECD artificial soil).   

4.4 Materials and Methods 

4.4.1 Test chemical and soils 

Cadmium oxide (CdO) ≥ 99.99 % trace metal basis (Sigma-Aldrich, Canada) was used as the test 

chemical. The test soil used was an artificial OECD (Organization for Economic Co-operation and 

Development) soil that is made up of 10 % sphagnum peat, 20 % kaolinite clay, 70 % sand (a 

mixture of 45 % fine sand and 25 % coarse sand), and 0.5 % powdered CaCO3 to stabilize pH. The 

pH (in CaCl2) of the OECD soil was stabilized from 5.84 to 6.50 before use. The OECD soil has an 

optimal water holding capacity (% WHC) of 68.5 %. 

Six habitat quality soils (S1 to S6) were selected from a group of natural soils that were collected 

from western Canada as described in Jegede et al. (2019b). Briefly, the soils were grouped into high 

and low HQ based on the performance of three standard test organisms that are used in soil 

ecotoxicity testing. The three organisms were Northern Wheatgrass (Elymus lanceolatus), 

collembola (Folsomia candida), and enchytraeids (Enchytraeus crypticus). As a measure of the HQ 

level of the soils, the reproduction (number of juveniles) of collembola and enchytraeids in the soils 

was assessed, while for the Northern Wheat grass, plant biomass was assessed. Habitat quality was 

calculated by combining plant biomass, enchytraeid, and springtail reproduction tests into a single 

index, as described in Jegede et al. (2019b). Soils that support the performance of these organisms 
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above average were categorized as high HQ soils while those below average were the low HQ soils 

(Table 4-1). 

4.4.2 Toxicity testing on O. nitens 

Adult mites were exposed to Cd (CdO) in OECD soil according to the procedure that was described 

in Jegede et al., 2019a,b. Specific quantities of air-dried OECD soil were spiked with different 

concentrations of CdO to give 22, 44, 88, 175, 350, and 700 mg of Cd kg-1 of dry soil. The dosed 

soil was moistened to 60 % of its WHC with ultra-pure water. About 25 g of the Cd-dosed soil was 

added to a glass vial, and fifteen (15) age synchronized adult O. nitens (45 days old from the larvae 

stage) were introduced into each treatment in replicates of four. The vial containing the dosed soil 

and adult mites were kept in a temperature-controlled chamber at 20–21 ℃ and % relative humidity 

of 60 %. The mites were fed grains of baker’s yeast and water ad libitum at an interval of 7 days for 

28 days test duration. We ended the test after 28 days, and the mites were extracted from the Cd-

dosed soil using a modified Berlese-Tullgren heat extractor set at 32℃. The extracted adult and 

juvenile mites were counted on a dissecting microscope to estimate juvenile production. The adult 

mites that survived were stored in Eppendorf tubes at -80 ℃ for biochemical analysis. 



 

 
 

7
5 

 

 

Table 4-1. Normalized biological index and physical properties of the habitat quality soils  

WHC = Water holding capacity 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑖𝑛𝑑𝑒𝑥 =
𝑃𝑙𝑎𝑛𝑡 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 𝑜𝑟 𝑎𝑛𝑖𝑚𝑎𝑙 𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑠𝑜𝑖𝑙

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑙𝑎𝑛𝑡 𝑜𝑟 𝑎𝑛𝑖𝑚𝑎𝑙
× 100 % (See Jegede et al., 2019b) 

 

Habitat quality 

level 
Soils 

Normalized biological index  Physical properties 

Plant 

biomass 

Enchytraeid 

reproduction 

Collembola 

reproduction 

Cumulative 

score 

 
% sand % silt 

% 

clay 
WHC 

Low S1 8 94 45 147  89.2 2.1 8.6 29.05  
S2 8 65 103 176  90.2 7.5 2.3 20.07  
S3 8 16 88 112  71.8 13.1 15.1 19.83 

           

High S4 167 219 58 444  25.9 55.3 18.8 38.26 

 S5 91 67 45 203  47.9 30.1 22.0 26.78 

 S6 221 195 35 451  42.8 32.0 25.2 33.12 
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4.4.3 Experimental design for habitat quality  

Newly emerged adult mites (38 days from the larvae stage, i.e., 1-day post eclosion) were reared for 

28 days in the six (6) uncontaminated HQ soils (S1-S6) in a temperature-regulated chamber at a 

temperature of 22±2℃. The mites were fed grains of baker’s yeast and water ad libitum during 

rearing. After 28 days of rearing the mites in the high and low HQ soils, the mites were extracted 

from the soils by hand sorting to avoid thermal stress. The extracted mites (65 days old, i.e., 28-d 

post eclosion) were then exposed to EC25 (215 mg Cd kg-1) and EC50 (392 mg Cd kg-1) of cadmium 

in an OECD artificial soil (Figure 4-1). Before mites were introduced into the artificial soil for toxicity 

tests, their energy reserve (protein, lipid, and carbohydrate) was estimated. 

 

Figure 4-1. A set-up showing the steps involved in the design of the habitat quality experiment. 

Note: Step B was in a neutral soil, OECD artificial soil to ensure mites are exposed to same 

condition. 

 

4.4.4 Biochemical analysis 

4.4.4.1 Estimation of energy reserves 

A sequential quantification of protein, total carbohydrate, and lipid from mite’s tissue was done 

following the method described in Forey et al. (2012). Individual adult mites from each 

concentration of Cd was pooled together per replicate (n = 4). Due to the small body size of the 

mites, two replicates were further merged from the n = 4 to get enough mites tissue for 

homogenization; thus making a population size of n = 2 replicates for the enzyme assay. Adult 

mites were placed into a 2-mL Eppendorf tube, and 150 μL of aqueous lysis buffer solution 

[100mM KH2PO4, 1 mM dithiothreitol (DTT) and 1 mM ethylenediaminetetraacetic acid (EDTA), 



 

77 
 

pH 7.4] was added and homogenized with a Teflon pestle. The resulting homogenate was 

centrifuged for 15 mins at 1000 × g at 4℃ to get a supernatant. Protein was quantified by Bradford 

assay (Bradford, 1976) from a portion of the supernatant Bovine Serum Albumin (BSA) was used 

as the standard, and the protein quantification based on absorbance of 595 nm. We added 20 µl of 

20 % sodium sulphate solution (Na2SO4) to the remaining portion of the supernatant to dissolve the 

total carbohydrate in the supernatant. The total lipid in the supernatant was also solubilized by 

adding a chloroform-methanol solution (1: 2 v/v). The total carbohydrate was estimated using the 

colorimetric method based on anthrone reagent (van Handel, 1965). The procedure was adapted for 

microplate assay in a 96-well borosilicate microplate because the organic solvents and high 

incubation temperature for the bioassay are not compatible with the standard polystyrene 

microplate. The total carbohydrate was determined by measuring the absorbance of the sample and 

standard (glucose) at 625 nm. 

