Die nichtkodierende RNA STAiR18 und ihre pathophysiologische Funktion im Glioblastom

Von der Fakultät für Lebenswissenschaften

der Universität Leipzig

genehmigte

DISSERTATION

zur Erlangung des akademischen Grades

Doktor rerum naturalium

Dr. rer. nat.

vorgelegt

von M. Sc. Biol. Ivonne Zipfel

geboren am 24.01.1989 in Leipzig

Dekan: Prof. Dr. Marc Schönwiesner

Gutachter: Prof. Dr. Thomas Magin

Prof. Dr. Stefan Hüttelmaier

Prof. Dr. Friedemann Horn

Tag der Verteidigung: 15.11.2019

BIBLIOGRAPHISCHE DARSTELLUNG

Ivonne Zipfel

Die nichtkodierende RNA STAiR18 und ihre pathophysiologische Funktion im Glioblastom

Fakultät für Lebenswissenschaften

Universität Leipzig

Dissertation

219 Seiten, 270 Literaturangaben, 53 Abbildungen, 14 Tabellen

Fehlregulationen von nichtkodierenden RNAs können Einfluss auf die Tumorgenese, Proliferation und Invasion verschiedenster Tumortypen, unter anderen auch auf das Glioblastom, nehmen. Das Glioblastom stellt nicht nur den häufigsten, sondern mit einer mittleren Überlebensrate von lediglich 14 Monaten auch den tödlichsten Hirntumor dar. Ein tieferes Verständnis der molekularen Grundlagen, die hinter dem hochinvasiven Verhalten dieses aggressiven Tumors liegen, ist folglich von großer Bedeutung, um neue gezielte Therapieansätze entwickeln zu können. In der vorliegenden Arbeit wurde die lange nichtkodierende RNA STAIR18 als möglicher Regulator der zellulären Funktionen von Glioblastomzellen strukturell und funktionell charakterisiert. STAiR18 zeigt eine ubiquitäre Expression in allen untersuchten humanen Geweben, wobei es durch zelltypspezifische. alternative Spleißvorgänge zu einer hohen Anzahl verschiedener Transkriptvarianten kommt, deren Expressionslevel einer strikten Regulation unterliegen. Die für das Glioblastom spezifische Transkriptstruktur von STAiR18 wurde mit Hilfe der neuartigen MinION[™]-Sequenzierung aufgeschlüsselt und ausgewählte Transkriptvarianten mittels in situ Hybridisierung visualisiert. Die erhöhten Expressionslevel von STAiR18 in jedem untersuchten Tumortyp im Vergleich zum Normalgewebe könnten auf eine umfassende Rolle von STAiR18 während der Tumorgenese hindeuten. Zur Analyse der physiologischen Funktion wurde STAiR18 mittels RNAi in Glioblastomzellen ausgeschaltet, was sich auf die Adhärenz sowie das Migrations- und Invasionsverhalten der Zellen auswirkte. Im Rahmen globaler Transkriptomanalysen konnte eine Vielzahl von infolge des STAiR18-Knockdowns unterdrückten oder induzierten Zielgenen identifiziert werden, wobei die einzelnen Transkriptvarianten von STAiR18 unterschiedliche Gensets zu regulieren scheinen. Durch weiterführende Interaktionsstudien konnten direkte Bindungspartner von STAiR18 detektiert und die zentrale Rolle von STAiR18 bei der Regulation der Zellmigration untersucht werden. Die erhobenen Daten sollen damit Einblicke in die komplexen Regulationsnetzwerke des Glioblastoms gewähren und Zusammenhänge zwischen langen nichtkodierenden RNAs und Tumorerkrankungen aufschlüsseln.

INHALTSVERZEICHNIS

-	1 EINLEITU	UNG	1
	1.1 Das	s Glioblastom	1
	1.2 Nic	htkodierende RNAs	4
	1.2.1	Biologische Rolle der langen ncRNAs	6
	1.2.2	IncRNAs in Tumorerkrankungen	
	1.2.3	STAT3-induzierte nichtkodierende RNAs (STAiRs)	
	1.3 Mo	tivation und Zielstellung	
	2 MATERIA	AL UND METHODEN	
	2.1 Zell	lbiologische Methoden	
	2.1.1	Zellkultur	
	2.1.2	Transiente Transfektion	
	2.1.3	Vitalitätsbestimmung	
	2.1.4	Migrationsassay	21
	2.1.5	Invasionsassay	21
	2.2 Mo	olekularbiologische Methoden	22
	2.2.1	RNA-Isolation	22
	2.2.2	Kern-Zytoplasmafraktionierung	23
	2.2.3	DNA-Isolation	24
	2.2.4	Konzentrationsbestimmung von Nukleinsäuren	24
	2.2.5	DNase-Verdau und cDNA-Synthese	25
	2.2.6	Quantitative real time PCR	26
	2.3 Pro	oteinbiochemische Methoden	
	2.3.1	Proteinisolation und Konzentrationsbestimmung	
	2.3.2	SDS-Polyacrylamid Gelelektrophorese	29

	2.	3.3	Immunoblot	30
	2.4 Spe		zifische Anreicherung von RNA und deren Bindungspartnern	31
	2.	4.1	Präzipitation der Ziel-RNA aus Zelllysaten (ChIRP)	31
	2.	4.2	Präzipitation der Ziel-RNA aus total-RNA	35
	2.5	Glo	bale Analysen	35
	2.	5.1	Transkriptomanalyse mittels Microarray	35
	2.	5.2	RNA-Sequenzierung mittels MinION [™]	37
	2.6	Fluc	preszenz-basierte Färbetechniken	38
	2.	6.1	Immunfluoreszenz	38
	2.	6.2	Fluoreszenz <i>in situ</i> Hybridisierung mittels ViewRNA [™]	39
	2.7	Gev	vebe- und Patientenproben	40
	2.8	Soft	tware und Statistik	41
3	EF	RGEBN	ISSE	43
	3.1	Cha	rakterisierung und Expressionsanalyse der langen nicht kodierenden RNA STAiR18	43
	3.	1.1	Genomische Lokalisation von STAiR18	43
	3.	1.2	STAiR18 weist Merkmale einer mRNA auf	47
	3.	1.3	STAiR18 ist eine nicht proteinkodierende RNA	49
	3.	1.4	STAiR18 wird ubiquitär exprimiert	52
	3.	1.5	STAiR18 wird alternativ gespleißt	55
	3.	1.6	STAiR18 wird im Tumor überexprimiert	56
	3.	1.7	STAiR18 wird in Alzheimer-Proben verstärkt exprimiert	58
	3.2	Fun	ktionsanalyse von STAiR18 in Glioblastomzellen	61
	3.	2.1	STAiR18 beeinflusst die Adhärenz, Migration und Invasion von Glioblastomzellen	61
	3.	2.2	STAiR18 nimmt keinen Einfluss auf die Vitalität von Glioblastomzellen	71
	3.3	Ana	lyse der STAiR18-Transkriptstruktur im Glioblastom	74
	3.	3.1	Expressionslevel ausgewählter STAiR18-Isoformen im Glioblastom	75

	3.	.3.2	Analyse der STAiR18-Transkriptstruktur durch Knockdown-Studien	.78
	3.	.3.3	Analyse der STAiR18-Transkriptstruktur mittels MinION [™] -Sequenzierung	.81
	3.	.3.4	Intrazelluläre Lokalisation der STAiR18-Isoformen in Glioblastomzellen	.87
	3.4	Mol	ekulare Wirkweise von STAiR18 in Glioblastomzellen	.95
	3.	.4.1	Genomweite Transkriptionsanalyse zur Identifizierung STAiR18-regulierter Gene	.95
	3.	.4.2	Analyse möglicher STAiR18-Interaktionspartner	107
4	D	ISKUSSI	ION1	120
	4.1	Cha	rakterisierung von STAiR181	121
	4.2	STA	iR18 als möglicher Biomarker1	124
	4.3	Die	STAiR18-Transkriptstruktur im Glioblastom1	126
	4.4	Die	Wirkung von STAiR18 und weiterer IncRNAs im Glioblastom	130
	4.5	Die	molekulare Wirkweise von STAiR181	133
	4.6	Die	globale Rolle von STAiR18 in weiteren Zellsystemen	139
5	Zl	JSAMN	1ENFASSUNG1	142
6	SI	JMMAI	RY1	145
LI	TERA	TURVE	RZEICHNIS1	148
A	BKÜR	ZUNGS	VERZEICHNIS	169
A	BBILC	DUNGS	VERZEICHNIS1	172
T.	ABELI	LENVER	ZEICHNIS1	174
A	NHAN	NG		175
D	ANKS	SAGUN	32	205
A	KADE	MISCH	ER WERDEGANG	207
S	ELBST	rständ	IGKEITSERKLÄRUNG	209

Für meine Eltern

1 EINLEITUNG

1.1 Das Glioblastom

Unter dem Begriff Gliom werden verschiedene Hirntumore des Zentralnervensystems zusammengefasst. Sie gehen meist aus Gliazellen hervor, deren verschiedene Untergruppen etwa die Hälfte des humanen Gehirns ausmachen [1]. Gliazellen sind unter anderem an der Aufrechterhaltung der Homöostase im Hirn und dessen Flüssigkeitsregulation und Stofftransport beteiligt. Des Weiteren bilden sie als Myelin die elektrische Isolation der Axone der Nervenzellen [2]. Kommt es zu malignen Entartungen der Gliazellen, können sich Gliome ausbilden. Diese können zum einen nach ihrem zytogenetischen Ursprung, also dem glialen Zelltyp, dem sie histologisch am meisten ähneln, eingeteilt werden in Astrozytome, Oligodendrogliome, Ependymome und Mischgliome. Zum anderen werden sie nach dem Klassifizierungs-System der World Health Organization (WHO) anhand ihres Aggressions- und Malignitätsgrades in vier Stufen (WHO-Grad I-IV) gegliedert [3].

Das Glioblastom (auch *Glioblastom multiforme*) zählt zur Gruppe der astrozytär differenzierten Tumore, die das umgebende Hirngewebe diffus infiltrieren. Die Tumorzellen können sowohl fibrillärastrozytär mit multipolaren feinen Fortsätzen differenziert sein oder aber durch eine Ausdehnung des Zytoplasmas Mastzellen ähneln. Auf Grund der sehr hohen Malignität und mitotischen Aktivität gruppiert die WHO das Glioblastom als Grad IV-Tumor ein. Die Abgrenzung gegenüber anaplastischen Astrozytomen erfolgt nach WHO-Klassifikation durch den Nachweis von Tumornekrosen und hochgradig pathologischen Blutgefäßen. Mit einer mittleren Überlebensrate von nur reichlich 14 Monaten und einer mehr als 90 %igen Sterblichkeitsrate nach 5 Jahren stellt das Glioblastom den tödlichsten Gehirntumor dar [4]. Seine Heterogenität, die rapide und diffuse Invasion der Tumorzellen in angrenzendes gesundes Hirngewebe und die schnelle Ausbildung von Rezidiven machen das Glioblastom zu einem der am schwersten zu behandelnden Tumore [5]. Das Glioblastom stellt zudem den häufigsten aller primären bösartigen Hirntumore beim Erwachsenen dar. Es tritt zumeist bei älteren Erwachsenen zwischen dem 60. und 70. Lebensjahr auf, wobei Männer deutlich häufiger betroffen sind als Frauen [6]. In den USA werden jährlich etwa 10.000 neue Glioblastom-Erkrankungen diagnostiziert. Weltweit kommt es in entwickelten Ländern zu schätzungsweise etwa 3,5 Glioblastom-Neuerkrankungen pro 100.000 Menschen pro Jahr [7,8]. Bis heute ist eine endgültige Heilung in der Regel nicht möglich.

Beim Glioblastom handelt es sich um einen meist sporadisch auftretenden Tumor. Nur bei selten vorkommenden erblichen Erkrankungen wie dem Li-Fraumeni-Syndrom und dem Turcot-Syndrom kommt ein gehäuftes Auftreten von Glioblastomen innerhalb einer Familie vor [9]. Meistens entstehen Glioblastome de novo. Sie können allerdings auch aus weniger malignen Astrozytomen hervorgehen. Manifestieren sich therapierte Astrozytome im Zuge einer fortschreitenden Erkrankung als Rezidiv zum Glioblastom, spricht man von einem sekundären Glioblastom, welches meist bei jüngeren Patienten auftritt [10]. Glioblastome bilden sich vorwiegend im Großhirn und treten hier hauptsächlich im Frontal- und Temporallappen auf [11]. Durch das rasche und diffus infiltrierende Wachstum treten die ersten Symptome oft schon nach wenigen Wochen auf. Dabei handelt es sich zum einem um Hirndruckzeichen, wie Kopfschmerz und Erbrechen, aber auch um neurologische Ausfälle, wie Sehstörungen und Lähmungen. Hinzukommen können epileptische Anfälle und psychische Veränderungen. Die Diagnose basiert auf bildgebenden Verfahren wie MRT und CT. Die gegenwärtige reguläre Versorgung der Patienten besteht in einem ersten Schritt aus der möglichst vollständigen neurochirurgischen Entfernung des Tumors. Jedoch kann die Verminderung der Tumorhauptmasse die Progression der Krankheit meist nur verlangsamen und nicht dauerhaft verhindern, da im Regelfall bereits einzelne Tumorzellen das gesunde angrenzende Gewebe infiltrativ durchwandert haben [12]. Der Operation schließt sich darum eine Strahlen- und Chemotherapie an. Durch die Bestrahlung werden schwere DNA-Schäden in Form von Doppelstrangbrüchen erzeugt, welche die Zellen dazu zwingen in die Apoptose zu gehen. Im Rahmen einer Chemotherapie zur Behandlung des Glioblastoms kommt häufig Temozolomid (TMZ) zum Einsatz. Dieses alkylierende Zytostatikum kann die Blut-Hirn-Schranke passieren und wird im Körper in Methylhydrazin umgesetzt, wodurch es zur Methylierung der DNA an Purinen (Adenin oder Guanin) und zum Zelltod kommt [4].

Das Glioblastom zeichnet sich auf Grund zahlreicher Einblutungen, Nekrosen und Zysten durch eine inhomogene und vielfältige Erscheinung aus (daher auch *Glioblastoma multiforme*). Auch auf molekularer Ebene ist das Glioblastom gekennzeichnet durch seine Heterogenität. Es wurde als einer der ersten drei Tumore vom National Institutes of Health's Cancer Genome Atlas (TCGA)

3 | EINLEITUNG

sequenziert und zählt heute zu den molekular am besten untersuchten humanen Tumoren [13]. Genomische Analysen brachten die komplexe molekulare Architektur hinter dem Glioblastom zu Tage und wiesen verschiedene Subtypen auf, welche entscheidende Hinweise für die gezielte Therapie liefern. Genmutationen, Amplifikationen oder Deletionen, die in der Inaktivierung von Tumorsupressoren oder Aktivierung von Onkogenen münden, sind die genetischen Auslöser des Glioblastoms. So sind derzeitig mehr als 140 Genmutationen für das Glioblastom bekannt [5]. Auf Grund der verschiedenen genomischen Aberrationen lässt sich das Glioblastom in mehrere Untergruppen gliedern, welche teilweise auch bei Kindern und jungen Erwachsenen auftreten können [14,15]. So zeigen sich beispielsweise häufige Verluste des PTEN-Gens (Phosphatase and Tensin Homolog) und Amplifikationen des EGFR-Gens (Epidermal Growth Factor Receptor) in primären Glioblastomen, während sekundäre Glioblastome durch Läsionen im TP53-Tumorsupressor-Gen (Tumor Protein p53) und Punktmutationen der Gene IDH-1 und IDH-2 (Isocitrat Dehydrogenase 1 und 2) gekennzeichnet sind [16]. Die typischen genomischen Aberrationen des Glioblastoms lassen sich in drei Hauptsignalwege gliedern. Dazu zählen der RTK-RAS-PI3K-Weg (Rezeptor-Tyrosinkinase; Rat sarcoma; Phosphatidylinositol-3-Kinase), welcher in 88 % aller Glioblastome verändert vorliegt, der p53-Signalweg (p35-Protein), welcher in 87 % aller Glioblastome Veränderungen aufweist und der RB-Weg (Retinoblastom-Protein), welcher in 78 % aller Glioblastome Abweichungen trägt [13,15,17]. Doch nicht nur genomische Mutationen tragen zur Pathologie des Glioblastoms bei. Auch durch epigenetische Veränderungen, welche die Genfunktion und –regulation beeinflussen können, ohne dass eine Änderung der DNA-Sequenz vorliegt, kann es zur Entwicklung und Progression von Glioblastomen kommen. Diese epigenetischen Modifikationen umfassen DNA-Methylierungen und Histon-Modifikationen wie Ubiquitinierung, Phosphorylierung oder SUMOylierung [18,19].

Obwohl das Glioblastom Gegenstand intensiver Forschung ist, ist eine endgültige Heilung bislang nicht möglich. Ein tieferes Verständnis der molekularen Grundlagen, die hinter dem höchst invasiven Verhalten dieses Tumors liegen, ist folglich nötig, um neue gezielte Therapieansätze zu entwickeln.

1.2 Nichtkodierende RNAs

Je komplexer ein Organismus aufgebaut ist, desto mehr genetisches Material und proteinkodierende Gene sollte er benötigen, um die für die Komplexität notwendigen Informationen zu kodieren. Die Sequenzierung verschiedener Genome hat jedoch gezeigt, dass der DNA-Gehalt der proteinkodierenden Bereiche und die Anzahl der proteinkodierenden Gene nicht mit steigendender Komplexität der Organismen zunimmt. Diese Phänomene sind als C- beziehungsweise G-Wert-Paradoxa bekannt [20]. Tatsächlich werden nur etwa 2 % des humanen Genoms in die proteinkodierende mRNA transkribiert. Damit kodiert das menschliche Genom nicht, wie früher geschätzt für 50.000 bis 140.000 aktive Gene, sondern für nur etwa 21.000 proteinkodierende Gene [21]. Das sind unwesentlich mehr als bei dem Fadenwurm Caenorhabditis elegans, welcher aus lediglich 959 Zellen aufgebaut ist und über rund 19.500 proteinkodierende Gene verfügt [22]. Durch alternatives Spleißen wird in höheren Organismen zwar die tatsächliche Menge an Proteinisoformen innerhalb der Zellen erhöht, jedoch scheint sich die Anzahl an alternativen Spleißvorgängen im Menschen kaum von der in weniger komplexen Organismen zu unterscheiden [23]. Der Anteil an nicht proteinkodierenden Genombereichen steigt andererseits mit zunehmender Organisationshöhe der Organismen [24,25,20]. Durch das Projekt Encyclopedia of DNA Elements (ENCODE) konnte in den letzten Jahren gezeigt werden, dass wenigstens 80 % des humanen und murinen Genoms auf einem oder sogar beiden Strängen transkribiert werden [26–28]. So entsteht eine Vielzahl von Transkripten, die nicht für Proteine kodieren und als nichtkodierende RNAs (ncRNAs) bezeichnet werden. ncRNAs stellen mittlerweile eine Hauptquelle für Biomarker dar [29-32] und sind Ziele verschiedener Therapeutika [33,34]. Von Translation, alternativem Spleißen, der transkriptionellen und posttranskriptionellen Regulation der Genexpression bis hin zur Regulation von Chromatinmodifikationen beeinflussen ncRNAs eine Vielzahl zellulärer Prozesse [35]. Sie weisen innerhalb der Zelle vielfältige Strukturen auf und können in zwei Hauptklassen unterteilt werden.

Zur Klasse der *housekeeping* RNAs zählen die ribosomalen RNAs (rRNAs), transfer-RNAs (tRNAs), small nuclear RNAs (snRNAs) und small nucleolar RNAs (snoRNAs). Sie tragen in erster Linie direkt oder indirekt zur Prozessierung und Translation der mRNA bei und stellen den größten Teil der RNA der Zelle dar [36]. Die zweite RNA-Klasse bilden die regulatorischen ncRNAs (*riboregulators*). Viele Funktionen der regulatorischen ncRNAs, welche durch Genomstudien identifiziert wurden, sind noch unbekannt. Allerdings gibt es etliche Hinweise auf ihre regulatorische Rolle innerhalb der Zelle. Sie werden meist zelltyp- oder auch entwicklungsspezifisch exprimiert und liegen angereichert in bestimmten Zellorganellen vor [37].

Tabelle 1 liefert einen Überblick der wichtigsten Vertretern nichtkodierender RNAs, deren Länge und bereits bekannter Funktionen.

Tabelle 1: Ausgewählte Gruppen nichtkodierender RNAs und deren Funktionen. Verschiedene Gruppen nichtkodierender RNAs wurden anhand ihrer Länge klassifiziert. Dabei handelt es sich bei rRNAs, tRNAs, snRNAs und snoRNAs um sogenannte *housekeeping* RNAs, während miRNAs, piRNAs, eRNAs, circRNAs und lncRNAs zur Klasse der regulatorischen ncRNAs gehören.

ncRNA		Länge in nt	Funktionen	Referenz
rRNA	ribosomale RNA	4718, 160	Struktureller Bestandteil der Ribosomen	[38,39]
		1874, 120		
tRNA	transfer RNA	73-95	Transport und Zuordnung von Aminosäuren zum	[40,41]
			Ribosom	
snRNA	small nuclear RNA	100-300	Bestandteil des Spleißosoms	[42,43]
snoRNA	small nucleolar	60-170	Prozessierung und Modifikation von rRNAs und	[44–46]
	RNA		snRNAs, Alternatives Spleißen	
miRNA	microRNA	21-23	Posttranskriptionelle Regulation der	[47,48]
			Genexpression durch Gen-Stilllegung	
piRNA	PIWI-	26-31	Stilllegung von Transposons durch Interaktion mit	[49,50]
	interagierende RNA		PIWI-Proteinen	
eRNA	enhancer RNA	50-2000	Förderung der Transkription	[51,52]
circRNA	circular RNA	>100	Regulation der RNA-Interferenz durch Bindung	[53–55]
			zirkulierender miRNAs	
IncRNA	long non-coding	>200	Chromatinmodifikation, transkriptionelle und	[56,57,35]
	RNA		posttranskriptionelle Regulation der	
			Genexpression	
-				

6 | EINLEITUNG

1.2.1 Biologische Rolle der langen ncRNAs

Regulatorische ncRNAs variieren in ihrer Größe von 20 nt Länge bis zu mehreren 100 kb. Zu den kleinen regulatorischen ncRNAs zählen u.a. microRNAs (miRNAs), welche die Genexpression hochspezifisch auf post-transkriptionaler Ebene durch RNA-Interferenz regulieren können, und auch piRNAs (piwi-interagierende RNAs), die mit PIWI-Proteinen, einer Untergruppe der Argonautenproteine, assoziieren. Sie scheinen die Aktivität von Retrotransposons herabzusetzen und die Chromatinstruktur zu beeinflussen [37,58]. Es wird angenommen, dass im Menschen wenigstens 700 miRNA- und Millionen von piRNA-Sequenzen exprimiert werden [59]. Besonders miRNAs scheinen eine entscheidende Rolle bei einer Vielzahl von malignen, kardiovaskulären und neurologischen Erkrankungen zu spielen [60–63].

Neben den kleinen ncRNAs kodiert das menschliche Genom aber auch tausende sogenannte lange nichtkodierende RNAs (IncRNAs). Diese Klasse umfasst alle nichtproteinkodierenden RNA-Moleküle mit einer Länge von über 200 nt. Die Transkripte werden als nichtkodierend eingestuft, sofern sie über keinen langen offenen Leserahmen (meist über 100 Codons) verfügen. In der Tat kann bei den meisten annotierten IncRNAs davon ausgegangen werden, dass diese nicht für Proteine kodieren. Die meisten IncRNAs haben eine Größe von über 2 kb, manche sind sogar über 100 kb lang [64]. Viele von ihnen werden von der RNA Polymerase II transkribiert und weisen folglich Ähnlichkeiten zu mRNAs auf. So können sie eine 5' Cap-Struktur tragen und polyadenyliert sein. Sie werden zum Teil gespleißt und in das Zytoplasma exportiert [65–67]. Ihre Promotoren werden von Transkriptionsfaktoren gebunden und reguliert. Somit ähneln sie in vielerlei Hinsicht proteinkodierenden Genen [68]. Der GENCODE IncRNA-Katalog umfasst bereits nahezu 16.000 IncRNA-Gene im humanen Genom, welche mehr als 28.000 distinkte Transkripte hervorbringen [69]. Diese können sowohl im Kern als auch im Zytoplasma lokalisiert sein und werden auf Grund ihrer Lage zu benachbarten proteinkodierenden Genen eingeteilt in exonische, intronische, antisense und intergenische IncRNAs [70,71]. Die unerwartet hohe Anzahl langer nichtkodierender Trankripte in eukaryotischen Zellen wirft die Frage nach ihrer Funktionalität auf. Da IncRNAs im Vergleich zur mRNA proteinkodierender Gene oft nur gering exprimiert werden und ihre Sequenz eine nur schwache Konservierung aufweisen kann, wurde lange angenommen, dass sie keine regulatorische Rolle innerhalb der Zelle übernehmen. Neuere Studien zeigen jedoch, dass auch die Sequenz etlicher IncRNAs zu einem hohen Grad konserviert sein kann [72,73]. Des Weiteren bilden die meisten IncRNAs komplexe Sekundär- und Tertiärstrukturen aus, welche entscheidend für ihre Funktionalität sind. Durch eine hohe strukturelle Konservierung auf Ebene dieser Sekundär- und Tertiärstrukturen können die molekularen Wirkweisen von IncRNAs zwischen den Spezies folglich trotz möglicher Sequenzabweichungen konserviert sein [74–76]. Auch wenn die Expression von IncRNAs im Gewebe allgemein schwächer erscheint als die von mRNAs, konnte gezeigt werden, dass sie innerhalb spezifischer Zelltypen zu einem hohen Maß exprimiert vorliegen [77]. IncRNAs werden folglich nicht nur entwicklungs- und gewebe-, sondern innerhalb eines Gewebes sogar zelltypspezifisch exprimiert und unterliegen strikten Regulationsmechanismen [78,25].

Die Funktionen der meisten IncRNAs sind noch unbekannt, dennoch konnten in den letzten Jahren etliche Mechanismen, mittels derer sie ihre regulatorische Rolle ausüben können, aufgezeigt werden. So sind IncRNAs in der Lage die Expression von Zielgenen auf transkriptioneller und posttranskriptioneller Ebene zu regulieren und können durch Interaktionen mit Chromatinmodifizierenden Komplexen als wichtige Regulatoren des Epigenoms fungieren.

Abbildung 1 können die verschiedenen Mechanismen entnommen werden, über welche IncRNAs ihre funktionelle Rolle sowohl im Zellkern, als auch im Zytoplasma ausüben.

Abbildung 1: Schematische Übersicht der Funktionen langer nichtkodierender RNAs. IncRNAs können durch Interaktionen mit Chromatin-modifizierenden Komplexen als wichtige Regulatoren des Epigenoms fungieren (1 und 3). Außerdem sind sie in der Lage die Expression von Zielgenen auf transkriptioneller Ebene bspw. durch Interaktion mit Transkriptionsfaktoren (2 und 4) und auch auf posttranskriptioneller Ebene über vielfältige Mechanismen (5 bis 8) zu regulieren. Modifiziert aus [92].

Die lange ncRNA *HOTAIR*, welche vom Homeobox-Locus *HOXC* transkribiert wird, reguliert bspw. die Expression des *HOXD*-Locus in *trans* über Interaktion mit dem auf die Expression inhibierend wirkenden Polycomb Repressive Complex 2 (PRC2). Durch die Histon-Methyltransferase-Aktivität des PRC2-Komplexes kommt es zur Trimethylierung der Lysin-27-Reste des Histons H3, was die Ausbildung von Heterochromatin und folglich die Repression der Genexpression zur Folge hat. Nach dem gleichen Prinzip arbeitet auch die IncRNA *Xist*, zusammen mit dem kleinen nichtkodierenden Transkript *RepA*. Sie bewirken die Dosiskompensation des X-Chromosoms in Mammalia, worunter man die Inaktivierung des zweiten X-Chromosoms versteht. Die IncRNAs *Kcnq1ot1* und *Air* regulieren wiederum die genomische Prägung mehrerer Gene durch Interaktion mit der Methyltransferase G9a, dem PRC2-Komplex und dem Chromatin [79–81].

Die Regulation der Transkription durch IncRNAs kann über verschiedene Mechanismen erfolgen. IncRNAs können zum Beispiel RNA-bindende Proteine an Promotorregionen rekrutieren, wie es bei der Unterdrückung der Cyclin D1-Transkription der Fall ist. Hier interagieren mehrere IncRNAs mit dem RNA-bindenden Protein TLS, wodurch wiederum die Histon-Acetyltransferaseaktivität des CREB-bindenden Proteins (CBP) inhibiert und die Cyclin D1-Expression stillgelegt wird [82]. Das Beispiel der IncRNA *Evf2* zeigt, dass IncRNAs auch als Kofaktoren für Transkriptionsfaktoren auftreten können. *Evf2* beeinflusst die Aktivierung des Transkriptionsfaktors DLX2, was die Expression benachbarter proteinkodierender Gene einleitet [83].

Auch auf posttranskriptionaler Ebene greifen lncRNAs in die Regulation der Genexpression ein. So maskiert bspw. eine Antisense-RNA des *Zeb2*-Gens die 5'-Spleißstelle des *Zeb2*-Transkripts. Die Bildung dieses RNA-RNA-Duplex hat einen alternativen Transkriptionsstart von *Zeb2* zur Folge [84]. Neben dem Einfluss auf verschiedene Spleißprozesse können lncRNAs aber auch den Abbau von mRNAs regulieren. Durch Hybridisierung mit der Ziel-mRNA kann zum einen deren Abbau verzögert werden [85,86], zum anderen kann durch eine Interaktion mit dem STAU1-Protein der Abbau von Alu-tragenden mRNAs aber auch gefördert werden [87,88]. Auch durch die Wechselwirkung von lncRNAs mit anderen ncRNAs kann eine Regulation der Genexpression erfolgen. So können lncRNAs zum einen als Vorläufer für miRNAs dienen, diese zum anderen aber auch wie ein "Schwamm" wegfangen und so die Translation der Ziel-mRNA erhöhen [89,90].

1.2.2 IncRNAs in Tumorerkrankungen

Regulatorische IncRNAs scheinen an vielen Entwicklungs- und Differenzierungsprozessen, der transkriptionellen und posttranskriptionellen Genstilllegung sowie an epigenetischen Regulationsprozessen beteiligt zu sein. Deshalb ist es nicht überraschend, dass eine anomale Expression von IncRNAs bei zahlreichen humanen Krankheiten zu verzeichnen ist. Die Expression bestimmter IncRNAs kann nicht nur mit neurologischen und entwicklungsphysiologischen Störungen wie der Alzheimer-Erkrankung und Schizophrenie [91], sondern vor allem auch mit der Entstehung von Tumorerkrankungen assoziiert werden und legt das onkogene Potential bzw. die mögliche Rolle der IncRNAs als Tumorsupressoren nahe [59]. Fehlregulationen von IncRNAs können u.a. Auswirkungen auf die Initiation und den Verlauf von Leukämie, Darm-, Prostata- und Brustkrebs haben [92].

Die IncRNA *HOTAIR* fungiert bspw. als Onkogen. Sie ist besonders in Brusttumoren überexprimiert und ihr Expressionslevel gilt als Indikator für Metastasenbildung. *HOTAIR* induziert ein verändertes Muster der H3K27-Methylierung, wodurch die Invasivität des Tumors erhöht wird. Der Abbau von *HOTAIR* hat den entgegengesetzten Phänotyp zur Folge [93,94]. Auch die IncRNA MALAT-1 ist an der Bildung von Tumormetastasen beteiligt und verzeichnet ein erhöhtes Expressionslevel in einer Vielzahl von Tumorerkrankungen, wie bspw. Darm-, Prostata-, Brust-, Leber- und Lungenkrebs. MALAT-1 reguliert die Genexpression auf posttranskriptionaler Ebene durch alternatives Spleißen, indem es die Phosphorylierung und Verteilung von Spleißfaktoren beeinflusst. Auf diese Weise werden sowohl die Zellproliferation, die Mobilität als auch die Invasion von Tumorzellen durch ein erhöhtes MALAT-1-Level gefördert. Ein *Knockdown* von MALAT-1 wiederum führt zu einer verstärkten Expression von Caspase 8 und 3 und zu einer verringerten Expression von Bcl-2 und Bcl-X₄, wodurch die Apoptose eingeleitet wird [95,96].

IncRNAs können aber auch als Tumorsuppressoren wirken und zum Beispiel im p53-Tumorsuppressor-Weg induziert werden. Gerät die Zelle unter Stress, initiiert der Transkriptionsfaktor p53 ein Tumorsuppressor-Programm bei dem unter anderem auch die Expression spezifischer IncRNAs wie zum Beispiel lincRNA-p21 eingeleitet wird. lincRNA-p21 interagiert mit dem Protein hnRNP-K und rekrutiert dieses an Promotorregionen, wodurch die Expression mehrerer Gene in Abhängigkeit von p53 unterdrückt und die Apoptose reguliert wird

11 | EINLEITUNG

[92]. Auch die IncRNA MEG3 wirkt als Tumorsuppressor, indem sie das MDM2-Protein-Level herabsetzt, was wiederrum die Aktivität von p53 und das p53-Proteinlevel erhöht. In etlichen karzinogenen Erkrankungen kommt es zur Unterdrückung der MEG3-Expression. So liegt MEG3 bei Leukämie-Patienten bspw. in einem stark methylierten Zustand vor. Eine Re-Expression von MEG3 dagegen vermindert die Zellproliferation und leitet die Apoptose ein [92,97,98].

Viele IncRNAs werden nicht nur gewebespezifisch, sondern auch tumorspezifisch exprimiert. Ihre Expressionslevel können dabei auch mit der Tumorgenese, der Tumoraggressivität und dem Verlauf der Krankheit oder Tumorsubtypen korrelieren [99]. Da IncRNAs zudem bereits stabil im Plasma oder Urin von Tumorpatienten nachgewiesen werden konnten, liefern sie einen neuen vielversprechenden Ansatz zur Entwicklung nicht-invasiver diagnostischer und prognostischer Biomarker für eine Vielzahl von Tumorerkrankungen [100–102]. Durch ihre hohe Anzahl an regulatorischen Interaktionsmöglichkeiten innerhalb der Zelle bieten IncRNAs ferner eine weite Plattform zur Entwicklung möglicher Therapeutika. Mit der IncRNA PCA3 kam 2012 ein erster von der Food and Drug Administration (FDA) zugelassener IncRNA-basierter Test auf den Markt. PCA3 ist im Prostatakarzinom stark hochreguliert, nicht-invasiv im Urin der Patienten nachweisbar und zeigt im Vergleich zum herkömmlichen PSA-Test (Prostataspezifisches Antigen) eine erhöhte Spezifität und verbesserte positive wie negative Vorhersagewerte [103]. Auch HOTAIR könnte einen geeigneten Biomarker für etliche Tumorerkrankungen wie Brust-, Blasen oder Dickdarmkrebs darstellen [104–106]. MALAT-1 und NEAT1 könnten dagegen zur Vorhersage von Lungenkrebs im Frühstadium genutzt werden [99,107,108].

Tabelle 2 zeigt die Funktionen weiterer ausgewählter IncRNAs und deren Rolle in verschiedenen Tumorerkrankungen. Es wird ersichtlich, dass IncRNAs auch zur Tumorgenese, Proliferation und Invasivität des Glioblastoms beitragen können. So konnte bereits ein Set aus sechs IncRNAs (KIAA0495, PART1, MGC21881, MIAT, GAS5, PAR5) identifiziert werden, deren Expressionsstärken in direktem Zusammenhang mit der Überlebensrate der Patienten stehen [109]. Basierend auf den Expressionsleveln verschiedener IncRNAs konnten des Weiteren drei neue Gliom-Subtypen mit unterschiedlichen Prognosen ausgemacht werden [110]. Auch für die bereits erwähnten IncRNAs HOTAIR und MALAT-1 konnte ein Einfluss auf die Invasion und Proliferation von Glioblastomzellen nachgewiesen werden [111]. Diese Ergebnisse verdeutlichen, dass weitere Untersuchungen von IncRNAs und deren Rolle im Glioblastom nötig sind, um neue gezielte Therapieansätze zu entwickeln und die molekularen Grundlagen hinter dem höchst invasiven Verhalten dieses Tumors besser verstehen zu können.