The solubilized total lipid content in the supernatant was determined following the vanillin assay 

procedure (van Handel, 1985) using triolein (Cat No. 92860, Sigma) as the standard. The supernatant 

was added into a 96-well borosilicate microplate and heated at 90℃ until the complete solvent 

evaporates. Then, 10 μL of 98 % sulphuric acid was added to each well and incubated at 90℃ for 2 

min in a water bath. We cooled the microplate on ice and add 190 μL of vanillin reagent to each well. 

The microplate was incubated at room temperature for 15 min, and absorbance was measured at 525 

nm to determine the total lipid content. The protein, carbohydrate, and lipid concentration (µg) were 

transformed into energetic equivalents using the energy of combustion (Gnaiger, 1983): 17,500 mJ 

mg-1 carbohydrate, 24,000 mJ mg-1 protein, and 39,500 mJ mg-1 lipid. 

 

4.4.4.2 Enzyme assay 

Individual adult mites from each concentration of Cd was pooled together per replicate (n = 4). Due 

to the small body size of the mites, two replicates were further merged from the n = 4 to get enough 

mites tissue for homogenization; thus making a population size of n = 2 replicates for the enzyme 

assay. The adult mites were homogenized with a Teflon pestle in 50 μL of aqueous lysis buffer 

solution [100mM KH2PO4, 1 mM dithiothreitol (DTT) and 1 mM ethylenediaminetetraacetic acid 

(EDTA), pH 7.4]. The resulting homogenate was centrifuged for 15 mins at 1000 × g at 4℃ to get a 

supernatant. The activities of glucose metabolism enzymes, glucose-6-phosphate dehydrogenase 



 

78 
 

(G6PDH) and pyruvate kinase (PK) were measured as described by De Coen et al. (2001) but 

adapted for a 96-well microplate using commercial kits (G6PDH assay kit, Cat. No. MAK015; PK 

assay kit, Cat. No. MAK072) from Sigma-Aldrich, Canada. The activity of the enzymes was 

measured at an absorbance of 450 nm in a spectrophotometer and the relative activity (mU/mL) was 

corrected by the protein concentration for each sample to obtain the specific activity (mU/mg of 

protein) of the enzymes. 

4.4.5 Estimation of growth parameters 

The length (𝐿) and width (𝑙) of the mites was measured using a compound microscope with an 

eyepiece graticle. Randomly selected mites at day 0 (i.e., before exposure to Cd) and after 28 days of 

exposure to Cd in OECD artificial soil were mounted on a lens coated with wax to immobilize the 

mites for few seconds. The recorded length from the eyepiece graticle was converted to actual length 

of the mites based on the calibration from a stage micrometer (0.48 µm/division). The wet weight 

(𝑊𝑤) of individual mites was estimated from the length and width using the linear equation from 

Lebrun (1971) :  

𝑙𝑜𝑔𝑊𝑤 = 1.53 × 𝑙𝑜𝑔𝐿 + 1.53 × 𝑙𝑜𝑔𝑙 − 6.67 

The wet weight (𝑊𝑤) of the mites was transformed to physical volume (𝑉𝑤) using the formula;  

𝑉𝑊 =
𝑊𝑤

𝑑𝑉𝑤
 

  Where 𝑑𝑉𝑤 is a fixed specific density ≈ 1 g cm-3 (Kooijman, 2000). 

4.4.6 Metal analysis in mite’s tissue 

Mite samples from the habitat quality experiment were digested in HNO3/H2O2, and the resulting 

digest in 2 % HNO3 was analyzed for cadmium in an ICP-MS (Inductively Coupled Plasma Mass 

Spectrometer) as described by Jegede et al. (2019b). The Cd uptake rate or bioavailability (𝑘) in the 

mites from low and high HQ soils after exposure to nominal EC25 (215 mg Cd kg-1) or EC50 (392 

mg Cd kg-1) of Cd in OECD soil was estimated following Keshavarz Jamshidian et al. (2017). To 
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estimate 𝑘, the measured internal Cd concentration (𝐶𝑖𝑛𝑡.) in mites at each effective concentrations, 

was divided by the total Cd EC25 (270 mg Cd kg-1) or EC50 (495 mg Cd kg-1): 

𝑘 =
𝐶𝑖𝑛𝑡.

𝑇𝑜𝑡𝑎𝑙 𝐸𝐶𝑥
=

𝜇𝑔 𝐶𝑑 𝑔−1𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑚𝑖𝑡𝑒𝑠

𝜇𝑔 𝐶𝑑 𝑔−1𝑠𝑜𝑖𝑙
 

Where 𝑘 is measured in g soil g-1 body weight of mites. 

4.4.7 Statistics 

A one-way analysis of variance (ANOVA) was used to determine significant difference in energy 

reserves of adult mites between control and treated groups. The EC50 from enzyme activities was 

predicted using 3-parameter logistic regression via dynamic curve fit in SigmaPlot 12.0. Pearson 

moment correlation coefficient was used to determine the relationship between mite reproduction or 

change in physical volume, and energy reserves parameters (protein, carbohydrate, and lipid reserves) 

and enzyme activities. Two-way ANOVA was used to determine the influence of habitat quality and 

Cd concentration on mite reproduction, carbohydrate reserve, or enzyme activities. All graphs were 

also plotted in SigmaPlot 12.0. 

4.5 Results 

4.5.1 Bioenergetics responses of mites to cadmium 

There was no significant change in protein and lipid reserves (Figure 4-2a and b). Carbohydrate 

reserve significantly increased at 88 and 175 mg Cd kg-1. However, carbohydrate reserve in mites at 

the highest concentrations of Cd (i.e., 350 and 700 mg Cd kg-1) reduced to a level that was not 

significantly different from control mites (Figure 4-2c). The change in physical volume of mites 

was not significantly different (p > 0.05) between Cd concentrations in soil (Figure 1C of Appendix 

C).  

There was no significant correlation between mite’s carbohydrate reserve and reproduction as well 

as the percentage change in physical volume (𝑉𝑊) which is a measure of growth in the mites (Table 

4-2).  
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Figure 4-2. (a) Protein (b) lipid (c) carbohydrate reserves in adult Oppia nitens that are exposed to 

cadmium in OECD artificial soil for 28 days. Asterisk indicate statistical difference at p < 0.05 

using a one-way ANOVA. The bar shows the mean ± S.E (n = 2) of the energy reserves while the 

red line marks the level of the energy reserves at day 0 (protein reserve: 9.81 ± 0.43 mJ/g; lipid 

reserve: 200.84 ± 0.15 mJ/g; carbohydrate: 0.72 ± 0.04 mJ/g). 
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Cadmium also inhibits the activities of glucose metabolism enzymes, pyruvate kinase (PK) and 

glucose-6-phosphate dehydrogenase (G6PDH), and the inhibition was dose-dependent with an 

estimated EC50 of 50.7 and 21.8 mg Cd kg-1 respectively for PK and G6PDH (Figure 4-3a and b). 

We found a significant relationship between mite reproduction and the activities of PK (p = 0.002), 

and G6PDH in the mites (p = 0.03) (Table 4-2).      

 

Figure 4-3. Dose-response relationship from four parameter logistic regression for the activities of 

pyruvate kinase (PK) and glucose metabolism enzymes, glucose-6-phosphate dehydrogenase 

(G6PDH) in Oppia nitens, and Cd concentration in OECD soil. Upper and lower 95 % confident 

intervals could not be estimated (refer to table 2C and 3C of Appendix C for fitting parameters of 

the logistic regression). The bar graphs show the mean ± S.E (n = 2) of the enzyme activities while 

the red line marks the level of activities on day 0 (PK: 13.79 ± 3.88 mU/µg protein; G6PDH: 3.69 ± 

0.57 mU/µg protein). 
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Table 4-2 Pearson moment correlation showing the relationship between mite reproduction or 

physical volme and bioenergetics parameters in adult mites after 28 days of mite’s exposure to 

cadmium (0–700 mg Cd kg-1) in OECD artificial soil. 

𝑉𝑊 = Physical volume; r = correlation coefficient 

* p < 0.05; **p < 0.01 significance.  

 

 

 

 

   

 

 

 

 

 
 Protein 

reserve 

(mJ/g) 

Lipid 

reserve 

(mJ/g) 

Carbohydrate 

reserve (mJ/g) 

Total Energy 

reserve (mJ/g) 

PK (mU/µg 

protein) 

G6PDH 

(mU/ µg 

protein) 

Mite reproduction 

(No. of juvenile) 

r 0.0030 -0.68 -0.14 -0.65 0.93 0.80 

 
p 0.995 0.0913 0.765 0.114 0.00234** 0.0304*  
 

      

% ∆ in 𝑽𝑾 r 0.52 -0.33 0.24 -0.24 0.70 0.52 
 

p 0.228 0.464 0.6 0.611 0.0823 0.228 
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4.5.2 Influence of habitat quality on mite’s reproduction and bioenergetics 

Bioavailability of Cd in mites from low and high HQ soil was not significantly different (Table 4-

3). Juvenile production in mites from low and high HQ soil was not significantly different between 

control, EC25, and EC50. However, HQ significantly (p = 0.024) caused the difference in mite 

reproduction (Figure 4-4b) without a significant effect of Cd concentration (p = 0.45) or the 

interaction of HQ × Cd concentration (p = 0.65) on the reproduction of mites (Table 4C of 

Appendix C). The average number of juveniles in mites from high HQ soil was also above the cut-

off (i.e., > 70 juveniles) at all concentrations of Cd while the average number of juveniles for mites 

from low HQ soils was only above cut-off at EC50 (Figure 4-4a). There was no significant effect of 

HQ or Cd concentration on carbohydrate reserves in mites (Table 4C of Appendix C).   

Table 4-3. Chemical properties of the different habitat quality soils and cadmium bioavailability in 

Oppia nitens from high and low habitat quality soils 

OC = Organic Carbon (%); CEC = Cation Exchange Capacity (mmol/100 g soil). S1–S6 represents the 

habitat quality soils. Data in italics are the average uptake rate or bioavailability of Cd in mites at EC25 and 

EC50. Data with the same alphabet are not significantly different (t-test: p = 0.126a and p = 0.355b). 

Note: CEC was determined using the colorimetric method based on methylene blue adsorption (Soon, 1988). 

 

 

  Chemical properties 𝒌 (g soil g-1 body weight) 

Habitat quality 

level 

Soils OC pH CEC  EC25 EC50 

Low S1 1.2 5.6 13.6 0.12 0.072 
 

S2 0.4 4.6 9.9 0.064 0.15 
 

S3 1.0 6.8 18.2 0.050 0.10 

     0.078 ± 0.021a 0.11 ± 0.023b 
       

High S4 6.8 7.5 29.7 0.034 0.0061 
 

S5 3.0 6.9 21.6 0.027 0.039 
 

S6 2.7 7.1 27.4 0.053 0.14 

     0.038 ± 0.0078a 0.062 ± 0.040b 
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Figure 4-4. (a) Average number of juveniles at control, EC25, and EC50 for mites from both low 

and high habitat quality soil. (b) The influence of habitat quality on mite reproduction. The open 

circles represent data points for the number of juveniles. The red line represents the cut-off, > 70 

juveniles (i.e., average number of juveniles for high and low HQ mites in the control). p < 0.05 

indicates significant difference in mite reproduction between high and low habitat quality soil.   
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Cadmium concentration significantly influenced the activities of the glucose metabolism enzymes, 

PK (p = 0.044) and G6PDH (p = 0.035) in mites irrespective of habitat quality. The highest activity 

of both enzymes was observed at EC50 (392 mg Cd kg-1) compared to EC25 (215 mg Cd kg-1) and 

control (Figure 4-6a and b). There was no significant effect of HQ or the interaction of HQ × Cd 

concentration on the enzymatic activities (Table 4C of Appendix C).  

 

Figure 4-5. Influence of cadmium concentration (EC25 = 215 mg Cd kg-1 or EC50 = 392 mg Cd 

kg-1) on the (a) activities of glucose metabolism enzymes, glucose-6-phosphate dehydrogenase 

(G6PDH) and (b) pyruvate kinase (PK) of Oppia nitens from low and high habitat quality soils after 

exposure to cadmium in OECD soil for 28 days. p < 0.05 indicates a significant difference in 

enzyme activities between Cd concentrations. The open circles represent data points for the 

activities of enzymes.
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4.6 Discussion 

4.6.1 Effect of cadmium on bioenergetics of Oppia nitens 

In our study, cadmium altered the carbohydrate reserve of O. nitens without any discerning effect 

on protein and lipid reserves. However, Cd increased carbohydrate reserve of O. nitens at 

intermediate Cd concentrations, but decreased the reserve at a high concentration (350 and 700 mg 

Cd kg-1). The high carbohydrate reserve at the intermediate Cd concentrations indicates that Cd 

might have triggered the storage of soluble carbohydrate for refuelling during Cd toxicity. The 

decrease in the level of carbohydrate reserve at high Cd concentration is probably due to the rapid 

depletion of carbohydrate to provide energy for metal detoxification. Similarly, cadmium (6 and 

150 mg Cd kg-1) increased the carbohydrate reserve in Enchytraeus albidus (Novais et al., 2013). 

Zinc oxide nanoparticles (1000 mg kg-1) lowered the carbohydrate reserve of the earthworm Eisenia 

andrei without any effect on lipid and protein reserve (Swiatek and Bednarska, 2019). 