Tabelle 2: Funktionen ausgewählter langer nichtkodierender RNAs und deren Rolle in Tumorerkrankungen.(\uparrow) Onkogen, (\downarrow) Tumorsupressor

IncRNA	Tumor	Mechanismus	Funktion	Referenz
NEAT1	Leukämie,	Chromatinmodifikation,	Bindet an EZH2 und vermittelt Trimethylierung von	[112–114]
(个)	Glioma	Proteinrekrutierung	H3K27, reguliert ADARB2-Expression durch	
	Eierstöcke,		Proteinsequestrierung in Paraspeckel, fördert	
			Zellwachstum und Invasion	
FOXC1	Brust, Pankreas	Chromatinmodifikation	Stabilisierung von Promotor-Enhancer-Interaktionen	[115,116]
(个)				
LncRNA	Brust	Alternatives Spleißen	Reguliert alternatives Spleißen von Bcl-x durch	[117]
BC200			Bindung an Bcl-x pre-mRNA und rekrutiert	
(个)			Spleißfaktor hnRNPA2/B1	
FOXM1-	Glioblastom	mRNA-Stabilität	Fördert Interaktion der FOXM1-mRNA und ALKBH5	[118]
AS			und demethyliert die FOXM1-mRNA, Förderung der	
(个)			Tumorgenese stammzellähnlicher Zellen	
MEG3	Niere, Leber,	Chromatinmodifikation	Bildet RNA-Gerüst um PTBP1-vermittelten RNA-	[119,98,97]
(↓)	Lunge, Magen,	mRNA-Stabilität	Abbau zu vermitteln, unterdrückt MDM2-	
	Leukämie,		Proteinlevel und vermittelt p53-Anreicherung,	
	Glioma		Genstilllegung durch Interaktion mit PRC2,	
			Unterdrückung der Proliferation	
HOTTIP	Prostata, Leber,	Chromatinmodifikation	Kontrolliert HOXA-Locus durch Interaktion mit	[120,121]
(个)	Pankreas		WDR5/MLL, Förderung der Tumorgenese	
HOTAIR	Brust, Glioma	Chromatinmodifikation	Genstillegung durch Interaktion mit PRC2 und LSD1,	[122,94,123]
(个)	Lunge, Darm,		Proteinabbau durch Interaktion mit E3 Ubiquitin	
	Pankreas		Ligasen, Förderung der Tumorinvasivität	
MALAT-1	Lunge, Prostata,	Alternatives Spleißen	Moduliert die Phosphorylierung von Spleißfaktoren,	[124,96]
(个)	Brust, Leber,		Reguliert die Expression EMT-relevanter Proteine (E-	
	Magen, Glioma		und N-Cadherin), Förderung von Zellwachstum,	
			Migration und Invasion	
H19	Blase, Hirn,	miRNA-Vorläufer	Vorläufer der miRNA675 und dadurch Feedbackloop	[125,126]
(个)	Magen, Lunge	Chromatinmodifikation	mit p53, Interaktion mit EZH2, Funktion in	
			Embryonalentwicklung und Tumorgenese	
CASC2	Glioma	miRNA-Schwamm	Inhibiert miR-181a-Aktivität durch Interaktion mit	[127]
(个)			dem RISC-Komplex, Beeinflussung der	
			Tumorresistenz gegen TMZ	
BGL3	Leukämie	miRNA-Schwamm	Reguliert Brc-Abl-Expression durch Wegfangen von	[128]
(↓)		DNA-Methylierung	miRNAs (miR-17, miR-93, miR-20) und durch c-Myc-	
			abhängige DNA-Methylierung	

1.2.3 STAT3-induzierte nichtkodierende RNAs (STAiRs)

Dem Transkriptionsfaktor STAT3 (Signal Transducer and Activator of Trancription 3) fällt eine Schlüsselrolle in der Entwicklung, Progression und Aufrechterhaltung vieler Tumore zu [129]. STAT3 wird durch Phosphorylierung als Antwort auf verschiedene Zytokine und Wachstumsfaktoren, einschließlich der gesamten Interleukin-6- und Interleukin-10-Familie sowie EGF (Epidermal Growth Factor), aktiviert. Die Phosphorylierung erfolgt in erster Linie durch Rezeptor-assoziierte Janus-Kinasen. Das aktivierte STAT3 gelangt anschließend als Homo- oder Heterodimer (bspw. mit STAT5) in den Zellkern, wo es als Transkriptionsaktivator fungiert. So vermittelt STAT3 die Transkription einer Vielzahl von Genen, die wichtige Zellfunktionen wie Proliferation, Apoptose, Zelldifferenzierung und die frühe embryonale Entwicklung kontrollieren. Neben diversen Rollen in nichtpathologischen zellulären und physiologischen Prozessen ist STAT3 aber auch an der zellulären Transformation und Onkogenese beteiligt [130,131]. STAT3 vermittelt bspw. die Expression der antiapoptotischen Proteine Bcl-2, Bcl-x und Mcl-1. Weitere Zielgene sind Cyclin D1 und D2, die an der Kontrolle des Zellzyklus und Proliferation beteiligt sind, sowie der proliferationsfördernde Transkriptionsfaktor c-Myc. Es konnte gezeigt werden, dass STAT3 sowohl in soliden Tumoren (Kopfund Nackenkarzinome, Brustkrebs) als auch bei malignen Erkrankungen des Blutes (Leukämie, Multiples Myelom) konstitutiv aktiv vorliegt [132,133]. Neben seiner oftmals dauerhaften Aktivierung in den Tumorzellen selbst ist STAT3 häufig auch in Immunzellen in direkter Tumornähe konstitutiv aktiviert. Dies führt zu einer tumor-induzierten Unterdrückung der Immunantwort und zur Akkumulation immunsuppressiver Zellen, wodurch eine weitere Proliferation der Tumorzellen möglich wird [134].

Im Arbeitskreis Horn wird die Regulation nichtkodierender RNA-Transkripte durch STAT3 systematisch analysiert. Ziel ist es, die mögliche pathophysiologische Rolle, die diesen ncRNAs bei der Tumorgenese, Progression oder Metastasierung zufällt, zu ergründen. Bereits 2007 konnte mit der microRNA miR21 eine erste sogenannte Oncomir, welche durch STAT3 induziert wird, beschrieben werden. miR21 zeigt eine Überexpression in diversen Tumorerkrankungen und hemmt die Expression verschiedener Tumorsuppressorgene auf posttranskriptioneller Ebene. Auf diese Weise trägt sie zum onkogenen und anti-apoptotischen Potential von STAT3 bei [135,136]. In einer weiteren Studie gelang auch die Identifizierung von etwa 20 langen durch STAT3 induzierten ncRNAs. Bei diesen STAIRS (STAT3 induced noncoding RNAs) handelt es sich zumeist um äußerst

14 | EINLEITUNG

lange Transkripte mit einer Länge von über 20 kb, welche nur selten mit kodierenden Genombereichen überlappen, weshalb der Großteil der STAiR-Transkripte zu den lincRNAs zählt. Die Identifizierung der STAiR-Transkripte erfolgte zunächst in Zellen des Multiplen Myeloms, einer Neoplasie antikörperproduzierender B-Lymphozyten [137]. Für einige der STAiR-Transkripte (STAiR1 und STAiR2) konnte eine spezifische Expression im Multiplen Myelom nachgewiesen werden, weshalb deren Verwendung als potentielle Tumormarker in Betracht gezogen werden könnte. Andere STAiR-Transkripte (STAiR15 und STAiR18) werden dagegen auch in anderen Zelltypen und Geweben exprimiert. Da die meisten STAiRs unprozessiert im Zellkern verbleiben, sollte geprüft werden, ob sie dort Chromatin-assoziiert vorliegen. Dafür wurde mittels Immunpräzipitation die mögliche Interaktion der STAiRs mit verschiedenen Histonmodifikationen überprüft. Es konnte gezeigt werden, dass eines der STAiR-Transkripte, STAiR18, mit der Histonmodifikation H3K27me3 assoziiert vorliegt. Diese ist besonders in heterochromatischen Bereichen zu finden, von welchen aus keine Transkription stattfinden kann. STAiR18 könnte folglich eine Rolle in der epigenetischen Stillegung der Genexpression zufallen [138]. Des Weiteren konnte durch Knockdown-Experimente eine überlebensfördernde Wirkung von STAiR18 in Zellen des Multiplen Myeloms festgestellt werden, welche mit sofortiger Apoptose auf einen STAiR18-Verlust reagieren. Weitere Analysen offenbarten einen Rückkopplungsmechanismus zwischen STAiR18 und STAT3 im Multiplen Myelom. Während STAiR18 durch STAT3 induziert wird, wirkt sich ein Knockdown von STAiR18 auch inhibierend auf die Expression von STAT3 selbst aus [139]. Dass STAT3 nicht nur im Multiplen Myelom, sondern auch in diversen anderen malignen Erkrankungen wie dem Glioblastom, zur Proliferation und Vitalität der Zellen beiträgt, wirft die Frage auf, ob auch STAiR18 eine funktionelle Rolle in weiteren karzinogenen Zelltypen inne hat. Aus diesem Grund sollte STAiR18 im Rahmen dieser Arbeit strukturell und funktionell näher charakterisiert werden, um ein besseres Verständnis über das komplexe Zwischenspiel von IncRNAs und Transkriptionsfaktoren und deren Rolle in Tumorerkrankungen zu erlangen.

1.3 Motivation und Zielstellung

Eines der am wenigsten erwarteten Ergebnisse des ENCODE-Projekts und der Entschlüsselung des humanen Genoms ist die umfassende Transkription von RNA aus Bereichen des Genoms, welche nicht für Proteine kodieren und die damit verbundene Flut an nicht kodierenden Transkripten in der Zelle [27,28,70]. Durch Next-Generation-Sequenzierungen und genomweite Analysen von tumorassoziierten Mutationen konnten in den letzten Jahren eine Vielzahl langer nichtkodierender RNAs identifiziert werden. Diese werden zumeist entwicklungs- und gewebespezifisch exprimiert und deren Expressionslevel können mit mehreren Krankheiten assoziiert werden, weshalb sie eine innovative und vielsprechende Plattform zur Entwicklung neuer Biomarker darstellen [99,100]. Viele Funktionen langer ncRNAs sind noch unbekannt. Allerdings konnte anhand ausgewählter IncRNA-Vertreter gezeigt werden, dass IncRNAs die genomische Information auf mehreren Ebenen regulieren können. So fungieren sie durch Interaktion mit Chromatin-modifizierenden Komplexen als wichtige Regulatoren des Epigenoms und können weiterhin die Expression ihrer Zielgene auf transkriptioneller aber auch posttranskriptioneller Ebene modulieren [56,35]. Dadurch offenbart sich eine neue und hochkomplexe Ebene der zellulären Regulation, welche das zentrale Dogma der konventionellen Genetik in Frage stellt. Diese bereits 1958 durch Francis Crick aufgestellte Hypothese beschreibt den gerichteten Fluss genetischer Informationen von DNA über RNA hinzu Proteinen, wobei eine rückläufige Beeinflussung ausgeschlossen wurde [140].

Mittlerweile konnte mehrfach gezeigt werden, dass Fehlregulationen von IncRNAs Einfluss auf die Tumorgenese, Proliferation und Invasion verschiedenster Tumortypen, unter anderen auch des Glioblastoms, nehmen [57,141,111]. Das Glioblastom stellt nicht nur den häufigsten, sondern auch den tödlichsten Hirntumor dar. Eine endgültige Heilung ist bis heute im Regelfall nicht möglich und die mittlere Überlebensrate liegt bei lediglich 14 Monaten [4,5]. Ein tieferes Verständnis der molekularen Grundlagen, die hinter dem hochinvasiven Verhalten dieses aggressiven Tumors liegen, ist folglich von großer Bedeutung um neue gezielte Therapieansätze entwickeln zu können.

In der vorliegenden Arbeit sollte die IncRNA STAiR18 als möglicher Regulator der zellulären Funktionen von Glioblastomzellen näher untersucht werden. Anhand verschiedener Methoden zur Analyse nichtkodierender Transkripte sollte STAiR18 strukturell und funktionell näher charakterisiert werden. Es galt zunächst die Expressionslevel von STAiR18 in verschiedenen gesunden und pathologisch auffälligen humanen Geweben zu bestimmen. Anschließend sollte mittels RNA-Interferenz die mögliche Rolle von STAiR18 bei der Regulation der Migration und Invasion von Glioblastomzellen untersucht werden. Durch Microarray- und ChIRP-Analysen galt es, das durch STAiR18 regulierte Netzwerk an Zielgenen zu entschlüsseln und direkte Bindungspartner von STAiR18 zu identifizieren. Um den komplexen Aufbau des Transkripts und seiner Isoformen näher charakterisieren zu können, sollte weiterhin die Transkriptstruktur über die neuartige Methode der MinION[™]-Sequenzierung entschlüsselt und die subzelluläre Lokalisation der STAiR18-Transkripte mittels *in situ* Hybridisierung bestimmt werden. Die erhobenen Daten sollen damit Einblicke in die komplexen Regulationsnetzwerke des Glioblastoms gewähren und Zusammenhänge zwischen IncRNAs und Tumorerkrankungen aufschlüsseln.

2 MATERIAL UND METHODEN

2.1 Zellbiologische Methoden

2.1.1 Zellkultur

Im Rahmen dieser Arbeit wurde mit den unten gelisteten Zellen gearbeitet. Die Kultivierung aller Zellen erfolgte bei 37 °C, 90 % Luftfeuchte und 5 % CO₂ im CO₂-Inkubator (HERA cell240, Thermo). Alle Kulturmedien wurden mit 10 % fetalem Kälberserum (FCS) und mit 1 % Pen/Strep versetzt. Die Zellen wurden zwei Mal wöchentlich auf eine Konzentration von etwa 1 x 10⁵ Zellen/cm² passagiert. Zum Ablösen der adhärenten Zellen wurden diese zunächst mit PBS gewaschen und für 5 min bei 37 °C mit Trypsin inkubiert. Wurden Zellen zentrifugiert, erfolgte dies bei 300 x g für 5 min bei Raumtemperatur.

Zelllinie	Beschreibung	Kulturmedium
A172	adhärente, humane Glioblastomzelllinie (ATCC)	DMEM(1x) + GlutaMAX TM –I (life
		technologies [™])
MZ18	adhärente, humane Glioblastomzelllinie	$DMEM(1x) + GlutaMAX^{TM} - I$ (life
	(Prof. Aigner; Universität Leipzig)	technologies [™])
U87	adhärente, humane Glioblastomzelllinie	DMEM(1x) + GlutaMAX [™] −I (life
	(Prof. Aigner; Universität Leipzig)	technologies [™])
MCF-7	adhärente, humane Brustkrebszelllinie (ATCC)	DMEM(1x) + GlutaMAX [™] −l (life
		technologies [™])
HepG2	adhärente, humane Leberkarzinomzelllinie (ATCC)	DMEM(1x) + GlutaMAX TM –I (life
		technologies [™])
LNCaP	adhärente, humane Prostatakarzinomzelllinie (ATCC)	RPMI1640(1x) +GlutaMAX TM (life
		technologies [™])
Jurkat	Suspension, humane T-Zell-Leukämie (ATCC)	RPMI1640(1x) +GlutaMAX TM (life
		technologies [™])
SuDHL-6	Suspension, humane B-Lymphozytenzelllinie (ATCC)	RPMI1640(1x) +GlutaMAX TM (life
		technologies [™])
MV4-11	Suspension, humane akute myeloische Leukämiezelllinie	RPMI1640(1x) +GlutaMAX TM (life
	(Prof. Behre; Uni Leipzig)	technologies [™])
SH-SY5Y	adhärent oder Suspension, Neuroblastomzelllinie	DMEM/F-12 (1:1; 1x) GlutaMAX TM –I
	(Prof.Arendt ; Universität Leipzig)	(life technologies [™])

18 | MATERIAL UND METHODEN

Medienzusätze und Puffer		
FCS	Fetal Bovine Serum (gibco, life technologies [™])	
Pen Strep	Penicillin Streptomycin (gibco, life technologies [™])	
PBS (10 x)	137 mM NaCl; 2,7 mM KCl; 8,1 mM Na ₂ HPO ₄ ; 1,5 mM KH ₂ PO ₄ (pH 7,4)	
Trypsin	0,05 % mit EDTA (SERVA)	

Die Arbeiten in der Zellkultur wurden unter sterilen Bedingungen und unter Verwendung steriler Materialien und Lösungen durchgeführt.

2.1.2 Transiente Transfektion

Die verwendeten Zellen wurden transient mittels Elektroporation unter Verwendung eines Microporators (MP100 DigitalBio von Invitrogen[™]) transfiziert. Dabei wird das Membranpotential der Zellen durch einen Spannungsimpuls kurzzeitig gestört, sodass durch die entstandenen Poren siRNAs in das Zellinnere eingebracht werden und die Genexpression des Zieltranskripts unterdrückt werden kann. Dabei ist zu beachten, dass die bei einer transienten Transfektion eingebrachten Nukleinsäuren extrachromosomal verbleiben und innerhalb weniger Tage in der Zelle degradiert werden.

Zelllinie	Pulsspannung	Impulslänge	Pulse	siRNAs	
A172	1300 V	30 ms	1	siSTAiR18_Ex 1.1	5'-TGCCTGTCTTCAGATCTTCACAGCA-3'
MZ18	1300 V	30 ms	1	siSTAiR18_Ex 1.2	5'-GAGTCATCTCGTTCCAATGAGAATG-3'
U87	1300 V	30 ms	1	siSTAiR18_Ex 1.3	5'-AGTTTCAAATTGACATTCCAGACAA-3'
MCF-7	1100 V	30 ms	2	siSTAiR18_Ex 2	5'-TGTGGACTCTGAGGCCTCTGCATTT-3'
HepG2	1230 V	20 ms	3	siSTAiR18_Ex K	5'-CATGCCCAAAGTTACGGAGGACCCA-3'
LNCaP	1250 V	20 ms	2	siSTAiR18_Ex 3	5'-CCAACCTTAATGAACTGTATCCTCA-3'
Jurkat	1350 V	10 ms	3	siSTAiR18_Ex 7	5'-CCACGACTAGGTCACTACTGCTTTA-3'
SuDHL-6	1600 V	10 ms	3	siSTAT3	5'-TTTGTTGACGGGTCTGAAGTTGAGA-3'
MV4-11	1600 V	10 ms	3	siFoxM1	5'-CCCTGCCCAACAGGAGTCTAATCAA-3'
SH-SY5Y	1200 V	20 ms	3	scramble (scr)	Stealth RNAi™-Negativkontroll-Kit

Es wurden jeweils 3 x 10^6 Zellen mit 10 µl einer 20 µM siRNA unter Einsatz des NEON Transfektionskits (100 µl) von InvitrogenTM nach Herstellerangaben transfiziert. Die Transfektion der verschiedenen Zelllinien wurde unter Verwendung der aufgeführten Programme durchgeführt. Es erfolgte eine Transfektion mit jeweils einer der folgenden siRNAs gegen STAiR18, STAT3 oder FoxM1, welche als StealthRNAi[™] über Invitrogen[™] designt und bestellt wurden und auf eine Gebrauchskonzentration von 20 µM eingestellt worden sind. Als Negativkontrolle wurde eine scramble-siRNA gleicher Konzentration und mit entsprechendem GC-Gehalt mitgeführt. Nach der Transfektion wurden die Zellen unter Normalbedingungen kultiviert.

2.1.3 Vitalitätsbestimmung

Vitalitätsbestimmung mittels Durchflusszytometrie

Die fluoreszenzbasierte Durchflusszytometrie erlaubt die Analyse von Zellpopulationen hinsichtlich ihrer Größe, Granularität und weiterer Zelleigenschaften, welche durch eine Färbung der Zellen mit fluoreszenzmarkierten- Antikörpern untersucht werden können. Dabei passieren die Zellen einzeln einen Laserstrahl und emittieren in Abhängigkeit von ihren Eigenschaften und den eingesetzten Fluoreszenzfarbstoffen verschiedene optische Signale.

Um die Vitalität der Zellen zu bestimmen, wurde ein Apoptose-Assay durchgeführt. Dazu wurden 1 x 10⁶ Zellen in ein FACS-Röhrchen überführt und für 5 min bei 400 x g und 4 °C zentrifugiert. Das Pellet wurde mit PBS gewaschen und in 500 µl Binding-Puffer resuspendiert. Die Färbung der Zellen erfolgte durch Zugabe von 5 µl Annexin V -FITC und 1 µl Propidiumiodid (PI). Nach Eintritt der Zellen in die Apoptose kommt es zur Translokation des Phospholipids Phosphatidylserin an die extrazelluläre Seite der Plasmamembran. Dort wird es mit hoher Affinität von Annexin V gebunden, weshalb apoptotische Zellen mit Hilfe von Annexin V, welches an einen Fluorszenzfarbstoff wie Fluoreszeinisothiocyanat (FITC) gekoppelt ist, detektiert werden können. PI wiederum interkaliert in die DNA. Da PI nur die poröse Membran nekrotischer Zellen werden allerdings weder von Annexin V noch von PI gefärbt. Die gefärbten Zellen wurden im FACS Calibur unter Verwendung der Software BD CellQuest Pro analysiert. Zur Bestimmung der Vitalität wurde der prozentuale Anteil der ungefärbten und somit vitalen Zellen innerhalb der Gesamtpopulation ermittelt.

Vitalitätsbestimmung mittels Durchflusszytometrie		
FACS Calibur	Becton Dickinson	
Alexa Fluor [®] 488 annexin V/Dead Cell Apoptosis Kit	Life Technologies	
Propidiumiodid 1mg/ml Solution	Invitrogen	

ATP-basierte Vitalitätsbestimmung

Die Bestimmung der Zellvitalität erfolgte zudem über die Quantifizierung des ATP-Gehalts einer Zellprobe, welcher direkt mit der Anzahl der vitalen, stoffwechselaktiven Zellen in der Probe korreliert. Dazu wurde das CellTiter-Glo[®] Luminescent Cell Viability Assay-Kit nach Herstellerangaben verwendet. Die ATP-Messung beruht auf dem Umsatz von Luziferin durch eine Luziferase zu Oxyluziferin unter ATP-Verbrauch. Das dabei emittierte Licht korreliert wiederum mit dem ATP-Gehalt der Probe und wurde mit Hilfe eines Luminometers unter Verwendung der LUMIstar OPTIMA-Software detektiert. Die Messungen erfolgten als 5-fach Bestimmung im 96-well-Format, wobei zu Beginn der Messungen 5 x 10³ Zellen pro Kavität eingesät worden sind.

ATP-basierte Vitalitätsbestimmung			
Luminometer LUMIstar OPTIMA	BMG Labtech		
CellTiter-Glo [®] Luminescent Cell Viability Assay	Promega		

Bestimmung der Vitalität und Proliferation mittels xCELLigence®

Des Weiteren wurde der Zellstatus mittels Impedanzmessung am xCELLigence[®]-Instrument analysiert. Nach der Transfektion wurden die Zellen dazu in spezielle Kulturplatten (E-Plate[®]) eingesät, in deren Boden Mikroelektroden integriert sind. Über eine kontinuierliche Messung der Impedanz, welche dem elektrischen Wechselstromwiderstand entspricht, können Rückschlüsse auf Zellproliferation, -morphologie und -adhärenz in Echtzeit gezogen und Proliferationskurven erstellt werden. Dabei wird der sogenannte Zellindex ermittelt, welcher ein einheitsloses Maß für die Impedanz darstellt und in Abhängigkeit der Zellproliferation ansteigt. Es wurden 5 x 10⁴ transfizierte Zellen pro Kavität eingesät, die Impedanz unter Standardkulturbedingungen über 50 h hinweg gemessen und mit der zugehörigen RTCA-Software analysiert.

Impedanzmessung	
xCELLigence [®] Real-Time Cell Analysis-Instrument	ACEA Biosciences
E-Plate [®]	ACEA Biosciences

2.1.4 Migrationsassay

Zur Beurteilung der Migration der Zellen wurden diese transfiziert und in ein zweikammeriges Migrationsinsert (1 x 10^4 Zellen pro Kammer) eingesät. 24 h posttransfektion wurde das Insert entfernt und die Zellen konnten so in die definierte Lücke zwischen den zwei Kammern mit einer Breite von 500 µm einwachsen. Die überwachsene Fläche wurde mikroskopisch unter Verwendung der Scratch Assay-Anwendung des ImageJ-Programms über die folgenden 24 h analysiert.

Die Migrationsexperimente wurden außerdem unter Verwendung des Zytostatikums Mitomycin C durchgeführt. Durch eine Interkalation von Mitomycin C zwischen die zwei Stränge der DNA werden diese kovalent verbunden, wodurch eine Dissoziation, wie sie zur Replikation und Transkription benötigt wird, verhindert ist. Folglich wird in den Zellen ein Zellzyklusarrest ausgelöst und es kommt zu einer Hemmung der Zellteilung. Durch den Einsatz von Mitomycin C kann also die Migration der Zellen unabhängig von möglichen Proliferationseffekten beobachtet werden.

Um die für die A172-Zellen geeignete Inkubationszeit und Konzentration an Mitomycin C zu bestimmen, wurden in einem Vorexperiment die Migrationsfähigkeit und Vitalität der Zellen untersucht, welche zuvor für eine halbe Stunde, eine Stunde oder drei Stunden mit 10 µg/ml, 20 µg/ml und 50 µg/ml Mitomycin C inkubiert worden waren. Im Anschluss wurden die Zellen zweimal mit Medium gewaschen und der oben beschriebene Migrationstest durchgeführt. Die finalen Migrationsexperimente erfolgten schließlich nach einer Inkubation der Zellen in 50 µg/ml Mitomycin C für 3 h.

Migrationsassay		
Culture-Inserts 2 Well	ibidi®	
Mitomycin C	Roche	

2.1.5 Invasionsassay

Um Rückschlüsse auf die Invasionsfähigkeit der Zellen im 3D-Modell ziehen zu können, sollten diese zunächst einen kompakten Spheroid ausbilden. Dazu wurden die U-förmigen Wells einer 96er-Platte mit je 50 µl einer 1,5 %igen Agaroselösung beschichtet. Anschließend wurden 3000 transfizierte Zellen je Well eingesät und mit Kulturmedium bedeckt. Bereits nach 24 h bildeten die Zellen einen kompakten Spheroid aus. Dieser wurde in eine Invasionsmatrix bestehend aus Geltrex[™] und Kulturmedium (1:1) eingebettet und das Einwachsen des Spheroids in die Invasionsmatrix über 72 h mikroskopisch über Bestimmung des Spheroiddurchmessers beurteilt.

Da sich die Spheroide aus multizellulären Schichten mit direktem Zell-Zellkontakt zusammensetzen, liefern 3D-Zellkulturen ein physiologischeres Modell um Tumorwachstum und -invasion zu untersuchen. Es kann sich ein Nährstoff- und Sauerstoffgradient innerhalb des Spheroids ausbilden, da die Diffusion durch die einzelnen Zellschichten vermindert wird. Dadurch kommt es zu einem heterogenen Aufbau des Spheroids. Während in dessen Innerem teilweise nekrotische Zellen zu finden sind, proliferieren die Zellen an der Oberfläche und der Spheroid ähnelt somit einem avaskulären Tumor *in vivo*.

Invasionsassay	
Geltrex [™]	gibco by life technologies [™]
Agarose (1,5 % in serumfreiem Kulturmedium)	Roth®

2.2 Molekularbiologische Methoden

2.2.1 RNA-Isolation

Die Isolation der RNA erfolgte mittels TRIzol^{*} nach Herstellerprotokoll. Dafür wurden die Zellen geerntet und das Zellpellet (3 x 10^6 Zellen) zweimal in kaltem PBS gewaschen und anschließend in 1 ml TRIzol^{*} gelöst. Nach einer Inkubationszeit von 5 min bei Raumtemperatur, die eine vollständige Trennung von Nukleinsäuren und Proteinkomplexen gewährleisten soll, wurden 200 µl Chloroform zu den Proben gegeben. Diese wurden für 15 s kräftig per Hand geschüttelt und nochmals für 3 min bei Raumtemperatur inkubiert. Dem schloss sich eine Zentrifugation für 15 min bei 4 °C und 12000 rpm an. Während der Zentrifugation erfolgte die Phasentrennung der Probe in eine untere Phenol/Chloroform-Phase, eine weiße Interphase und eine wässrige obere Phase, welche die RNA enthält. Die wässrige Phase wurde möglichst vollständig in ein neues Reaktionsgefäß überführt. Die Fällung der RNA erfolgte durch Zugabe von 500 µl Isopropanol. Die Proben wurden anschließend für 10 min bei Raumtemperatur inkubiert und für 20 min bei 4 °C und 12000 rpm zentrifugiert. Das entstandene Pellet wurde mit je 1 ml 70 % reinem Ethanol gewaschen und im Anschluss für 5 min bei 4 °C und 7600 rpm zentrifugiert. Der Überstand wurde entfernt und das Pellet für 10 min getrocknet, bevor es, abhängig von seiner Größe, in 10-50 µl RNase-freiem H₂O gelöst wurde.

Daraufhin wurde die Probe für 10 min bei 55 °C inkubiert und bei -80 °C gelagert. Die Arbeiten mit RNA erfolgten immer unter Verwendung von Filtertip-Pipettenspitzen.

RNA-Präparation	
TRIzol [®] Reagent	ambion [®] by life technologies
Chloroform	SERVA
Ethanol	Baker
Isopropanol	Baker

2.2.2 Kern-Zytoplasmafraktionierung

Die Separation der zytoplasmatischen und nukleären Zellbestandteile wurde für eine sich anschließende Präparation von RNA aus beiden Fraktionen durchgeführt. Dafür wurden 1 x 10^6 Zellen zwei Mal in PBS gewaschen (Zentrifugation bei 300 x g, 5 min, Raumtemperatur), in 200 µl Lysepuffer resuspendiert und bei 1000 x g für 3 min bei 4 °C zentrifugiert. Der Überstand wurde in ein neues Reaktionsgefäß überführt und auf Eis inkubiert. Das Pellet wurde erneut in 200 µl Lysepuffer (unter Zugabe von 20 µl Detergenzlösung) resuspendiert und 5 min auf Eis inkubiert. Nach einer Zentrifugation bei 1000 x g für 3 min bei 4 °C wurde der Überstand abgenommen und mit dem ersten Überstand vereint. Die so gewonnenen Überstände wurden als zytoplasmatische Fraktion angenommen. Das verbliebene Zellpellet, welches als Kernfraktion angenommen wurde, wurde mit 200 µl Lysepuffer gewaschen (Zentrifugation bei 1000 x g, 3 min, 4 °C), in 100 µl Kernextraktionspuffer resuspendiert und 30 min auf Eis inkubiert. Anschließend wurden Kern- und Zytoplasmafraktion jeweils in 500 µl TRIzol[®] aufgenommen und die RNA wie oben beschrieben isoliert.

Kern- Zytoplasmafraktionierung	
Lysepuffer	10 mM Tris pH 8,4; 140 mM NaCl; 1,5 mM MgCl ₂ ; 0,5 % NP-40
	vor Gebrauch zusetzen: 1 mM DT, 100 U/ml RNasin
Detergenzlösung	3,3 % Natriumdeoxycholat; 6,6 % Tween 20
Kernextraktionspuffer	20 mM Hepes pH 7,4; 420 mM KCl; 1 mM EDTA; 0,1 mM NaVO4; 20 % Glycerin;
	vor Gebrauch zusetzen: 1 mM DTT; 0,1 mM PMSF; 1x Complete-Protease-
	Inhibitor-Cocktail (Roche)

2.2.3 DNA-Isolation

Die Isolation der DNA erfolgte mit Phenol/Chloroform/Isoamylalkohol (P/C/I). Dafür wurden 3 x 10^6 Zellen mit 500 µl P/C/I versetzt und für 30 s per Hand geschüttelt. Es folgte eine Zentrifugation bei 12.000 rpm für 8 min bei 4 °C, während derer eine Phasentrennung erfolgte. Die obere Phase, welche die zu isolierende DNA enthält, wurde in ein neues Reaktionsgefäß überführt. Die Fällung der DNA erfolgte durch Zugabe von 700 µl absolutem Ethanol. Die Proben wurden anschließend bei 4 °C und 12.000 rpm für 20 min zentrifugiert und das Pellet mit 1 ml 70 %igem Ethanol gewaschen. Nach einer zehnminütigen Zentrifugation bei 4 °C und 12.000 rpm wurde das Pellet für 10 min getrocknet und in 30 µl H₂O aufgenommen.

DNA-Isolation	
Phenol:Chloroform:Isoamylalkohol 25:24:1	Sigma
Ethanol	Baker

2.2.4 Konzentrationsbestimmung von Nukleinsäuren

Konzentrationsbestimmung mittels NanoPhotometer

Die Bestimmung der Konzentration und Reinheit von RNA- und DNA-Proben erfolgte standardgemäß am NanoPhotometer[™] der Firma Implen. Dabei wird die Absorption von UV-Licht durch die Nukleinsäuren bei verschiedenen Wellenlängen bestimmt. So kann durch die Absorption bei 260 nm die Konzentration von RNA (A₂₆₀=1 entspricht 40 µg/ml ssRNA) und DNA (A₂₆₀=1 entspricht 50 µg/ml dsDNA) analysiert werden. Durch die Bestimmung des Absorptionsquotienten 280 nm/260 nm können Rückschlüsse auf mögliche Proteinverunreinigungen gezogen werden. Dieser sollte bei DNA einen Wert von etwa 1,8 und bei RNA einen Wert von etwa 2,0 tragen. Der Absorptionsquotient 230 nm/260 nm liefert Rückschlüsse auf mögliche Verunreinigungen durch Lösungsmittel wie Phenol und sollte sowohl bei DNA- als auch bei RNA-Proben bei 2,0 liegen.

Konzentrations- und Qualitätsbestimmung mittels Bioanalyzer

Um eine mögliche Degradierung von RNA-Proben ausschließen zu können, wurde die Integrität der RNA am Bioanalyzer unter Verwendung des RNA-Nano-Kits nach Herstellerangaben ermittelt. Es erfolgte eine gelelektrophoretische Auftrennung der zu analysierenden RNA-Probe in einem Analysechip. Dabei wird anhand des Verhältnisses der ribosomalen 28S-RNA zu 18S-RNA auf die Integrität der gesamten RNA-Probe geschlossen, wobei sich intakte RNAs durch einen RIN-Wert von 10 auszeichnen. Des Weiteren liefert das Elektropherogramm Aussagen über die Größe und Konzentration der zu analysierenden RNA-Probe.

Bestimmung der RNA-Integrität	
Bioanalyzer 2100 Version B	Agilent
RNA 6000 Nano Reagents	Agilent
RNA Nano Chip	Agilent

2.2.5 DNase-Verdau und cDNA-Synthese

Um eventuell vorkommende, kontaminierende DNA aus der mittels TRIzol[®] isolierten RNA zu entfernen, wurde ein DNase-Verdau durchgeführt. Dazu wurde das TURBO DNA-*free*TM Kit nach Herstellerangaben verwendet. Es wurden 0,1 Volumen TURBO DNase Puffer und 1 µl TURBO DNase zu der RNA gegeben und für 30 min bei 37 °C inkubiert. Der Verdau wurde durch Zugabe von 0,1 Volumen DNase Inaktivierungs-Reagenz inaktiviert. Es folgte eine fünfminütige Inkubation bei Raumtemperatur und eine Zentrifugation bei 10.000 x g für 1,5 min. Abschließend wurde die RNA in ein neues Reaktionsgefäß überführt und die Konzentration wie oben beschrieben bestimmt.

Nachfolgend wurde die RNA über eine Reverse Transkription (RT) in cDNA umgeschrieben um eine anschließende Expressionsanalyse mittels qPCR zu ermöglichen. Dazu wurden jeweils 1 µg der isolierten RNA strangspezifisch unter Verwendung des Revert Aid First Strand cDNA Synthesis Kits gemäß den Herstellerangaben in cDNA umgeschrieben. Die RNA wurde mit 1 µl der Random Hexamer-Primer oder Oligo(dT)-Primer versetzt und H₂O auf 12 µl zugegeben. Dem folgte eine Inkubation für 5 min bei 65 °C und 10 min bei Raumtemperatur. Anschließend wurde die Probe mit 4 µl Reaktionpuffer, 2 µl 10mM dNTPs und jeweils 1 µl des RNase-Inhibitors und der Revert Aid Reversen Transkriptase versetzt. Die Probe wurde für 1 h bei 42 °C inkubiert und die Reaktion bei 70 °C für 5 min gestoppt. Die cDNA wurde bei -20 °C gelagert.

DNase-Verdau und RT	
TURBO DNA-free [™]	ambion [®] by life technologies
Revert Aid First Strand cDNA Synthesis Kits	Thermo Scientific

2.2.6 Quantitative real time PCR

Die quantitative *real-time* PCR (qPCR) beruht auf dem Prinzip einer herkömmlichen PCR und ermöglicht die direkte Quantifizierung von DNA oder cDNA. Dadurch wird die Ermittlung der relativen Expression eines Gens im Vergleich zu einem Referenzgen beziehungsweise die Expression in einer zu untersuchenden Probe gegenüber einer Kontrollprobe möglich.

Die Quantifizierung erfolgt über den fluoreszierenden Farbstoff SYBR Green I, welcher während der Elongation in die amplifizierten DNA-Fragmente interkaliert. Das Fluoreszenzsignal wird am Ende eines jeden Amplifikationszyklus detektiert und nimmt so proportional zur Menge der PCR-Produkte zu, wodurch eine Quantifizierung der amplifizierten DNA-Moleküle in Echtzeit ermöglicht wird. Die Quantifizierung erfolgt über einen Schwellenwert, C_T (*Threshold Cycle*), welcher der PCR-Zyklenzahl entspricht, bei der die Amplifikation der DNA-Moleküle in die exponentielle Phase übergeht. Um die relative Expression eines Zielgens zu ermitteln, wird der C_T-Wert des Zielgens zunächst mit dem C_T-Wert eines Referenzgens (U6 als *Houskeeper*-Gen) in der Probe normalisiert und anschließend die so normalisierten C_T-Werte des Zielgens in einer zu untersuchenden Probe mit denen in einem Kontrollansatz abgeglichen. Dabei gilt: $\Delta C_T = C_T Zielgen - C_T Referenzgen$

 $\Delta\Delta C_{T} = \Delta C_{T}$ Kontrollansatz - ΔC_{T} untersuchende Probe.

Die relative Genexpression des Zielgens in der zu untersuchenden Probe gegenüber dem Kontrollansatz ergibt sich dann aus: relative Expression = $2^{\Delta\Delta CT}$.

Bei der Bestimmung der relativen Anreicherung nach ChIRP-Experimenten wurde der C_T-Wert des Zielgens nicht auf den C_T-Wert des Referenzgens normalisiert, sondern direkt mit dem C_T-Wert eines Kontrollansatzes abgeglichen. Dabei gilt: relative Anreicherung = 2 $^{\Delta CT}$.