Carbohydrate reserve is the first energy source that is rapidly mobilized to combat toxicity in 

animals (Moolman et al. 2007) which is likely the reason why our study and the study of Swiatek 

and Bednarska (2019) only observed a change in carbohydrate reserve during metal stress in soil 

invertebrates. In addition, the exposure time, 28 days for our study, might not be enough to trigger 

the use of protein or lipid reserves by the mites. 

It is also interesting to know that the carbohydrate reserve did not correlate with mite’s 

reproduction or change in physical volume (𝑉𝑊, a measure of growth). The mites might have 

chanelled their carbohydrate reserve to support other physiological processes such as cellular 

maintenance and Cd detoxification, besides growth and reproduction. However, a fundamental 

principle is that reproduction often pays the cost for survival, and when there are limited resources, 

organisms are faced with a decision on whether to allocate energy for maintenance or growth 

(English and Bonsall, 2019).   

Our estimates of EC50 for Cd from the activities of the enzymes, glucose-6-phosphate 

dehydrogenase (G6PDH) [EC50 = 21.7 mg Cd kg-1] and pyruvate kinase (PK) [EC50 = 50.7 mg Cd 

kg-1] shows that the activities of the enzymes were inhibited at concentrations less than the EC50 on 

reproduction (i.e., 392 mg Cd kg-1) (Fajana et al., 2020). The inhibition in the activities of G6PDH 

suggests less available reducing energy to cells via the pentose phosphate pathway (PPP). Similarly, 
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the inhibition of PK activity indicates less production of pyruvate, a substrate for the tricarboxylic 

acid cycle (TCA) in the mitochondria to produce ATP. Hence, we could say that Cd reduces energy 

production in the mites by inhibiting the activities of important energy metabolism enzymes. For 

example, very low concentration of cadmium (5 mg Cd kg-1) down-regulated genes involved in 

glucose metabolism, TCA cycle, and oxidative phosphorylation in the enchytraeid, E. crypticus 

(Gomes et al., 2018). Lead (Pb) inhibits PK activity in the brain cortex of rats (Lepper et al., 2010). 

In contrast to our study, De Coen et al. (2001) reported that mercury (Hg) elevates the activities of 

G6PDH and PK in Daphnia magna. Increased activity of G6PDH and PK in D. magna could reflect 

the production of more energy as an adaptive mechanism to Hg toxicity. 

In this study, the activities of PK and G6PDH significantly correlate with mite reproduction, as 

reproduction increases with an increase in the enzymatic activities of the mites that were exposed to 

Cd (Table 4-3). However, others found that increased activity of PK negatively correlated with 

population performance, such as reproduction, growth, and survival of D. magna that were exposed 

to Cd for 48 and 96 hours (De Coen and Janssen, 2003). The authors attributed the negative 

relationship to the demand for a high-energy producing pathway, which PK cannot offer since it is 

involved in anaerobic glycolysis where only two ATP molecules are produced. Also, De Coen et al. 

(2001) did not found any relationship between the intrinsic growth rates of D. magna population 

and PK and G6PDH activities, respectively, after 48 and 96 h.  

4.6.2 Influence of habitat quality on mite reproduction and bioenergetics 

There was a hormetic-like response in mite reproduction from low and high HQ soils after exposure 

to cadmium’s EC25 and EC50 (Figure 4-4a). We suggest that future studies, following similar 

experimental design should include a much higher toxicity value such as EC90 to test for habitat 

quality. However, this hormetic-like effect can be attributed to the age of the mites. ECx values for 

O. nitens are usually based on mites that are 45–47 days old (i.e., 8–10 days post eclosion) (Fajana 

et al., 2019). However, the experimental design for this study does not allow the mites to be 

exposed at such age, but instead, the mites were exposed at 65 days old. Age can influence the 

sensitivity of mites to metal because older adult mites are more sclerotized and could efficiently 

compartmentalize metals in their cuticle; therefore increases their resilience to metals than young 

adults. Mortality increased, and reproduction decreased with age respectively in D. magna that was 
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exposed to selenium (Se), arsenic (As), lead (Pb), or copper (Cu) (Hoang and Klaine, 2007). 

However, mortality decreased and cumulative reproduction increased when D. magna became older 

adults.  

Irrespective of the hormetic-like response in mite reproduction, mites from low HQ soils had 

reduced juvenile production compared to mites from high HQ soil; thus habitat quality alone has a 

much stronger influence than Cd toxicity on the reproduction of O. nitens. In another study, O. 

nitens that were exposed to zinc in low HQ soils had reduced juvenile production compared to 

mites in high HQ soils (Jegede et al., 2019b). The intrinsic soil properties that constitute habitat 

quality, i.e., pH and the quality and quantity of OM, can influence life history, such as juvenile 

production and recruitment of O. nitens. For example, O. nitens that were reared in soil of > 6 % 

OM had high juvenile production compared to mites in low OM soil (Princz et al., 2010). 

Interestingly, the estimated bioavailability of Cd at EC25 and EC50 was not significantly different 

between mites from high or low HQ soils (Table 4-3). Thus, habitat quality does not alter mite’s Cd 

uptake from the soil. There is a possibility of mites in a high HQ soil to accumulate more Cd via 

ingestion because of the high % OM that might have bound Cd. For example, Jegede et al. (2019b) 

showed that there was no difference in Zn bioavailability between mites in high and low HQ soils; 

yet, the mites in the high HQ soils accumulated more Zn than mites in the low HQ soils.  

The mite’s G6PDH and PK activities was not influenced by habitat quality; instead, as a function of 

Cd concentration in soil. The induction in G6PDH and PK activity with increasing Cd 

concentration suggest that the mites increase their energy production to combat Cd toxicity, which 

favours reproduction even at high Cd concentration, i.e., EC50 = 392 mg kg-1 (Figure 4-4a). These 

pattern of bioenergetics response for G6PDH and PK activities could be because of the mite’s age 

at exposure (65 days old from the larvae stage). Cd causes a dose-dependent inhibition of G6PDH 

and PK activities in young adult mites (45 days old from the larvae stage) (Figure 4-3a and b). The 

difference in the pattern of bioenergetic response to Cd toxicity between young and older mites 

could be caused by differences in food consumption rate and growth conversion efficiency, as 

observed for the benthic forage fish, Fundulus heteroclitus in degraded and polluted habitat (Goto 

and Wallace, 2010).        
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This study has shown that the effect of habitat quality could be more significant than metal 

concentration on the reproduction of O. nitens. Although, the effect of metal concentration on 

mite’s bioenergetics could indirectly influence reproduction. We, therefore, conclude that soil 

habitat characterization should be done for contaminated sites to improve the relevance of 

ecological risk assessment since the quality of the habitat can affect the reproduction of soil 

invertebrates. Alternatively, the quality of contaminated habitats could be improved via ecological 

restorative processes that will target critical intrinsic soil factors such as CEC, OC, and pH (Jegede 

et al., 2019b). 
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5. Synthesis, conclusions and future directions 

Soil contamination with heavy metals is on the rise because of increased industrial activities, 

especially for countries like Canada, where a significant portion of the economy revolves around 

metal mining. Therefore, data are needed to set soil quality guidelines for metals in contaminated 

sites. So far, the available data for soil contact is based on earthworms, springtails and plants, which 

might not be representative of some ecoregions. Oppia nitens (a true soil-dwelling microarthropod) 

is abundant in the boreal ecozones, and the boreal forest soil covers about 51 % of Canada’s 

landmass. Hence, it is essential to include O. nitens as test organisms to generate toxicity data for 

Canadian soil. There is, however, a data gap on how O. nitens respond to metals in soil and habitat 

changes. 

The primary goal of this research was to provide information on O. nitens response to cadmium and 

how habitat quality influences their fitness in cadmium-contaminated soil. The findings from this 

study were based on; 

1. The dearth of information on the responses of O. nitens to chemicals in soil, and how they 

interact with the soil ecosystem as addressed in chapter 2. 

2. O. nitens usually accumulate metals from the soil by ingesting contaminated soil rather than 

dermal adsorption of dissolved metal, as addressed in chapter 3. 

3. There is a possibility of maternal transfer of metals, which could lead to transgenerational 

toxicity in O. nitens, as addressed in chapter 3. 

4. The habitat where O. nitens live can modulate their reproduction and bioenergetic responses 

to metal-induced toxicity, as addressed in chapter 4. 

The principal goals of this research were to; 

1. Provide information and data that could be used to improve risk assessment of cadmium but 

can also be adapted to other metals in contaminated sites. 

2. Assess the role of habitat quality on the fitness of soil organisms to improve the ecological 

relevance of risk assessment of metals in contaminated sites. 

The fundamental research questions addressing these objectives were; 

1. How do we understand O. nitens response to metals in contaminated sites, including 

possible molecular responses of the mites to metal stress? 
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2. What role could maternal transfer of metals play in transgenerational toxicity, and how can 

data from maternal transfer be used to improve ecological soil quality guidelines of metals 

for soil invertebrates. 

3. Does the quality of habitat for soil invertebrates affect how they respond to metals in soil, and 

how can habitat quality be incorporated into the ecological risk assessment of metal-

contaminated sites? 

5.1 Biology and Ecology of Oppia nitens (Chapter 2) 

5.1.1 Synthesis and conclusions 

In chapter 2, we provided detailed information on the biology and ecology of O. nitens in soil with 

emphasis on their functions and contribution to ecosystem services. Despite the applicability of the 

mites in soil toxicity testing, this chapter stresses the need for knowledge on the genome of O. nitens. 

Sequencing of Oppia nitens’s genome will provide information on their mechanism of response to 

stress in the soil, which could be used to develop an adverse outcome pathway (AOP) for existing 

and emerging chemicals that pose a threat to soil invertebrates.   

5.1.2 Future directions 

This study opened many opportunities for future research because it is the first-ever review on the 

bionomics of Oppia nitens. This chapter will provide researchers in the area of soil toxicology with 

first-hand information on the biology of O. nitens concerning their responses to chemicals in soil. 

The proposed adverse outcome pathway (AOP) in this chapter should be further investigated for O. 

nitens, considering the impact of the adverse outcome on ecosystem services. Besides, this chapter 

has proposed a potential mechanism for metal tolerance in the mite. The proposed mechanism could 

be investigated in the future, thus opening a new approach to how soil microarthropods tolerate heavy 

metals in contaminated soils. 

5.2 Toxicity and maternal transfer of cadmium in O. nitens (Chapter 3) 

5.2.1 Synthesis and conclusions 

This chapter provides data on cadmium toxicity to soil invertebrates with a novel finding on the 

maternal transfer of cadmium in O. nitens. Contrary to the dogma of pore water-mediated toxicity in 

soil invertebrates, this chapter concluded the accumulation of metal by O. nitens in the soil is not via 
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dermal adsorption of metal from pore water but ingestion of contaminated soil. The profound finding 

from chapter 3 is that adult mites maternally transfer a significant amount of cadmium to juveniles. 

The information on the maternal transfer of Cd in O. nitens is crucial because it supports existing data 

on the multigenerational effect of other metals such as zinc in O. nitens (Jegede et al., 2019a). 

5.2.2 Future directions 

This study, for the first time, has shown the possibility of maternal transfer of heavy metal in soil 

invertebrates. Thus, it will foster more research to investigate the maternal transfer of Cd and other 

heavy metals in other soil invertebrates such as earthworms, collembola and enchytraeids. Since 

this chapter proposed how maternal transfer data could be included as a criterion for setting soil 

quality guidelines, we recommend that regulatory bodies such as CCME and U.S EPA should look 

in the direction of incorporating maternal transfer data for other soil invertebrates into setting 

environmental soil quality guidelines for heavy metals in soil.   

5.3 Soil habitat quality's influence on cadmium-induced toxicity (Chapter 4) 

5.3.1 Synthesis and conclusions 

Chapter 4 reported a novel finding on how habitat quality could influence reproduction and energy 

metabolism in O. nitens, and we found habitat quality influences the reproduction of O. nitens in 

response to cadmium-induced toxicity. There are speculations that habitat quality could improve the 

adaptive responses of O. nitens to metals, e.g., zinc (Jegede et al., 2019b). This chapter, therefore, 

supports such assumptions and concludes that habitat quality directly influences mite’s reproduction 

irrespective of the concentration of Cd in soil. The approach used in chapter 4 was novel because it 

captured how the mites could passively acquire resources such as energy and micronutrients from 

their habitat, which could be used to combat metal toxicity. 

5.3.2 Future directions 

Chapter 4 has shown that habitat quality does matter for the soil mite, O. nitens, in the context of 

acquiring resources from a high habitat quality soils. Therefore, this finding should prompt a similar 

investigation for other soil invertebrates. Also, the intrinsic soil factors that influence the quality of 

the habitat should be investigated. For instance, the contribution of quality and quantity of organic 

matter (OM) to habitat quality should be critically assessed. Furthermore, our findings from this 
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chapter suggest habitat characterization of contaminated sites is needed, which will help to improve 

the ecological relevance of environmental risk assessment. 

5.4 Overall synthesis of findings from this study 

First, knowledge of the ecology and biology of O. nitens is essential to soil ecotoxicologist because 

of the ecological relevance of the mites, and its use as a standard test organism in toxicity testing. 