In der qPCR eingesetzte Primer	
U6_for	5'-CTCGCTTCGGCAGCACA-3'
U6_rev	5'-AACGCTTCACGAATTTGCGT-3'
STAT3_for	5'-CTGGCCTTTGGTGTTGAAAT-3'
STAT3_rev	5'-AAGGCACCCACAGAAACAAC-3'
STAT3_Promotor_for	5'-CAGGAGGGAGCTGTATCAGG-3'
STAT3_Promotor_rev	5'-AATTCATGAAAGGCCAGCTC-3'
STAT3_Ex 1_for	5'-GAGGGAACAAGCCCCAAC-3'
STAT3_Ex 1_rev	5'-CTGTTTCTCCGGCAGAGG-3'
STAT3_Intron_for	5'- GAAACAGGCTGGGTGTGTTG-3'
STAT3_Intron_rev	5'- GGGATAAAGATGCTCTGGGGA-3'
--------------------	--------------------------------
STAiR18_Ex 1_for	5'-CGTGCCTGTCTTCAGATCTTC-3'
STAiR18_Ex 2_rev	5'-GGGAATCTTTCAGCTGCATT-3'
STAiR18_Ex K_for	5'-ACTCATGCCCAAAGTTACGG-3'
STAiR18_Ex 3_rev	5'-CACCAGCATCTTTTCCAACC-3'
STAiR18_Ex 4_rev	5'-CCCTGCTCTGCTCCTCTAAA-3'
STAiR18_Ex 4_for	5'-TTTTCCCTGCTCTGCTCCTC-3'
STAiR18_Ex 7_rev	5'-AGTCAAGGAGTCAGGCAGAG-3'
STAiR18_A_for	5'-AAGGCTTGGCTGGTGGAT-3'
STAiR18_A_rev	5'-ATCTTCCCACGCTACACGTC-3'
STAiR18_B_for	5'-CGTAGGAAGGCTTGGGGTTA-3'
STAiR18_B_rev	5'-TTAGCAGAGGGGTCTCTCA-3'
STAiR18_Intron_rev	5'-AGAAACGCAGTGTCCTCACC-3'
MiR4435_for	5'-GCCCGCATGGCCAGAGCTCACACA-3'
MiR4435_rev	5'-GTGCAGGGTCCGAGGT-3'
KRT16_fwd	5'-TGACCAGTACGAGCAGATGG-3'
KRT16_rev	5'-TGGAGGCCACTTCTTTGTTC-3'
SAA1_fwd	5'-AGCCAATTACATCGGCTCAG-3'
SAA1_rev	5'-CACCATGGCCAAAGAATCTC-3'
MAFB_fwd	5'-GTGTGCCCCAAGACAAAGTT-3'
MAFB_rev	5'-GGGTTTCAGTCCCAGCTGTA-3'
CCNA1_fwd	5'-CATGAAGAAGCAGCCAGACA-3'
CCNA1_rev	5'-AGAAACTGGTTGGTGGTTGG-3'
FoxM1_Ex 2_for	5'-TAAGAGATCCCCTGCCCAAC-3'
FoxM1_Ex 2_rev	5'-GGATGAATTTGTTGGGCCCA-3'
FoxM1_Ex 8_for	5'-CATTAAGGAAACGCTGCCCA-3'
FoxM1_Ex 8_rev	5'-GGTTCTGAACTGAGGAGCCT-3'
FoxM1_Promotor_for	5'-CGGAATGCCGAGACAAGG-3'
FoxM1_Promotor_rev	5'-CCGGAGCTTTCAGTTTGTTC-3'
FoxM1_3'UTR_for	5'-TGTGGTTTATTGGCGTCTGA-3'
FoxM1_3'UTR_for	5'-GGAAAAGAGGTGAGCTGTGC-3'
Malat-1_for	5'-CTACTGGGCTGACATTAACT-3'
Malat-1_rev	5'-ACAAAAGCTACCATCAGAAG-3'
GAPDH_for	5'-GTCAGTGGTGGACCTGACCT-3'
GAPDH_rev	5'-AGGGGAGATTCAGTGTGGTG-3'

Die quantitative PCR wurde unter Verwendung genspezifischer Primerpaare durchgeführt, welche über die freie Software Primer3 designt, von der Firma MWG Operon bezogen und auf eine Gebrauchskonzentration von 5 pmol/µl eingestellt worden sind.

Der qPCR-Standardansatz und das entsprechende PCR-Programm, welchem sich zum Nachweis der Spezifität der amplifizierten PCR-Produkte eine Schmelzkurvenanalyse anschloss, wurden wie folgt gewählt:

qPCR-Standardansatz	
DNA/cDNA (5 ng/µl)	5 μΙ
GoTaq [®] qPCR Mastermix (Promega)	10 µl
Vorwärtsprimer (5 pmol/µl)	1 µl
Rückwärtsprimer (5 pmol/µl)	1 µl
MilliQ-H ₂ O	3 μΙ

Standardnrogramm			
Standardprogramm			
Initiale Denaturierung	95 °C	10 min	
Denaturierung	95 °C	15 s	
Annealing	55 °C	20 s	45 x
Elongation	72 °C	20 s	
Schmelzkurve	95 °C	10 s	1
	65 °C	5 s	
	95 °C	Abnahme um 0,	5 °C/s

2.3 Proteinbiochemische Methoden

2.3.1 Proteinisolation und Konzentrationsbestimmung

Es wurden jeweils 3×10^6 Zellen geerntet, für 5 min bei 300 g zentrifugiert und das Pellet zweimal in PBS gewaschen. Anschließend wurde das Pellet in 200 µl RIPA-Lysepuffer resuspendiert und für 30 min auf Eis inkubiert. Nach einer Zentrifugation bei 12000 rpm und 4 °C für 5 min wurde der Überstand in ein neues Reaktionsgefäß überführt. Die Proteinkonzentrationsbestimmung erfolgte nach Bradford photometrisch bei 595 nm anhand einer BSA-Eichgerade. Dazu wurde die 5x BIO-RAD Proteinassay-Lösung 1:5 in H₂O verdünnt und jeweils 1 ml zu 3 µl Proteinlysat zugegeben. Nach 3 min Inkubation bei Raumtemperatur wurde die Proteinbestimmung am SmartSpecTM3000-Photometer gegen eine Blanc-Kontrolle (3 µl RIPA-Lysepuffer in 1 ml Bradford-Lösung) durchgeführt. Abschließend wurde das Proteinlysat mit 5x Laemmli-Puffer (1:5) versetzt, für 5 min bei 95 °C aufgekocht und bei -20 °C gelagert.

Proteininsolation und Konzentrationsbestimmung		
RIPA-Puffer	50 mM Tris/HCl (pH 7,2); 150 mM NaCl; 5 mM NaF; 0,25 mM EDTA; 1 % Triton-X- 100; 1 % Natriumdeoxycholat; unmittelbar vor Gebrauch zusetzen: 1 mM NaVO ₄ ; 5 μg/ml Pepstatin; 5 μg/ml Leupeptin; 0,14 U/ml Aprotinin	
5x Laemmli	125 mM Tris/HCl; 20 % Glycerin; 10 % 2-Mercaptoethanol; 4 % SDS; 0,002 % Bromphenolblau (pH 6,8)	
5x BIO-RAD Proteinassay	BioRad	
Smart Spec [™] 3000	BioRad	

2.3.2 SDS-Polyacrylamid Gelelektrophorese

Im Rahmen der SDS-Polyacrylamid-Gelelektrophorese werden die lysierten Proteine ihrer Größe nach aufgetrennt. Durch eine Sättigung der geladenen Proteine mit negativ geladenem SDS wird deren Eigenladung überdeckt und die Sekundär- bzw. Tertiärstruktur der Proteine aufgelöst. Die so linearisierten und proportional zu ihrer Größe geladenen Proteine wurden nach einer fünfminütigen Inkubation bei 95 °C in einem 10 %igen Polyacrylamidgel ihrer Größe nach aufgetrennt. Dazu wurden 30 µg Gesamtprotein und 10 µl Proteinstandard zur Identifizierung der Proteingröße auf das Gel geladen. Die Auftrennung der Proteine nach ihrer Größe erfolgte bei 30 mA für etwa 2 h.

SDS-Polyacr	ylamid Gelelek	trophores	e
Sammelgelp	uffer		0,5 M Tris (pH 6,8); 0,4 % SDS
Trenngelpuf	fer		1,5 M Tris (pH 8,8); 0,4 % SDS
SDS-Laufpuf	fer		25 mM Tris; 192 mM Glycin; 0,1 % SDS
Acrylamid (2	.,6 %)		SERVA
APS			Sigma ; 10 % in H_2O
TEMED			SERVA
ColorPlus	Prestained	Protein	Biolabs
Marker			

Das 10 %ige SDS-Polyacrylamid-Gel setzt sich zusammen aus einem Sammelgel (6 %), welches durch eine Konzentration der Proteine auf derselben Höhe im Gel einen gleichmäßigen Start der Größenauftrennung ermöglicht und einem Trenngel (10 %), in welchem die eigentliche Größenauftrennung stattfindet.

	6 %- Sammelgel	10 %- Trenngel
MilliQ-Wasser	6,5 ml	7,2 ml
Puffer	2,5 ml	4,4 ml
Acrylamid	1,5 ml	5,9 ml
TEMED	20 µl	25 μΙ
APS 10 %	200 μΙ	250 μΙ

2.3.3 Immunoblot

Nach der SDS-PAGE wurden die Proteine auf eine PVDF-Transfer-Membran übertragen. Dafür wurde die Membran für 15 s in Methanol und anschließend für 10 min in H₂O und für 10 min in Anoden II-Puffer inkubiert. Das Polyacrylamidgel wurde in Kathodenpuffer äquilibriert. Es wurden sechs in Anoden I- und drei in Anoden II- Puffer getränkte Filterpapiere mit der Membran, dem Gel und sechs in Kathodenpuffer getränkten Filterpapieren in der *Blotting*-Kammer überschichtet. Der Transfer der Proteine auf die Membran erfolgte für 1 h und 5 min bei der Stromstärke in mA, die 80 % der Membranfläche in cm² entsprach.

Um unspezifische Bindungsstellen auf der Membran zu blockieren, wurde diese für 1 h in 5 % BSA in TBS-N inkubiert. Anschließend wurde die Membran bei 4 °C über Nacht mit dem primären Antikörper inkubiert. Die Membran wurde dreimal für 5 min in TBS-N gewaschen, bevor sie 1 h in den HRP-gekoppelten sekundären Antikörper inkubiert wurde. Nach mehrmaligem Waschen in TBS-N wurde der Blot unter Verwendung des SuperSignal[®] WestDura Chemilumineszenz Kits entwickelt, die Chemolumineszenz mit Hilfe eine CCD-Kamera unter Nutzung der Software XStella detektiert und mit Hilfe der Analysesoftware AIDA Image Analyzer ausgewertet.

Immunoblot	
Anodenpuffer I	0,3 M Tris; 20 % Methanol
Anodenpuffer II	25 mM Tris; 20 % Methanol
Kathodenpuffer	40 mM ε-Aminocapronsäure; 20 % Methanol; 0,01 % SDS
TBS-N-Puffer	20 mM Tris/HCl (pH 7,6); 140 mM NaCl; 0,1 % NP-40
Blockierpuffer	5 % BSA (Serva) in TBS-N -Puffer
Anti-FoxM1	Monoklonaler Kaninchen-Antikörper (Cell Signaling); 1:1000 in 5 % BSA in TBS-N-
	Puffer
Anti-STAT3-Nterm	Monoklonaler Maus-Antikörper (BD Bioscience) 1:1000 in 5 % BSA in TBS-N-Puffer
Anti-PAB1	Polyklonaler Kaninchen-Antikörper (Cell Signaling) 1:1000 in 5 % BSA in TBS-N-Puffer

Anti-ß-Aktin	Monoklonaler Maus-Antikörper (Sigma-Aldrich) 1:1000 in 5 % BSA in TBS-N-Puffer
Anti-KRT16	Polyklonaler Kaninchen-Antikörper (Hergestellt und freundlicherweise zur Verfügung
	gestellt von Prof. Magin, Universität Leipzig) 1:5000 in 2,5 % Milch in TBS-N-Puffer
Kaninchen-anti-Maus-HRP	DAKO
Schwein-anti-Kaninchen-HRP	DAKO
Super Signal [®] West Dura Substrat Detektierlösung	Thermo
PVDF-Membran	GE Healthcare
CCD-Kamera Stella	raytest

2.4 Präzipitation von RNA und deren Bindungspartnern

2.4.1 Präzipitation der Ziel-RNA aus Zelllysaten (ChIRP)

Um Rückschlüsse auf die zellulären Funktionen einer IncRNA ziehen zu können, ist die Bestimmung der direkten Interaktionspartner unerlässlich. Die Methode der *Chromatin Isolation by RNA Purofication* (ChIRP) nach Chu 2011 [142] erlaubt die spezifische Anreicherung einer Ziel-RNA aus einem Zelllysat über biotinylierte Oligonukleotide, welche das Zieltranskript komplementär binden. Durch eine vorangegangene Fixierung der Zellen können dabei auch die direkten Bindungspartner auf RNA-, DNA- und auch Proteinebene copräzipitiert werden. Als Negativkontrolle dienen Oligonukleotide, designt gegen die bakterielle RNA lacZ, da diese in humanen Zellen nicht exprimiert wird.

Zunächst wurden je Ansatz 2 x 10^7 A172-Zellen geerntet, mit PBS gewaschen und das Pellet in 20 ml PBS gelöst. Die Fixierung der Zellen erfolgte durch Zugabe von 560 µl 37 % Formaldehyd für 10 min bei Raumtemperatur und wurde durch Zugabe von 2 ml Glycin (1,25 M) für 5 min bei Raumtemperatur gestoppt. Es folgte eine Zentrifugation bei Raumtemperatur und 1000 x g für 5 min. Der Überstand wurde verworfen und das Pellet zweimal mit kaltem PBS gewaschen (Zentrifugation für 3 min bei 4 °C und 1000 x g). Die nun fixierten Zellen wurden in flüssigen Stickstoff schockgefrostet und bei -80 °C gelagert. Das fixierte Zellpellet wurde in 500 µl Lysepuffer resuspendiert und für 10 min auf Eis inkubiert. Es folgte eine Fragmentierung der Zellen und des Chromatins für 20 min im Ultraschallbad im Modus high, wobei ein dauerhafter Wechsel von 30 s Ultraschall und 30 s Pause erfolgte. Anschließend wurde das Lysat für 10 min bei 16100 x g und 4 °C zentrifugiert und der Überstand bei -80 °C gelagert. Am darauffolgenden Tag wurde das Lysat mit 1 ml Hybridisierungspuffer versetzt. Die biotinylierten Oligonukleotide gegen lacZ und STAiR18

32 | MATERIAL UND METHODEN

wurden in Millipore-Wasser gelöst (100 pmol/µl) und je 5 µl des Oligomix gegen STAiR18 beziehungsweise in einem seperaten Ansatz gegen lacZ zugegeben. Die Hybridisierung der Oligonukleotide an die jeweilige Ziel-RNA erfolgte rotierend durch Inkubation bei 37 °C für 4 h im Hybridisierungsofen. Magnetische Streptavidin-Beads wurden in 500 µl Nuclear Lysis Puffer gewaschen und je 50 µl der Beads pro Ansatz zugegeben. Während der sich anschließenden 30minütigen Inkubation bei 37 °C erfolgte die Bindung der Streptavidin-Beads an die biotinylierten Oligonukleotide. Die Komplexe aus Beads-Oligonukleotiden-ZielRNA und der Bindungspartner wurden magnetisch isoliert. Dabei wurden die Beads mit 500 µl Waschpuffer für 5 min bei 37 °C gewaschen. Der Waschschritt wurde 5 Mal wiederholt, bevor der Waschpuffer sauber abgenommen wurde. Es schlossen sich unterschiedliche Reinigungsschritte an, je nachdem ob aus den gewonnenen Komplexen RNA, DNA oder Proteine isoliert werden sollten.

RNA-Isolierung

Um die spezifische Anreicherung des Zieltranskripts zu überprüfen und Bindungspartner auf RNA-Ebene identifizieren zu können, wurde im Anschluss an die ChIRP-Anreicherung eine RNA-Isolation durchgeführt. Dafür wurden die Beads zunächst in 100 µl Proteinase K Puffer gelöst und mit 5 µl Proteinase K versetzt. Danach erfolgte eine Inkubation bei 50 °C für 45 min, während derer die Proteine durch die Proteinase K verdaut wurden. Eine weitere Inkubation bei 95 °C für 15 min sorgte für die Inhibierung der Proteinase K. Es folgte eine RNA-Isolation mittels TRIzol[®], wobei zur besseren Fällung nach der Zugabe von 500 µl Isopropanol 50 µl Ammoniumacetat und 3 µl Glycogen zugesetzt wurden. Die RNA wurde wie unter Punkt 2.2.5 beschrieben in cDNA umgeschrieben und anschließend mittels qPCR analysiert.

DNA-Isolierung

Um copräzipitierte DNA zu isolieren, wurden im Anschluss an die Waschschritte pro Ansatz 150 μ l DNA-Elutionspuffer und 5 μ l RNase-Cocktail zugegeben, für 30 min bei 37 °C inkubiert, der Überstand in ein neues Reaktionsgefäß überführt und auf Eis gelagert. Zu den Beads wurden erneut 150 μ l DNA-Elutionspuffer und 5 μ l RNase-Cocktail zugegeben, für 30 min bei 37 °C inkubiert und der Überstand mit dem ersten vereinigt. Es folgte eine Zugabe von 15 μ l Proteinase K und eine Inkubation bei 50 °C für 45 min. Die DNA-Präparation erfolgte im Anschluss wie unter Punkt 2.2.3 beschrieben.

Protein-Isolierung

Die Copräzipitation der Proteine erfolgte durch Zugabe von 100 µl DNase/RNase Puffer und je 5 µl DNase bzw. RNase zu den Beads. Bei einer anschließenden Inkubation bei 37 °C für 45 min wurden die DNA- und RNA-Fragmente verdaut. Abschließend wurde 1/5 Volumen Laemmli-Puffer zu den Proben gegeben und die Proteine für 5 min bei 95 °C gekocht. Die Beads wurden magnetisch abgetrennt und die Überstände mittels SDS-Page und Immunblot (2.3.2 und 2.3.3) analysiert.

Die für die ChIRP-Analysen eingesetzten DNA-Oligonukleotide sind am 3'-Ende biotinyliert, wurden von MWG bezogen und auf eine Gebrauchskonzentration von 100 pmol/µl eingestellt.

ChIRP	
Lysepuffer	50 mM Tris/HCl (pH 7); 10 mM EDTA; 1 % SDS; frisch zusetzen: 1 mM DTT; 1 mM PMSF; 1x Protease-Inhibitor; 0,1 U/μl RNase-Inhibitor
Hybridisierungspuffer	750 mM NaCl; 1 % SDS; 50 mM Tris/HCl (pH7); 1 mM EDTA; 15 % Formamid, frisch zusetzen: 1 mM DTT; 1 mM PMSF; 1x Protease-Inhibitor; 0,1 U/μl RNase-Inhibitor
Waschpuffer	2x SSC (300 mM NaCl; 30 mM NaCi); 0,5 % SDS; frisch zusetzen: 0,25 mM DTT; 0,25 mM PMSF; 0,25x Protease-Inhibitor; 0,025 U/ μ l RNase-Inhibitor
ProteinaseK-Puffer	100 mM NaCl; 10 mM Tris/HCl (pH7); 1 mM EDTA; 0, 5% SDS; frisch zusetzen: 45 U/µl ProteinaseK
DNase/RNase-Puffer	100 mM NaCl, 0,1 % NP-40; frisch zusetzen: 1:20 RNase Cocktail®; 100 U/ml TURBO™-DNase
DNA-Elutionspuffer	50 mM NaHCO ₃ ; 1 % SDS; 200 mM NaCl; frisch zusetzen: 1:20 RNase-Cocktail
Formaldehyd	37 %; Roth
Glycin	1,25 M in H_2O ; Roth
Glykogen	5 mg/ml, Ambion
NH ₄ AC	10 M; Roth
ProteinaseK	900 U/µl; Fermentas
RNase-Cocktail®	500 U/ml RNaseA, 20.000 U/ml RNaseT1; Ambion
SUPERase-In [™]	20 U/μl RNase-Inhibitor; Ambion
Protease-Inhibitor	cOmplete® Tablets Mini EASYpack; 10 x Protease-Inhibitor; Roche
Streptavidin-Beads	Dynabeads [®] MyOne™ Streptavidin-C1-Beads 10 mg/ml; Life Technologies
Dynal Magnetständer	Invitrogen
Hybridiersierungsofen	MKII; MWG
Ultraschallbad	Bioruptor [®] ; Diagenode

34 | MATERIAL UND METHODEN

Oligonukleotide für ChIRP

lacZ 1	5'-CCAGCTTTCATCAACATTAAATGTG-3'-BITEG
lacZ 2	5'-ATAAAGAAACTGTTACCCGTAGGTA-3'-BITEG
lacZ 3	5'-CGTTAAAGTTGTTCTGCTTCATCAG-3'-BITEG
lacZ 4	5'-GCCGTTTTCATCATATTTAATCAGC-3'-BITEG
lacZ 5	5'-AGTTCAATCAACTGTTTACCTTGTG-3'-BITEG
lacZ 6	5'-TGATAAATAAGGTTTTCCCCTGATG-3'-BITEG
STAiR18 Ex1_1	5'-TTCTCATTGGAACGAGATGACTCAT-3'-BITEG
STAiR18 Ex1_2	5'-TCCATTCCCAATGATGTACACACGA-3'-BITEG
STAIR18 Ex1_3	5'-TCAGGCACCGCTTGTCTGGAATGTC-3'-BITEG
STAiR18 Ex1_4	5'-GAACTGTGCTGTGAAGATCTGAAGA-3'-BITEG
STAiR18 Ex2_1	5'-CCTGTTTCATCTCCCAGTTATTCAG-3'-BITEG
STAiR18 Ex2_2	5'-ATATTCGATCAAGTGTGTCATAGAG-3'-BITEG
STAiR18 Ex2_3	5'-TCAGCTGCATTCCGGCTGTGATCGG-3'-BITEG
STAiR18 Ex2_4	5'-GGTTGGAACCAGGCCCCAGGGAATC-3'-BITEG
STAiR18 Ex2_5	5'-CAAATGCAGAGGCCTCAGAGTCCAC-3'-BITEG
STAiR18 Ex2_6	5'-CATGACCAAAATATCACAGGCAGAC-3'-BITEG
STAiR18 Ex2_7	5'-CAGACAAATGGGAAACCGACCAGAC-3'-BITEG
STaiR18 Ex2_8	5'- AATGAAGGACAAGGGATTAAGACAC-3'-BITEG
STAiR18 ExK_1	5'-CTGCAGGAGATGGTTGCTGG-3'-BITEG
STAiR18 ExK_2	5'-GGGGACATCACAGAAGAGTC-3'-BITEG
STAiR18 ExK_3	5'-CAGACGGAGGTTGGAATGTG-3'-BITEG
STAiR18 Ex3_1	5'-AAAGATGCTGGTGACTGCAG-3'-BITEG
STAiR18 Ex3_2	5'-ACTCTCCTACACATCCACAG-3'-BITEG
STAiR18 Ex3_3	5'-CTGGGATAGTGTCTGCTTAG-3'-BITEG
STAiR18 Ex3_4	5'-AGGGTGGTGGCAAATTAGTG-3'-BITEG
STAiR18 Ex4_1	5'-AACTGGAAGTCGGCAGAGC-3'-BITEG
STAiR18 Ex4_2	5'-AGAGGAGCAGAGCAGGGAAA-3'-BITEG
STAiR18 Ex4_3	5'-GAGGTTTCTTGCAAGTACAC-3'-BITEG
STAiR18 Ex5_1	5'-AGTGTAGCCGAAGACATGTG-3'-BITEG
STAiR18 Ex5_2	5'-AAATGTGCTGTGGAGCAGG-3'-BITEG
STAiR18 Ex7_1	5'-GCGAGTGACAGAAATGCAGT-3'-BITEG
STAiR18 Ex7_2	5'-GGGAGATAGCACACTGAGTT-3'-BITEG
STAiR18 Ex7_3	5'-GCAACATTCCTGACATCATG-3'-BITEG
STAiR18 Ex7_4	5'-TAGAGCAAAGTCCAGGCTTG-3'-BITEG

2.4.2 Präzipitation der Ziel-RNA aus total-RNA

Die Anreicherung einer Ziel-RNA aus zuvor präparierter total-RNA anstelle aus Zelllysat stellt eine Modifikation des ChIRP-Protokolls dar. Hierbei wird auf eine Fixierung der Zellen und die Fragmentierung mittels Ultraschall verzichtet, wodurch das Zieltranskript an sich angereichert und eine Analyse der Transkriptstruktur ermöglicht wird. Dazu wurden pro Ansatz die RNA aus 2 x 10⁷ Zellen präpartiert und einem DNase-Verdau unterzogen. Die RNA wurde mit 1 ml Hybridisierungspuffer versetzt und für 10 min bei 70 °C inkubiert. Anschließend wurden je 5 µl der STAiR18-Oligos beziehungsweise der lacZ-Oligos als Negativkontrolle (100 pmol pro Ansatz) zugesetzt und für 4 h bei 37 °C im Hybridisierungsofen rotierend inkubiert. Es folgte die spezifische Anreicherung und Isolation der Ziel-RNA gemäß dem ChIRP-Protokoll (siehe 2.4.1). Die Analyse der präzipitierten RNA erfolgte mittels qPCR und im Rahmen einer globalen Analyse zur Aufklärung der STAiR18-Transkriptstruktur durch eine MinION[™]-Sequenzierung.

2.5 Globale Analysen

2.5.1 Transkriptomanalyse mittels Microarray

Um die durch STAiR18-regulierten Gene in A172-Zellen zu bestimmen wurde eine globale Transkriptomanalyse durchgeführt. In dieser können gegenüber einer Kontrolle differenziell exprimierte mRNAs und ncRNAs mit Hilfe eines Microarrays bestimmt werden. Im Rahmen dieser Arbeit wurde das differenzielle Genexpressionsmuster nach einem RNAi-vermittelten Knockdown von STAiR18 und STAT3 gegenüber einer scramble-Kontrolle untersucht. Dazu kam pro Ansatz jeweils eine der folgenden siRNAs zum Einsatz:

siRNAs	
siSTAiR18_Ex 1.1	5'-TGCCTGTCTTCAGATCTTCACAGCA-3'
siSTAiR18_Ex 2	5'-TGTGGACTCTGAGGCCTCTGCATTT-3'
siSTAiR18_Ex K	5'-CATGCCCAAAGTTACGGAGGACCCA-3'
siSTAiR18_Ex 3	5'-CCAACCTTAATGAACTGTATCCTCA-3'
siSTAiR18_Ex 7	5'-CCACGACTAGGTCACTACTGCTTTA-3'
siSTAT3	5'-TTTGTTGACGGGTCTGAAGTTGAGA-3'
scramble (scr)	Stealth RNAi™-Negativkontroll-Kit

Die A172-Zellen wurden transfiziert (siehe 2.1.2), die RNA 48 h posttransfektion isoliert (siehe 2.2.1) und einer Konzentrations- und Qualitätsbestimmung am Bioanalyzer unterzogen (siehe 2.2.4). Die anschließende Aufbereitung der Proben für die Microarray-Analysen erfolgte nach Herstellerangaben. Die Library-Präparation umfasste zunächst die Markierung der RNA-Proben, welche dann mittels Reverser Transkription in cDNA umgeschrieben wurde. Diese wurde amplifiziert und mehreren Reinigungsschritten unterzogen, bevor sie schließlich fragmentiert wurde und über 17 h auf den Microarray-Glasträger hybridisiert wurde. Der verwendete Genexpressionsarray (1 Color Gene Expression Microarray) umfasst etwa 50.000 Sonden, welche das komplette Humangenom abdecken. Während der Hybridisierung binden die aufgearbeiteten cDNA-Fragmente komplementär an die auf dem Microarray-Glasträger positionsgenau fixierten Sonden. Das Auslesen der Fluoreszenz-Signale der einzelnen Positionen des Arrays erfolgte am Agilent Scanning System. Anhand der Fluoreszenzintensität an der spezifischen Sonden-Position des Arrays können dann Rückschlüsse auf die Abundanz des entsprechenden Transkripts in den RNA-Proben gezogen werden. Durch ein Abgleichen der Fluoreszenzsignale in den STAiR18-Knockdown-Ansätzen mit denen einer scramble-Negativkontrolle, kann für jedes detektierte Transkript eine differenzielle Expression und ein entsprechender Signifikanzwert ermittelt werden. Die Auswertung der Fluoreszenzsignale erfolgte mit Hilfe der GeneSpring GX-Software von Agilent unter folgenden Einstellungen:

Microarray-Analyse mittels GeneSpringGX		
corrected p-value cut-off	1.0	
Selected Test	T Test paired	
p-value computation	Asymptotic	
Multiple Testing Correction	No Correction	

Microarray-Durchführung					
8er Array	G3 (GX	OneColor,	Grid:	Agilent
0394494; V2	2				
OneColor Quick Amp Labeling Kit					Agilent
OneColor RNA Spike-In Kit			Agilent		
Gene Expression Hybridization Kit			Agilent		
Gene Expression Wash Buffer Kit				Agilent	
Hybrdization oven				Agilent	
Scanning Sy	stem				Agilent

2.5.2 RNA-Sequenzierung mittels MinION[™]

Um die Transkriptarchitektur der STAiR18-Loci in A172-Zellen aufzuklären, sollten die Loci mittels MinION[™]-Sequenzierung genauer aufgeschlüsselt und zellspezifische Spleißvarianten und Transkriptionsstartpunkte analysiert werden. Bei der MinION[™]-Technologie handelt es sich um eine innovative Nanoporen-Sequenziermethode. Diese Nanoporen sind in eine künstliche Membran mit einem besonders hohen elektrischen Widerstand eingelassen. Wird ein cDNA-Einzelstrang Base für Base durch die Pore geleitet, kommt es zu spezifischen Potentialänderungen, wodurch sich die Sequenz in Echtzeit ablesen lässt. Dabei können durchgehende Reads mit einer Länge von mehreren kb prozessiert werden. Auf diese Weise kann die komplette Struktur der beiden STAiR18-Loci und die von ihnen erzeugten Transkriptvarianten direkt analysiert werden.

Im Vorfeld der MinION[™]-Sequenzierung sollten die STAiR18-Transkripte über biotinylierte Oligonukleotide spezifisch angereichert und aus der total-RNA der A172-Zellen isoliert werden. Dazu wurde das unter 2.4.2 beschriebene Protokoll angewendet und die spezifische Anreicherung von STAiR18 im STAiR18-Oligoansatz gegenüber einer lacZ-Kontrolle mittels qPCR verifiziert. Die so höchst effizient angereicherten STAiR18-Transkripte wurden mittels MinION[™]-Technologie sequenziert. Die Aufarbeitung der Proben erfolgte nach Herstellerangaben nach dem Protokoll "1D cDNA Sequencing for the MinION[™] device using SQK-LSK108["]. Die Library-Präparation umfasste zunächst die Reverse Transkription der RNA in cDNA. Nach einer Adapter-Ligation wurde diese amplifiziert und es erfolgte die Ligation der Sequenzieradapter. Nach mehreren Aufreinigungsschritten über magnetische Beads wurde die fertige Library auf eine MinION[™]-Flow Cell geladen und die Sequenzierung erfolgte im MinION[™]. Die Primäranalyse der sequenzierten Reads wurde mit Hilfe der MinKnown-Software durchgeführt. Die anschließende bioinformatische Auswertung der Sequenzierung erfolgte durch Frau M.Sc. Karolin Wiedemann am Fraunhofer Institut für Zelltherapie und Immunologie (AG Ribonomics). Zunächst wurden die Rohsignale der Sequenzierung in Sequenzdaten im fastq-Format umgewandelt. Im Anschluss erfolgte eine Qualitätskontrolle des Signals pro Base und das Entfernen der Sequenzieradapter. Die so überprüften Sequenzen wurden gegen das Humangenom hg38 gemappt und mittels R und Bioconductor einer deskriptiven Statistik unterzogen.

38 | MATERIAL UND METHODEN

MinION [™] -Sequenzierung	
1D Sequencing Kit SQK-LSK108	Oxford NANOPORE Technologies
AMPure Beads	NEB
MinION SpotON-FloMin105	Oxford NANOPORE Technologies
NEBNext Ultra II End-repair/dA-Tailing module	NEB
MyONE C1 Streptavidin Beads	Life Technologies
longAMP Taq Master Mix	NEB
Second Strand Synthesis Kit	NEB
SuperScript II Reverse Transcriptase	Life Technologies
MinION device	Oxford NANOPORE Technologies

2.6 Fluoreszenz-basierte Färbetechniken

2.6.1 Immunfluoreszenz

Um die Expression des Keratin16-Proteins nach einem STAiR18-KD in A172-Zellen näher zu analysieren, sollte KRT16 mittels Immunfluoreszenz detektiert werden. Dazu wurden die A172-Zellen zunächst mit siSTAiR18 Ex 1.1 und einer scramble-Kontrolle transfiziert (siehe 2.1.2) und auf Glasplättchen ausgesät. 48 h posttransfektion wurden die Zellen fixiert. Dafür wurden die Plättchen mit 1 x PBS gewaschen, für 5 min in Methanol (-20 °C) fixiert und für 30 s in Aceton (-20 °C) inkubiert. Anschließend wurden die Plättchen bei Raumtemperatur getrocknet und schließlich für 15 min in 1 x TBS + 1 % BSA geblockt. Der primäre anti-KRT16-Antikörper wurde bei 4 °C und 12.000 rpm für 10 min zentrifugiert, 1:1000 in 1 x TBS + 1 % BSA verdünnt und auf die Plättchen gegeben. Nach einer einstündigen Inkubation bei Raumtemperatur wurden die Plättchen zweimal in 1 x TBS gewaschen. Anschließend wurde der fluoreszenzmarkierte sekundäre Antikörper zugegeben (2 Tropfen in 1 ml 1 x TBS + 1 % BSA) und für 45 min im Dunkeln bei Raumtemperatur inkubiert. Die Plättchen wurden erneut mit 1 x TBS gewaschen, bevor die Kerne für 10 min mit DAPI (3 μ g/ml) gegengefärbt wurden. Nach einem erneuten Waschen in 1 x TBS, Milli-Q H₂O und absolutem Ethanol wurden die Plättchen getrocknet und eingedeckt. Als Negativkontrolle wurde ein Ansatz mitgeführt, bei welchem kein primärer Antikörper zum Einsatz kam.

Immunfluoreszenz	
Anti-KRT16	Polyklonaler Kaninchen-Antikörper (Hergestellt und freundlicherweise zur Verfügung gestellt
	von Prof. Magin, Universität Leipzig)
AlexaFluor [®] 594 goat anti-	Sekundär-Antikörper; life technologies
rabbit antibody	
PBS (10x)	137mM NaCl; 2,7mM KCl; 8,1mM Na ₂ HPO ₄ ; 1,5mM KH ₂ PO ₄ (pH 7,4)
Methanol	Baker
Aceton	Baker
BSA	SERVA
TBS	20 mM Tris/HCl (pH 7,6); 140 mM NaCl; 0,1 % NP-40
Aqua Poly Mount	Polysciences Inc.

2.6.2 Fluoreszenz *in situ* Hybridisierung mittels ViewRNA[™]

Zur Bestimmung der genauen Lokalisation der STAiR18-Isoformen in den A172-Zellen wurde eine neuartige Methode der RNA-Fluoreszenz *in situ* Hybridisierung, genannt ViewRNA[™], angewendet. Hierbei werden bis zu 20 kurze Oligonukleotide als Sonden verwendet, welche paarweise komplementär an die Ziel-RNA binden. Nur wenn beide Sonden eines Paares nebeneinander an die Ziel-RNA binden, kommt es durch weitere verzweigte DNA-Oligonukleotide zu einer sequenziellen Amplifikation des Signals. So kann eine sehr hohe Spezifität der Signale bei geringem Hintergrundsignal erreicht und selbst einzelne RNA-Moleküle innerhalb der Zellen detektiert werden. Die Durchführung der ViewRNA[™]-Färbungen erfolgte unter Verwendung des ViewRNA[™]-ISH-Cell-Assay-Kits nach Herstellerangaben.

Die A172-Zellen wurden zunächst auf poly-L-Lysin beschichteten Deckgläschen für 20 min mit 2 % Formaldehyd unter Zugabe von 0,8 % Essigsäure fixiert und im Anschluss proteaseverdaut (1:4000), um die Zugänglichkeit für die Sonden auch im Kern der Zellen zu gewährleisten. Anschließend erfolgte die Hybridisierung der Sonden gegen die verschiedenen Isoformen von STAiR18. Als Positivkontrollen dienten Sonden gegen die zytoplasmatisch vorliegende mRNA von GAPDH und die im Kern exprimierte ncRNA MALAT-1. Als Negativkontrollen kamen Sonden gegen die nur bakteriell und somit nicht in humanen Zellen exprimierten RNAs lacZ und dapB zum Einsatz. Um die Spezifität der Signale weiter zu überprüfen, wurde STAiR18 auch in A172-Zellen angefärbt, welche zuvor einem RNAi-vermittelten STAiR18-KD unterzogen worden waren. Nach der Hybridisierung der Sonden erfolgte eine sequentielle Verstärkung des Signals mittels weiterer DNA-Oligonukleotide, an

40 | MATERIAL UND METHODEN

welche letztendlich fluoreszenzmarkierte Sonden spezifisch binden. Nachdem die Proben gewaschen wurden, erfolgte eine Gegenfärbung der Kerne mittels DAPI und die Plättchen wurden eingedeckt. Die Analyse der Fluoreszenzsignale erfolgte mikroskopisch unter Verwendung der FITC- (488 nm), Cy3- (550 nm) und Cy5- (650 nm) Filter.

ViewRNA TM	
ViewRNA [™] -ISH-Cell-Assay-Kits	invitrogen
poly-L-Lysine	0,01 %, SIGMA
Essigsäure	Merck
STAiR18- Ex 1+2 Sondenset	#VA1-16989-01; affymetrix
STAiR18- Ex 3 Sondenset	#VA6-18301-01; affymetrix
STAiR18- Ex 7 Sondenset	#VA6-18300-01; affymetrix
STAiR18- Intron Sondenset	#VA4-16990-01; affymetrix
MALAT-1 Sondenset	#VA6-14180-01; affymetrix
GAPDH Sondenset	#VA1-10119-01; affymetrix
lacZ Sondenset	#VF1-12414-01; affymetrix
dapB Sondenset	#VF6-10407-01; affymetrix

2.7 Gewebe- und Patientenproben

RNA aus Gewebe- und Patientenproben				
Expression in gesunden Geweben	Human Total RNA Master Panel II;	Clontech		
	#636643			
Expression in Normalgewebe und gepaartem Tumorgewebe	prostate normal: R1234201-50; prostate tumor: CR560070; bladder normal: R1234010-50; bladder tumor: R1235010-10; breast tumor and control: R8235086-PP-10; colon tumor and control: R8235090-PP-10; kidney tumor and control: R8235142- PP-10; liver tumor and control: R8235149-PP-10; lung tumor and control: R8235152-PP-10	amsbio/BioChain®		
Expression im Alzheimergewebe	46x Kontrollproben;	Die RNA wurde freundlicherweise zur		
gegenüber Kontrollgewebe	49x Alzheimer-Proben	Verfügung gestellt von Prof. Dr.		
	Das Gewebe entstammt dem	Thomas Arendt (Paul Flechsig Institut		
	humanen Temporallappen und wurde	für Hirnforschung, Leipzig).		
	postmortem entnommen.			