The mite’s cadmium uptake from the soil, which we concluded to be via the ingestion of 

contaminated soil or Cd bound to the soil, is a piece of valuable information that is vital to 

terrestrial ecotoxicology. We often believed that soil invertebrates significantly take up metals via 

dermal adsorption of metal ions from soil solution or pore water. Hence, we can begin to view 

metal uptake from a different perspective with particular interest to total metal pool in soil rather 

than free metal ion activity. Secondly, our data on the maternal transfer of cadmium from adults to 

juveniles could change the procedures for setting soil quality guidelines by incorporating maternal 

transfer ratio as a safety factor. Maternal transfer could also improve our understanding of 

transgenerational toxicity of metals in the mites. Third, we also found habitat quality to be a 

significant factor that affects the reproduction of the mites. The findings on the influence of habitat 

quality to the mite’s response could change the landscape of soil ecotoxicology from the 

perspective of ecological stress and metal tolerance in soil invertebrates. The overall contribution of 

this thesis to soil ecotoxicology is highlighted in figure 5-1.   
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Figure 5-1. A graphical summary of the contribution of this thesis to the advancement of soil 

ecotoxicological research using Oppia nitens as test organism.   
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7. Appendix A: Supplementary information for chapter 2
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Table 1A. Location and habitat preferences of Oppia nitens, by country 

Country Location Habitat preference Reference 

Canada Ontario  

Nova Scotia  

 

Forest soil, ~7 % organic matter 

 

Godfrey et al. 2013; Telfer et 

al. 2015 

USA 

 

Illinois, New York, Virginia, 

Michigan 

Northern hardwood forest, which consists of Sandy 

soil overlaid with >80 % sugar maple (Acer 

Saccharum) litter; pH (4.41-4.70) 

Ewing, 1909; Sengbusch, 

1951, 1957; Gan et al. 2014 

Czech 

Republic 

Moravia 

 

 Stary, 2000 

Georgia Caucasus (Kolkheti) 

Caucasus (Colchic lowland) 

 

Humus-rich soil of flooded alder forest; 

Wetland composed of deposit from dead Juncus 

plant material 

Murvanidze et al. 2011; 

Murvanidze and Kvavadze, 

2010 

Italy South Tyrol 

Bergamo 

 

Hypolite pond (wetland) of a boggy forest with reed 

swamp; dry bushland and rocky steppe; Woodland 

(agricultural area) 

Fischer and Schatz, 2010; 

Schatz, 2018; Migliorini et al. 

2003 

Germany Berlin-Buch 

- 

Decomposed litter of Agropyron repens; 

Mesophilic deciduous broadleaf forest litter; 

Pieper, 2004 

Weigmann and Kratz, 1982 

Poland 

 

Mazovia Compost heap Gryziak, 2009 

Turkey 

 

Erzurum 

Konya 

 

Soil and litter under Oak tree 

- 

Baran and Ayyildiz, 2004 

Dik et al. 1995 

United 

Kingdom 

England (Yorkshire) Mull-like soil that contains non-calcareous drift; Wood, 1967 

Sweden 

 

- Moss and dead wood. Michael, 1898 

The 

Netherlands 

Leeuwarden 

- 

Fossilized soil deposit; 

Litters of cultivated wood 

Schelvis, 2015 

Hammen, 1952 

 

Switzerland Liestal  Schweizer, 1957 
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Spain Province of Cuenca Decomposed wood of poplar slump Subías and Arillo, 2000 

Iceland - - Hammer, 1946 

 

France 

 

Massane, Trevaresse, 

Provence 

 

- 

 

Trave, 1956; Lions, 1966a, 

1966b 

 

Ukraine 

 

Crimea 

 

Forest soil 

 

Kurcheva, 1973 

 

Finland 

 

- 

 

- 

 

Niemi et al. 1997 

 

Greece, 

Austria, 

Belgium, 

Portugal 

   

de Jong et al. 2014 

Iran 

 

Alborz province (Taleghan) Soil and litter under cherry trees, Prunus avium L. Jamshidian et al. 2015 

Antarctica Sub-Antarctic archipelagos 

(Crozet Islands) 

 Starý and Block, 1998 
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Table 2A. Comparison of median lethal (LC50-survival) and inhibitory (EC50-reproduction and avoidance) concentrations for the effect of 

metals, pesticides, organic compounds, and reference substance between Oppia nitens and other standardized soil invertebrates (the 

collembola, Folsomia candida; earthworm, Eisenia fetida; pot worms, Enchytraeus albidus/crypticus, and predatory mite, Hypoaspis 

aculeifer) in soil ecotoxicity testing 

Class of 

chemicals 

Chemicals Species 

 O. nitens F. candida E. fetida E. albidus/crypticus H. aculeifer 

LC50 EC50 LC50 EC50 LC50 EC50 LC50 EC50 LC50 EC50 

Metals Copper 33111 28961 181010 70010 76411 31611 79923 30515 44823

0 

245930 

 -    83612 71512   >100
31 

64731 

 - 4265*2        944*30 

Zinc 22911 15621 515014 90010 134014 70514 56614 26714   

 -   75010 74513 46213  18822   

Lead 67611 16781  297010 >10000
12 

16291

2 

1140023 32015   

Cadmium 6031 1371 85416 >32616 >30012 29512 47618 15818   

     126018 10818     

Cobalt - 121324A  >684033

A 

 30019 - 20028   

  1492124B  >175153

3B 

   >1751533

B 

  

Nickel - 13324A  523833A  36215  27529   

  360624B  >476633B    443333B   

Lanthanum >58209 15009 16909 12209 18509 5299 16509 10109   
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Organics Lubricating 

oil 

112935 12105 61725 31605 28605  >1860005 317365   

 Perfluoroocta

ne sulfonate 

(PFOS) 

654 234 1304 944 54027 - - -   

  >1804 954 >3504 2334       

 Benzo[a]pyre

ne 

>16002 >16002 >434525 >434525   200025 55925 >947
30 

>94730 

 Phenanthrene 3882 952 36625 25725 4126 - >369025 >369025 68430 4930 

   83*2        26*30 

Pesticides Triclopyr 20007 15007 1000–

30007 

5007 - - 75.5–

28007 

75.5–

26007 

  

 Imazapyr - - 3500–

40007 

5007 - - 200 - 

18007 

12–30007   

 Imidacloprid 3608 1198 0.478 0.268 0.778 0.398 >308 28   

 Thiacloprid >10008 768 3.98 1.78 7.18 0.448 >308 128   

Reference 

chemical 

Boric acid 14682 3142 125.718 54.518  48421 35717 10417 66830 33230 

  5303 963     30217 10517  29632 

   2454*2  183*17    >2000*20  1234*
30 

*avoidance 
1Owojori and Siciliano (2012); 2Owojori et al. (2011); 3Princz et al. (2010); 4Princz et al. (2018); 5Gainer et al. (2018); 6Gainer et al. (2019a); 
7Jimmo et al. (2018); 8de Lima e Silva et al. (2017); 9Li, Verweij, and van Gestel (2018); 10Sandifer and Hopkin (1996); 11Owojori et al. (2009); 
12Spurgeon and Hopkin (1995); 13Spurgeon and Hopkin (1994); 14Lock and Janssen (2001b); 15Lock and Janssen (2002a); 16Crommentuijn et al. 