2x gepaartes Normalgewebe und	Die RNA wurde freundlicherweise zur
Meningeomgewebe I;	Verfügung gestellt von Prof. Dr. Frank
2x Astrozytomgewebe II;	Gaunitz (Klinik und Poliklinik für
2x Astrozytomgewebe III;	Neurochirurgie; Universitätsklinikum
2x GBM-Gewebe IV	Leipzig).
	2x gepaartes Normalgewebe und Meningeomgewebe I; 2x Astrozytomgewebe II; 2x Astrozytomgewebe III; 2x GBM-Gewebe IV

Im Rahmen dieser Arbeit wurde die Expression von STAiR18 in verschiedenen humanen Geweben mittels qPCR analysiert. Die analysierte RNA wurde aus den oben genannten Quellen bezogen.

2.8 Software und Statistik

Die in dieser Arbeit gezeigten Daten wurden wenigstens als n=3 erhoben. Das Arithmetische Mittel (Mittelwert) wurde in Microsoft Excel unter Verwendung der Funktion MITTELWERT erhoben. Die Standardabweichung (SD), welche direkt als Fehlerbalken in die Diagramme eingefügt wurde, wurde in Microsoft Excel mit Hilfe der Funktion STABW berechnet.

Den Funktionen liegen folgende Formeln zugrunde:

Mittelwert:

$$\bar{x} = \frac{1}{n}(x_1 + x_2 + \dots + x_n) = \frac{1}{n}\sum_{i=1}^n x_i$$

Standardabweichung:

 $SD = \sqrt{\frac{\sum_{i=1}^{n} (x_{i-}\bar{x})^2}{n=1}}$

Die Ermittlung des Signifikanzgrades erfolgte mittels Student'schem t-Test, wobei $p \le 0.05$ als signifikant (*), $p \le 0.01$ als sehr signifikant (**) und $p \le 0.001$ als höchst signifikant (***) angesehen wurde.

42 | MATERIAL UND METHODEN

Im Rahmen dieser Arbeit wurden die unten aufgeführten Software-Programme verwendet:

Software				
Nukleinsäurealignments	Gentle			
	Blast-Programm des UCSC-Genome-Browsers			
Analyse annotierter genomischer Abschnitte	UCSC-Genome-Browser; hg38			
Auswertung der MinION-Sequenzierdaten	Basecalling: Oxford Nanopore Python-Script read_fast5_basecaller			
	Qualitätskontrolle: NanoPlot v1.14.1			
	Adapter trimming: Porechop v0.2.3 (adapter_treshold: 75)			
	Mapping auf das Humangenom hg38: minimap2 v2.10-r784-dirty			
	Deskriptive Statistik: R und Bioconductor (Rsamtools,			
	GenomicAlignments)			
Microarray-Analyse	GeneSpring GX; Agilent			
	GO-Term-Analyses			
Bestimmung von Gen- und Proteinfunktionen	GeneCards			
	UniProt			
Bestimmung und Analyse von ORFs	NCBI-ORF-Finder			
	NCBI-SmartBlast			
Primer-Design	Primer3 Design			
Analyse von RNA-Sekundärstrukturen	RNAfold			
Auswertung Migrationsassay, Bildverarbeitung	Image J			
	Gimp			
Analyse Vitalitätstest	LUMIstar Optima			
Analyse Immunblot	XStella			
	Aida			
Durchflusszytometrie	BD CellQuest Pro			
X-Celligence-Analyse	RTCA-Software			
Datenauswertung	Microsoft-Office-Paket 2010			

3.1 Charakterisierung und Expressionsanalyse der langen nicht kodierenden RNA STAiR18

Zu Beginn der Arbeit galt es die nichtkodierende RNA STAiR18 näher zu charakterisieren. Eingangs wurden dafür die genomische Lokalisation und Konservierung von STAiR18 analysiert und die nichtkodierende RNA auf typische Merkmale einer mRNA untersucht. Um erste Hinweise zu erhalten, in welchen Zellsystemen STAiR18 eine physiologische Funktion ausüben könnte, wurde des Weiteren das Expressionslevel von STAiR18 in verschiedenen gesunden und malignen humanen Organen bestimmt.

3.1.1 Genomische Lokalisation von STAiR18

STAiR18 liegt im Humangenom dupliziert auf zwei nahezu identischen Loci auf Chromosom 2 vor. Der eine Locus, STAiR18-A, ist als Loc541771 bzw. MIR4435-2HG auf dem (-)-Strang des q-Armes annotiert, während STAiR18-B, annotiert als Linc00152 bzw. CYTOR, auf dem (+)-Strang des p-Armes zu finden ist. Sowohl STAiR18-A als auch STAiR18-B stellen mit einer Länge von 288 kb beziehungsweise 152 kb lange nichtkodierende RNAs dar. Da die Sequenzübereinstimmung beider STAiR18-Regionen äußerst hoch ist, wurde vermutet, dass die Duplikation im Laufe der Evolution des Menschen erst vor kurzer Zeit stattgefunden hat. Tatsächlich zeigte ein Abgleich der humanen STAiR18-Regionen mit den Genomen der am nächsten mit dem Modernen Menschen verwandten Hominidae, dass STAiR18 nicht nur im Genom des Modernen Menschen, sondern auch im Genom von Denisovans und Neandertalern dupliziert auf Chromosom 2 vorliegt. In den Genomen der großen Menschenaffen dagegen ist nur der STAiR18-A-Locus zu finden. Demnach hat die Duplikation des STAiR18-Locus erst bei unseren direkten Vorfahren stattgefunden, wobei es sich bei STAiR18-A um den evolutionär älteren Ursprungs-Locus und bei STAiR18-B um die vermutlich durch nichthomologe Rekombination entstandene Kopie handelt. In Abbildung 2 ist die genomische

Lokalisation von STAiR18 schematisch dargestellt und die Chromosomenkoordinaten der Annotationen beider Loci im UCSC-Genome-Browser (Genomics Institute, University of California Santa Cruz, humane Genomversion hg 38) angegeben.

Abbildung 2: Die STAiR18-Duplikation. (A) Schematische Darstellung der STAiR18-Duplikation. Während im Genom der Großen Menschenaffen nur der STAiR18-A-Locus auf dem g-Arm von Chromosom 2 zu finden ist, liegt STAiR18 im Genom der Modernen Menschen, Denisovans und Neandertaler dupliziert vor. (B) Annotation der STAiR18-Regionen im Modernen Menschen. STAiR18 ist im UCSC-Genome Browser (hg38) an zwei Regionen annotiert, wobei MIR4435-2HG/Loc541471 hier als STAiR18-A und CYTOR/Linc00152 als STAiR18-B bezeichnet wird.

Innerhalb beider STAiR18-Loci sind nichtkodierende Transkripte annotiert, welche in Abbildung 3 schematisch dargestellt sind. Beide Regionen weisen die STAiR18-Isoformen bestehend aus Exon 1 und Exon 2 sowie eine weitere Transkriptvariante auf, welche ein zusätzliches intermediäres Exon K trägt. Für den STAiR18-B-Locus sind außerdem noch Transkriptvarianten mit den weiter *upstream* liegenden Exons 3 und 4 annotiert. Es fällt allerdings auf, dass keine Isoform annotiert ist, welche sowohl Exon 2 als auch die nachfolgenden Exons enthält. Dies trifft auch für die annotierten Transkriptvarianten des STAiR18-A-Locus zu, wobei sich hier dem Exon 4 noch weitere Exons

anschließen können. Außerdem sind für STAiR18-A Transkriptvarianten mit einem verspäteten Transkriptionsstart ab Exon 4 und eine microRNA (miR4435) zwischen Exon 4 und Exon 5 vermerkt.

Um die Homologie zwischen den beiden annotierten STAiR18-Regionen zu bestimmen, wurde die Sequenz des STAiR18-A-Locus im UCSC-Browser abschnittsweise *geblastet* und die Sequenzübereinstimmung mit den Exons und Introns des STAiR18-B-Locus verglichen. Beide STAiR18-Regionen sind höchst homolog und zeigen eine Überstimmung von mindestens 98,6 % (Exon K) bis zu 100 % (Exon 4). Die starke Homologie, welche auf die evolutionär erst kürzlich stattgefundene Duplikation zurückzuführen ist, ist dabei nicht nur auf die exonischen Bereiche begrenzt, sondern setzt sich auch in den intronischen Bereichen fort. Allerdings ist zu beachten, dass der Transkriptionsstart von STAiR18-B 38 Basenpaare *downstream* des Transkriptionsstarts von STAiR18-A annotiert ist und dass die Sequenzgleichheit ab Exon 5 und für alle nachfolgenden Bereiche der annotierten STAiR18-Loci auf null abfällt. Die Exons 5, 6 und 7 finden sich folglich nur im STAiR18-A-Locus. Demnach umfasste das Duplikationsevent nicht den gesamten STAiR18-Locus, sondern nur dessen vorderen Bereich von 248 kb.

Im nächsten Schritt wurde die evolutionäre Konservierung des STAiR18-A-Locus analysiert. Dazu wurde der *Conservation Track by PhastCons* des UCSC-Genome-Browsers verwendet, welcher den Grad der Konservierung innerhalb 30 verschiedener Säuger-Genome (davon 27 Primaten) darstellt. Die Konservierung von STAiR18 schwankt stark innerhalb des Locus. So scheinen beispielsweise Exon 1, Exon K und Exon 2, aber teilweise auch intronische Regionen, eine besonders hohe Sequenzkonservierung aufzuweisen. Der STAiR18-A-Locus ist präsent in allen Säugetier-Genomen, wobei die Konservierung innerhalb der Primaten besonders ausgeprägt vorliegt. Erst ab der Unterklasse der Beuteltiere nimmt die Konservierung von STAiR18 ab. Während vor allem die Exons proteinkodierender Gene meist stark konserviert sind, da hier schon einzelne Mutationen einen großen Einfluss auf Struktur und damit Funktion des Proteins haben können, sind nichtkodierende RNAs oft durch eine schwächere Sequenzkonservierung gekennzeichnet [143,72]. Die starke Konservierung von STAiR18 innerhalb der Säuger lässt somit eine physiologische Funktion in komplexen Organismen vermuten.

Abbildung 3: Schematische Übersicht der beiden STAiR18-Loci, deren Homologie und Konservierung. Dargestellt sind die verschiedenen Transkriptvarianten von STAiR18 und deren Lage auf dem humanen Chromosom 2 nach ihrer Annotation im UCSC-Genome-Browser (hg38). Außerdem wird die Sequenzübereinstimmung zwischen STAiR18-A und STAiR18-B gezeigt. Dafür wurde die Sequenz des STAiR18-A-Locus abschnittsweise mithilfe des UCSC-Genome-Browsers *geblastet* und die Homologie mit dem STAiR18-B-Locus verglichen. Die evolutionäre Konservierung von STAiR18-A wurde mit Hilfe des *Conservation Track by PhastCons (30 mammals)* des UCSC-Genome-Browsers bestimmt.

3.1.2 STAiR18 weist Merkmale einer mRNA auf

Da die verschiedenen STAiR18-Transkriptvarianten im UCSC-Browser die Exon-Intron-Struktur einer typischen mRNA aufweisen, sollte mittels qPCR in humanen Glioblastomzellen überprüft werden, ob STAiR18 gespleißt wird. Außerdem wurde in diesem Zusammenhang ermittelt, ob das STAiR18-Transkript von beiden oder nur einem der STAiR18-Loci auf dem humanen Chromosom 2 exprimiert wird.

Zur Diskriminierung von STAiR18-Primärtranskript und einer gespleißten STAiR18-Transkriptvariante wurde für die qPCR ein Vorwärtsprimer designt, welcher gleichermaßen das erste Exon von STAiR18-A und STAiR18-B bindet. Als Rückwärtsprimer diente zur Detektion des Primärtranskripts ein Primer, welcher im 5'-Bereich des ersten Introns von STAiR18-A und STAiR18-B bindet. Dahingegen bindet der Rückwärtsprimer, welcher zur Bestimmung der gespleißten Form von STAiR18 dient, im zweiten Exon beider STAiR18-Loci. Vergleicht man die Expression von Primär- und gespleißten Transkript, fällt auf, dass das Gleichgewicht auf Seiten der gespleißten Variante liegt und STAiR18 somit ähnlich einer mRNA gespleißt wird. Zur Diskriminierung von STAiR18-A und –B und um zu bestimmen, ob beide STAiR18-Loci transkriptionell aktiv sind, sollten Loci-spezifische Primerpaare designt werden. Da die Sequenzhomologie der beiden STAiR18-Loci sehr hoch ist, war es nicht möglich Locispezifische Primerpaare zu designen, welche ausschließlich exonische Bereiche binden. Deshalb wurde zur Diskriminierung von STAiR18-A und –B ein Primerpaar verwendet, dessen Vorwärtsprimer beide Loci in Exon 1 erkennt. Die Rückwärtsprimer dagegen sorgen für eine Locus-spezifische Detektion. Für deren Design wurde sich eine 13bp lange Insertion im 5'-Bereich des ersten Introns des STAiR18-A-Locus zu Nutze gemacht. Während der Rückwärtsprimer, spezifisch für STAiR18-A, innerhalb dieser Insertion binden kann, umspannt der Rückwärtsprimer, spezifisch für STAiR18-B, diesen im STAiR18-B-Locus deletierten Bereich. Es ist deutlich zu erkennen, dass die STAiR18-Transkripte von beiden Loci in vergleichbarer Intensität generiert werden, wobei STAiR18-A der etwas aktivere Locus zu sein scheint (siehe Abbildung 4A). Für die bessere Verständlichkeit wird deshalb im Folgenden nicht mehr zwischen STAiR18-A und STAiR18-B unterschieden und es werden stattdessen für die STAiR18-Messungen Primerpaare benutzt, welche beide STAiR18-Varianten gleichermaßen detektieren.

Abbildung 4: Die mRNA-Ähnlichkeit von STAIR18. (A) STAIR18 wird gespleißt und von beiden Loci aktiv transkribiert. Für die Diskriminierung von STAIR18-Primärtranskript, der gespleißten STAIR18-Form und den spezifischen Transkripten des STAIR18-A- und –B-Locus wurde die RNA aus 3 x 10⁶ A172-Zellen isoliert und einem DNase-Verdau unterzogen. 1 µg RNA wurden mittels RT in cDNA umgeschrieben. Für die anschließende qPCR wurde die cDNA 1:10 verdünnt. Es wurden spezifische Primer für das gespleißte Transkript, das Primärtranskript sowie für STAIR18-A und STAIR18-B eingesetzt, deren Bindungsstellen schematisch dargestellt sind. Die Expression der STAIR18-Varianten wurde nach U6-Abgleich auf die Expression des gespleißten STAIR18-Transkripts, welches Transkripte beider Loci abdeckt, normiert (n=3). (B) STAIR18 ist polyadenyliert. Für den Nachweis des Poly-A-Schwanzes am STAIR18-Transkript wurde die RNA aus 3 x 10⁶ A172-Zellen isoliert, DNase-verdaut und 1 µg RNA mittels RT in cDNA umgeschrieben. Dabei wurden zum Vergleich *Random-Hexamer*-Primer bzw. Oligo-d(T)-Primer verwendet. Die anschließende qPCR erfolgte mit 1:10 verdünnter cDNA und spezifischen Primern für das gespleißte STAIR18-Transkript und U6 als Kontrolle. Die Normierung der Expression erfolgte jeweils auf den *Random-Hexamer*-Ansatz (n=3.)

Zur weiteren Charakterisierung der mRNA-Ähnlichkeit von STAiR18 sollte nun überprüft werden, ob es sich bei STAiR18 um ein polyadenyliertes Transkript handelt. Dafür wurde der Einsatz von Oligod(T)-Primern mit *Random Hexamer*-Primern bei der Reversen Transkription der RNA in cDNA verglichen. Während *Random Hexamer*-Primer alle RNA-Transkripte unabhängig von einem möglichen Poly-A-Schwanz umschreiben, indem sie unspezifisch an mehreren Stellen des RNA-Transkripts binden, erfassen Oligo-d(T)-Primer ausschließlich polyadenylierte Transkripte. Abbildung 4 B zeigt, dass die mittels qPCR ermittelte Expression von STAiR18 nach dem Einsatz von Oligo-d(T)-Primern 5-fach höher ist, als beim Einsatz von Random Hexamer-Primern. Demnach ist davon auszugehen, dass es sich bei STAiR18 um ein polyadenyliertes Transkript handelt, was die mRNA-Ähnlichkeit von STAiR18 nochmals verstärkt. Zur Kontrolle wurde in diesem Experiment auch die Expression der *Housekeeping*-RNA U6 nach dem Einsatz der verschiedenen Primer während der Reversen Transkription verglichen. Da das 3´-Ende von U6 zu einem hohem Prozentsatz posttranskriptionell uridyniliert wird [144], war davon auszugehen, dass der Einsatz von Oligo-d(T)-Primern zu einer vergleichbar geringen Expression von U6 führt, was im Experiment auch bestätigt werden konnte.

3.1.3 STAiR18 ist eine nicht proteinkodierende RNA

In beiden STAiR18-Loci auf dem Chromosom 2 sind verschiedene Transkripte hinterlegt, welche alle als nicht protein-kodierend beschrieben sind. Auf Grund der hohen Ähnlichkeit von STAiR18 zu einer typischen mRNA sollte nun allerdings das protein-kodierende Potential von STAiR18 abgeschätzt werden. Dafür wurden die annotierten Isoformen auf das Vorhandensein möglicher open reading frames (ORFs) untersucht, wobei die Sequenzen in die Open-Source-Software ORF-Finder von NCBI geladen wurden. Als ORF wird der Bereich einer mRNA bezeichnet, dessen Leserahmen zwischen einem Startcodon und einem Stopcodon im gleichen Leseraster liegt. Der ORF kodiert somit potentiell für die Aminosäuresequenz eines Peptids oder Proteins. Tabelle 3 zeigt die ermittelten ORFs der verschiedenen STAiR18-Isoformen. Es sind nur die ORFs dargestellt, welche Methionin (M) als Startcodon und ein Stopcodon am Ende der Sequenz tragen und somit den allgemeinen Kriterien für eine Translation entsprechen. Außerdem wurden nur ORFs mit einer Mindestnukleotidlänge von 100 nt berücksichtigt, was einer Peptidgröße von minimal ca. 3 kDa entsprechen würde, sollten die ORFs als Vorlage zur Proteinsynthese dienen. Auf diese Weise konnten 18 theoretische ORFs für die verschiedenen annotierten Isoformen von STAiR18 ermittelt werden. Um zu überprüfen, ob diese ORFs als Vorlage für Proteine dienen, wurden die Aminosäuresequenzen mit Hilfe der SmartBlast-Software von NCBI analysiert. Einige der ORFs konnten dabei Proteinen verschiedenster nicht humaner Spezies zugeordnet werden. Dabei handelt es sich aber zumeist um nur hypothetisch existierende Proteine, die unter physiologischen Bedingungen nicht translatiert werden. Beachtet man die Übereinstimmung der Aminosäuresequenzen der STAiR18-ORFs mit denen der dafür hinterlegten Proteine, fällt auf, dass sie meistens zu weniger als 75 % kongruent sind.

Tabelle 3: Analyse möglicher ORFs der annotierten STAiR18-Transkriptvarianten. Die dargestellten ORFs wurden mit Hilfe des ORF-Finders von NCBI identifiziert und anschließend mittels SmartBlast mit der Peptidsequenz potentieller Proteine abgeglichen. Alle ORFs tragen Methionin als Startcodon und ein Stopcodon, welches durch einen Stern markiert ist. Es werden nur die ORFs gezeigt, welche eine Mindestnukleotidlänge von 100 nt aufweisen. Dargestellt ist die Aminosäuresequenz eines ORFs und dessen Länge in Nukleotiden (nt) bzw. in Aminosäuren (aa). Außerdem sind, sofern vorhanden, die für die ORFs hinterlegten Proteine aufgeführt, in welchen Spezies diese exprimiert werden könnten und zu welchem Grad die identifizierten ORFs deckungsgleich mit der Peptidsequenz des hinterlegten Peptids sind.

ORF	Peptidsequenz	Länge (nt aa)	Peptid	Spezies	Kongruenz
Isoform	1-3-4-5-6-7				
A	MSSATLVKASCLLHSTFLFKSWTSLRMSTS GRKEATGAEGGEDKIWSKILKEATRS*	171 56	Hypothetisches Protein LOC105471806	Macaca nemestrina	79 %
В	MAGQKADPGRIAHVFGYTGEGIVPAPQHI FIQVLDEPEDVYKWKKRSHWSRRWGG*	168 55	-	-	-
С	MGLFRIKQQAWTLLYNRVLHREWYDQIP QERKLRDQARVHCSSPVKRGW*	150 49	Hypothetisches Protein	Vibrio parahaemolytic us	73 %
D	MCYPPWVCFLACHVAVTQVLRFLASTPFL LAFRALYHCLLNSFQGT*	141 46	Hypothetisches Protein COD47_28830, partial	Escherichia coli	50 %
E	MTGWSLLFKFQIDIPDKRCLSPCLSSDLHST VPGKVEPPASP*	129 42	-	-	-
F	MKSLGALWMCRRVGLPFYRPFAELRGQS RRQSRMQP*	111 36	Hypothetisches Protein Histidine Phosphatase Family Protein	Microbispora sp. ATCC PTA- 5024	89 %
G	MMSGMLHSYFPIDKPICPQSQGVRQRPLP WGFLG*	105 34		-	-
Isoform	1-4-5				
н	MTGWSLLFKFQIDIPDKRCLSPCLSSDLHST VPGKVEPPASPWLCRLPVLEQDG*	165 54	Metabotropic Glutamate Receptor 2 Precursor	Mus musculus	41 %
I	MCYPPWVCFLACHVAVTQVLRFLASTPFL LAFRALYHCLLNSFQGT*	141 46	Hypothetisches Protein COD47_28830, partial	Escherichia coli	50 %
Isoform	4 – 7				
J	MERRKRLPTAFLSLAEKDTLSENLLANFKG QNHPLLLIKPRELQQLTFPGQGTARI*	171 56	Hypothetisches Protein AQJ43_10225	Streptomyces avermitilis	52 %
К	MGLFRIKQQAWTLLYNRVLHREWYDQIP QERKLRDQARVHCSSPVKRGW*	150 49	Hypothetisches Protein	Vibrio parahaemolytic us	73 %
L	MMSGMLHSYFPIDKPICPQSQGVRQRPLP WGFLG*	105 34	-	-	-

ORF	Peptidsequenz	Länge (nt aa)	Peptid	Spezies	Kongruenz
Isoform	1-K-2				
М	MQTEVGMWMEAGKFPIYKLFNEDQMFK PSKEGRGCWITGDITEESRGFQGLQEMVA GSSVTLGVSQGEAGGSTFPGTVL*	240 79	-	-	-
Ν	MKDKGLRHTETGQTNGKPTRPAHDQNIT GRPPANAEASESTVGSWNQAPGNLSAAF RL*	177 58	Hypothetisches Protein TCE0_044f16872	Talaromyces cellulolyticus	67 %
0	MGNRPDQPMTKISQADHPQMQRPQSP QWAVGTRPQGIFQLHSGCDRRATGRGAG GG*	171 56	Hypothetisches Protein AOQ84DRAFT_335887	Glonium stellatum	33 %
Ρ	MTDTENHDSSPSSTSTCCPPITAGMQLKD SLGPGSNCPLWTLRPLHLRVVCL*	159 52	Hypothetisches Protein MGC4677	Homo sapiens	98 %
Q	MSRDFQCLSYSIKCVIELPVSSPSYSRDADG GWNVDGGWQVSNIQTVQ*	147 48		-	
R	MSPVIQQPRPSFDGLNIWSSLNSLYIGNLP ASIHIPTSVCIPRITGR*	144 47		-	-
S	MTGWSLLFKFQIDIPDKRCLSPCLSSDLHST VPGKVEPPASP*	129 42		-	-
т	MKTKCSSHQKKAGAAGSLGTSQKSQEVFR GCRRWLLGPP*	120 39	Hypothetisches Protein	Arthrospira platensis	53 %
Isoform	1 - 2				
U	MKDKGLRHTETGQTNGKPTRPAHDQNIT GRPPANAEASESTVGSWNQAPGNLSAAF RL*	177 58	Hypothetisches Protein TCE0_044f16872	Talaromyces cellulolyticus	67 %
v	MGNRPDQPMTKISQADHPQMQRPQSP QWAVGTRPQGIFQLHSGCDRRATGRGAG GG*	171 56	Hypothetisches Protein AOQ84DRAFT_335887	Glonium stellatum	33 %
W	MTDTENHDSSPSSTSTCCPPITAGMQLKD SLGPGSNCPLWTLRPLHLRVVCL*	159 52	Hypothetisches Protein MGC4677	Homo sapiens	98 %
х	MTGWSLLFKFQIDIPDKRCLSPCLSSDLHST VPGKVEPPASP*	129 42	-	-	-
Y	MSRDFQCLSYSIKCVIELPVSSPSYSGRGW WLHLPRNCAVKI*	129 42	-	-	-

Die theoretischen ORFs decken größtenteils nur einen Teil der nötigen Peptidsequenzen ab oder sind durch etliche Mutationen gekennzeichnet und können somit nicht in funktionsfähige Peptide translatiert werden.

Innerhalb des zweiten Exons von STAiR18 lässt sich allerdings ein ORF mit einer Länge von 159 nt bzw. 52 Aminosäuren finden, der zu 98% deckungsgleich mit dem theoretisch in *Homo Sapiens* existierenden Protein MGC4677 ist, welches nach jetzigem Erkenntnisstand allerdings nur hypothetisch existiert. Da die für diesen ORF kodierende Sequenz innerhalb der Säuger im Vergleich

zu anderen STAiR18-Regionen allerdings eine nur geringe Konservierung aufweist, wird davon ausgegangen, dass sie nicht zur Synthese eines funktionellen Peptides dient. Es konnte nur ein ORF identifiziert werden, welcher für ein bereits beschriebenes Protein kodiert. Dieser wird innerhalb der STAiR18-Isoform ausgebildet, welche sich aus Exon 1, Exon 4 und Exon 5 zusammensetzt und konnte mit 41 % Übereinstimmung einem Vorläuferprotein des Glutamat-Rezeptors 2 zugeordnet werden, welcher in Mäusen exprimiert wird. Da die Kongruenz mit 41 % zu der für eine vollständige Peptidsynthese erforderlichen Peptidsequenz allerdings sehr gering ist, kann nicht davon ausgegangen werden, dass die STAiR18-Isoform in der Maus tatsächlich in ein funktionsfähiges Peptid umgesetzt werden kann.

Einen weiteren Hinweis auf die nichtkodierenden Eigenschaften von STAiR18 liefert das Fehlen einer Kozak-Sequenz (GCCNCCATGG) innerhalb der STAiR18-Sequenzen. Diese stellt einen entscheidenden Faktor für die Initiation der Translation dar, da sie eingangs von den Ribosomen erkannt wird und somit notwendig für den Start der Proteinbiosynthese ist [145,146].

Es ist zum jetzigen Zeitpunkt folglich davon auszugehen, dass es sich bei STAiR18 um eine nichtkodierende RNA handelt, deren Transkripte nicht zur Synthese eines Proteins dienen.

3.1.4 STAiR18 wird ubiquitär exprimiert

Lange nichtkodierende RNAs weisen häufig eine gewebsspezifischere Expression als proteinkodierende Gene auf und werden auch im Laufe der Entwicklung streng reguliert und spezifisch exprimiert [147,148]. Im nächsten Schritt sollte deshalb auch STAiR18 hinsichtlich der Gewebespezifität untersucht werden und die Expression ausgewählter STAiR18-Isoformen in verschiedenen gesunden Geweben nachgewiesen werden. Dazu wurden RNA-Proben von 20 humanen Geweben (Human Total RNA Master Panel II) verwendet und die Expression von STAiR18 in diesen Proben mittels Isoform-spezifischer Primer per qPCR bestimmt. Wie in Abbildung 5 dargestellt ist, konnte die Expression von STAiR18 in jedem untersuchten Gewebe nachgewiesen werden, weshalb davon auszugehen ist, dass STAiR18 zu den ubiquitär exprimierten nichtkodierenden RNAs zählt. Ubiquitär exprimierte Gene werden häufig für eine Aufrechterhaltung der grundlegenden zellulären Funktionen benötigt und können essentiell für das Überleben der Zellen sein, unabhängig von deren spezifischen Rolle im Gewebe oder Organismus [149]. Allerdings schwankt das Expressionslevel der einzelnen STAiR18-Isoformen sehr stark. Während die Isoformen, welche Exon 1 und Exon 2, Exon 1 und Exon 3 oder auch Exon 4 und 5 enthalten, hoch exprimiert vorliegen, werden die Isoformen, welche sich aus dem Exon K und Exon 2 zusammensetzen ebenso wie das komplette Transkript der STAiR18-A-Isoform 1-7, in allen Geweben verhältnismäßig schwach exprimiert. Außerdem konnte in allen untersuchten Geweben die miRNA4435 mit einem mittleren Expressionslevel nachgewiesen werden. Diese ist im intronischen Bereich zwischen dem 4. und 5. Exon von STAiR18 annotiert, was die Vermutung nahe legt, dass es sich bei STAiR18 um das primäre Vorläufertranskript dieser miRNA handeln könnte. In fast allen untersuchten Geweben wird die Isoform STAiR18 1-3 am stärksten exprimiert. In der Niere trifft dies allerdings auf die Isoform STAiR18 4-5 und in der Speicheldrüse und Milz auf die Isoform STAiR18 1-2 zu. STAiR18 wird folglich alternativ gespleißt und die verschiedenen Isoformen je nach Gewebetyp unterschiedlich stark exprimiert. Auch die allgemeine STAiR18-Expression innerhalb der verschiedenen Gewebe unterliegt hohen Schwankungen von teilweise bis zu 70-fach erhöhten Expressionsleveln. So wird STAiR18 in der Nebenniere, im Knochenmark, der fötalen Leber, Lunge, Plazenta, Dünndarm, Rückenmark und Milz äußerst hoch exprimiert. Im Hirn, Speicheldrüse und Hoden ließ sich dagegen weniger STAiR18 nachweisen. Vergleicht man die Expression von STAiR18 zwischen adultem und fötalem Gewebe am Beispiel von Hirn und Leber fallen auch hier Schwankungen ins Auge. Während die STAiR18-Expression im adulten Hirn (hier vor allem die Isoform STAiR18 1-3) höher ausfällt, als im fötalen Hirngewebe, verhält es sich in der Leber anders herum. Dies könnte darauf hindeuten, dass STAiR18 auch im Laufe der Entwicklung der einzelnen Organe unterschiedlichen Regulationen unterliegt und verschiedene Aufgaben erfüllt.

Die Expressionsanalyse verdeutlicht die komplexe Regulation, welcher die STAiR18-Expression unterliegt. Zwar konnte in allen untersuchten Geweben die Expression von STAiR18 nachgewiesen werden, allerdings schwankt das Expressionslevel der einzelnen Isoformen ebenso wie die allgemeine Expressionsstärke von STAiR18 in den untersuchten Geweben durch vermutlich alternative Spleißvorgänge sehr stark.

STAIR18 1-2 STAIR18 1-3 STAIR18 4-5 miR4435 STAIR18 K-2 STAIR18 1-7

Abbildung 5: Expressionsanalyse ausgewählter STAiR18-Isoformen in gesunden humanen Geweben. Jeweils 1 µg DNaseverdauter RNA von 20 humanen Geweben (Human Total RNA Master Panel II) wurde in cDNA umgeschrieben und für die anschließende qPCR 1:10 verdünnt. Es kamen spezifische Primer für ausgewählte STAiR18-Isoformen, die miRNA4435 sowie für die Housekeeper-RNA U6 zum Einsatz. Die C_T-Werte wurden mit denen von U6 abgeglichen und die Expression der STAiR18-Isoformen auf die Expression des STAiR18 1-2-Transkipts im Kleinhirn normiert (n≥3).

3.1.5 STAiR18 wird alternativ gespleißt

Ebenso wie die Loci proteinkodierender Gene können auch die Loci von IncRNAs durch alternatives Spleißen eine Vielzahl verschiedener Transkript-Isoformen hervorbringen, welche zum Teil sehr spezifisch exprimiert werden [150,151]. Bei den vorangegangen qPCR-Untersuchungen zur Expression von STAiR18 in verschiedenen humanen Geweben traten gewebeabhängige Unterschiede in den Schmelzkurven der einzelnen Primerkombinationen auf. Da diese Schmelzkurven Hinweise auf die Anzahl und Spezifität der mittels qPCR amplifizierten Produkte liefern, sollte im Folgenden überprüft werden, ob auch STAiR18 gewebeabhängige, alternative Spleißmuster aufweist. Für eine gewebespezifische Sequenzanalyse wurden die gespleißten STAiR18-Transkripte zunächst amplifiziert und mittels Sanger-Sequenzierung analysiert. Die Amplifikation erfolgte mittels qPCR unter Verwendung eines im ersten Exon bindenden Vorwärtsund eines im siebten Exon bindenden Rückwärtsprimers, wodurch das gesamte STAiR18-Transkript umschlossen wurde. Dabei wurde beispielhaft RNA aus Milz-, Hoden-, Thymus-, Schilddrüsen- und Fettgewebe untersucht.

Abbildung 6: STAiR18 wird alternativ gespleißt. Jeweils 1 µg DNase-verdauter RNA von Milz, Hoden, Thymus, Schilddrüse und Fettgewebe (Human Total RNA Master Panel II) wurde in cDNA umgeschrieben und für die anschließende qPCR 1:10 verdünnt. Die qPCR wurde mit dem Primerpaar STAiR18 1-7 durchgeführt und die amplifizierten Produkte in einem 2 %igen Agarosegel aufgetrennt, mittels QIAquick Gel Extraction Kit (Qiagen) nach Herstellerangaben isoliert und durch die Core-Unit-DNA-Technologien (IZKF, Leipzig) sequenziert. Die erhaltenen Sequenzen wurden mit den im UCSC-Genome-Browser hinterlegten STAiR18-Sequenzen abgeglichen. Die Ergebnissse sind hier schematisch dargestellt. Die einzelnen *Alignments* und Sequenzen können Abbildung 45 bis 52 im Anhang entnommen werden.

In Abbildung 6 sind die Ergebnisse der Sanger-Sequenzierung schematisch dargestellt. So wurde unter Verwendung des Primerpaares 1-7 in jedem der untersuchten Organe ein Transkript amplifiziert, welches sich aus den annotierten Exons 1, 3, 4 und 7 zusammensetzte. Anders als die im UCSC-Genome-Browser annotierte 560 Nukleotide lange Variante des dritten Exons wurde in den untersuchten Organen allerdings mit nur 90 Nukleotiden eine deutlich verkürzte Variante des dritten Exons nachgewiesen. In Milz und Hoden trat außerdem eine Transkriptvariante auf, welche nur die Exons 1, 3 und 7 enthielt, wobei das dritte Exon hier in einer 180 Nukleotid langen Variante vorzuliegen scheint. In der Milz konnte zudem eine dritte Transkriptvariante entschlüsselt werden, bei welcher auch das siebte Exon mit 380 Nukleotiden in einer verkürzten Form vorlag. Die Sequenzierdaten zeigen somit, dass durch eine Amplifikation mit demselben Primerpaar (hier Primerpaar 1-7) je nach Gewebe verschiedene Transkripte nachgewiesen werden können, welche sich durch alternative Spleißvorgänge aus unterschiedlichen Exon-Kombinationen zusammensetzen.

3.1.6 STAiR18 wird im Tumor überexprimiert

Betrachtet man die umfangreichen Funktionen, welche IncRNAs in der Zelle übernehmen können, ist es plausibel, dass deren Fehlregulation zahlreiche Erkrankungen zur Folge haben kann. So konnte eine differenzielle Expression einiger IncRNAs in malignen Erkrankungen beobachtet und eine Korrelation der Expressionslevel mit dem Verlauf der Erkrankung aufgestellt werden. Für einige IncRNAs, wie beispielsweise ANRIL, MALAT-1 und HOTAIR, ist bereits deren Rolle als Tumorsupressor bzw. Onkogen bekannt [99]. Im Folgenden sollte deshalb auch die Expression von STAiR18 in gesundem Normalgewebe mit der im dazugehörigen Tumorgewebe verglichen werden. Die RNA aus gesundem und Tumorgewebe wurde von BioChain erworben und die Expression ausgewählter STAiR18-Isoformen mittels spezifischer Primerpaare per qPCR analysiert. Dabei konnte eine erhöhte STAiR18-Expression in jedem der acht getesteten Tumortypen verglichen mit dem Normalgewebe festgestellt werden. Je nach Tumortyp schwankt die gesteigerte Expression im Tumor zwischen etwa 2-fach und 5-fach, wobei die deutlichsten Unterschiede in der Expressionsstärke bei Darm- und Nierentumoren auftraten. Zudem fällt auf, dass nahezu alle gemessenen Isoformen von STAiR18 gleichermaßen in allen Tumortypen verstärkt exprimiert werden.

Die Ergebnisse verdeutlichen weiterhin die Expressionsunterschiede der STAiR18-Isoformen innerhalb der verschiedenen Gewebe, die schon im vorhergehenden Kapitel aufgezeigt wurden. Während die Isoformen STAiR18 1-7 und K-2 erneut kaum nachweisbar waren, liegen die Isoformen 1-2, 1-3, 1-4 und 4-5 hoch exprimiert vor. Auch die zwischen den Geweben stark schwankenden Expressionslevel von STAiR18 konnten bestätigt werden. So sind in Prostata, Blase und Leber vergleichsweise geringe Expressionslevel von STAiR18 und in beispielsweise Niere, Brust und Lunge hohe STAiR18-Level zu verzeichnen. Dieser Datensatz bestärkt folglich die differentielle Regulation und Expression von STAiR18 in verschiedenen Geweben und weist zudem auf eine potentielle Funktion während der Tumorgenese hin. In den letzten Jahren wurde immer ersichtlicher, dass IncRNAs als neue unabhängige Biomarker für die Diagnose und Prognose von Tumorerkrankungen dienen könnten. Die ubiquitäre Überexpression von STAiR18 in jedem getesteten Tumortyp spiegelt somit dessen möglichen Einsatz als allgemeinen Tumormarker wider.

3.1.7 STAiR18 wird in Alzheimer-Proben verstärkt exprimiert

Neben Tumorerkrankungen scheinen IncRNAs auch neurodegenerative Erkrankungen wie beispielsweise die Alzheimer-Erkrankung zu beeinflussen und könnten hier einen neuen Ansatz für zukünftige therapeutische Anwendungen darstellen [152]. Nachfolgend wurde darum die STAiR18-Expression im Zusammenhang mit der Alzheimer-Erkrankung analysiert. Dafür wurde die STAiR18-Expression in 46 Kontrollproben (davon 19 weiblich und 27 männlich, Durchschnittsalter 64 Jahre) und 49 Alzheimer-Proben (davon 21 weiblich und 28 männlich, Durchschnittsalter 80 Jahre) verglichen, wobei die Alzheimer-Proben nach Braak in sechs neuropathologische Verlaufsstadien gegliedert werden können [153]. Die Proben entstammen dem humanen Temporallappen und wurden *post mortem* entnommen. Die daraus isolierte RNA wurde freundlicherweise von Prof. Dr. Thomas Arendt (Paul Flechsig Institut für Hirnforschung, Leipzig) zur Verfügung gestellt. Während die STAiR18-Isoformen STAiR18 1-2, STAiR18 1-3 und STAiR18 4-5 in Alzheimer- und Kontrollproben nicht eindeutig differenziell exprimiert vorliegen, wird die Isoform STAiR18 1-7 in den Alzheimerproben fast doppelt so stark exprimiert. Dies ist auch für die miRNA4435 der Fall, welche zwischen dem 4. und dem 5. Exon im intronischen Bereich von STAiR18 annotiert ist.

Um zu überprüfen, ob die STAiR18-Expression im Krankheitsverlauf zunimmt und abhängig vom Stadium der Krankheit ist, wurde die Expression ebenso in nur den Proben analysiert, welche ein fortgeschrittenes Stadium (Stufe IV-VI) repräsentieren. Um mögliche Einflüsse von Geschlecht oder Alter der Patienten auf die STAiR18-Expression auszuschließen, wurde die Gruppe der Kontrollproben für diese Analyse so gewählt, dass sie der Gruppe der Alzheimer-Proben (Stufe IV-VI) in diesen Merkmalen möglichst entsprachen. In die Kontrollgruppe flossen 14 Proben mit einem durchschnittlichen Alter von 78 Jahren, davon 9 Frauen und 5 Männer ein. Die Alzheimer-Gruppe (Stufe IV-VI) setzte sich für diese Analyse aus 14 Proben mit einem durchschnittlichen Alter von 81 Jahren, davon 10 Frauen und 4 Männer zusammen. Auch hier liegen STAiR18 1-7 und miR4435 in den Alzheimerproben (Stufe IV-VI) etwa doppelt so stark exprimiert vor wie in den Kontrollproben. Das Expressionslevel von STAiR18 1-7 und miR4435 scheint somit zwar generell in Alzheimer-Proben erhöht zu sein, allerdings nicht mit fortschreitendem Krankheitsverlauf und Stadium zuzunehmen.

Schaut man auf die STAiR18-Expressionunterschiede zwischen Männern und Frauen, fällt auf, dass die Isoform STAiR18 1-7 sowohl in den Kontroll- als auch in den Alzheimer-Demenz-Proben (AD-Proben) in Frauen verstärkt exprimiert wird. Die Isoformen STAiR18 1-3 liegt dagegen in den weiblichen AD-Proben weniger häufig vor als in den männlichen. STAiR18 und seine verschiedenen Isoformen werden folglich nicht nur in verschiedenen gesunden humanen Geweben und in Tumorerkrankungen differenziell reguliert, sondern auch in anderen Erkrankungen wie der Alzheimer-Erkrankung. Zudem konnte auch eine geschlechtsspezifische Expression von STAiR18 beobachtet werden.

Abbildung 8: Die STAiR18-Expression in Alzheimer-Proben. (A) Teilweise erhöhte Expression von STAiR18 in AD-Proben gegenüber den Kontrollproben. Jeweils 1 µg DNase-verdauter RNA aus AD-Proben bzw. Kontrollproben, welche aus *post mortem* entnommenen Gewebe des humanen Temporallappens isoliert wurde, wurde in cDNA umgeschrieben, 1:10 verdünnt und für die qPCR eingesetzt. Es kamen spezifische Primer für ausgewählte STAiR18-Isoformen sowie für die Housekeeper-RNA U6 zum Einsatz. Die C_T-Werte wurden mit denen von U6 abgeglichen und es erfolgte eine Normierung auf die Kontrollproben. Außerdem wurden die AD-Proben, welche eine AD-Stufe von IV-VI repräsentieren, getrennt von den übrigen AD-Proben analysiert. Die Normierung erfolgte dabei auf Kontrollproben, welche den AD-Proben in Alter und Geschlechtsverteilung möglichst entsprachen (n≥3). (B) Erhöhte Expression der Isoform STAiR18 1-7 in weiblichen Proben. Die RNA wurde wie oben beschrieben analysiert. Nach einem U6-Abgleich der C_T-Werte erfolgte eine Normierung auf die männlichen Proben, wobei die Expression der verschiedenen STAiR18-Isoformen in Kontroll- und AD-Proben getrennt voneinander analysiert wurde.

3.2 Funktionsanalyse von STAiR18 in Glioblastomzellen

Nachdem STAiR18 auf molekularer Ebene charakterisiert wurde, die ubiguitäre Expression von STAiR18 in verschiedensten humanen Geweben nachgewiesen werden konnte und eine differenzielle Expression von STAiR18 in gesundem Normalgewebe und allen zugehörigen Tumorgeweben beobachtet wurde, sollte nun mittels Knockdown-Studien die physiologische Funktion von STAiR18 näher analysiert werden. Wie bereits aus vorhergehenden Studien der AG Horn bekannt war, fällt STAiR18 eine Schlüsselrolle in der Regulation des Überlebens Multipler Myelomzellen zu. Ein Knockdown von STAiR18 leitet in diesen die Apoptose ein und es kommt zu einem drastischen Vitalitätsverlust binnen 72 h [139]. Um zu überprüfen, ob STAiR18 ausschließlich in Zellen des Multiplen Myeloms eine essentielle Funktion für deren Überleben inne hat, oder ob auch die Vitalität anderer Zellsysteme durch STAiR18 reguliert wird, wurde STAiR18 in verschiedenen humanen Zelllinien mittels siRNAs ausgeschalten. Es kamen siRNAs, welche das erste Exon von STAiR18 treffen, zum Einsatz und eine ausreichende Knockdowneffizienz von über 85 % wurde per qPCR verifiziert. Anschließend wurde die Vitalität der Zellen durchflusszytometrisch beziehungsweise mittels ATP-Messung überprüft. Allerdings konnte in keiner der getesteten Zelllinien (Brustkrebs: MCF-7; Leberkrebs: HepG2; Prostatakrebs: LNCaP; T-Zell-Leukämie: Jurkat; B-Zell-Lymphom: SuDHL-6; Akute myeloische Leukämie: MV4-11; Neuroblastom: SH-SY5Y) ein Einfluss von STAiR18 auf die Vitalität oder Morphologie der Zellen festgestellt werden (Daten nicht gezeigt).

3.2.1 STAiR18 beeinflusst die Adhärenz, Migration und Invasion von Glioblastomzellen

RNAi-vermittelte Knockdownstudien sind ein geeignetes Mittel, um die Expression eines Transkripts zu manipulieren und dessen Auswirkungen auf die Zelle zu analysieren. Während bei den meisten untersuchten Zelllinien keine Effekte auf die Zellmorphologie oder Vitalität nach einem STAiR18-Knockdown beobachtet werden konnten, zeigte sich in der Glioblastomzelllinie A172 ein veränderter Phänotyp, welcher die Adhärenz, Migration und Invasion der Zellen betraf.

Adhärenz

Um adhärente Zellen in der Zellkultur von der Oberfläche der Zellkulturschalen zu lösen, macht man sich die proteolytischen Eigenschaften von Trypsin, einem Gemisch dreier Verdauungsenzyme, zu Nutze. Nach Zugabe von Trypsin zu den transfizierten A172-Zellen fiel auf, dass sich die mit einer siRNA gegen das erste Exon von STAiR18 behandelten Zellen deutlich langsamer von der Oberfläche lösten, als die mit einer scramble-RNA behandelten Zellen, welche als Negativkontrolle mitgeführt wurden. So hafteten die STAiR18-KD-Zellen 5 min nach Trypsin-Zugabe noch an der Zellkulturschale, während sich die Kontrollzellen bereits abgelöst hatten. Dieselben Effekte konnten auch bei einer weiteren Glioblastomzelllinie MZ18 beobachtet werden. Eine dritte untersuchte Zelllinie des Glioblastoms U87 zeigte diese Effekte nach STAiR18-KD allerdings nicht. Hier lösten sich 5 min nach Trypsin-Zugabe sowohl die STAiR18-KD-Zellen als auch die Kontrollzellen komplett von der Oberfläche der Zellkulturschale. Betrachtet man den Mutationsstatus der untersuchten Glioblastomzelllinien, fällt auf, dass sie Unterschiede in der Expression der Tumor-Suppressor-Gene
PTEN und p53 aufweisen. Dies könnte eine mögliche Erklärung für die hier beobachteten Unterschiede darstellen (s. Diskussion S. 140).

Migration

Trypsin spaltet Peptide am C-Terminus von Lysin- und Argininresten. Bei einer kurzen Behandlung der Zellen mit Trypsin werden diese allerdings nicht geschädigt und nur die extrazellulären Proteine gespalten, was ein Ablösen adhärenter Zellen von der Zellkulturschale zur Folge hat. Die unterschiedlichen Effekte der Trypsin-Zugabe auf STAiR18-KD-Zellen und Kontrollzellen werfen die Frage auf, ob durch STAiR18-KD auch die Migration von A172-Zellen beeinflusst wird. Um dies zu testen, wurden die Zellen mit einer siRNA gegen das erste Exon von STAiR18 und mit einer scramble-Kontrolle transfiziert. Da STAIR18 in Zellen des Multiplen Myeloms als IncRNA beschrieben worden ist, die durch den Transkriptionsfaktor STAT3 induziert werden kann [138], wurde zum Vergleich auch der Einfluss eines STAT3-KDs auf die A172-Zellen untersucht. Die transfizierten Zellen wurden zunächst in ein zweikammeriges Insert eingesät. 24 h posttransfektion wurde das Insert entfernt und die Zellen konnten so in die definierte Lücke zwischen den zwei Kammern mit einer definierten Breite von 500 µm einwachsen. Die Breite des überwachsenen Spaltes wurde mikroskopisch unter Verwendung der Scratch Assay-Anwendung des ImageJ-Programms über die folgenden 24 h analysiert. Während die STAiR18-KD-Zellen nach 24 h die Lücke komplett überwachsen hatten, war sie bei den scramble-Kontrollzellen und den STAT3-KD-Zellen erst zu etwa 70 % überwachsen. Wie in Abbildung 10 dargestellt ist, migrieren A172-Zellen mit einer verminderten STAiR18-Expression folglich schneller durch den Spalt als die Vergleichszellen.

Das schnellere Einwachsen in die zellfreie Fläche zwischen den beiden Kammern der STAiR18-KD-Zellen im Vergleich zu den Kontrollzellen könnte zum einen auf eine erhöhte Proliferation der Zellen oder aber auch auf eine gesteigerte Migrationsfähigkeit zurückzuführen zu sein. Um dies näher analysieren zu können, wurden die Migrationsexperimente unter Verwendung des Zytostatikums Mitomycin C wiederholt. Durch eine Interkalation von Mitomycin C zwischen die zwei Stränge der DNA werden diese kovalent verbunden, wodurch eine Dissoziation, wie sie zur Replikation und Transkription benötigt wird, verhindert ist. Folglich wird in den Zellen ein Zellzyklusarrest ausgelöst und es kommt zu einer Hemmung der Zellteilung. Durch den Einsatz von Mitomycin C kann also die Migration der Zellen unabhängig von möglichen Proliferationseffekten, ausgelöst durch einen STAiR18-KD, beobachtet werden.

Mikroskopie und Analyse der zellfreien Fläche mittels Image J

Abbildung 10: Migration der A172-Zellen in Abhängigkeit von STAiR18. (A) Schematische Darstellung des Versuchs zur Migrationsanalyse in Abhängigkeit von STAiR18. Die Zellen wurden transfiziert und jeweils 1 x 10⁴ Zellen in beide Kammern eines Migrations-Inserts eingesät. 24 h posttransfektion wurde das Insert entfernt. Die Zellen migrierten anschließend in den definierten zellfreien Spalt von 500 µM und die Breite des überwachsenen Spalts wurde über die nächsten 24 h analysiert. Dafür wurde der Spalt mikroskopiert und das Bild mittels Scratch Assay Analyzer von ImageJ ausgewertet. (B) STAiR18 beeinflusst die Migration von A172-**Zellen.** 3 x 10⁶ A172-Zellen wurden mit 20 μ M siRNA (scr; siSTAiR18 Ex1.1; siSTAT3) transfiziert, die Zellen wie oben beschrieben in beide Kammern eines Migrations-Inserts eingesät und die Migration der Zellen in die zellfreie Lücke analysiert. n≥3.

Zunächst sollte in einem Vorexperiment die für die A172-Zellen geeignete Inkubationszeit und Konzentration an Mitomycin C bestimmt werden, welche einerseits zu einer Hemmung der Zellteilung führt, die Zellen aber andererseits nicht in die Apoptose schickt. Dafür wurden A172-Zellen für eine halbe Stunde, eine Stunde oder drei Stunden mit 10 µg/ml, 20 µg/ml und 50µg/ml Mitomycin C inkubiert. Im Anschluss wurden die Zellen zweimal mit Medium gewaschen und der oben beschriebene Migrationstest durchgeführt. Außerdem wurde die Vitalität der Zellen mittels ATP-Messung analysiert. Wie in Abbildung 11 zu erkennen ist, wachsen die A172-Zellen, welche für 3 h mit 20 µg/ml und mit 50µg/ml Mitomycin C inkubiert wurden, deutlich langsamer in die zellfreie Fläche ein, als die anderen Ansätze. Allerdings zeigt nur der Ansatz, bei welchem die Zellen für 3h mit 50 µg/ml Mitomycin C inkubiert wurden, eine konstante Vitalität, welche über den untersuchten Zeitraum weder zunimmt noch fällt. Dies deutet daraufhin, dass bei allen anderen Ansätzen durch Mitomycin C kein kompletter Zellzyklusarrest eingeleitet wurde und es trotz Mitomycin C-Behandlung zur Proliferation der Zellen kommt, was die steigenden ATP-Level in diesen Proben erklärt. Will man folglich die Migration der Zellen losgelöst von Proliferationseffekten beobachten, ist eine vorhergehende Inkubation mit 50 μg/ml Mitomycin C für 3 h erforderlich.

Abbildung 11: Ermittlung der geeigneten Mitomycin C-Inkubationsbedingungen. (A) Migration der A172-Zellen unter Einfluss von Mitomycin C. A172-Zellen wurden für eine halbe Stunde, eine Stunde oder drei Stunden mit 10 µg/ml, 20 µg/ml und 50 µg/ml Mitomycin C inkubiert und jeweils 1×10^4 Zellen in beide Kammern eines Migrations-Inserts eingesät. Nach 24 h wurde das Insert entfernt. Die Zellen migrierten anschließend in den definierten zellfreien Spalt von 500 µM und die Breite des überwachsenen Spalts wurde über die nächsten 24 h analysiert. Dafür wurde die Fläche mikroskopiert und das Bild mittels Scratch Assay Analyzer von ImageJ ausgewertet (n=1). (B) Vitalität der A172-Zellen unter Einfluss von Mitomycin C. A172-Zellen wurden wie oben beschrieben mit Mitomycin C inkubiert und jeweils 5×10^3 Zellen pro Ansatz ausgesät. Die Vitalitätsbestimmung erfolgte indirekt über die Messung des ATP-Levels unter Verwendung des CellTiter-Glo[®] Luminescent Cell Viability Assays von Promega (n=5).

Abbildung 12: Migration und Vitalität der A172-Zellen in Abhängigkeit von STAiR18 nach Mitomycin C-Inkubation. (A) Beispielhafter Migrationsverlauf nach Inkubation mit Mitomycin C. 3×10^6 A172-Zellen wurden mit 20 µM siRNA (scr; siSTAiR18_Ex1.1) transfiziert, für drei Stunden mit 50 µg/ml Mitomycin C inkubiert und jeweils 1×10^4 Zellen in beide Kammern eines Migrations-Inserts eingesät. Nach 24 h wurde das Insert entfernt. Die Zellen migrierten anschließend in den definierten zellfreien Spalt von 500 µM und die Breite des überwachsenen Spalts wurde über die nächsten 24 h analysiert. Dafür wurde der Spalt mikroskopiert und das Bild mittels Scratch Assay Analyzer von ImageJ ausgewertet (n=1). (B) Gesteigerte Migration der A172-Zellen nach STAiR18-KD. A172-Zellen wurden wie oben beschrieben transfiziert, mit Mitomycin C inkubiert und in die Kammern eines Migrations-Inserts eingesät. 24 h nach Entnahme des Inserts, wurde die Spaltbreite ermittelt. Dargestellt sind die auf den STAiR18-KD-Ansatz normierten Werte (n=4). (C) Vitalität der A172-Zellen in Abhängigkeit der Mitomycin C inkubiert und jeweils 5 x 10^3 Zellen pro Ansatz ausgesät. Die Vitalitätsbestimmung erfolgte indirekt über die Messung des ATP-Levels unter Verwendung des CellTiter-Glo[®] Luminescent Cell Viability Assays von Promega (n=5).

Nachdem die geeignete Inkubationszeit und Konzentration von Mitomycin C zur Untersuchung der zellulären Migration losgelöst von Proliferationseffekten für A172-Zellen ermittelt wurde, wurden die Migrationsexperimente unter Einsatz des Zytostatikums wiederholt. Die Zellen wurden mit einer siRNA gegen das erste Exon von STAiR18 und einer scramble Negativkontrolle transfiziert und mit Mitomycin C inkubiert. Anschließend wurden die Migration und Vitalität der Zellen wie oben beschrieben analysiert (siehe Abbildung 10). Wie vermutet wuchsen sowohl die Kontrollzellen als auch die STAiR18-KD-Zellen, welche zuvor mit Mitomycin C behandelt wurden, deutlich langsamer in den zellfreien Spalt ein als ohne Mitomycin C-Behandlung (siehe Abbildung 12). Da es durch die Inkubation mit Mytomycin C allerdings zu einer starken Beeinträchtigung der normalen Zellphysiologie kommt, traten im Laufe der Kinetik hohe Schwankungen innerhalb der einzelnen Versuche auf. Deshalb ist in Abbildung 12 A der Migrationsverlauf in Abhängigkeit von STAiR18 nach einer Inkubation mit Mitomycin C beispielhaft dargestellt, wohingegen in Abbildung 12 B die auf den STAiR18-KD-Ansatz normierten Werte gezeigt sind. Da die STAiR18-KD-Zellen auch unter Einsatz von Mitomycin C den zellfreien Spalt deutlich schneller schlossen als die Kontrollzellen, ist davon auszugehen, dass dieser Effekt tatsächlich auf eine gesteigerte Migration als Folge des STAiR18-KDs und nicht auf eine gesteigerte Proliferation der Zellen zurückzuführen ist. Zum Vergleich wurde auch die Vitalität der Zellen über die Bestimmung des ATP-Levels pro Ansatz analysiert. Während das ATP-Level in den Kontroll- und STAiR18-KD-Ansätzen über die Zeit durch die Proliferation der Zellen stetig zunimmt, bleibt das ATP-Level in beiden Ansätzen nach Behandlung mit Mitomycin C konstant, was für eine erfolgreich unterbundene Zellproliferation spricht.

Wie bereits gezeigt werden konnte, liegt STAIR18 in verschiedenen alternativen Transkriptvarianten vor. Deshalb sollte im Anschluss überprüft werden, ob die einzelnen Isoformen von STAiR18 die Migration der A172-Zellen gleichermaßen beeinflussen. Dazu wurde die STAIR18-Expression in den Zellen unterdrückt, indem siRNAs verwendet wurden, welche gegen verschiedene Exons von STAiR18 gerichtet sind. Zum Vergleich wurde eine scramble-Kontrolle und auch ein Ansatz, bei welchem die STAT3-Expression der Zellen mittels siRNA vermindert wurde, mitgeführt. Ein Knockdown mittels siRNAs gegen Exon 2, Exon 3 und Exon 7 zeigte den gleichen Effekt auf die Migration der Zellen, wie der bereits beobachtete Effekt eines Knockdowns von Exon 1. Während 24 h nach Entnahme des Inserts die Kontrollzellen und STAT3-KD-Zellen den zellfreien Spalt zu etwa 70 % überwachsen hatten, war er nach einem Knockdown der genannten Exons bereits vollständig geschlossen. Zum Ausschluss möglicher Off-target-Effekte der siRNAs wurden hier auch zwei weitere siRNAs gegen das erste Exon von STAiR18 mitgeführt, welche die Migration der Zellen ebenso steigerten. Lediglich beim Einsatz der siRNA gegen Exon K fiel ein weniger starker Effekt auf die Migration auf. Zusammenfassend lässt sich allerdings festhalten, dass eine verminderte Expression von STAiR18 unabhängig davon welches Exons mittels siRNAs getroffen wird, zu einem gesteigerten Migrationsverhalten von A172-Zellen führt.

Abbildung 13: Die STAiR18-Isoformen beeinflussen die Migration von A172-Zellen gleichermaßen. 3 x 10⁶ A172-Zellen wurden mit 20 µM siRNA (scr; siSTAT3; siSTAiR18_Ex1.1; siSTAiR18_Ex1.2; siSTAiR18 Ex1.3; siSTAiR18_Ex2; siSTAiR18_ExK; siSTAiR18_Ex3; siSTAiR18 Ex7) tranzfiziert und jeweils 1 x 10⁴ Zellen in beide Kammern eines Migrations-Inserts eingesät. 24 h posttransfektion wurde das Insert entfernt. Die Zellen migrierten anschließend in den definierten zellfreien Spalt von 500 µM und die Breite des überwachsenen Spalts wurde über die nächsten 24 h analysiert. Dafür wurde der Spalt mikroskopiert und das Bild mittels Scratch Assay Analyzer von ImageJ analysiert (n=3).

Die Effizienz des STAiR18-Knockdowns unter Verwendung der verschiedenen siRNAs, deren Bindestellen und Einfluss auf die Transkriptvarianten von STAiR18 soll im nachfolgenden Kapitel 3.3.2 näher beleuchtet werden.

Da nicht nur A172-Zellen, sondern auch eine zweite Zelllinie des Glioblastoms, MZ18, bei verminderter STAiR18-Expression eine erhöhte Adhärenz der Zellen an die Zellkulturschale nach Trypsin-Zugabe aufwies, sollte auch in dieser Zelllinie überprüft werden, inwiefern die Migration der Zellen von der STAiR18-Expression abhängig ist. Dafür wurden die MZ18-Zellen analog zu den A172-Zellen mit siRNAs gegen STAiR18 und zum Vergleich gegen STAT3 und mit einer scramble-Kontrolle transfiziert und die Migration in die zellfreie Lücke analysiert. Im Gegensatz zum Knockdown von STAiR18 in den A172-Zellen, konnten in MZ18-Zellen allerdings keine Unterschiede in der Migration nach STAiR18-KD festgestellt werden.

69 | ERGEBNISSE

Abbildung 14: STAiR18 hat keinen Einfluss auf die Migration von MZ18-Zellen. 3 x 10^6 MZ18-Zellen wurden mit 20 µM siRNA (scr; siSTAiR18_Ex1.1; siSTAT3) transfiziert und jeweils 1 x 10^4 Zellen in beide Kammern eines Migrations-Inserts eingesät. 24 h posttransfektion wurde das Insert entfernt. Die Zellen migrierten anschließend in die definierte zellfreie Lücke von 500 µM und die Breite der überwachsenen Lücke wurde über die nächsten 24 h analysiert. Dafür wurde die Fläche mikroskopiert und das Bild mittels Scratch Assay Analyzer von ImageJ analysiert (n=4).

Invasion

Während die Zellen im oben beschriebenen Migrationsassay als einschichtiger Zellrasen wachsen, bei dem sie unspezifisch an die Oberfläche der Zellkulturschale adhärieren, liefern 3D-Zellkulturen ein physiologischeres Modell um Tumorwachstum und -invasion zu untersuchen. Dazu werden die Zellen zunächst in u-förmige Wells eingesät, wo sie bereits nach 24 h einen kompakten Spheroid ausbilden. Dieser setzt sich aus multizellulären Schichten mit direktem Zell-Zellkontakt zusammen. Es kann sich ein Nährstoff- und Sauerstoffgradient innerhalb des Spheroids ausbilden, da die Diffusion durch die einzelnen Zellschichten vermindert wird. Dadurch kommt es zu einem heterogenen Aufbau des Spheroids. Während in dessen Innerem teilweise nekrotische Zellen zu finden sind, proliferieren die Zellen an der Oberfläche und der Spheroid ähnelt somit einem avaskulären Tumor in vivo. Wird der Spheroid anschließend in eine Invasionsmatrix eingebettet, können die Zellen in diese einwandern und ihre Invasionsfähigkeit untersucht werden. Die Invasionsmatrix (Geltrex[™]) stellt eine lösliche Form der Basalmembran dar und setzt sich unter anderem aus Laminin, Typ-IV Kollagen, Entactin und Heparansulfaten zusammen. Im folgenden Versuch wurden A172-Zellen zunächst mit einer scramble-Kontrolle und einer siRNA gegen das erste Exon von STAiR18 transfiziert. In beiden Ansätze bildete sich nach 24 h ein kompakter Spheroid, welcher anschließend in die Invasionsmatrix eingebettet wurde. Die Größe des in die Invasionsmatrix einwachsenden Spheroids wurde mikroskopisch ermittelt.

Abbildung 15: Die Invasion der A172-Zellen in Abhängigkeit von STAiR18. (A) Schematische Darstellung des Versuchs zur 3D-Invasionsanalyse in Abhängigkeit von STAiR18. 3 x 10⁶ A172-Zellen wurden mit 20 µM siRNA (scr; siSTAiR18_Ex1.1) transfiziert und je 3000 Zellen in ein u-förmiges beschichtetes Well eingesät. Nach 24 h wurden die Zellen, welche zu einem kompakten Spheroid gewachsen waren, in eine Invasionsmatrix (Geltrex[™]) eingebettet und die Invasion der Zellen in diese Matrix mikroskopisch analysiert. (B) Gesteigerte Invasion der A172-Zellen nach STAiR18-KD. A172-Zellen wurden wie oben beschrieben transfiziert, bildeten einen kompakten Spheroiden aus und wurden in die Invasionsmatrix eingebettet. Nach 3 Tagen in der Invasionsmatrix wurde der Durchmesser der Spheroide ermittelt (n=5). (C) Beispielhafte Darstellung der Invasion der Spheroiden aus und wurden in die Invasionsmatrix eingebettet. Die Invasion der Zellen in die Invasionsmatrix eingebettet.

Wie in Abbildung 15 ersichtlich ist, war nicht nur das Migrationsverhalten, sondern auch die Fähigkeit zur Invasion nach einem STAIR18-KD in den Zellen erhöht. So bilden die STAIR18-KD-Zellen nach drei Tagen in der Invasionsmatrix einen zu etwa 50 % vergrößerten Spheroid gegenüber den Kontrollzellen aus.

Die eingangs beobachteten Effekte eines STAiR18-KDs nach Zugabe von Trypsin zu den A172-Zellen, scheinen sich somit auch auf das Migrationsverhalten der Zellen und deren Invasion im 3D-Modell auszuwirken.

3.2.2 STAiR18 nimmt keinen Einfluss auf die Vitalität von Glioblastomzellen

Durch vorhergehende Studien der AG Horn war bereits bekannt, dass Multiple Myelomzellen in ihrem Überleben nicht nur von dem Transkriptionsfaktor STAT3, sondern auch strikt von STAiR18 abhängig sind [139]. Nun sollte überprüft werden, inwieweit auch das Überleben der Glioblastomzellen von der STAT3- und STAiR18-Expression abhängt. Dazu wurde die Expression von STAT3 und STAIR18 mittels RNAi unterdrückt. Es kamen siRNAs gegen STAT3, das erste, zweite, dritte und siebte Exon sowie Exon K von STAIR18 zum Einsatz. 48 h posttransfektion wurde die Vitalität der A172-Zellen ermittelt. Dies erfolgte zum einen über einen durchflusszytometrischen FACS-Assay, bei dem die nekrotischen und apoptotischen Zellen mittels PI- und AnnexinV-Färbung ermittelt und so auch der Anteil der vitalen Zellen bestimmt werden kann, und zum anderen über einen ATP-Assay, bei welchem unter Verwendung des CellTiter-Glo® Luminescent Cell Viability Assays von Promega der zelluläre ATP-Gehalt pro Ansatz bestimmt wird. Dieser steht in direkter Abhängigkeit zur Vitalität der Zellen und wird über eine Luciferase-Reaktion ermittelt. Wie Abbildung 16 entnommen werden kann, zeigten beide Methoden allerdings, dass die A172-Zellen, im Gegensatz zu den Zellen des Multiplen Myeloms, in ihrer Vitalität weder von STAT3 noch von STAiR18 abhängig sind. So konnte durch keine der verwendeten siRNAs Unterschiede in der Vitalität gegenüber der scramble-Kontrolle ausgemacht werden.

Abbildung 16: Vitalität der A172-Zellen nach STAT3- und STAiR18-KD. 3×10^{6} A172-Zellen wurden mit 20 μ M siRNA (scr; siSTAT3; siSTAiR18_Ex1.1; siSTAiR18_Ex2; siSTAiR18_ExK; siSTAiR18_Ex3; siSTAiR18_Ex7) transfiziert. Für den FACS-Assay wurden die Zellen 48 h posttransfektion mit PBS gewaschen und unter Verwendung des Dead-Cell-Apoptosis Kits wurden die apoptotischen Zellen mit Annexin-V gefärbt und die nekrotischen Zellen mit PI gefärbt. Die Bestimmung der vitalen Zellen relativ zur Gesamtzellzahl erfolgte durch Abtrennung der apoptotischen und nekrotischen Zellen mittels Durchflusszytometrie. Dargestellt sind die auf den scramble-Ansatz normierten Werte (n=3). Die Vitalitätsbestimmung mittels ATP-Assay erfolgte indem die Zellen wie oben beschrieben transfiziert und 5 x 10^{3} Zellen pro Kavität eingesät wurden. 48 h posttransfektion erfolgte die Analyse des ATP-Gehalts pro Kavität durch Verwendung des CellTiter-Glo® Luminescent Cell Viability Assays. Die so gemessenen Fluoreszenzeinheiten sind proportional zum ATP-Gehalt, welcher wiederum direkt abhängig von der Vitalität der Zellen ist. Dargestellt sind die auf den scramble-Ansatz normierten Werte (n=3).

Des Weiteren wurde der Zellstatus mittels Impedanzmessung in Abhängigkeit der STAiR18beziehungsweise der STAT3-Expression analysiert. Die mit einer scramble-Kontrolle, einer siRNA gegen STAT3 beziehungsweise einer siRNA gegen STAiR18 transfizierten Zellen wurden dazu in spezielle Kulturplatten eingesät, in deren Boden Mikroelektroden integriert sind. Über eine kontinuierliche Messung der Impedanzänderung können Rückschlüsse auf Zellzahl, -morphologie und –proliferation in Echtzeit gezogen werden. Dabei wird der sogenannte Zellindex ermittelt, welcher ein einheitsloses Maß für die Impedanz darstellt und in Abhängigkeit der Zellproliferation ansteigt. Es wurden 5 x 10^4 transfizierte Zellen pro Kavität eingesät und die Impedanz unter Standardkulturbedingungen über 50 h hinweg gemessen. Wie in Abbildung 17 zu erkennen ist, unterscheidet sich der Kurvenverlauf der STAT3-KD-Zellen und der STAiR18-KD-Zellen nicht von dem der Kontrollzellen.

Es lässt sich folglich nicht darauf schließen, dass STAiR18 oder STAT3 in A172-Zellen einen Effekt auf die Vitalität oder deren Proliferation ausüben. Dies bestärkt die vorhergehenden Migrationsexperimente unter Verwendung des Zytostatikums Mitomycin C, welche nahelegen, dass das gesteigerte Einwachsen in den zellfreien Spalt nach STAiR18-KD auf eine gesteigerte Migration der Zellen und nicht auf eine gesteigerte Proliferation zurückzuführen ist.

Auf die Effizienz des STAiR18- beziehungsweise STAT3-Knockdowns unter Verwendung der verschiedenen siRNAs soll im nachfolgenden Kapitel 3.3.2 näher eingegangen werden.

Abbildung 17: xCELLigence®-Messungen nach STAT3- und STAiR18-KD in A172-Zellen. 3 x 10⁶ A172-Zellen wurden mit 20 μM siRNA (scr; siSTAT3; siSTAiR18_Ex1.1;) transfiziert und jeweils 5 x 10⁴ Zellen pro Kavität einer xCELLigence®-Kulturplatte eingesät. Über die folgenden 50 h wurde alle 1,25 h der Zellindex über Messung der Impedanz bestimmt (n=4).

Nachdem gezeigt werden konnte, dass die STAiR18-Expression keinen Einfluss auf die Vitalität der A172-Zellen zu haben scheint, sollte dies zum Vergleich in einer weiteren Zelllinie des Glioblastoms überprüft werden. Dazu wurde die MZ18-Zelllinie gewählt, da diese ebenso einen unterschiedlichen Phänotyp nach dem STAiR18-KD in Bezug auf die Adhärenz der Zellen unter Trypsin-Zugabe zeigte. Die Vitalität wurde hierzu mittels ATP-Assay in Abhängigkeit der STAiR18- und STAT3-Expression 24 h und 48 h posttransfektion analysiert. Wie in Abbildung 18 zu erkennen ist, war die Vitalität der MZ18-Zellen 48 h posttransfektion sowohl nach einem STAT3-KD als auch nach einem STAiR18-KD im Vergleich zur Vitalität der Kontrollzellen leicht vermindert.

Abbildung 18: Vitalität der MZ18-Zellen nach STAiR18- und STAT3-KD. 3 x 10⁶ MZ18-Zellen wurden mit 20 μM siRNA (scr; siSTAiR18_Ex1.1; siSTAT3) transfiziert und 5 x 10³ Zellen pro Kavität untersucht. 24 h und 48 h posttransfektion erfolgte die Analyse des ATP-Gehalts pro Kavität durch Verwendung des CellTiter-Glo[®] Luminescent Cell Viability Assays. Die so gemessenen Fluoreszenzeinheiten sind proportional zum ATP-Gehalt, welcher wiederum direkt abhängig von der Vitalität der Zellen ist. Dargestellt sind die auf den scramble-Ansatz nach 24 h normierten Werte (n=3).

3.3 Analyse der STAiR18-Transkriptstruktur im Glioblastom

Für beide STAiR18-Loci sind im UCSC-Browser verschiedene Transkriptvarianten hinterlegt (s. Abbildung 3). Mittels qPCR konnte bereits die Expression ausgewählter STAiR18-Isoformen in humanen gesunden bzw. malignen Geweben nachgewiesen werden. Dabei fielen starke Schwankungen der Expressionslevel der einzelnen Isoformen sowie die Existenz weiterer durch alternatives Spleißen erzeugter Isoformen auf. Da ein Einfluss von STAiR18 auf die Migration und Invasion der Glioblastomzellen A172 beobachtet wurde, soll im Folgenden die für das Glioblastom spezifische Transkriptstruktur von STAiR18 näher analysiert werden.

3.3.1 Expressionslevel ausgewählter STAiR18-Isoformen im Glioblastom

STAiR18-Expression in A172-Zellen

Zunächst sollten die Expressionslevel ausgewählter STAiR18-Isoformen in der Glioblastom-Zelllinie A172 per qPCR bestimmt werden. Wie schon bei der Analyse der Expressionslevel von STAiR18 in verschiedenen humanen gesunden Geweben gezeigt werden konnte, werden die Isoformen STAiR18 K-2 und STAiR18 1-7 in allen untersuchten Geweben nur äußerst gering exprimiert. Wie Abbildung 19 entnommen werden kann, trifft dies auch auf die Expression in A172-Zellen zu. Die Isoformen, welche das erste und zweite Exon beziehungsweise das erste und dritte Exon von STAiR18 enthalten, liegen dagegen hoch exprimiert in den Zellen vor und ihre Expressionslevel sind mit denen des STAT3-Transkripts vergleichbar, wobei die Isoformen, welche das vierte und fünfte Exon von STAiR18 enthalten, kommen in einem mittleren Level in den A172-Zellen vor. Dies könnte dadurch begründet sein, dass durch Verwendung dieses Primerpaares nur Transkripte detektiert werden, welche dem STAiR18-A-Locus entspringen, da die Duplikation von STAiR18 nur die Exons 1 bis 4 zu umschließen scheint. Während die miRNA miR4435 in einigen der untersuchten gesunden Geweben wie zum Beispiel im Knochenmark, Darm, Dünndarm und Leber recht hoch exprimiert wird, konnte sie in den A172-Zellen nur auf einem basalen Level nachgewiesen werden.