(1995); 17Amorim et al. (2012); 18Lock and Janssen (2001a) 19Hartenstein et al. (1981); 20Amorim et al. (2008); 21Becker et al. (2011); 22Posthuma 

et al. (1997); 23Lock and Janssen (2001c); 24Jegede et al., in preparation; 25Bleeker et al. (2003); 26Wu et al. (2011); 27Yuan et al. (2017); 28Ribeiro 

et al. (2018); 29Lock and Janssen (2002b); 30Owojori et al. (2014); 31Krogh and Axelsen (1998); 32Smit et al. (2012); 33M. Renaud, unpublished 

data.  

A = Natural soil (pH = 3.4, % OC = 1.7, % Clay = 4.5, CEC = 8 mmol/100g); B = Natural soil (pH = 5.6, % OC = 1.2, % Clay = 2.4, CEC = 28 

mmol/100g). 

 



 

125 
 

 

 

 

Figure 1A. Number of studies from 1900-2019, estimated using “test organisms + toxicity” as key 

words on Web of Science. 
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8. Appendix B: Supplementary information for chapter 3 
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Table 1B. Average values of measured and estimated cadmium data in soil and mites 

Nominal 

Cd (mg 

kg-1) 

Pore 

water 

Cd (mg 

l-1) 

0.01 M 

CaCl2-

extractable 

Cd (mg kg-1)  

Total soil Cd 

(mg kg-1) 

Measured 

Cd in adult 

mites (µg g-

1) 

Measured Cd 

in juvenile 

mites (µg g-1) 

Estimated Cd in 

Juvenile via 

uptake from soil 

(µg g-1) 

Cd bound 

to OM 

(mg kg-1) 

Free 

Cd 

(µM) 

Fulvic 

acid 

bound 

Cd (µM) 

Water 

soluble Cd 

(mg l-1) 

700 5.05 3.75 880.45 14.17 11.64 6.87 253.05 7.18 4.16 1.90 

350 0.4 1.20 459.90 5.66 11.53 6.80 60.14 0.40 0.35 0.21 

175 0.3 0.58 222.97 4.53 4.75 2.80 48.35 0.14 0.14 0.087 

88 0.2 0.25 94.55 1.74 3.47 2.05 13.58 0.09 0.093 0.060 

44 0 0.13 48.73 3.70 3.53 2.08 18.59 0.036 0.038 0.027 

22 0 0.04 25.20 0.49 2.63 1.55 3.04 0.012 0.015 0.013 

0 0 0 0.68 2.48 1.96 1.16 0.50 0 0 0 
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Table 2B. Mean ± standard error (n = 4) of reproduction and survival data for mites, Oppia nitens 

after 28 days exposure to cadmium in OECD artificial soil 

Nominal cadmium 

doses (mg kg-1) 

Mite reproduction (number of 

juveniles) 

Survival (% adult survival) 

0 130.00 ± 18.46a 81.67 ± 1.67 

22 94.33 ± 16.29a 75.55 ± 4.44 

44 75.33 ± 9.74ab 80.00 ± 3.85 

88 93.25 ± 4.82a 85.00 ± 1.67 

175 72.75 ± 6.50b 63.33 ± 4.30 

350 79.33 ± 15.30ab 73.33 ± 10.18 

700 27.50 ± 5.56b 66.66 ± 6.67 

Mite reproduction data with the same superscripts are not significantly different at 5 % probability from a 

one-way Analysis of variance using Bonferroni t-test for multiple comparison. 
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Table 3B. Linear regression model for deriving ECx (EC25 and EC50) of nominal, total soil, and 

0.01 M CaCl2-extractable cadmium to Oppia nitens in OECD artificial soil after 28 days toxicity 

test   

Model r2
Adj. p 

𝑬𝑪𝒙𝑵𝒐𝒎𝒊𝒏𝒂𝒍 𝑪𝒅 =  −𝟓𝟐. 𝟖𝟑 + 𝟓𝟑. 𝟑𝟔 × 𝑬𝑪𝒙𝑰𝒏𝒕𝒆𝒓𝒏𝒂𝒍 𝑪𝒅 𝒊𝒏 𝒂𝒅𝒖𝒍𝒕 𝒎𝒊𝒕𝒆𝒔 0.90 < 0.001 

𝑬𝑪𝒙𝑻𝒐𝒕𝒂𝒍 𝑪𝒅 =  −𝟔𝟗. 𝟖𝟒 + 𝟔𝟕. 𝟕𝟖 × 𝑬𝑪𝒙𝑰𝒏𝒕𝒆𝒓𝒏𝒂𝒍 𝑪𝒅 𝒊𝒏 𝒂𝒅𝒖𝒍𝒕 𝒎𝒊𝒕𝒆𝒔 0.89 < 0.001 

𝑬𝑪𝒙𝟎.𝟎𝟏 𝑴 𝑪𝒂𝑪𝒍𝟐 𝒆𝒙𝒕.𝑪𝒅 =  −𝟎. 𝟓𝟏 + 𝟎. 𝟐𝟗 × 𝑬𝑪𝒙𝑰𝒏𝒕𝒆𝒓𝒏𝒂𝒍 𝑪𝒅 𝒊𝒏 𝒂𝒅𝒖𝒍𝒕 𝒎𝒊𝒕𝒆𝒔 0.94 < 0.001 

EC25 and EC50 for internal Cd in adult mites are 5.02 (2.03 – 8.0) and 8.34 (4.26 – 12.43) µg g-1 

respectively. The EC25 and EC50 for internal Cd in adult mites were predicted using 3-parameter Weibull 

regression with the drc package in R4. 

Note: r2
Adj = Adjusted coefficient of determination; p = p-values at 5 % probability 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
4 Ritz, C., Baty, F., Streibig, J. C., & Gerhard, D. (2015). Dose-response analysis using R. PloS one, 10(12), 

e0146021. 
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Figure 1B. Dose-response curve of cadmium (Cd) on the survival (% adult survival) of Oppia 

nitens after 28 days of exposure to Cd in OECD artificial soil. 
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9. Appendix C: Supplementary information for chapter 4 
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Table 1C. Raw reproduction (i.e., juvenile production) and enzyme activity (glucose-6-phosphate 

dehydrogenase [G6PDH] and pyruvate kinase [PK]) data 

 