Abbildung 19: Expressionslevel ausgewählter STAiR18-

Isoformen und von STAT3 in A172-Zellen. Jeweils 1 µg aus A172-Zellen isolierter und DNase-verdauter RNA wurde unter Verwendung von Random Hexamer Primern in cDNA umgeschrieben und für die anschließende qPCR 1:10 verdünnt. Es kamen spezifische Primer für ausgewählte STAiR18-Isoformen, STAT3 sowie für die Housekeeper-RNA U6 zum Einsatz. Die C_T-Werte wurden mit denen von U6 abgeglichen und die Expression auf die Expression des STAiR18 1-2-Transkipts normiert (n≥3).

STAiR18-Expression in Patientenproben von Gehirntumoren

Wie eingangs schon gezeigt werden konnte, liegt STAiR18 in jedem untersuchten Tumortyp verstärkt exprimiert im Vergleich zum Normalgewebe vor. Nachdem der Einfluss von STAiR18 auf die Migration und Invasion von A172-Zellen beobachtet wurde, sollte nun auch die Expression der STAiR18-Isoformen in verschiedenen Gehirntumoren anhand von Patientenproben analysiert werden. Die untersuchten RNA-Proben wurden freundlicherweise von Prof. Frank Gaunitz (Klinik und Poliklinik für Neurochirurgie Universitätsklinikum Leipzig) zur Verfügung gestellt. Die Tumore des zentralen Nervensystems werden je nach Prognose und Rezidivhäufigkeit nach WHO-Klassifikation in verschiedene Tumorgrade eingeteilt. Untersucht wurde die Expression ausgewählter STAIR18-Isoformen in Proben des Meningeoms, einem meist benignem Hirntumor (WHO-Grad I) und in verschiedenen Gliomen. Hier lagen Proben von niedrig-malignen Astrozytomen (WHO-Grad II), höher malignen Astrozytomen (WHO-Grad III) und Glioblastomen vor, welche auf Grund der äußerst schlechten Prognose als WHO-Grad IV eingestuft werden. Da im Zuge der Analyse der STAiR18-Expression in Alzheimer-Proben unterschiedliche Expressionslevel der untersuchten STAiR18-Isoformen in weiblichen und männlichen Proben beobachtet wurden, wurde auch für die diese Analyse zwischen weiblichen und männlichen Spendern unterschieden. Die zur Verfügung gestellte RNA wurde DNase-verdaut, in cDNA umgeschrieben und das Expressionsniveau ausgewählter STAiR18-Isoformen mittels gPCR bestimmt. Zunächst sollte die Expression von STAIR18 in Normalgewebe und Gewebe des Meningeoms miteinander verglichen werden, wobei Normalgewebe und Meningeom-Gewebe gepaart vorlagen, also demselben Patienten entstammten. Wie in Abbildung 20 A dargestellt, lag STAiR18 sowohl bei dem männlichen als auch dem weiblichen Spender in den Meningeom-Proben im Vergleich zum Normalgewebe stark erhöht vor. Weiterhin scheinen abermals die Isoformen STAiR18 1-2 und STAiR18 1-3 die dominant exprimierten zu sein. Die Isoformen STAiR18 4-5, STAiR18 1-7 und STAiR18 K-2 werden kaum exprimiert.

Abbildung 20: Expressionslevel ausgewählter STAiR18-Isoformen in Gehirntumoren. (A) Die STAiR18-Expression im Normalund Meningeomgewebe. Verglichen wurde die Expression ausgewählter STAiR18-Isoformen in einem männlichen und einem weiblichen Meningeom-Patienten im Vergleich zur Expression von STAiR18 im angrenzenden Normalgewebe desselben Patienten. Jeweils 500 ng DNase-verdauter RNA-Proben wurden unter Verwendung von Random Hexamer Primern in cDNA umgeschrieben und für die anschließende gPCR 1:8 verdünnt. Es kamen spezifische Primer für ausgewählte STAiR18-Isoformen sowie für die Housekeeper-RNA U6 zum Einsatz. Die C_T-Werte wurden mit denen von U6 abgeglichen und die Expression auf die Expression des STAiR18 1-2-Transkipts im Normalgewebe normiert (n=1 als 3 technische Replikate). (B) Die STAiR18-Expression in Astrozytom- und Glioblastomgewebe. Verglichen wurde die Expression ausgewählter STAiR18-Isoformen in Proben des Astrozytoms II, Astrozytoms III und Glioblastoms IV in weiblichen (oben) und männlichen Proben (unten). Die Proben entstammen unterschiedlichen Patienten. Jeweils 500 ng DNaseverdauter RNA-Proben wurden unter Verwendung Random Hexamer Primern von in cDNA umgeschrieben und für die anschließende qPCR 1:8 verdünnt. Es kamen spezifische Primer für ausgewählte STAiR18-Isoformen sowie für die

Housekeeper-RNA U6 zum Einsatz. Die C_T-Werte wurden mit denen von U6 abgeglichen und die Expression auf die Expression des STAiR18 1-2-Transkipts im Astrozytom II normiert (n=1 als 3 technische Replikate). Die RNA-Proben wurden freundlicherweise zur Verfügung gestellt von Prof. Frank Gaunitz (Klinik und Poliklinik für Neurochirurgie Universitätsklinikum Leipzig). Außerdem wurde die STAiR18-Expression in Proben des Astrozytoms mit WHO-Grad II, des Astrozytoms mit WHO-Grad III und Glioblastoms mit WHO-Grad IV bestimmt (s. Abbildung 20 B). Von diesen Spendern lag zum Vergleich allerdings kein Normalgewebe vor, weshalb die STAiR18-Expression hier auf den Tumor mit dem geringsten WHO-Grad, also das Astrozytom II, normiert wurde. Das Expressionsniveau der STAiR18-Isoformen war sowohl im weiblichen Spender als auch im männlichem Spender des Glioblastoms am höchsten, was die Vermutung nahelegt, dass STAiR18 nicht nur im Tumor überexprimiert vorliegt, sondern die Expression auch mit steigendem WHO-Grad zunimmt. Auf Grund der geringen Probenanzahl und möglicher hoher individueller Unterschiede in der STAiR18-Expression kann hier allerdings nur von einer Tendenz gesprochen werden.

3.3.2 Analyse der STAiR18-Transkriptstruktur durch Knockdown-Studien

Zur besseren Charakterisierung der STAiR18-Transkriptstruktur in Glioblastomzellen und um weitere Informationen über die Komplexität der STAiR18-Loci zu erhalten, wurden im Folgenden Knockdown-Studien auf RNA-Ebene durchgeführt. Dafür wurden die Knockdowneffizienzen verschiedener siRNAs gegen die einzelnen Exons von STAiR18 auf die Expression ausgewählter STAiR18-Isoformen miteinander verglichen, um so Rückschlüsse auf die Transkriptstruktur ziehen zu können. Kommt es 48 h nach der Transfektion einer siRNA gegen einen bestimmtes Exon zu einer starken Abnahme des Zieltranskripts im Vergleich zur Transfektion mit einer scramble-Kontrolle, spricht man von einer effizienten siRNA-Transfektion. Mittels qPCR wurde der Einfluss einer siRNA gegen das erste, zweite, dritte und siebte Exon von STAiR18 beziehungsweise gegen Exon K auf die Expressionslevel ausgewählter STAiR18-Isoformen in A172-Zellen 48 h posttransfektion untersucht. Zum Vergleich kamen eine scramble-Kontroll-RNA und eine siRNA gegen STAT3 zum Einsatz und auch das RNA-Expressionlevel von STAT3 wurde 48 h nach Transfektion der einzelnen siRNAs mittels qPCR bestimmt.

Wie in Abbildung 21 zu erkennen ist, wird die Expression der Isoform STAiR18 1-2 durch Verwendung einer siRNA gegen das erste Exon äußerst effektiv reduziert und lag 48 h posttransfektion nur noch bei etwa 3 %. Auch die siRNA gegen das zweite Exon von STAiR18 reduzierte die Expression dieser Isoform wie erwartet sehr deutlich um 79 %. Die Tatsache, dass aber auch siRNAs gegen Exon K, 3 und 7 eine deutliche Minderung der STAiR18 1-2-Expression zur Folge hatten, deutet daraufhin, dass hier weitere Transkriptvarianten existieren, welche diese Exons

zusätzlich enthalten. Diese Vermutung kann durch Betrachtung der Expression der Isoform K-2 nach Einsatz der verschiedenen siRNAs bestärkt werden. siRNAs gegen Exon K und Exon 2 verminderten deren Expression am effektivsten um 96 % beziehungsweise 88 %, aber auch die siRNA gegen Exon 1 und ebenso gegen Exon 3 reduzierten die Expression von STAiR18 K-2 deutlich. Dies könnte ein Hinweis darauf sein, dass neben der Transkriptvariante, welche sich aus Exon 1 und 2 zusammensetzt, auch eine Isoform in A172-Zellen exprimiert wird, welche Exon 1, K, 2 und 3 beinhaltet. Des Weiteren scheinen aber auch Transkripte vorzuliegen, welche ausschließlich Exon 1 und Exon 3 beinhalten, da diese Isoform sehr viel effektiver durch siRNAs gegen Exon 1 und Exon 3 reduziert wurde als durch Verwendung der anderen siRNAs. Die Daten sprechen außerdem für die Existenz einer Isoform bestehend aus dem ersten Exon und Exon 3 bis 7 unter Ausschluss der intermediären Exons 2 und K. Dies wird durch die Effekte der einzelnen siRNAs auf die Isoform STAiR18 4-5 verdeutlicht, welche nach Einsatz der siRNAs gegen Exon 2 und Exon K nur schwach vermindert vorlagen. Außerdem scheint es auch Transkriptvarianten zu geben, welche nahezu alle bekannten Exons enthalten. So wurde die Isoform STAiR18 1-7 durch alle verwendeten siRNAs, besonders aber durch die siRNA gegen Exon 1 und Exon 7, effektiv ausgeschalten. Die miRNA miR4435 wurde durch einen STAiR18-KD in Abhängigkeit davon, welches Exon und damit welche STAiR18-Isoform ausgeschalten wurde, leicht reguliert. Dabei stieg die miR4435-Expression nach KD von Exon 1 leicht an, fiel aber nach einem KD der anderen Exons. STAT3 wurde wie erwartet durch eine siRNA gegen STAT3 deutlich reduziert, aber auch ein KD von STAiR18 verminderte die STAT3-RNA um bis zu 60 % unter Einsatz von siSTAiR18_Ex K. Die Expression der STAiR18-Transkriptvarianten nach einem STAT3-KD wurde dagegen sehr variabel beeinflusst. Während die Expression der Isoformen STAiR18 1-2 und STAiR18 K-2 nach STAT3-KD anstieg, fiel die Expression der Isoform 1-3 und miR4435 leicht und die der Isoform 1-7 stark nach STAT3-KD.

Zusammenfassend verdeutlicht die Bestimmung der RNAi vermittelten STAiR18-Knockdowneffizienzen auf die einzelnen Isoformen die breite Varianz an Transkriptvarianten innerhalb der A172-Zellen. Dabei scheinen die Isoformen am wahrscheinlichsten, welche sich aus Exon 1 – 2; Exon 1 – K – 2 – 3, Exon 1 – 3, Exon 1 – 3 – 4 – 5 – 7 und Exon 1 – K – 2 – 3 – 4 – 5 – 7 zusammensetzen.

В

	STAiR18 1-2	STAiR18 K-2	STAiR18 1-3	STAiR18 4-5	STAiR18 1-7	miR4435	STAT3
siSTAT3	-7,2	-7,8	23,6	-1,1	70,8	14,9	84,8
siSTAiR18 Ex 1	97,4	79,0	70,2	53,4	94,0	-11,4	30,9
siSTAiR18 Ex 2	78,9	88,4	22,9	32,1	64,1	36,7	57,6
siSTAiR18 Ex K	54,5	95,5	39,9	42,2	63,5	27,5	62,1
siSTAiR18 Ex 3	63,9	66,4	82,7	77,0	85,8	15,5	47,7
siSTAiR18 Ex 7	57,9	35,1	27,1	76,6	98,6	38,3	14,8

Abbildung 21: Bestimmung der RNAi vermittelten STAiR18-Knockdowneffizienzen. 3 x 10⁶ A172-Zellen wurden mit 20 μ M siRNA (scr; siSTAT3; siSTAiR18_Ex1.1; siSTAiR18_Ex2.1; siSTAiR18_ExK; siSTAiR18_Ex3; siSTAiR18_Ex7) transfiziert und unter Normalbedingungen kultiviert. 48 h posttransfektion wurde die RNA der Zellen isoliert und einem DNase-Verdau unterzogen. Jeweils 1 μ g RNA wurde unter Verwendung von Random Hexamer Primern in cDNA umgeschrieben und für die anschließende qPCR 1:10 verdünnt. Es kamen spezifische Primer für ausgewählte STAiR18-Isoformen, STAT3 sowie für die Housekeeper-RNA U6 zum Einsatz. Die C_T-Werte wurden mit denen von U6 abgeglichen und die Expression auf den scr-Ansatz normiert (n≥3). Im oberen Teil A sind die relativen Expressionen der STAiR18-Isoformen und von STAT3 48 h nach der Transfektion dargestellt. Im unteren Teil B sind die prozentualen Knockdowneffizienzen schematisch dargestellt, wobei eine hohe Knockdowneffizienz eine geringe Expression des Transkripts nach der Transfektion widerspiegelt, während eine negative Knockdowneffizienz einer Steigerung der Expression des Transkripts nach der Transfektion entspricht.

3.3.3 Analyse der STAiR18-Transkriptstruktur mittels MinIONTM-Sequenzierung

Die vorhergehenden Experimente zur Identifizierung der STAiR18-Transkriptstruktur in Glioblastomzellen verdeutlichen die Komplexität der beiden STAiR18-Loci und die hohe Variabilität an alternativ gespleißten Isoformen. Mittels qPCR können allerdings nur ausgewählte Isoformen analysiert werden, für welche im UCSC-Browser bereits Sequenzen hinterlegt sind. Im nächsten Schritt soll nun die A172-spezifische Transkriptarchitektur mittels MinION[™]-Sequenzierung genauer aufgeschlüsselt werden, um zellspezifische Spleißvarianten und Transkriptionsstartpunkte analysieren zu können. Die MinION[™]-Technologie stellt eine innovative Sequenziermethode der dritten Generation dar und basiert auf Nanoporen-Sequenzierung. Diese Nanoporen sind in einer künstlichen Membran mit einem besonders hohen elektrischen Widerstand eingelassen. Wird ein DNA-Einzelstrang Base für Base durch die Pore geleitet, kommt es zu spezifischen Potentialänderungen, wodurch sich die Sequenz in Echtzeit ablesen lässt. Dabei können durchgehende Reads mit einer Länge von mehreren kb prozessiert werden. Auf diese Weise können die komplette Struktur der beiden STAiR18-Loci und die von ihnen erzeugten Transkriptvarianten direkt analysiert werden. Ein anschließendes bioinformatisches Zusammensetzen kurzer Readstücke, wie es bei anderen Sequenziermethoden erforderlich ist, entfällt hier folglich.

Im Vorfeld der MinION[™]-Sequenzierung sollten die STAiR18-Transkripte spezifisch angereichert und aus der total-RNA der A172-Zellen isoliert werden. Dazu wurden biotinylierte DNA-Oligonukleotide genutzt, welche komplementär an STAiR18 binden und weite Bereiche der annotierten exonischen Regionen abdecken, wodurch die STAiR18-Transkripte weitestgehend unabhängig von ihrer Sekundärstruktur oder möglichen Bindestellen für Proteine gezogen werden können. Es wurden 28 DNA-Oligonukleotide gegen STAiR18 designt, wobei vier im ersten Exon, drei in Exon K, sieben im zweiten Exon, vier im dritten Exon, drei im vierten Exon, zwei im fünften Exon und vier im siebten Exon binden. Zu beachten ist hierbei allerdings, dass alle Oligonukleotide, die komplementär an Exon 5 und Exon 7 binden, ausschließlich der Anreicherung von STAiR18-Transkripten des STAiR18-A-Locus dienen, da die Duplikation von STAiR18 laut Annotation im UCSC-Browser nur den vorderen Bereich von Exon 1 bis Exon 4 abzudecken scheint. Als Negativkontrolle, um eventuelle unspezifische Bindungen ausschließen zu können, wurden Oligonukleotide komplementär zur bakteriellen RNA lacZ designt, welche in humanen Zellen nicht existent ist, weswegen mit Hilfe dieser Oligonukleotide keine Transkripte gezogen werden sollten. Um zu vermeiden, dass unspezifische Bindungen der Oligonukleotide an Proteine oder DNA zu Verunreinigungen führen, erfolgte die Isolation der STAiR18-Transkripte aus DNase-verdauter total-RNA. Die Komplexe aus biotinylierten DNA-Oligonukleotiden und komplementär gebundenen STAiR18-Transkripten wurden schließlich über magnetische Streptavidin-Beads isoliert und die RNA nach mehreren Waschschritten mittels Trizol aufgereinigt. Bevor die so angereicherten STAiR18-Transkripte sequenziert werden konnten, sollte die spezifische Anreicherung von STAiR18 mit Hilfe der biotinylierten Oligonukleotide per qPCR überprüft werden. Wie Abbildung 22 zu entnehmen ist, konnte STAiR18 mit Hilfe der STAiR18-Oligonukleotide hocheffizient gegenüber der lacZ-Negativkontrolle angereichert werden. So lagen die Isoformen STAiR18 1-2 und STAiR18 1-3 im STAiR18-Oligonukleotid-Ansatz 1000-fach erhöht vor, während die STAiR18 1-7-Isoform 17-fach angereichert werden konnte. Bedenkt man die bereits in Abbildung 19 dargestellten Unterschiede im Expressionsniveau der einzelnen Isoformen, ist es nicht verwunderlich, dass die nur marginal exprimierte Isoform STAiR18 1-7 mit Hilfe der STAiR18-Oligonukleotide weniger stark angereichert werden konnte als die hochexprimierten Isoformen STAiR18 1-2 und STAiR18 1-3. Um unspezifische Bindungen auszuschließen, wurde auch die Expression der Housekeeper-RNA U6 im STAiR18-Oligonukleotid-Ansatz und im lacZ-Negativansatz ermittelt. Da diese in keinem Ansatz angereichert vorlagen, kann davon ausgegangen werden, dass die STAiR18-Transkripte nicht nur hocheffizient sondern auch spezifisch angereichert wurden.

Abbildung 22: Effiziente Anreicherung der STAiR18-MinION[™]-Transkripte in Vorbereitung zur **Sequenzierung.** RNA aus 2 x 10⁷ A172-Zellen wurde isoliert und DNase-verdaut. Anschließend erfolgte die spezifische Anreicherung der STAiR18-Transkripte. Dazu wurden der präparierten RNA jeweils 100 pmol STAiR18-Oligonukleotide beziehungsweise lacZ-Oligonukleotide zugesetzt und für 4 h bei 37 °C hybridisiert. Die Komplexe aus biotinylierten Oligonukleotiden und komplementär gebundenen Transkripten wurden über Stretavidin-Beads magnetisch isoliert, mehreren Waschschritten unterzogen und mit Proteinase K verdaut. Die finale Isolation der RNA erfolgte mittels Trizol. Die Anreicherung der STAiR18-Transkripte im STAiR18-Oligonukleotid-Ansatz wurde per qPCR mit spezifischen Primern überprüft. Die C_T-Werte wurden auf den lacZ-Oligonukleotid-Ansatz normiert (n=3).

Die angereicherten STAiR18-Transkripte wurden gemäß den Angaben des MinION[™]-Protokolls aufgearbeitet. Die Library-Präparation umfasste zunächst die Reverse Transkription der RNA in cDNA, deren Amplifikation und die Ligation der Sequenzieradapter. Nach mehreren Aufreinigungsschritten über magnetische Beads wurde die fertige Library auf eine MinION[™]-Flow Cell geladen und die Sequenzierung erfolgte im MinION[™]. Die Primäranalyse der Rohsignale wurde mit Hilfe der MinKnown-Software durchgeführt. Die anschließende bioinformatische Auswertung der Sequenzierung erfolgte durch Frau M. Sc. Karolin Wiedemann (AG Bioinformatik, Fraunhofer-Institut IZI, Leipzig). Dafür wurden die Rohsignale zunächst in Sequenzdaten umgewandelt und einer Qualitätskontrolle unterzogen. Anschließend wurden die Sequenzieradapter entfernt, die einzelnen Reads auf das Humangenom hg38 gemappt und einer deskriptiven Statistik mittels R unterzogen. Durch die MinION[™]-Sequenzierung wurden 719.843 einzelne Reads mit einer durchschnittlichen Länge von 600 nt und einer maximalen Länge von 3.711 nt erzeugt. Davon konnten 624.567 Reads dem humanen Genom zugeordnet werden, wobei ein Drittel dieser Reads eindeutig auf nur einen Genombereich alignt wurde und im Folgenden näher untersucht worden ist. Da der Sequenzierung eine spezifische Anreicherung von STAiR18 aus der total-RNA von A172-Zellen vorangegangen ist und sich beide STAiR18-Loci auf Chromosom 2 befinden, wurde zunächst die Verteilung der eindeutig mappenden Reads auf den humanen Chromosomen untersucht.

Abbildung 23: Verteilung der mittels MinION[™]-Sequenzierung erhaltenen Reads über das humane Genom. Dargestellt ist die Anzahl der eindeutig mappenden Reads, welche den einzelnen humanen Chromosomen nach hg 38 zugeordnet worden sind. Die MinION[™]-Sequenzierung erfolgte gemäß den Angaben des MinION[™]-Protokolls nach einer vorangegangener Anreicherung von STAiR18 aus total-RNA von A172-Zellen.

Wie in Abbildung 23 zu erkennen ist, konnten mit knapp 30.000 Reads tatsächlich ein Großteil der Reads Chromosom 2 zugeordnet werden, was die erfolgreiche Anreicherung von STAiR18 aus der total-RNA von A172-Zellen bestätigt. Allerdings schienen auch etliche Reads auf das mitochondriale Genom zu mappen und einen hohen mitochondrialen Beifang bei der Anreicherung von STAiR18 aus total-RNA anzudeuten, welcher sich durch die äußerst hohe Mitochondrienanzahl in humanen Zellen begründen lassen könnte. Um die A172-spezifischen Transkriptvarianten der beiden STAiR18-Loci aufzuschlüsseln, wurden die eindeutig auf Chromosom 2 mappenden Reads anschließend genauer betrachtet. 3.295 Reads trugen wenigstens eine Spleißstelle und überlappten mit dem STAiR18-A-Locus. Dies entsprach 35 % aller eindeutig mappenden und gespleißten Reads auf Chromosom 2. Dahingegen überlappten lediglich 560 und damit 6 % der eindeutig mappenden und gespleißten Reads von Chromosom 2 mit dem STAiR18-B-Locus. Die zu Beginn dieser Arbeit mittels qPCR ermittelte Beobachtung, dass beide STAiR18-Loci in A172-Zellen aktiv transkribiert werden, es sich allerdings bei STAiR18-A um den aktiveren Locus zu handeln scheint, ließ sich mittels MinIONTM-Sequenzierung folglich bestätigen. Die durchschnittliche Länge der mit den STAiR18-Loci überlappenden Reads betrug 800 nt. Um die gespleißten Reads, welche mit STAiR18-A bzw. STAiR18-B überlappten, strukturell charakterisieren zu können, wurden sie anhand der Anzahl ihrer Exons eingeteilt. Abbildung 24 und Abbildung 25 zeigen eine Übersicht der am häufigsten sequenzierten Reads und repräsentieren damit die durch die MinION[™]-Sequenzierung ermittelten A172-spezifischen Transkriptvarianten von STAiR18. Wie in Abbildung 24 zu erkennen ist, setzten sich die STAiR18-Transkriptvarianten, welche vom STAiR18-A-Locus prozessiert werden, aus zwei bis maximal acht Exons zusammen. Dabei traten die Isoformen mit einer geringen Exonanzahl etwa 10-fach häufiger auf, als Isoformen, die sich aus fünf bis acht Exons zusammensetzten. Neben dem bereits bekannten annotierten Transkriptionsstart bei Exon 1 konnten weitere für A172-Zellen spezifische Transkriptionsstartpunkte bei Exon 3 und bei Exon 4 ermittelt werden. Wie Abbildung 25 entnommen werden kann, diente Transkripten des STAiR18-B-Locus nur das erste Exon als Trankriptionstartpunkt. Die Isoformen des STAiR18-B-Locus setzten sich aus bis zu 14 Exons zusammen. Die meisten Transkriptvarianten schienen sich aus fünf bis sieben Exons zusammenzusetzen. Daneben schien auch eine kurze Isoform, bestehend aus Exon 1 und Exon 2, abundant in den A172-Zellen vorzuliegen. Isoformen mit mehr als acht Exons lagen nur sporadisch vor. Die MinION[™]-Sequenzierung offenbarte mehrere unbekannte Exons für den STAiR18-B-Locus. Dabei handelte es sich um das zwischen Exon 3 und Exon 4 gelegene Exon L sowie um die bislang nicht für den STAiR18-B-Locus annotierten hinteren Exons 5 bis 14. Die anfängliche auf den bereits annotiertien STAiR18-Isoformen beruhende Vermutung, dass die Duplikation von STAiR18 auf die vorderen Exons 1 bis 4 beschränkt ist, konnte somit widerlegt werden.

Abbildung 24: Schematische Übersicht der mittels MinION[™]-Sequenzierung ermittelten Transkriptstruktur des STAiR18-A-Locus. Dargestellt sind die häufigsten mit dem STAiR18-A-Locus überlappenden und gespleißten Reads der MinION[™]-Sequenzierung. Die Reads wurden in Abhängigkeit ihrer Exonanzahl eingeteilt. Die Häufigkeit, mit welcher Reads einer bestimmten Exonmenge sequenziert worden sind, kann dem Farbschema entnommen werden. Die MinION[™]-Sequenzierung erfolgte gemäß den Angaben des MinION[™]-Protokolls nach einer vorangegangener Anreicherung von STAiR18 aus total-RNA von A172-Zellen. Die unbearbeitete Auflistung der einzelnen Isoformen des STAiR18-A-Locus kann Abbildung 53 A im Anhang entnommen werden.

Abbildung 25: Schematische Übersicht der mittels MinION[™]-Sequenzierung ermittelten Transkriptstruktur des STAiR18-B-Locus. Dargestellt sind die häufigsten mit dem STAiR18-B-Locus überlappenden und gespleißten Reads der MinION[™]-Sequenzierung. Die Reads wurden in Abhängigkeit ihrer Exonanzahl eingeteilt. Die Häufigkeit, mit welcher Reads einer bestimmten Exonmenge sequenziert worden sind, kann dem Farbschema entnommen werden. Die MinION[™]-Sequenzierung erfolgte gemäß den Angaben des MinION[™]-Protokolls nach einer vorangegangener Anreicherung von STAiR18 aus total-RNA von A172-Zellen. Die unbearbeitete Auflistung der

Die MinION[™]-Ergebnisse verdeutlichen die äußerst vielschichtige Transkriptarchitektur beider STAiR18-Loci und bilden erstmals ein konkretes Bild der für die A172-Zellen spezifischen Transkriptvarianten von STAiR18 ab. Durch die Vielzahl an möglichen Exon-Kombinationen ergibt sich ein komplexes Muster verschiedener Isoformen, welches zwischen den beiden STAiR18-Loci zu variieren scheint.

einzelnen Isoformen des STAiR18-B-Locus kann Abbildung 53 B und C im Anhang entnommen werden.

3.3.4 Intrazelluläre Lokalisation der STAiR18-Isoformen in Glioblastomzellen

IncRNAs sind in vielfältige physiologische und pathologische Prozesse sowohl im Kern als auch im Zytoplasma der Zellen involviert und können beispielsweise die Expression ihrer Zielgene epigenetisch, transkriptionell oder auch posttranskriptionell regulieren. Dabei kann die subzelluläre Lokalisation der IncRNA erste Hinweise auf ihre funktionelle Wirkweise liefern. Im Folgenden sollte deshalb die intrazelluläre Verteilung der STAiR18-Isoformen in A172-Zellen bestimmt werden.

Bestimmung der subzellulären Lokalisation von STAiR18 über Kern-Zytoplasma-Fraktionierung

Die RNA aus Kern und Zytoplasma von A172-Zellen wurde separat isoliert und die Anreicherung ausgewählter STAiR18-Isoformen in der jeweiligen Fraktion mittels qPCR bestimmt. Um die Reinheit der Kern-Zytoplasma-Fraktionierung abschätzen zu können, wurden als Kontrollen auch die Anreicherungen der zytoplasmatisch vorliegenden, reifen GAPDH-mRNA sowie der im Kern lokalisierten RNAs U6 und MALAT-1 bestimmt. Da diese, wie Abbildung 26 zu entnehmen ist, in ihrem zu erwartenden Kompartiment angereichert vorliegen, kann folglich von einer distinkten Trennung von nukleärer und zytoplasmatischer RNA ausgegangen werden.

Abbildung 26: Bestimmung der subzellulären Lokalisation ausgewählter STAiR18-Isoformen mittels Kern-Zytoplasma-Fraktionierung. Die RNA aus Kern und Zytoplasma von jeweils 3 x 10⁶ A172-Zellen wurde separat isoliert, DNase-verdaut und gleiche Volumina für die RT eingesetzt. Für die anschließende qPCR kamen spezifische Primer für ausgewählte STAiR18-Isoformen und zur Kontrolle der Anreicherung auch für die zytoplasmatisch vorliegende mRNA von GAPDH beziehungsweise die nukleär lokalisierten RNAs U6 und MALAT-1 zum Einsatz. Die Normierung erfolgte auf die Anreicherung in der zytoplasmatischen Fraktion (n=3).

Überraschenderweise ergaben sich für die untersuchten Isoformen von STAiR18 verschiedene Lokalisationen in den A172-Zellen. Während die Isoform STAiR18 1-2 5-fach häufiger im Zytoplasma als im Kern vorliegt, sind die Isoformen STAiR18 1-3, STAiR18 1-7 sowie die miR4435 nukleär angereichert.

Visualisierung der zellulären STAiR18-Lokalisation mittels Fluoreszenz in situ Hybridisierung

Zur Bestimmung der genauen Lokalisation der STAiR18-Isoformen in den A172-Zellen wurde eine neuartige Methode der RNA-Fluoreszenz *in situ* Hybridisierung, genannt ViewRNA[™], angewendet. Bei den meisten herkömmlichen FISH-Techniken kommen einzelne lange Oligonukleotide, direkt gekoppelt an ein bis fünf Fluorophore, zur Detektion der Ziel-RNAs zum Einsatz. Dies hat häufig ein hohes Hintergrundsignal zur Folge, da keine weitere Signalverstärkung stattfindet. Durch unspezifische Bindungen kann es außerdem zu einer geringen Sensitivität der Signale kommen. Die ViewRNA-Methode dagegen verwendet bis zu 20 kurze Oligonukleotide als Sonden, welche paarweise komplementär an die Ziel-RNA binden. Nur wenn beide Sonden eines Paares nebeneinander an die Ziel-RNA binden, kommt es durch weitere verzweigte DNA-Oligonukleotide zu einer sequenziellen Amplifikation des Signals. So kann eine sehr hohe Spezifität der Signale bei geringem Hintergrundsignal erreicht und selbst einzelne RNA-Moleküle innerhalb der Zellen detektiert werden.

Die A172-Zellen wurden zunächst auf Deckgläschen fixiert und im Anschluss Protease-verdaut um die Zugänglichkeit für die Sonden zu gewährleisten. Hierbei erwies sich die Hybridisierung der Sonden an nukleäre RNAs als besonders kritisch, weswegen zunächst einige Vorexperimente nötig waren, um die für die A172-Zellen geeigneten Bedingungen der Vorbehandlung zu bestimmen. Dafür kamen Sonden gegen die ausschließlich im Kern exprimierte ncRNA MALAT-1 und die zytoplasmatisch lokalisierte mRNA von GAPDH zum Einsatz.

Wie in Abbildung 27 zu erkennen ist, hängt die Hybridisierung der Sonden an die nukleäre RNA MALAT-1 von der Zugabe von Essigsäure während der Fixierung der Zellen mit Formaldehyd ab. So können ohne Zugabe von Essigsäure keine Signale von MALAT-1 in den Kernen der Zellen detektiert werden. Bei Zugabe von 0,2 % Essigsäure, werden einige wenige Kerne zugänglich für die Sonde, während bei Zugabe von 0,8 %iger Essigsäure in den meisten Kernen MALAT-1-Signale zu erkennen sind. Da eine gesteigerte Essigsäurekonzentration während der Fixierung der Zellen allerdings auch zu einer Abnahme der Intensität der zytoplasmatischen Signale zu führen scheint, wurde die Essigsäurekonzentration bei der Fixierung der Zellen nicht weiter erhöht.

89 | ERGEBNISSE

Abbildung 27: Optimierung der nukleären Sondenhybidisierung bei der ViewRNA[™]-Methode. A172-Zellen wurden mittels Formaldehyd auf Deckgläschen fixiert und nach den Angaben des ViewRNA[™]-Protokolls gefärbt. Dabei kamen Sonden gegen MALAT-1, welche mittels Cy5-Filtern bei 650 nm detektiert wurden, sowie gegen die mRNA von GAPDH, welche mittels Cy3-Filtern bei 550 nm detektiert wurden, zum Einsatz. Außerdem erfolgte eine Gegenfärbung mit DAPI zur Darstellung der Zellkerne. Um die Hybridisierung der Sonden an kernlokalisierte Ziel-RNA zu optimieren, wurde während der Fixierung der Zellen die Zugabe von Essigsäure in verschiedenen Konzentrationen getestet. Der Kontrast der Bilder wurde im Programm gimp adjustiert, wobei für jedes der gezeigten Bilder die gleichen Einstellungen verwendet wurden um eine Vergleichbarkeit der Signalintensitäten zu gewährleisten.

Abbildung 28: Optimierung der zytoplasmatischen Sondenhybidisierung bei der ViewRNA[™]-Methode. A172-Zellen wurden mittels Formaldehyd auf Deckgläschen fixiert und nach den Angaben des ViewRNA[™]-Protokolls gefärbt. Dabei kamen Sonden gegen MALAT-1, welche mittels Cy5-Filtern bei 650 nm detektiert wurden, und gegen die mRNA von GAPDH, welche mittels Cy3-Filtern bei 550 nm detektiert wurden, zum Einsatz. Außerdem erfolgte eine Gegenfärbung mit DAPI zur Darstellung der Zellkerne. Um die Hybridisierung der Sonden an zytoplasmatische Ziel-RNA zu optimieren, wurden die Zellen nach der Fixierung mit Formaldehyd Protease-verdaut. Die im Kit enthaltene Protease wurde hierzu in verschiedenen Konzentrationen eingesetzt. Der Kontrast der Bilder wurde im Programm gimp adjustiert, wobei für jedes der gezeigten Bilder die gleichen Einstellungen verwendet wurden um eine Vergleichbarkeit der Signalintensitäten zu gewährleisten. Des Weiteren sollte eine geeignete Proteasekonzentration für den Verdau der fixierten Zellen bestimmt werden, um zum einen eine optimale Signalstärke zytoplasmatischer Signale zu gewährleisten, zum anderen aber die Morphologie der Zellen beizubehalten. Ein 10 minütiger Verdau, bei welchem die im Kit enthaltene Protease 1:4000 verdünnt wurde, lieferte hierbei die intensivsten Signale der nukleären RNA MALAT-1 und der zytoplasmatisch exprimierten mRNA von GAPDH (s. Abbildung 28)

Nachdem die für die A172-Zellen geeigneten Bedingungen zur Vorbehandlung der Zellen mit Hilfe der Sonden gegen MALAT-1 und GAPDH als Positivkontrollen bestimmt worden waren, sollte im Anschluss die genaue Lokalisation der STAiR18-Isoformen in den Zellen mittels ViewRNA[™] analysiert werden. Dabei kamen Sonden gegen das dritte Exon, das siebte Exon sowie gegen das erste Intron von STAiR18 zum Einsatz. Auf Grund der geringen Länge des ersten und zweiten Exons wurden hier Sonden designt, welche sowohl das erste als auch das zweite Exon gemeinsam detektieren. Wie Abbildung 29 zu entnehmen ist, lieferten die Sonden gegen das erste und zweite Exon von STAiR18 in A172-Zellen ausschließlich zytoplasmatische Signale. Dies verstärkt die Erkenntnisse aus der Bestimmung der subzellulären Lokalisation von STAiR18 mittels fraktionierter RNA-Aufreinigung. Die ViewRNA[™]-Signale für STAiR18 1-2 sind dabei gleichmäßig im Zytoplasma verteilt und können keinem zytoplasmatischen Kompartiment genauer zugeteilt werden. Die Sonde gegen das dritte Exon von STAiR18 lieferte etwas weniger Signale in den Zellen. Diese liegen ebenfalls gleichverteilt im Zytoplasma vor. Allerdings können hier auch nukleäre Signale ausgemacht werden. Die Sonde gegen Exon 7 liefert nur vereinzelte schwache Signale, welche sowohl im Kern als auch im Zytoplasma vorliegen. Dies deckt sich mit der Erkenntnis aus der qPCR-basierten Validierung der Expressionslevel einzelner STAiR18-Isoformen in A172-Zellen. Auch hier war die Isoform STAiR18 1-7 kaum nachweisbar. Die Sonde gegen das erste Intron von STAiR18 detektiert ausschließlich das primäre, ungespleißte STAiR18-Transkript. Somit verwundert es nicht, dass die Signale hier ausschließlich im Kern detektiert werden konnten. Die erhöhte Eigenfluoreszenz der Zellen und das damit verbundene erhöhte Hintergrundsignal kommt dadurch zustande, dass die Sonde gegen das erste Intron von STAiR18 einem anderen Sondentyp entspricht als die anderen verwendeten Sonden und die Fluoreszenzsignale somit in einem anderen Kanal gemessen werden mussten, bei welchem die Eigenfluoreszenz der Zellen verstärkt ist.

Abbildung 29: Visualisierung von STAiR18 in A172-Zellen mittels ViewRNA[™]. A172-Zellen wurden mittels Formaldehyd auf Deckgläschen fixiert und nach den Angaben des ViewRNA[™]-Protokolls gefärbt. Dabei kamen Sonden gegen STAiR18 Exon 3 und Exon 7, welche mittels Cy5-Filtern bei 650 nm detektiert wurden, und gegen STAiR18 Exon 1+2, welche mittels Cy3-Filtern bei 550 nm detektiert wurden, zum Einsatz. Außerdem wurde ein Sondenset gegen das erste Intron von STAiR18 zum Einsatz, welches das Primärtranskript detektiert. Dieses wurde bei 488 nm unter FITC-Filter-Einstellungen detektiert. Die Gegenfärbung mit DAPI erfolgte zur Darstellung der Zellkerne. Der Kontrast der Bilder wurde im Programm gimp adjustiert, wobei für jedes der gezeigten Bilder die gleichen Einstellungen verwendet wurden um eine Vergleichbarkeit der Signalintensitäten zu gewährleisten.

Mit Hilfe des Bildverarbeitungsprogramms ImageJ und der Option Analyze Particles wurden außerdem die Anzahl der Signale der einzelnen Sonden pro Zelle bestimmt. So ergaben sich für die Sonde, welche STAiR18 Exon 1 und 2 detektiert, 80 bis 150 Signale pro Zelle. Die Sonde gegen STAiR18 Exon 3 lieferte 40-55 Signale pro Zelle. Die Sonden gegen Exon 7 und das Primärtranskript von STAiR18 zeigten dagegen eine geringere Signalanzahl von 12 bis 20 Signalen für Exon 7 beziehungsweise 20-30 Signalen für die intronischen Bereiche von STAiR18 pro Zelle.

Um die Spezifität der ViewRNA[™]-Signale zu validieren, wurden verschiedene Kontrollen mitgeführt (s. Abbildung 30). Als Positivkontrollen kamen die Sonden gegen die ncRNA MALAT-1 und die mRNA von GAPDH zum Einsatz, welche beide in A172-Zellen auf einem äußerst hohen Niveau exprimiert werden. Wie erwartet lieferte die MALAT-1-Sonde ausschließlich nukleär lokalisierte Signale während die GAPDH-Signale im Zytoplasma auftraten. Als Negativkontrolle kamen Sonden gegen die bakteriellen RNAs von dapB und lacZ zum Einsatz. Diese werden in humanen Zellen nicht exprimiert und lieferten in den A172-Zellen auch keine Signale. Als weitere Negativkontrolle wurden A172-Zellen untersucht, bei welchen die STAiR18-Expression zuvor mittels RNAi auf ein Minimum reduziert wurde. Wie bereits aus den qPCR-Analysen bekannt war, ist der RNAi-vermittelte Knockdown von STAiR18 höchst effektiv und 48h posttranfektion liegen nur noch etwa 3 % der Transkripte in den Zellen vor. Dies konnte auch per ViewRNA bestätigt werden. Nach Knockdown von STAiR18, ließen sich keine Signale im Zytoplasma detektieren. Lediglich die Sonde gegen das dritte Exon von STAiR18 lieferte einige wenige nukleäre Signale. Hierbei handelt es sich folglich um im Kern verbliebene Transkripte dieser Isoform, welche von dem RNAi-vermittelten Knockdown nicht betroffen waren. Die Kontrollen bestätigen folglich die enorme Spezifität und Sensitivität der mittels ViewRNA erzeugten Signale in A172-Zellen.

Abbildung 30: Überprüfung der Spezifität der ViewRNA[™]-Signale. Zur Kontrolle der Spezifität der ViewRNA[™]-Signale kamen verschiedene Kontrollen zum Einsatz. Als Positivkontrolle wurden die A172-Zellen nach den Angaben des ViewRNA-Protokolls mit Sonden gegen MALAT-1, welche mittels Cy5 Filtern bei 650 nm detektiert wurden, und gegen die mRNA von GAPDH, welche mittels Cy3 Filtern bei 550 nm detektiert wurden, gefärbt. Als Negativkontrolle erfolgte die Färbung der A172-Zellen mit den gegen die bakterielle RNAs dapB und lacZ designten Sonden. Diese wurden ebenso bei 650 nm beziehungsweise 550 nm detektiert. Als weitere Negativkontrolle dienten A172-Zellen, in welchen 48 h vor den Färbungen mittels RNAi unter Verwendung der siSTAiR18_Ex1.1 die STAiR18-Expression vermindert worden war. Hier kamen die Sonden STAiR18 Exon 3, welche mittels Cy5-Filtern bei 650 nm detektiert wurden, und STAiR18 Exon 1+2, welche mittels Cy3-Filtern bei 550 nm detektiert wurden, zum Einsatz. Außerdem erfolgte eine Gegenfärbung mit DAPI zur Darstellung der Zellkerne. Der Kontrast der Bilder wurde im Programm gimp adjustiert, wobei für jedes der gezeigten Bilder die gleichen Einstellungen verwendet wurden um eine Vergleichbarkeit der Signalintensitäten zu gewährleisten.

3.4 Molekulare Wirkweise von STAiR18 in Glioblastomzellen

3.4.1 Genomweite Transkriptionsanalyse zur Identifizierung STAiR18-regulierter Gene

Um die molekularen Mechanismen, die hinter dem Einfluss von STAiR18 auf die Migration und Invasion von Glioblastomzellen liegen, aufzuklären, sollten die durch STAiR18-regulierten Gene in A172-Zellen auf globaler Ebene analysiert werden. Dazu können unter Verwendung sogenannter Microarrays genomweite Transkriptionsanalysen durchgeführt werden, bei denen die differenzielle Expression der STAiR18-Zielgene in Abhängigkeit der STAiR18-Expression bestimmt werden kann. Der verwendete Genexpressionsarray (1 Color Gene Expression Microarray von Agilent) umfasst etwa 50.000 Sonden, welche das komplette Humangenom, also sowohl kodierende als auch nichtkodierende Transkripte, abdecken. Die zu untersuchenden RNA-Proben werden zunächst fluoreszenzmarkiert, in cDNA umgeschrieben und amplifiziert. Anschließend können die einzelsträngigen, markierten DNA-Fragmente an die auf einem Glasträger positionsgenau fixierten Sonden komplementär binden und die Fluoreszenzsignale der einzelnen Positionen des Arrays ausgelesen werden. Anhand der Fluoreszenzintensität an der spezifischen Sonden-Position des Arrays können dann Rückschlüsse auf die Abundanz des entsprechenden Transkripts in den RNA-Proben gezogen werden. Durch ein Abgleichen der Fluoreszenzsignale in den STAiR18-Knockdownansätzen mit denen einer scramble-Negativkontrolle, kann für jedes detektierte Transkript eine differenzielle Expression und ein entsprechender Signifikanzwert ermittelt werden. In dieser Analyse wurde die differenzielle Genexpression in RNA-Proben aus A172-Zellen 48 h nach Knockdown von STAiR18 unter Verwendung von siRNAs gegen das erste Exon, das zweite Exon, das dritte Exon, das siebte Exon und Exon K sowie zum Vergleich nach Knockdown von STAT3 bestimmt. Im Vorfeld der Transkriptionsanalyse wurde die Effizienz des Knockdowns per qPCR validiert und die Integrität der isolierten RNA mittels Kapillargelelektrophorese überprüft (Daten nicht gezeigt). In Tabelle 4 sind die durch den STAiR18-KD mittels siSTAiR18 Ex1 am stärksten regulierten Ziel-Transkripte von STAiR18 nach dem Knockdown aufgelistet, wobei zwischen induzierten und reprimierten Genen unterschieden wird. Dabei ist zu beachten, dass die Gene, die in der Trankriptionsanalyse als induziert bestimmt wurden, unter physiologischen Bedingungen durch STAiR18 gehemmt werden und umgekehrt. Dargestellt ist die differenzielle Expression als FoldChange (FC) und der dazugehörige Signifikanzwert (p-Wert) der STAiR18-Zieltranskripte.

Tabelle 4: Auflistung der am stärksten regulierten Gene nach STAiR18-KD (Exon 1). Dargestellt sind die zwanzig am stärksten durch den STAiR18-KD mit siSTAiR18_Ex1 differenziell und signifikant regulierten Gene, wobei zwischen induzierten und reprimierten Zielgenen unterschieden wird. Die differenzielle Genexpression im Vergleich zur scramble-Negativkontrolle wird als FoldChange (FC) angegeben. Außerdem sind die zugehörigen Signifikanzwerte dargestellt. Dabei entspricht *** einem p-Wert $\leq 0,001$; ** einem p-Wert $\leq 0,01$ und * einem p-Wert $\leq 0,05$. Die RNA wurde 48 h posttransfektion aus A172-Zellen isoliert und für die Microarray-Analyse nach Herstellerangaben aufgearbeitet. n=3.

			induzierte Zieltranskripte
FC	Signifikanz	Genname	Beschreibung
12,95	***	KRT16P2	Homo sapiens keratin 16 pseudogene 2
10,29	**	KRT14	Homo sapiens keratin 14
9,76	***	KRT16	Homo sapiens keratin 16
6,74	**		Homo sapiens keratin 17 pseudogene 1
6,18	**	KRT42P	Homo sapiens keratin 42 pseudogene
5,90	***	MAFB	Homo sapiens v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog B
5,18	**	KRT17	Homo sapiens keratin 17
4,72	*	SAA1	Homo sapiens serum amyloid A1
4,24	**	XLOC_008466	BROAD Institute lincRNA (XLOC_008466)
4,00	*	ST3GAL1	Homo sapiens ST3 beta-galactoside alpha-2,3-sialyltransferase 1
3,95	**	ELAVL2	Homo sapiens ELAV like neuron-specific RNA binding protein 2
3,93	**	ANG	Homo sapiens angiogenin, ribonuclease, RNase A family, 5
3,87	**	XLOC_l2_000942	BROAD Institute lincRNA (XLOC_l2_000942)
3,59	***		T cell receptor alpha variable 7
3,44	*	KCNMB4	Homo sapiens potassium large conductance calcium-activated channel
3,40	*	CBLC	Homo sapiens Cbl proto-oncogene C, E3 ubiquitin protein ligase
3,30	*	SSTR2	Homo sapiens somatostatin receptor 2
3,24	*	MYADML	Homo sapiens myeloid-associated differentiation marker-like, non-coding RNA
3,14	*	FRAS1	Homo sapiens cDNA FLJ34763 fis, clone NT2NE2002186
3,10	*	SORBS2	Homo sapiens sorbin and SH3 domain containing 2

			reprimierte Zieltranskripte
FC	FC Signifikanz Genname		Beschreibung
8,50	**	OASL	Homo sapiens 2'-5'-oligoadenylate synthetase-like
6,11	***	LINC00152	Homo sapiens long intergenic non-protein coding RNA 152
5,64	***	ABLIM3	Homo sapiens actin binding LIM protein family, member 3
5,40	***	MIR4435-1HG	Homo sapiens MIR4435-1 host gene (non-protein coding)
5,32	**	TMEM158	Homo sapiens transmembrane protein 158
5,14	*	FILIP1L	Homo sapiens filamin A interacting protein 1-like
5,07	**	CLN8	Homo sapiens ceroid-lipofuscinosis, neuronal 8
4,95	**	LOC100287387	Homo sapiens uncharacterized LOC100287387
4,74	**	MAP1LC3C	Homo sapiens microtubule-associated protein 1 light chain 3 gamma
4,66	*	ABCC3	Homo sapiens ATP-binding cassette, sub-family C (CFTR/MRP), member 3
4,65	**	SUCNR1	Homo sapiens succinate receptor 1
4,65	*	OLFML2A	Homo sapiens olfactomedin-like 2A
4,65	**	RAB3D	Homo sapiens RAB3D, member RAS oncogene family
4,59	*	CCNA1	Homo sapiens cyclin A1
4,54	*	TMEM163	Homo sapiens transmembrane protein 163
4,46	*	POU3F2	Homo sapiens POU class 3 homeobox 2
4,30	*	TMEM154	Homo sapiens transmembrane protein 154
4,20	***	TRIM8	Homo sapiens tripartite motif containing 8
4,17	*	C1orf145	Homo sapiens chromosome 1 open reading frame 145 long non-coding RNA
3,99	*	FAM131B	Homo sapiens family with sequence similarity 131, member B

Betrachtet man die nach dem STAiR18-KD induzierten Transkripte, fällt auf, dass es sich bei den fünf am stärksten regulierten Zielgenen von STAiR18 um Typ I Keratine beziehungsweise deren Pseudogene handelte. So wurden Keratin 14 und Keratin 16 beispielsweise nach dem STAiR18-KD im Vergleich zur scramble-Kontrolle etwa 10-fach verstärkt exprimiert. Keratinfilamente setzen sich als Heterodimere aus Typ I- und Typ II-Keratinen zusammen [154]. Typ II-Keratine schienen nach dem STAiR18-KD allerdings nicht verstärkt exprimiert zu werden. Zu den am stärksten induzierten Genen zählte außerdem der Transkriptionsfaktor MafB, welcher in etlichen Tumoren verstärkt exprimiert wird und je nach Zellkontext sowohl als Onkogen als auch als Tumorsupressor wirken kann [155]. Mit SAA1 lag zudem eines der Haupt-Akute-Phase-Proteine, was als Antwort auf Infektionen, Gewebeverletzungen oder maligne Erkrankungen induziert wird, nach dem STAiR18-KD verstärkt exprimiert vor. Wie bereits gezeigt werden konnte, scheint SAA1 ebenso auf die Migration und Invasion von Glioblastomzellen Einfluss zu nehmen [156]. Des Weiteren wurden etliche nichtkodierende Transkripte durch den STAiR18-KD induziert.

Unter den Top-Kandidaten der am stärksten durch den STAiR18-KD reprimierten Transkripte fand sich mit LINC00152 und MIR4435-1HG sowohl der STAiR18-A- als auch der STAiR18-B-Locus selbst, was für die Güte des Microarrays spricht. Außerdem wurden mit ABLIM3, FILIP1L und MAP1LC3C an verschiedene Kompartimente des Zytoskeletts bindende Proteine nach dem STAiR18-KD vermindert exprimiert [157,158]. Mit Cyclin A1 wurde ein entscheidender Regulator des Zellzyklus nach dem STAiR18-KD reprimiert [159]. Auch dem Transkriptionsfaktor FoxM1, der nach dem STAiR18-KD ebenso vermindert exprimiert wurde (keine Auflistung unter den 20 am stärksten regulierten Transkripten; FC 2,6; *), fällt eine Schlüsselrolle in der Regulation des Zellzyklus zu. Dieser als Proto-Onkogen beschriebene Transkriptionsfaktor wird in etlichen humanen Tumoren, so auch im Glioblastom, verstärkt exprimiert [160]. Die verminderte Expression von FoxM1 nach dem STAiR18-KD scheint sich auch auf die FoxM1-Zielgene auszuwirken. So wird bspw. auch die Matrixmetalloproteinase 2 (MMP-2) infolge des STAIR18-KD vermindert exprimiert (keine Auflistung unter den 20 am stärksten regulierten Transkripten; FC 3,2; *). MMP-2 nimmt einen direkten Einfluss auf die Invasion von Glioblastomzellen in angrenzendes gesundes Gewebe, indem es zur Degradierung der extrazellulären Matrix beiträgt [161,162]. Auch RAB3D wurde durch den STAiR18-KD unterdrückt und scheint in etlichen Tumoren verstärkt exprimiert zu werden und einen Einfluss auf die Migration und Invasion bestimmter Tumorzellen zu nehmen [163].

Abbildung 31: Klassifizierung der am stärksten regulierten Gene nach STAiR18-KD (Exon 1). Die am stärksten durch den STAiR18-KD signifikant regulierten Gene (FC \geq 3,5 und p-Wert \leq 0,05) wurden anhand ihrer zellulären Funktionen in verschiedene Gruppen eingeteilt. Dabei wurde nicht zwischen durch den STAiR18-KD induzierten und reprimierten Zielgenen von STAiR18 unterschieden. Die differenzielle Genexpression wurde im Vergleich zur scramble-Negativkontrolle berechnet. Die RNA wurde 48 h posttransfektion aus A172-Zellen isoliert und für die Microarray-Analyse nach Angaben des Herstellers aufgearbeitet (n=3).

Abbildung 31 zeigt die Einteilung der am stärksten durch den STAiR18-KD regulierten Gene nach ihrer Funktion. Es wurden nur die Zielgene von STAiR18 in die Analyse einbezogen, welche signifikant (p-Wert ≤0,05) reguliert vorlagen und einen FoldChange von wenigstens 3,5 gegenüber der scramble-Kontrolle aufwiesen. Dabei wurde nicht zwischen induzierten und reprimierten Zielgenen unterschieden. Es fiel auf, dass durch die lange nichtkodierende RNA STAiR18 etliche andere nichtkodierende RNAs signifikant reguliert wurden. Die proteinkodierenden Zielgene von STAiR18 konnten weiter klassifiziert werden. Die größte Gruppe stellen hier mit 22 % aller regulierten Zielgene solche Gene dar, welche einen direkten oder indirekten Einfluss auf Komponenten des Zytoskeletts nehmen können. Außerdem spielt ein großer Prozentsatz der Zielgene eine Rolle in der Kontrolle und Aufrechterhaltung des Zellzyklus oder bei der Einleitung der Apoptose. So wundert es auch nicht, dass viele der STAiR18-Zielgene als Onkogene oder Tumorsupressoren beschrieben sind. Außerdem wurden durch den STAiR18-KD viele neuronale Proteine reguliert, welche mit neurodegenerativen Erkrankungen assoziiert werden können.

Im Folgenden sollten die Ergebnisse des Microarrays anhand ausgewählter Zieltranskripte mittels qPCR validiert werden. Dazu wurden A172-Zellen mit einer siRNA gegen das erste Exon von STAiR18 und mit einer scramble-Kontrolle transfiziert, die RNA 48 h posttransfektion isoliert und die
Expression der STAiR18-Zielgene nach dem STAiR18-KD im Vergleich zur scramble-Kontrolle mittels qPCR bestimmt, um diese mit den FCs aus der Microarray-Analyse abzugleichen. Wie in Abbildung 32 dargestellt, sprechen die Ergebnisse für die Güte und Spezifität der Microarray-Analysen. Für alle untersuchten Zielgene von STAiR18 konnten die erwarteten Expressionsunterschiede nach dem STAiR18-KD per qPCR bestätigt werden. Als Kontrolle für die nach den STAiR18-KD induzierten Zielgene von STAiR18 wurde die Expression von Keratin16, MAFB und SAA1 mittels qPCR validiert. Dabei fiel die relative Expression von Keratin16 nach dem KD von STAiR18 mit einer 15-fachen Anreicherung gegenüber der scramble-Kontrolle sogar noch stärker aus, als die durch den Microarray erwartete Anreichung von etwa 10-fach. Auch die durch den STAiR18-KD reprimierten Zielgene von STAiR18 konnten per qPCR validiert werden. Hier wurde beispielhaft die Expression von CCNA1 und FoxM1 nach dem STAiR18-KD im Vergleich zur scramble-Kontrolle überprüft.

Abbildung 32: Validierung der STAiR18-**Zielgene mittels qPCR.** 3 x 10⁶ A172-Zellen wurden mit 20 µM siRNA (scr; siSTAiR18 Ex1.1) transfiziert und unter Normalbedingungen kultiviert. 48 h posttransfektion wurde die RNA der Zellen isoliert und einem DNase-Verdau unterzogen. Jeweils 1 µg RNA wurde unter Verwendung von Random Hexamer Primern in cDNA umgeschrieben und für die anschließende qPCR 1:10 verdünnt. Es kamen spezifische Primer für ausgewählte STAiR18-Zielgene für die sowie Housekeeper-RNA U6 zum Einsatz. Die C_T-Werte wurden mit denen von U6 abgeglichen und die Expression auf den scr-Ansatz normiert (n≥3). Die mittels Microarray ermittelten FC-Werte sind zum besseren Vergleich jeweils unter den STAiR18-Zielgenen angegeben.

Zwar wurden die in dieser Arbeit verwendeten siRNAs so designt, dass sie nur zu einem einzelnen Bereich in einem spezifischen Trankript komplementär sind und somit auch nur zu einem spezifischen Knockdown dieses Zieltranskripts führen, allerdings können off-target-Effekte auf andere Transkripte der Zelle nicht von vornherein ausgeschlossen werden. Um sicherzustellen, dass es sich bei den nach dem STAiR18-KD beobachteten Effekten nicht um off-Target-Effekte handelt, wurden zwei weitere siRNAs (siSTAiR18_Ex1.2; siSTAiR18_Ex1.3) gegen das erste Exon von STAiR18 designt. Mittels qPCR sollte überprüft werden, ob diese die gleichen regulatorischen Effekte auf ausgewählte Zieltranskripte von STAiR18 haben, wie die für den Microarray verwendete siRNA gegen das erste Exon von STAiR18 (siSTAiR18 Ex1.1). Dafür wurde STAiR18 mittels RNAi unter Verwendung der drei siRNAs gegen das erste Exon ausgeknockt und zum einem die Knockdowneffizienz auf STAiR18 selbst als auch die Expressionsunterschiede ausgewählter Zieltranskripte von STAiR18 mittels qPCR bestimmt. Wie in Abbildung 33 dargestellt ist, hatten die drei siRNAs, obwohl sie alle gegen das erste Exon von STAiR18 designt sind, unterschiedliche Knockdowneffizienzen. So ist der Knockdown mit der in dieser Arbeit verwendeten siSTAiR18_Ex1.1 am effektivsten und vermindert die STAiR18-Expression auf 4 %. Die siSTAiR18 Ex1.3 vermindert die STAiR18-Expression dagegen nur auf 33 % und auch die siSTAiR18 Ex1.2 trägt nicht zu einem effektiven Knockdown von STAiR18 bei. Hier liegen 48 h posttransfektion noch zwei Drittel der Transkripte vor. Die unterschiedlichen Knockdowneffizienzen wirkten sich auch auf die Regulation der STAiR18-Zieltranskripte aus. Durch Verwendung der wenig effektiven siSTAiR18 Ex1.2 wurden die Zieltranskripte im Vergleich zur scramble-Kontrolle kaum reguliert. Die siSTAiR18_Ex1.3 wirkte sich dagegen zwar nicht so stark auf die Expression der untersuchten Zieltranskripte aus, wie die höchst effektive siSTAiR18 Ex1.1, dennoch konnte eine Regulation aller untersuchten Zieltranskripte in die erwartete Richtung nachgewiesen werden.

Trotz unterschiedlicher Knockdowneffizienzen der verwendeten siRNAs wird deutlich, dass auch die anderen siRNAs gegen das erste Exon von STAiR18 dieselben Zieltranskripte regulieren wie siSTAiR18_Ex1.1. Die geringere Auswirkung der Regulation lässt sich hier durch Dosiswirkungseffekte erklären. Liegen nach dem KD von STAiR18 noch zu viele Transkripte in der Zelle vor, ist folglich auch der Effekt auf die Zieltranskripte von STAiR18 abgeschwächt. Somit lassen sich off-Target-Effekte der verwendeten siRNA gegen das erste Exon von STAiR18 ausschließen und es kann ein spezifischer STAiR18-KD gewährleistet werden.

Abbildung 33: Ausschluss von off-Target-Effekten nach STAiR18-KD. 3×10^{6} A172-Zellen wurden mit 20 μ M siRNA (scr; siSTAiR18_Ex1.1; siSTAiR18_Ex1.2; siSTAiR18_Ex1.3) transfiziert und unter Normalbedingungen kultiviert. 48 h posttransfektion wurde die RNA der Zellen isoliert und einem DNase-Verdau unterzogen. Jeweils 1 μ g RNA wurde unter Verwendung von Random Hexamer Primern in cDNA umgeschrieben und für die anschließende qPCR 1:10 verdünnt. Es kamen spezifische Primer für STAiR18, ausgewählte STAiR18-Zielgene sowie für die Housekeeper-RNA U6 zum Einsatz. Die C_T-Werte wurden mit denen von U6 abgeglichen und die Expression auf den scr-Ansatz normiert (n≥3).

Im Rahmen der Transkriptionsanalyse wurden nicht nur die differenziell nach dem Knockdown des ersten Exons von STAiR18 exprimierten Gene analysiert, sondern auch die Gene bestimmt, welche nach einem siRNA-vermittelten Knockdown von STAiR18 mit siRNAs gegen das zweite, dritte und siebte Exon sowie gegen Exon K und zum Vergleich gegen STAT3 differenziell exprimiert wurden. In Abbildung 34 ist die Anzahl der differenziell und signifikant gegenüber der scramble-Kontrolle exprimierten Gene nach den einzelnen Knockdowns dargestellt. Dabei flossen nur Gene mit einem FC \geq 2 und einem p-Wert \leq 0,05 in die Analysen ein und es wurde zwischen nach dem Knockdown induzierten und reprimierten Zielgenen unterschieden. Durch den Einsatz der verschiedenen siRNAs gegen STAiR18 und gegen STAT3 wurden zwischen 200 und 769 Gene differenziell reguliert. Der für die Transkriptionsanalyse verwendete Genexpressionsarray umfasste 50.611 Sonden, welche das komplette Humangenom, also sowohl kodierende als auch nichtkodierende Transkripte, abdecken. Somit wurden durch die Knockdowns lediglich 0,4 % bis 1,5 % der gesamt betrachteten Gene spezifisch reguliert. Erstaunlicherweise schwankte die Anzahl der differenziell regulierten Gene deutlich, je nachdem welche siRNA für den Knockdown zum Einsatz kam. So werden durch siSTAiR18_Ex7 mit 769 Genen mehr als dreimal so viele Gene differenziell exprimiert als durch siSTAiR18_Ex2 mit 200 differenziell exprimierten Genen. Auch das Verhältnis von nach dem Knockdown reprimierten beziehungsweise induzierten Genen hing vom Einsatz der entsprechenden siRNA ab. So wurden nach dem Knockdown mit siSTAT3, siSTAiR18_Ex1.1 und siSTAiR18_Ex2 mehr Gene differenziell unterdrückt, nach dem Knockdown mit siSTAiR18_ExK, siSTAiR18_Ex3 und siSTAiR18_Ex7 wurden dagegen mehr Gene verstärkt exprimiert.

Abbildung 34: Anzahl der in der Transkriptionsanalyse differenziell regulierten Gene. Dargestellt ist die Anzahl der differenziell nach dem Knockdown mit siSTAT3, siSTAiR18 Ex1.1, siSTAiR18_ExK, siSTAiR18_Ex2, siSTAiR18 Ex3 und siSTAiR18 Ex7 regulierten Gene in A172-Zellen. Dabei flossen nur Gene mit einem FC \geq 2 und einem p-Wert \leq 0,05 in die Analyse ein. Mit mehr als 50.000 gesamt analysierten Sonden wurden durch die Knockdowns nur etwa 1 % aller Gene reguliert (n=3).

Um zu ermitteln zu welchem Grad sich die Zielgene der KDs von STAiR18 unter Verwendung der siRNAs gegen die verschiedenen STAiR18-Exons überschneiden, wurde die Anzahl der sich überlappenden Gene in einem Venn-Diagramm dargestellt. Die Analyse erfolgte über die frei verfügbare Software der Webseite der Bioinformatics & Evolutionary Genomics (http://bioinformatics.psb.ugent.be/cgi-bin/liste/Venn/calculate venn.htpl). Es wurden nur die Gene berücksichtigt, welche durch die zu vergleichenden KDs mit einem $FC \ge 2$ und einem p-Wert \le 0,05 gekennzeichnet waren. Wie Abbildung 35 entnommen werden kann, traten mit 30 und 27 Genen die größten Überschneidungen von differenziell regulierten Genen bei einem KD von Exon 3 und Exon 7 bzw. von Exon 1 und Exon 3 auf. Eine nur sehr geringe Überschneidung von 4 Genen zeigten dagegen die KDs von Exon 2 und Exon 3. Diese Beobachtung deckt sich mit der in der MinION[™]-Sequenzierung entschlüsselten Transkriptstruktur von STAiR18, welche ebenso vermuten ließ, dass keine STAiR18-Isoform existiert, die sowohl das zweite als auch das dritte Exon enthält.

Abbildung 35: Überschneidung der durch die einzelnen STAiR18-KDs regulierten Zielgene. Dargestellt ist die Anzahl der differenziell regulierten Gene, welche sich innerhalb der verschiedenen STAiR18-KDs überschneiden. Das Venn-Diagramm wurde mit Hilfe der Bioinformatics & Evolutionary Genomics Software erstellt. Es flossen nur Gene mit einem FC \geq 2 und einem p-Wert \leq 0,05 in die Analyse ein.

Die mittels Transkriptomanalyse bestimmten Zielgene von STAiR18 sollten nun auch bioinformatisch auf globaler Ebene analysiert und klassifiziert werden. Dazu wurden Gene Ontology (GO)-Term-Analysen von Frau M. Sc. Karolin Wiedemann (AG Bioinformatik, Fraunhofer-Institut IZI, Leipzig) durchgeführt. Das GO-System stellt eine Möglichkeit zur hierarchischen Klassifizierung von Genen dar, bei welcher jedes Gen durch mehrere Termini beschrieben und bestimmten Gruppen zugeordnet wird. Diese Klassifizierungen können in drei Kategorien durchgeführt werden. Die Kategorie "Molekulare Funktion" beschreibt die molekulare Aktivität eines Genprodukts. In der Kategorie "Biologischer Prozess" werden Genprodukte anhand ihrer physiologischen Rolle innerhalb der Zelle beschrieben und in der Kategorie "Zelluläre Komponente" werden Genprodukte anhand ihrer Lokalisation, an welcher sie ihre Funktion ausüben, eingeteilt [164]. Bei GO-Term-Analysen handelt es sich um eine Methode zur Interpretation differenziell regulierter Gensets, welche auf dem GO-System beruht. Die Zuordnung der Gene zu den einzelnen GO-Termini kann genutzt werden, um Zusammenhänge zwischen den differenziell regulierten Genen zu identifizieren. Um zu bestimmen, welche zellulären Mechanismen diesem Set an differenziell regulierten Genen zu Grunde liegen, wird ein funktionelles Profil eines Gensets erstellt. Dabei wird die Anzahl an Genen, welche durch das GO-System einem bestimmten Terminus zugeordnet sind, mit der Anzahl an Genen, die innerhalb dieses Terminus differenziell reguliert vorliegen, verglichen. Auf diese Weise erhält man eine Top-Liste der GO-Termini, welche im untersuchten Genset am stärksten reguliert werden und kann Rückschlüsse auf die zellulären Funktionen ziehen, die durch dieses Genset beeinflusst werden [165].

Im Vorfeld der GO-Term-Analysen wurde durch Frau M. Sc. Karolin Wiedemann eine Liste der nach dem Knockdown von STAiR18 im Vergleich zur scramble-Kontrolle differenziell exprimierten Gene angefertigt, wobei zwischen einem Knockdown von STAiR18 mit siRNAs gegen das erste, zweite, dritte und siebte Exon sowie gegen Exon K verglichen wurde. Es wurden zunächst all jene Gene aus dem Datensatz entfernt, deren Fluoreszenzintensitäten sich nicht genug vom Hintergrundsignal des Microarrays abhebten oder deren Sonden keine eindeutigen Sequenzen aufwiesen, also mehreren Stellen im Genom zugeordnet werden konnten. Im Anschluss wurden die Gene bestimmt, welche mit einem logFC > 0,5 und einem adjustierten p-Wert < 0,05, differenziell gegenüber der scramble-Kontrolle nach dem STAiR18-KD exprimiert wurden. Auf Grund der strikten Filterbedingungen flossen damit bei dem KD mit siSTAiR18_Ex1 50 Gene, bei dem KD mit siSTAiR18_Ex3 94 Gene und bei dem KD mit siSTAiR18_Ex7 205 differenziell exprimierte Gene in die GO-Term-Analysen ein. Da bei den KDs mit siSTAiR18_Ex2 und siSTAiR18_ExK weniger als 50 Gene als differenziell exprimiert bestimmt worden sind, konnten für diese beiden KDs keine GO-Term-Analysen durchgeführt werden. Die Ergebnisse der GO-Term-Analysen für siSTAiR18_Ex1, siSTAiR18_Ex3 und siSTAiR18_Ex7 sind in Abbildung 36 dargestellt.

Bei einem KD mit siSTAiR18_Ex1 wurden in erster Linie Gene, die dem Zytoskelett und hier besonders dem Mikrotubuli-Zytoskelett zugeordnet sind, beeinflusst. Außerdem wurden Gene, welche extrazellulären Organellen, wie bspw. Exosomen, zugeordnet sind und Gene, welche Cycline und Cyclin-Kinase-Komplexe beeinflussen, durch den KD reguliert. Auch auf molekulerer Ebene wurden GO-Termini, welche Zytoskelettbestandteile beschreiben, besonders häufig gelistet. Des Weiteren fielen verschiedene Gene zur Bindung an Nukleoside, vor allem an Purinnukleoside, ins Auge. Davon schienen bei einem KD mit siSTAiR18_Ex1 unter anderem Gene betroffen zu sein, die einen Einfluss auf die Differenzierung verschiedener Zellen des Immunsystems nehmen, aber auch bei der pankreatischen Zellentwicklung und Drüsenepithelzellentwicklung eine Rolle spielen. Auch von einem KD mit siSTAiR18_Ex3 waren Gene betroffen, welche extrazellulären Organellen wie Exosomen, aber auch intrazellulären Vesikeln wie dem Autophagosom oder Membranausstülpungen zugeordnet werden. Der KD wirkte sich ebenso auf Komponenten des Zytoskeletts aus, wobei hier im Gegensatz zum Mikrotubuli-Zytoskelett besonders Gene für die Bindung an Aktinfilamente und Spektrine reguliert wurden. Außerdem schien die Aktivität verschiedener Kinasen durch den KD mit siSTAiR18_Ex3 beeinflusst zu werden. Es wurden vor allem Gene reguliert, welche in den T-Zell-Rezeptorweg eingreifen und als Antwort auf das Zytokin TGF-beta exprimiert werden, welches Einfluss auf zentrale Zellmechanismen wie Proliferation, Differenzierung und Apoptose nehmen kann. Besonders fielen hier auch GO-Termini ins Auge, welche der Entwicklung von Herzkammern und –ventrikeln zugeordnet werden.

Der KD mit siSTAiR18_Ex7 nahm Einfluss auf das Endomembransystem, allgemeine zytoplasmatische Bestandteile und auch auf die kondensierten Bereiche am Zentromer der Chromosomen. Es wurden vor allem Gene reguliert, die die Hydrolaseaktivität an Säureanhydriden beeinflussen, sowie Kinasen aber auch doppelsträngige RNAs binden. Des Weiteren schien durch den KD besonders die Bindung an Proteine, welche eine F-Box-Domäne tragen und häufig in die Regulation des Zellzyklus eingreifen [166], reguliert zu werden. Außerdem wurden etliche weitere Gene, welche der Zellzyklusregulation zugeordnet werden können, durch den KD mit siSTAiR18_Ex7 differenziell reguliert. Bei der GO-Term-Analyse fielen hier vor allem die Organisation des Zytoskeletts und die Zytoskelett-abhängige Zellteilung auf, wobei besonders der Übergang der G2-Phase in die M-Phase reguliert zu werden scheint.

Durch die Verwendung der siRNAs gegen das erste, dritte und siebte Exon bei einem STAiR18-KD wurden die verschiedenen STAiR18-Isoformen unterschiedlich effektiv ausgeschaltet. Die Unterschiede in den GO-Term-Analysen von siSTAiR18_Ex1, siSTAiR18_Ex3 und siSTAiR18_Ex7 lieferten somit starke Hinweise darauf, dass die Transkriptvarianten von STAiR18 einen Einfluss auf unterschiedliche Prozesse in den Zellen nehmen und ihre Funktion an verschiedenen Zellkompartimenten ausüben können.

siSTAiR18 Ex 1	siSTAiR18 Ex 3	siSTAiR18 Ex 7	
Zytoskelett (12/1762)	Membranausstülpung (2/7)	Endomembransystem (68/3670	
Mikrotubuli-Zytoskelett (8/948)	Zytoplasma (69/9581) Zytoplasm. Teil (60/7976)	Chromosom Zentromer (10/166 Kondens. Chr., Zentromer (4/19	
Extrazell. Organelle (14/2277) Extrazell. Vesikel (14/2276)	Extrazell. Organelle (24/2277) Extrazell. Vesikel (24/2276) Extrazell. Exosomen (24/2260)	Intrazell. Bereich (168/12234) Intrazell. Teil (167/11985) Intrazell. Organelle (153/10466 Zytoplasma (150/9581) Zytoplasmat. Teil (130/7976) Teil v. Organelle (121(7671) Intrazell. Teil v. Organelle (120/7486)	
Extrazell. Exosomen (14/2260) Cyclin D2-CDK6-Komplex (1/1) Cyclin A1-CDK2-Komplex (1/2) CDK-Holoenzym-Komplex (2/34)	Organelle (76/11263) Intrazell. Organelle (71/10466) Vesikel (37/3565) Autophagosom (5/75)		
Zytoskelettbestandteil (4/86)	Zytoskelettbestandteil (4/86) Aktinfilamentbindg. (5/139)	FBXO-Protein-Bindung (2/2)	
Neuropeptidbindung (2/19)	Spektrinbindung (2/23)	Hydrolaseakt. an	
Somatostatin-RzptAktiv. (2/5) Thyroid-Rezeptor-Bindg. (2/25)	Proteinbindung (70/9720) Fibronektinbindung (2/24)	Saureannyariden (20/697) Hydrolaseakt. an Phosphor- Säureanhydriden (20/696) Pyrophosphatase-Akt (20/696)	
GTPase-Aktivität (5/231) GTP-Bindung (5/305)	Phosphatidylinositol-Phosphat- Kinase-Aktivität (2/14) 1-Phosphatidylinositol-4-	Nukleotidbindung (38/1786) RNA-Bindung (30/1281)	
Nukleosidbindung (5/313) Ribonukloesidbindg. (5/313) Purin-Nukleosidbindg. (5/312) Purin-RibonuklBindg. (5/309)	Ribokinaseaktivierung (1/1) Chlorid-transpKinase-Akt. (1/1) Ras-PalmitoyltransfAkt. (1/1)	ds RNA-Bindung (7/56) Proteinbindung (148/9720) Kinase-Bindung (20/663) Protein-Kinase-Bindung (18/49	
	T-Zell-Rezeptor-Weg (5/137)	Antw. auf Chemikalien (70/366	
Antw. puf Protoiofoltung (2/10)	ER-Organisation (3/39)	Zellteilung (20/502) Mitot, Zellteilung (6/41)	
Somatostatin-RezeptWeg (2/5)	Brustdrüsenabbau (2/9)	Zytoskelett-organisat. (29/103/ Zytoskelett-abh. Zellteilg.(6/48	
Somatostatin-Signal-Weg (2/5) Myel. Leukozyten-Diff. (4/165)	Antwort auf TGF-beta (6/195) Zell. Antw. auf TGF-beta (6/192)	Mitot. Zellzyklus (27/837) Fortschreiten des mitot.	
Monozyten-Diff. (3/30) PBMC-Diff. (3/30) Drüsenepithelzell-Entw. (2/21) Typ B pankreat. Zellentw. (2/16) Typ B pankreat. Zelldiff. (2/16)	Gewebeentwicklung (22/1660) Herzventrikelentw. (6/111) Herzventrikelmorphog. (4/67) Herzkammerentw. (6/147) Herzkammermorphog. (5/114)	G2/M-Phase-Übergang (13/216 G2/M-Phase-Übergang wähen Mitose (13/208) Regulation des G2/M-Phase- Übergangs (10/157)	

Abbildung 36: GO-Term-Analyse zur funktionellen Klassifizierung der STAiR18-Zielgene. Die nach dem STAiR18-KD gegenüber der scramble-Kontrolle differenziell regulierten Gene (LogFC > 0,5 und einem adjustierten p-Wert < 0,05) flossen in die GO-Term-Analysen ein. Dargestellt sind die Top10 regulierten GO-Termini. Es wird zwischen den Kategorien "Zelluläres Kompartiment", "Molekulare Funktion" und "Biologischer Prozess" unterschieden. In Klammern ist das Verhältnis der Anzahl der Gene, die innerhalb eines Terminus differenziell reguliert vorlagen, gegenüber der Anzahl der Gene, welche durch das GO-System eben diesem Terminus zugeordnet sind, angegeben. Die Rohdaten können den Tabellen 12 bis 14 entnommen werden.

Molekulare Funktion

Biologischer Prozess

Zelluläres Kompartiment

3.4.2 Analyse möglicher STAiR18-Interaktionspartner

Lange nichtkodierende RNAs üben ihre Funktionen oft nicht direkt, sondern indirekt durch Rekrutierung und Interaktion mit ihren Bindungspartnern aus. Nachdem die durch STAiR18 regulierten Gene in A172-Zellen durch eine genomweite Transkriptionsanalyse bestimmt wurden, sollte die physiologische Funktion von STAiR18 näher analysiert werden. So galt es zu ermitteln, ob STAiR18 direkte Interaktionen mit ausgewählten Zielgenen ausbildet. Um Rückschlüsse auf die Funktion von STAiR18 ziehen zu können und mögliche Bindungspartner zu bestimmen, wurde die Methode der *Chromatin Isolation by RNA Purofication* (ChIRP) nach Chu 2011 [142] angewendet. Dafür wurden die Zellen zunächst fixiert und so intrazelluläre Wechselwirkungen zwischen Proteinen und Nukleinsäuren stabilisiert. Es folgte ein Zellaufschluss und eine Fragmentierung des Chromatins mittels Ultraschall. Anschließend wurde über komplementär bindende biotinylierte Oligonukleotide die spezifische Isolation von STAiR18 aus dem Zelllysat möglich. Durch die vorangegangene Fixierung der Zellen konnten dabei auch die direkten STAiR18-Bindungspartnern auf RNA-, DNA- und auch Proteinebene co-präzipitiert werden.

Analyse der STAiR18-vermittelten Regulation von Keratin 16

Zu den am stärksten nach dem STAiR18-KD induzierten Transkripten zählen verschiedene Typ I-Keratine. Am Beispiel von Keratin 16 sollte nun die durch STAiR18 vermittelte Keratin-Regulation näher betrachtet werden. Wie bereits im Microarray und durch qPCR-Studien gezeigt werden konnte, wird das KRT16-Transkript 48 h nach dem STAiR18-KD in A172-Zellen etwa 10-fach verstärkt exprimiert. Im Folgenden sollte zunächst untersucht werden, inwiefern die gesteigerte Expression der KRT16-mRNA auch in eine gesteigerte Proteinexpression von KRT16 mündet. Dafür wurde die KRT16-Expression 48 h nach dem STAiR18-KD mittels Immunblot und Immunfluoreszenz untersucht.

Abbildung 37: Regulation der KRT16-Proteinexpression durch den STAiR18-Knockdown. (A) Analyse der KRT16-Proteinexpression in Abhängigkeit von STAiR18 mittels Immunoblot. 3×10^6 A172-Zellen wurden mit 20 µM siRNA (scr; siSTAiR18 1.1) transfiziert und unter Normalbedingungen kultiviert. 48 h posttransfektion wurden die Proteine mittels RIPA isoliert und je 30 µg in einem 10 %igen PAA-Gel aufgetrennt. Die Detektion erfolgte anschließend mit Hilfe eines spezifischen anti-KRT16-Antikörpers. Als Ladekontrolle kam ein anti-PABP1-Antikörper zum Einsatz. Als Positivkontrolle wurden 10 µl reines Keratinozytenlysat (zur Verfügung gestellt von Prof. Magin, Universität Leipzig) aufgetragen. (B) Analyse der KRT16-Proteinexpression in Abhängigkeit von STAiR18 mittels Immunfluoreszenz. 3×10^6 A172-Zellen wurden mit 20 µM siRNA (scr; siSTAiR18 1.1) transfiziert und 48 h auf Glasplätchen unter Normalbedingungen kultiviert. Anschließend erfolgte eine Immunfluoreszenzfärbung unter Verwendung eines primären spezifischen anti-KRT16 Antikörpers. Als Negativkontrolle ist jeweils ein Ansatz ohne Verwendung eines

Wie in Abbildung 37 zu erkennen ist, konnte mittels Immunblot kein gesteigertes KRT16-Proteinlevel nach dem STAiR18-KD festgestellt werden. Zum Vergleich wurde die KRT16-Expression unter Verwendung einer scr-Negativkontrolle mitgeführt. Als Positivkontrolle diente reines Keratinozytenlysat, in welchem die Keratine 80 % des Gesamtproteins ausmachen. Das PABP1-Protein wurde als Ladekontrolle detektiert. Um die Expression des Keratin16-Proteins nach dem

109 | ERGEBNISSE

STAiR18-KD näher zu analysieren, wurde es außerdem mittels Immunfluoreszenz in A172-Zellen detektiert. Es fällt auf, dass nach dem STAiR18-KD in einigen Zellen eine verstärkte Keratin16-Expression auftritt. Hier kommt es allerdings nicht zur Ausbildung eines typischen Keratin-Zytoskellets, sondern das Keratin16-Protein scheint granulär im Zytoplasma angereichert zu werden. Dies könnte der Tatsache geschuldet sein, dass sich Keratinfilamente meist als Heterodimere aus Typ I- und Typ II-Keratinen zusammensetzen [154]. Typ II-Keratine scheinen nach dem STAiR18-KD allerdings nicht verstärkt exprimiert zu werden, wodurch trotz verstärkter Expression der Typ I-Keratine nach dem STAiR18-KD kein Keratin-Zytoskellet ausgebildet wird. Als Negativkontrolle der Immunfluoreszenzfärbungen diente ein Ansatz, bei welchem kein primärer anti-KRT16-Antikörper zum Einsatz kam.

Nachdem gezeigt werden konnte, dass sich die verstärkte Expression von Keratin 16 nach dem STAiR18-KD besonders auf das Keratin16-Transkript und nicht im selben Maße auf das Keratin16-Protein bezieht, sollte überprüft werden, ob eine direkte Interaktion von STAiR18 mit dem Keratin16-Transkript vorliegt. Dafür wurde STAiR18 unter Verwendung der ChIRP-Methode spezifisch aus A172-Zelllysaten isoliert. Die Zellen wurden zunächst fixiert um die Bindungen von STAiR18 und möglichen Interaktionspartnern zu konservieren. Nach einem Zellaufschluss und der Fragmentierung des Chromatins durch Ultraschall wurden dem Zelllysat biotinylierte DNA-Oligonukleotide zugesetzt, welche komplementär an STAiR18 binden. Um unspezifische Bindungen ausschließen zu können, wurden in einem weiteren Ansatz Oligonukleotide gegen die bakterielle RNA lacZ als Negativkontrolle zu dem Zelllysat gegeben. Da lacZ in humanen Zellen nicht exprimiert wird, sollten über diese Oligonukleotide keine Transkripte isoliert werden. Nach mehreren Waschschritten erfolgte die Separation der Zieltranskripte und der Interaktionspartner aus dem Zelllysat mittels magnetischer Streptavidin-Beads. Es schloss sich eine RNA-Isolation mittels Trizol an.

Die Anreicherung ausgewählter Transkripte in der STAiR18-Oligonukleotid-Probe gegenüber der lacZ-Kontrollprobe wurde mittels qPCR analysiert. Um die Spezifität und Effizienz der Methode zu testen, wurde zur Kontrolle die Anreicherung von STAiR18 selbst und der Housekeeper-RNA U6 gemessen. Wie Abbildung 38 entnommen werden kann, ist mit der angewandten ChIRP-Methode eine höchst effiziente und spezifische Anreicherung von STAiR18 möglich. So lag das Transkript STAiR18 1-2 100-fach verstärkt und STAiR18 1-3 12-fach verstärkt im STAiR18-Oligo-Ansatz vor. Die Housekeeper-RNA U6 wurde dagegen weder mit den STAiR18-Oligonukleotiden noch mit den lacZ-Oligonukleotiden gezogen. Allerdings konnte keine direkte Interaktion des KRT16-Transkripts mit

STAIR18 ermittelt werden. Im Rahmen dieser Analyse wurde auch eine mögliche Interaktion von STAIR18 mit weiteren Transkripten (SAA1, CCNA1 und MAFB) untersucht, für welche vorab im Microarray eine Regulation durch STAIR18 nachgewiesen werden konnte. Auch die Expression dieser Transkripte wurde nicht durch eine direkte Bindung an STAIR18, sondern offensichtlich indirekt reguliert, da auch hier mittels ChIRP keine direkte Interaktion von STAIR18 an diese Transkripte nachgewiesen werden konnte.

Abbildung 38: Spezifische Präzipitation von STAiR18 mittels ChIRP. Pro ChIRP-Ansatz wurden 2 x 10^7 fixierte A172-Zellen eingesetzt. Nach Lyse und Ultraschallaufschluss erfolgte die Zugabe von Oligonukleotiden gegen STAiR18 und als Negativkontrolle gegen lacZ. Anschließend wurde die RNA isoliert, einem DNAse-Verdau unterzogen und vollständig mittels Random Hexamer-Primern in cDNA umgeschrieben. Die Anreicherung von U6, STAiR18 1-2, STAiR18 1-3, KRT16, SAA1, CCNA1 und MAFB in den jeweiligen Ansätzen wurde mittels qPCR unter Verwendung spezifischer Primer überprüft, wobei die Anreicherung von STAiR18 als Positivkontrolle und die von U6 als Negativkontrolle diente. Die Normalisierung der C_T-Werte erfolgte auf den lacZ-Ansatz (n=3).

111 | ERGEBNISSE

Analyse der STAiR18 vermittelten Regulation von FoxM1

Der Transkriptionsfaktor FoxM1 wird nach einem STAiR18-KD in A172-Zellen auf RNA-Ebene etwa 5fach vermindert exprimiert. Da diesem als Proto-Onkogen beschriebenen Transkriptionsfaktor eine entscheidende Rolle in der Regulation des Zellzyklus zufällt und er in etlichen humanen Tumoren, wie auch im Glioblastom, verstärkt exprimiert wird [160], sollte die durch STAiR18 vermittelte Regulation von FoxM1 näher untersucht werden. Zunächst wurde im Immunblot unter Verwendung eines spezifischen anti-FoxM1-Antikörpers getestet, inwiefern sich die verminderte Expression des FoxM1-Transkripts nach dem STAiR18-KD auch auf das Proteinlevel von FoxM1 auswirkt. Wie in Abbildung 39 dargestellt ist, wurde das FoxM1-Protein 48 h nach STAiR18-KD im Vergleich zur mitgeführten scramble-Kontrolle deutlich vermindert in den A172-Zellen exprimiert. Als Positivkontrolle wurde auch ein FoxM1-KD-Ansatz mitgeführt, welcher verdeutlicht, dass durch den siRNA vermittelten KD von FoxM1 die Expression des FoxM1-Proteins nahezu vollständig unterdrückt wird. Im rechten Teil der Abbildung ist die Expression von STAIR18 und der FoxM1-RNA nach den Knockdowns dargestellt. Diese verdeutlicht zum einen die hohe Effektivität der Knockdowns, sowohl STAiR18 als auch das FoxM1-Transkript werden 48 h nach dem KD mit der jeweiligen siRNA nur noch zu etwa 2 % exprimiert. Zum anderen wird ersichtlich, dass ein positiver Rückkopplungsmechanismus zwischen STAiR18 und dem Transkriptionsfaktor FoxM1 vorzuliegen scheint. So wurde erstaunlicherweise nicht nur die FoxM1-Expression durch einen Knockdown mittels siSTAiR18 unterdrückt, sondern auch die Expression von STAiR18 ist nach einem Knockdown von FoxM1 um etwa die Hälfte reduziert. Bei FoxM1 handelt es sich unter physiologischen Bedingungen folglich um ein Zieltranskript von STAiR18, welches durch die nichtkodierende RNA induziert wird. Andererseits wird auch die Transkription von STAiR18 selbst teilweise durch den Transkriptionsfaktor FoxM1 induziert. Dieser Rückkopplungsmechanismus wirkt sich auch auf die weiteren Zielgene von STAiR18 aus. So zeigte die Expression von KRT16, einem der durch den STAiR18-KD am stärksten regulierten Transkripte, dass diese nicht nur nach dem STAiR18-KD, sondern indirekt, wenn auch in geringerem Ausmaß, ebenso durch einen FoxM1-KD verstärkt wird.

Abbildung 39: Positive Rückkopplung zwischen STAiR18 und dem Transkriptionsfaktor FoxM1. (A) Regulation der FoxM1-Proteinexpression durch den STAiR18-Knockdown. 3×10^6 A172-Zellen wurden mit 20 µM siRNA (scr; siSTAiR18_Ex1.1; siFoxM1) transfiziert und unter Normalbedingungen kultiviert. 48 h posttransfektion wurden die Proteine mittels RIPA isoliert und je 30 µg in einem 10 %igen PAA-Gel aufgetrennt. Die Detektion des FoxM1-Proteins erfolgte anschließend mit Hilfe eines spezifischen anti-FoxM1-Antikörpers. Als Ladekontrolle wurde ß-Aktin detektiert. (B) Positive Rückkopplung zwischen STAiR18 und FoxM1 auf RNA-Ebene. 3×10^6 A172-Zellen wurden mit 20 µM siRNA (scr; siSTAiR18_Ex1.1; siFoxM1) transfiziert und unter Normalbedingungen kultiviert. 48 h posttransfektion wurde die RNA isoliert, einem DNase-Verdau unterzogen und jeweils 1 µg mit Random Hexamer-Primern in cDNA umgeschrieben. Für die anschließende qPCR wurde die cDNA 1:10 verdünnt und die Expression von STAiR18 1-2, FoxM1, KRT16 und dem Housekeeper U6 gemessen. Nach einem Abgleich der C_T-Werte mit U6 erfolgte die Normalisierung auf den scr-Ansatz (n=3).

Da bereits beschrieben wurde, dass durch FoxM1 die Migration von Glioblastomzellen beeinflusst wird und eine erhöhte Expression von FoxM1 in Patientenproben des Glioblastoms mit einer negativen Prognose korreliert [167,168], sollte überprüft werden, ob auch die Migration der A172-Zellen von der FoxM1-Expression abhängig ist. Dazu wurde erneut der bereits etablierte Migrationsassay angewendet, die Zellen mit einer siRNA gegen FoxM1 und einer scramble-Kontrolle zum Vergleich transfiziert und in die Kammer eines ibidi-Inserts eingesät. 24 h posttransfektion wurde das Insert entfernt und die Migration der Zellen in die so entstandene zellfreie Fläche mikroskopisch analysiert. Dabei konnten die bereits bekannten Effekte von FoxM1 auf die Migration von Glioblastomzellen bestätigt werden. So wandern auch die A172-Zellen nach einem FoxM1-KD um etwa ein Drittel verzögert in die zellfreie Fläche ein. Nach einem KD von FoxM1 zeigten sich gegenüber der scramble-Kontrolle jedoch keine Veränderungen in der Vitalität der A172-Zellen, welche 24 h und 48 h posttransfektion indirekt über eine ATP-Messung bestimmt wurde.

Abbildung 40: Migration und Vitalität der A172-Zellen in Abhängigkeit von FoxM1. (A) FoxM1 beeinflusst die Migration von A172-Zellen. 3 x 10^6 A172-Zellen wurden mit 20 µM siRNA (scr; siFoxM1) tranzfiziert und jeweils 1 x 10^4 Zellen in beide Kammern eines ibidi-Inserts eingesät. 24 h posttransfektion wurde das Insert entfernt. Die Zellen migrierten anschließend in den definierten zellfreien Spalt von 500 µm und die Breite des überwachsenen Fläche wurde über die nächsten 24 h analysiert. Dafür wurde die Fläche mikroskopiert und das Bild mittels Scratch Assay Analyzer von ImageJ analysiert (n=3). (B) FoxM1 nimmt keinen Einfluss auf die Vitalität von A172-Zellen. 3 x 10^6 A172-Zellen wurden mit 20 µM siRNA (scr; siFoxM1) tranzfiziert und 5 x 10^3 Zellen pro Kavität untersucht. 24 h und 48 h posttransfektion erfolgte die Analyse des ATP-Gehalts pro Kavität durch Verwendung des CellTiter-Glo[®] Luminescent Cell Viability Assays. Die so gemessenen Fluoreszenzeinheiten sind proportional zum ATP-Gehalt, welcher wiederum direkt abhängig von der Vitalität der Zellen ist. Dargestellt sind die auf den scramble-Ansatz nach 24 h normierten Werte (n=3). Abbildung 41: Analyse einer möglichen direkten Bindung zwischen STAiR18 und FoxM1 mittels ChIRP. (A) Analyse einer Bindung zwischen STAiR18 und dem FoxM1-Transkript. Pro ChIRP-Ansatz wurden 2 x 10^7 A172-Zellen eingesetzt und Oligonukleotide gegen STAiR18 als auch gegen lacZ als Negativkontrolle verwendet. Anschließend wurde die RNA isoliert, einem DNase-Verdau unterzogen und vollständig mittels Random Hexamer-Primern in cDNA umgeschrieben. Die Anreicherung von U6, STAiR18 1-2, STAiR18 1-3, FoxM1 Ex2 und FoxM1 Ex8 in den jeweiligen Ansätzen wurde mittels qPCR unter Verwendung spezifischer Primer überprüft, wobei die Anreicherung von STAiR18 als Positivkontrolle und die von U6 als Negativkontrolle diente. Die Normalisierung der C_T-Werte erfolgte auf den lacZ-Ansatz (n=3). (B) Analyse einer Bindung zwischen STAiR18 und der FoxM1-DNA. Die ChIRP-Methode erfolgte wie oben beschrieben. Anschließend DNA isoliert und wurde die die Anreicherung von U6, STAiR18 1-2, FoxM1-Promotor und FoxM1-Gen in den jeweiligen Ansätzen mittels gPCR unter Verwendung spezifischer Primer überprüft, wobei die Anreicherung der STAiR18-DNA als Positivkontrolle diente. Die Normalisierung der C_T-Werte erfolgte auf den lacZ-Ansatz (n=3). (C) Analyse einer Bindung zwischen STAiR18 und dem FoxM1-Protein. Die ChIRP-Methode erfolgte wie oben beschrieben. Vor Zugabe der Oligos wurde 1% des Zelllysats als Input-Kontrolle abgenommen. Im Anschluss an den ChIRP wurde die interagierende Proteinfraktion mittels Laemmli isoliert und vollständig in einem 10%igen PAA-Gel aufgetrennt. Die Detektion von FoxM1 erfolgte mit spezifischen Antikörpern.

Um den Rückkopplungsmechanismus zwischen STAiR18 und FoxM1 näher zu charakterisieren, sollte mittels ChIRP überprüft werden, ob eine direkte Bindung von STAiR18 an die FoxM1-RNA, den genomischen FoxM1-Locus oder das FoxM1-Protein vorliegt (siehe Abbildung 41). Dazu wurde STAiR18, wie oben beschrieben, über komplementär bindende Oligonukleotide spezifisch aus A172-Zellen isoliert, wobei durch ein vorangegangenes Fixieren der Zellen auch die Bindungspartner von STAiR18 copräzipitiert werden konnten. Zunächst sollte eine mögliche Bindung von STAiR18 an das FoxM1-Transkript untersucht werden. Dafür wurde am Ende der ChIRP-Methode die RNA isoliert und die Anreicherungen ausgewählter Transkripte im STAiR18-Oligo-Ansatz gegenüber dem lacZ-Kontrollansatz mittels qPCR überprüft. Als Negativkontrolle, um die Spezifität des Experiments sicherzustellen, wurde die Anreichung der Housekeeper-RNA U6 analysiert, welche weder mit den lacZ-Oligos noch mit den STAiR18-Oligos gezogen wurde. Als Positivkontrolle diente die Anreicherung der STAiR18-Transkripte im STAiR18-Oligo-Ansatz selbst, welche mit 100-fach für STAiR18 1-2 beziehungsweise 12-fach für STAiR18 1-3, sehr effektiv gezogen werden konnten. Wie in Abbildung 41 A gezeigt, konnte allerdings keine Anreicherung von FoxM1-Transkripten in den STAiR18-Oligoansätzen erzielt werden, weshalb davon ausgegangen werden kann, dass keine direkte Interaktion zwischen STAiR18 und dem FoxM1-Transkript vorliegt.

Im zweiten Teil der Untersuchungen wurde ein STAiR18-ChiRP-Experiment mit anschließender Analyse der interagierenden DNA durchgeführt, um zu überprüfen, ob eine Interaktion von STAiR18 mit dem genomischen Locus von FoxM1 vorliegt. Als Positivkontrolle wurde hierzu die Anreichung des STAiR18-Locus (DNA) nach Isolation der STAiR18-RNA genutzt, da die STAiR18-RNA während der Transkription mit der STAiR18-DNA selbst über die RNA-Polymerase II verbunden ist. Untersucht wurde die mögliche Interaktion von STAiR18 mit dem FoxM1-Promotor, dem transkribierten genomischen Bereich und der 3' untranslatierten Region von FoxM1. Die über 50-fache Anreicherung des STAiR18-DNA-Locus im STAiR18-Oligo-Ansatz gegenüber dem lacZ-Kontrollsatz bestätigt die erwartete Bindung der STAiR18-DNA an das STAiR18-Transkript und zeigt die spezifische Anreicherung von STAiR18-Interaktionspartner auf DNA-Ebene im STAiR18-Oligo-Ansatz. Eine direkte Interaktion von STAiR18 mit der FoxM1-DNA konnte allerdings weder im Promotor, noch im Genbereich oder der 3'UTR des FoxM1-Locus ermittelt werden (siehe Abbildung 41 B).

Um die Analysen zu vervollständigen wurde ebenso mittels ChIRP eine mögliche Interaktion von STAIR18 mit dem FoxM1-Protein untersucht. Dafür schloss sich nach dem ChIRP eine Proteinisolation mittels *Laemmli* an und die Lysate wurden vollständig für einen Immunblot unter Verwendung eines spezifischen anti-FoxM1-Antikörpers eingesetzt. Wie in Abbildung 41 C

dargestellt, konnte jedoch in keinem Ansatz eine Co-Präzipitation des FoxM1-Proteins nachgewiesen werden.

Die ChIRP-Ergebnisse lieferten somit keine Hinweise auf eine direkte Interaktion von STAiR18 und FoxM1 und der positive Rückkopplungsmechanismus zwischen beiden scheint indirekt über weitere noch zu ermittelnde Interaktionspartner zu erfolgen.

Analyse der STAiR18 vermittelten Regulation von STAT3

Der Transkriptionsfaktor STAT3 liegt in etlichen humanen Tumoren, so auch im Glioblastom, konstitutiv aktiviert vor. Er initiiert die Transkription vieler Tumor-assoziierter Gene und ist so an der Progression des Zellzyklus, Zellüberleben, Migration und Invasion von Tumorzellen beteiligt [169].

In vorangegangenen Studien der AG Horn konnte gezeigt werden, dass STAiR18 in Zellen des Multiplen Myeloms STAT3-abhängig induziert wird und zur überlebensfördernden Wirkung des Transkriptionsfaktors im Multiplen Myelom beiträgt. Eine genomweite Sequenzierung der STAiR18-interagierenden RNAs nach einem STAiR18-ChIRP zeigte eine direkte Interaktion von STAiR18 mit der primären STAT3-mRNA [139]. Im Folgenden sollte nun auch in Glioblastomzellen eine mögliche Interaktion von STAiR18 und STAT3 untersucht werden. Dafür wurde zunächst die RNA-Expression von STAiR18 und STAT3 nach einem RNAi-vermittelten Knockdown in A172-Zellen analysiert. Wie in Abbildung 42 zu erkennen ist, wurde STAiR18, anders als im Multiplen Myelom, in den untersuchten Glioblastomzellen nicht durch STAT3 induziert. So fiel die STAiR18-Expression nach einem Knockdown von STAiR18 um etwa die Hälfte vermindert vor. Dieser Effekt ließ sich auch auf die Proteinexpression von STAT3 nach einem STAiR18-KD übertragen, welche mittels Immunblot untersucht wurde. Nach einem STAT3-KD war die Expression des STAT3-Proteins wie erwartet im Vergleich zur scramble-Kontrolle nahezu vollständig unterdrückt. Doch auch ein STAiR18-KD hatte eine deutliche Minderung des STAT3-Proteins in A172-Zellen zur Folge.

Abbildung 42: Regulation des Transkriptionsfaktors STAT3 durch STAiR18. (A) Expression des STAiR18-Tanskripts und der STAT3-mRNA in Abhängigkeit von STAiR18 und STAT3. 3×10^{6} A172-Zellen wurden mit 20 µM siRNA (scr; siSTAT3; siSTAiR18_Ex1.1; siSTAiR18_Ex2.1) transfiziert und unter Normalbedingungen kultiviert. 48 h posttransfektion wurde die RNA isoliert, einem DNase-Verdau unterzogen und jeweils 1 µg mit Random Hexamer-Primern in cDNA umgeschrieben. Für die anschließende qPCR wurde die cDNA 1:10 verdünnt und die Expression von STAiR18 1-2, STAT3 und dem Housekeeper U6 gemessen. Nach einem Abgleich der C_T-Werte mit U6 erfolgte die Normalisierung auf den scr-Ansatz (n=3). (B) Expression des STAT3-Proteins nach STAT3- und STAiR18-KD. 3×10^{6} A172-Zellen wurden mit 20 µM siRNA (scr; siSTAT3; siSTAiR18_Ex1.1; siSTAiR18_Ex2.1) transfiziert und unter Normalbedingungen kultiviert. 48 h posttransfektion wurden die Proteine mittels RIPA isoliert und je 30 µg in einem 10 %igen PAA-Gel aufgetrennt. Die Detektion des STAT3-Proteins erfolgte anschließend mit Hilfe eines spezifischen anti-STAT3-Antikörpers. Als Ladekontrolle wurde ß-Aktin detektiert.

Um die STAiR18-vermittelte Regulation von STAT3 näher zu charakterisieren, sollte überprüft werden, ob eine direkte Interaktion von STAiR18 an die STAT3-RNA oder den genomischen STAT3-Locus (DNA) vorliegt (siehe Abbildung 43). Durch die bereits erhobenen Daten der ChIRP-RNA-Sequenzierung in Multiplen Myelomzellen lagen Hinweise auf eine mögliche Interaktion von STAiR18 an die STAT3-mRNA vor [139]. Diese sollte nun auch in Glioblastomzellen überprüft werden. Das STAT3-Gen setzt sich aus 23 Exons zusammen und trägt ein Short Interspersed Nuclear Element (SINE) im 1. Intron. Dabei handelt es sich um ein kurzes repetitives Element im Genom, welches durch seine retrotransposablen Eigenschaften an immer neuen Stellen im Genom eingefügt werden kann. Mittels ChIRP-Experimenten, bei denen STAiR18 zusammen mit interagierenden RNAs

spezifisch isoliert wurde, konnte eine direkte Interaktion von STAiR18 mit dem SINE-Element innerhalb des 1. Introns der primären STAT3-mRNA in A172-Zellen nachgewiesen und die Ergebnisse der ChIRP-RNA-Sequenzierung im Multiplen Myelom bestärkt werden. So lag die primäre STAT3mRNA im STAiR18-Oligo-Ansatz etwa 50-fach verstärkt angereichert gegenüber dem lacZ-Kontrollansatz vor. Um die Spezifität des Experiments sicherzustellen, wurde die Anreichung der Housekeeper-RNA U6 analysiert, welche weder mit den lacZ-Oligos noch mit den STAiR18-Oligos gezogen wurde. Als Positivkontrolle diente wieder die Anreicherung des STAiR18-Transkripts im STAiR18-Oligo-Ansatz selbst.

Abbildung 43: Analyse einer möglichen direkten Bindung zwischen STAiR18 und STAT3 mittels ChIRP. (A) STAiR18 interagiert direkt mit der primären STAT3-mRNA. Pro ChIRP-Ansatz wurden 2 x 10^7 A172-Zellen eingesetzt, und Oligonukleotide gegen STAiR18 als auch gegen lacZ als Negativkontrolle verwendet. Anschließend wurde die RNA isoliert, einem DNase-Verdau unterzogen und vollständig mittels Random Hexamer-Primern in cDNA umgeschrieben. Die Anreicherung von U6, STAiR18 1-2 und dem ersten Intron der STAT3-prä-mRNA in den jeweiligen Ansätzen wurde mittels qPCR unter Verwendung spezifischer Primer überprüft, wobei die Anreicherung von STAiR18 als Positivkontrolle und die von U6 als Negativkontrolle diente. Die Normalisierung der C_T-Werte erfolgte auf den lacZ-Ansatz (n=3). (B) Analyse einer Bindung zwischen STAiR18 und der STAT3-DNA. Die ChIRP-Methode erfolgte wie oben beschrieben. Anschließend wurde die DNA isoliert und Anreicherung von U6, STAiR18 1-2, STAT3-Promotor und STAT3-Gen in den jeweiligen Ansätzen wurde mittels qPCR unter Verwendung spezifischer Primer überprüft, wobei die Anreicherung der STAiR18-DNA als Positivkontrolle diente. Die Normalisierung der C_T-Werte erfolgte auf den lacZ-Ansatz (n=3). Des Weiteren wurde ein STAiR18-ChIRP-Experiment mit anschließender Analyse der interagierenden DNA durchgeführt, um zu überprüfen, ob eine Interaktion von STAiR18 mit dem genomischen Locus von STAT3 vorliegt. Als Positivkontrolle wurde hierzu die Anreichung des STAiR18-Locus (DNA) nach Isolation der STAiR18-RNA genutzt. Untersucht wurde die mögliche Interaktion von STAiR18 mit dem STAT3-Promotor, dem transkribierten genomischen Bereich sowie der 3'UTR von STAT3. Es konnte jedoch keine direkte Interaktion zwischen STAiR18 und der STAT3-DNA nachgewiesen werden.

In mehreren Studien konnte bereits eine gegenseitige Regulation von FoxM1 und STAT3, sowie eine direkte Interaktion der beiden Transkriptionsfaktoren im Glioblastom aufgezeigt werden [170,171]. Die hier ermittelte direkte Bindung von STAiR18 an die STAT3-mRNA stellt somit einen wichtigen Hinweis auf die molekularen Mechanismen dar, die der STAiR18-vermittelten Regulation von STAT3 aber auch FoxM1 zu Grunde liegen und könnte eine Erklärung für die eingangs beschriebenen Effekte von STAiR18 auf die Migration und Invasion von Glioblastomzellen liefern.

4 DISKUSSION

Die Tumorentstehung ist ein mehrstufiger Prozess, bei dem es zu einer Ansammlung von Mutationen in bspw. Tumorsuppressorgenen oder Proto-Onkogenen kommt. Dadurch können die regulatorischen Netzwerke innerhalb der Zelle, aber auch die Kommunikation zwischen den Zellen gestört und ein für den Tumor geeignetes Mikromilieu geschaffen werden. Obwohl die einzelnen Tumorerkrankungen sich stark voneinander unterscheiden, gibt es doch Gemeinsamkeiten in den Veränderungen der Physiologie von Tumorzellen im Vergleich zu gesunden Zellen. Während der Entartung von Tumorzellen erwerben diese grundlegende Eigenschaften, welche sie von gesunden Zellen unterscheiden. Zu den sogenannten "Hallmarks of Cancer" zählen eine fortlaufende Proliferation und unbegrenzte Zellteilung unabhängig von externen Wachstumssignalen, die Unempfindlichkeit gegenüber wachstumshemmenden Faktoren, das Umgehen der Apoptose, eine kontinuierliche Angiogenese sowie die Fähigkeit zur Invasion und Metastasenbildung [172,173]. Durch genomweite Mutationsanalysen konnten in den letzten Jahren etliche der an der Tumorgenese beteiligten Mutationen aufgedeckt werden. Bedenkt man, dass nur 2 % des humanen Genoms für Proteine kodieren und über 70 % des Genoms auf einem oder auch beiden Strängen transkribiert werden [21,27,28], verwundert es nicht, das etliche dieser Mutationen nichtkodierenden Bereichen zugeordnet werden können [57]. Neben den miRNAs scheinen vor allem IncRNAs mit etlichen Tumorerkrankungen assoziiert zu sein. Tatsächlich konnte durch funktionelle Analysen ausgewählter Vertreter von IncRNAs bereits gezeigt werden, dass diese einen direkten Einfluss auf jede der genannten Eigenschaften von Tumorzellen nehmen können [93,57]. Die Funktionen der meisten identifizierten IncRNAs sind allerdings noch unbekannt. Im Rahmen dieser Arbeit galt es deshalb die IncRNA STAiR18 strukturell und funktionell näher zu charakterisieren und ihren möglichen Einfluss auf die Tumorgenese und -progression verschiedener Tumorerkrankungen zu untersuchen. Besonderes Augenmerk wurde dabei auf die Rolle von STAiR18 im Glioblastom, dem sowohl häufigsten als auch tödlichsten Hirntumor [4,6,7], gelegt. Im Folgenden sollen die identifizierten Merkmale und Effekte von STAiR18 mit den bereits bekannten Funktionen und Eigenschaften langer ncRNAs in Verbindung gebracht werden, um die Zusammenhänge zwischen IncRNAs und Tumorerkrankungen weiter aufzuschlüsseln und neue Einblicke in die komplexen Regulationsnetzwerke hinter dem hochinvasiven Verhalten des Glioblastoms zu gewinnen.

4.1 Charakterisierung von STAiR18

Die starke Konservierung von STAiR18 innerhalb der Säuger lässt eine physiologische Funktion in komplexen Organismen vermuten. Der STAiR18-A-Locus ist präsent in allen Säugetier-Genomen, wobei die Konservierung innerhalb der Primaten besonders ausgeprägt vorliegt. Erst ab der Unterklasse der Beuteltiere nimmt die Konservierung von STAiR18 ab. Allerdings schwankt der Grad der Konservierung von STAiR18 innerhalb des Locus stark. Neben den vorderen Exons von STAiR18 (Exon 1, Exon K und Exon 2) scheinen teilweise auch kurze intronische Regionen eine besonders hohe Sequenzkonservierung aufzuweisen. Vor allem die Exons proteinkodierender Gene sind meist hochkonserviert, da hier schon einzelne Mutationen einen großen Einfluss auf Struktur und damit Funktion des Proteins haben können. Abweichungen in der Sequenz nichtkodierender RNAs scheinen dagegen einen geringeren Einfluss auf deren Funktionen zu nehmen, weshalb die Loci von IncRNAs im Vergleich zu proteinkodierenden Genen oft durch eine schwächere Sequenzkonservierung gekennzeichnet sind [143,72]. Entscheidend für die Funktionalität von IncRNAs scheint jedoch nicht nur deren Sequenz zu sein, sondern vielmehr die exakte Faltung in komplexe Sekundär- und Tertiärstrukturen [74–76]. Durch eine hohe strukturelle Konservierung auf Ebene dieser Sekundär- und Tertiärstrukturen können die molekularen Wirkweisen von IncRNAs zwischen den Spezies folglich trotz möglicher Sequenzabweichungen hochkonserviert sein [174,175]. Die besonders stark konservierten Bereiche innerhalb des STAiR18-Locus scheinen somit essentiell für die Ausbildung der korrekten Sekundär- und Tertiärstruktur von STAiR18 und damit für dessen Funktionalität zu sein.

STAiR18 liegt im Humangenom dupliziert auf zwei nahezu identischen Loci (STAiR18-A und STAiR18-B) auf Chromosom 2 vor. Die beiden Loci weisen mit einer Sequenzübereinstimmung von etwa 99 % eine äußerst hohe Homologie auf. Ein Abgleich der humanen STAiR18-Regionen mit den Genomen naher verwandter Hominidae zeigte, dass STAiR18 auch im Genom von Denisovans und Neandertaler dupliziert auf Chromosom 2 vorliegt, während in den Genomen der großen Menschenaffen dagegen nur der STAiR18-A-Locus zu finden ist. Die Duplikation des STAiR18-Locus fand demnach erst bei unseren direkten Vorfahren statt, wobei es sich bei STAiR18-A um den evolutionär älteren Ursprungs-Locus und bei STAiR18-B um die vermutlich durch nicht-homologe Rekombination entstandene Kopie handelt. Genduplikationen stellen einen wesentlichen

122 DISKUSSION

Mechanismus der Evolution dar. Durch Veränderungen der Kopienzahl eines Gens kann es zum einen zu einer verstärkten Expression des Gens kommen. Zum anderen kann es durch Mutationen in einer der Genkopien zur