Habitat 

quality level Cd dose Reproduction 

Habitat 

quality Cd dose G6PDH PK 

Low Control 30  Low Control -0.27792 4.813254 

Low Control 57  Low Control -0.51548 3.225021 

Low Control 90  Low Control 0.962073 14.1094 

Low Control 59  Low Control -0.75009 8.993635 

Low Control 82  Low Control 0.433323 12.00949 

Low Control 48  Low Control 0.492404 9.112645 

Low Control 73  Low EC25 -0.24027 0.158453 

Low Control 70  Low EC25 0.350586 6.325229 

Low Control 59  Low EC25 0.59478 16.31197 

Low Control 88  Low EC25 0.23366 8.607311 

Low Control 54  Low EC25 1.210946 11.28475 

Low Control 36  Low EC25 0.301694 10.30742 

Low EC25 44  Low EC50 0.642678 14.69004 

Low EC25 79  Low EC50 0.433388 6.91673 

Low EC25 75  Low EC50 0.77723 16.2986 

Low EC25 59  Low EC50 0.962073 12.98835 

Low EC25 23  Low EC50 1.813698 19.36303 

Low EC25 33  Low EC50 0.440977 14.80569 

Low EC25 38  High Control 0.6104 7.711459 

Low EC25 74  High Control 0.350711 7.696593 

Low EC25 62  High Control 0.582175 16.66007 

Low EC25 89  High Control 1.248871 16.85655 

Low EC25 42  High Control -0.83594 4.330519 

Low EC25 81  High Control -0.73607 9.08478 

Low EC50 20  High EC25 0.952215 8.881978 

Low EC50 30  High EC25 0.274104 7.957502 

Low EC50 26  High EC25 0.606615 12.73279 

Low EC50 99  High EC25 0.024459 12.27783 

Low EC50 85  High EC25 0.204641 10.52479 

Low EC50 55  High EC25 -0.61693 6.14491 

Low EC50 86  High EC50 0.656575 9.932681 

Low EC50 111  High EC50 0.630037 9.173145 

Low EC50 129  High EC50 0.507537 15.72053 

Low EC50 89  High EC50 0.086024 15.61616 

Low EC50 93  High EC50 1.259199 12.40271 

High Control 46  High EC50 1.073468 11.81562 

High Control 50      
High Control 66      
High Control 127      
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High Control 80      
High Control 53      
High Control 91      
High Control 71      
High Control 78      
High Control 95      
High EC25 26      
High EC25 42      
High EC25 39      
High EC25 46      
High EC25 93      
High EC25 32      
High EC25 141      
High EC25 118      
High EC25 89      
High EC25 105      
High EC25 154      
High EC25 170      
High EC50 119      
High EC50 48      
High EC50 103      
High EC50 73      
High EC50 146      
High EC50 144      
High EC50 83      
High EC50 32      
High EC50 60      
High EC50 70      
High EC50 96      
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Table 2C. Fitting parameters for the dose-response of pyruvate kinase (PK) activity as a function of 

cadmium concentration in soil      

Pyruvate Kinase (PK) 
Equation: Standard Curves, Four Parameter Logistic Curve 
f1 = min + (max-min)/(1 + (x/EC50)^(-Hillslope)) 
f = if(x<=0, if(Hillslope>0,min,max), f1) 
 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
 
0.7970 0.6352 0.5257  4.2213  
 
   Coefficient Std. Error t  P  
 
min  -3.3313  104.2858 -0.0319  0.9751  
max  19.6985 2.9849  6.5994  <0.0001***  
EC50  50.6585 1832.0049 0.0277  0.9785  
Hillslope -0.2530  1.4761  -0.1714  0.8673 
 
Corrected for the mean of the observations: 
   DF SS  MS  F P  
Regression 3 310.2447 103.4149 5.8036 0.0146  
Residual 10 178.1910 17.8191  
Total  13 488.4357 37.5720  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk): Passed (P = 0.4141) 
 
W Statistic= 0.9397 Significance Level = 0.0500 
 
Constant Variance Test: Passed (P = 0.7499) 
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Table 3C. Fitting parameters for the dose-response of glucose-6-phosphate dehydrogenase (G6PDH) 

activity as a function of cadmium concentration in soil  
 
Glucose-6-phosphate dehydrogenase (G6PDH) 
Equation: Standard Curves, Four Parameter Logistic Curve 
f1 = min + (max-min)/(1 + (x/EC50)^(-Hillslope)) 
f = if(x<=0, if(Hillslope>0,min,max), f1) 
 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
 
0.9411 0.8857 0.7714  0.6134  
 
  Coefficient Std. Error  t  P  
 
min 1.1332  0.3066   3.6960  0.0344**  
max 4.2521  0.6134   6.9316  0.0062***  
EC50 21.8391 3724753.0631  5.8632E-006 1.0000  
Hillslope-30.6306 711526065.6070 -4.3049E-008 1.0000  
 
Analysis of Variance:  
 
   DF SS  MS  
Regression 4 30.8414 7.7103  
Residual 3 1.1289  0.3763  
Total  7 31.9703 4.5672  
 
Corrected for the mean of the observations: 
   DF SS MS F P  
Regression 3 8.7474 2.9158 7.7487 0.0633  
Residual 3 1.1289 0.3763  
Total  6 9.8762 1.6460  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk): Passed (P = 0.6605) 
 
W Statistic= 0.9424 Significance Level = 0.0500 
 
Constant Variance Test: Passed (P = 0.3884) 
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Table 4C. Two-way Analysis of variance (ANOVA) for the effect of habitat quality and cadmium 

concentration on the reproduction (juvenile production) of Oppia nitens after exposing mites from 

low and high habitat quality (HQ) to cadmium (EC25 = 215 mg Cd kg-1 or EC50 = 392 mg Cd kg-1) 

for 28 days in an OECD artificial soil 

 Source of 

variation 

df SS MS F p 

Mite reproduction 

(Number of 

juveniles) 

      

HQ 1 6093.7 6093. 1 5.4 0.024* 

Cd 2 1858.9 929. 8 0.82 0.45 

HQ x Cd 2 997.0 498.5 0.44 0.65 

Residual 62 70263.3 1133.3 
  

Total 67 79600.9 1188.1 
  

       

Carbohydrate 

reserve (mJ/g) 

HQ 1 0.76 0.76 1.38 0.25 

Cd 2 3.28 1.64 3.0 0.067 

HQ x Cd 2 0.37 0.19 0.34 0.72 

Residual 30 16.61 0.55   

Total 35 21.01 0.60   

       

G6PDH activity 

(mU/µg protein) 

HQ 1 0.027 0.03 0.078 0.78 

Cd 2 2.61 1.31 3.8 0.035* 

HQ x Cd 2 0.18 0.091 0.26 0.77 

Residual 30 10.40 0.35   

Total 35 13.22 0.38   

       

PK activity (mU/µg 

protein) 

HQ 1 0.75 0.75 0.043 0.84 

Cd 2 121.37 60.69 3.5 0.044* 

HQ x Cd 2 19.27 9.64 0.55 0.58 

Residual 30 522.47 17.42   

Total 35 663.86 18.96   

HQ = Habitat quality; Cd = Cd concentration 

*significant difference at p < 0.05 
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Figure 1C. Percentage change in physical volume (𝑉𝑊) of Oppia nitens after exposing the mites to 

cadmium for 28 days in OECD artificial soil. Note: Percentage change in 𝑉𝑊 was calculated 

relative to 𝑉𝑊 at day 0 (i.e., before mites were exposure to cadmium). 

 


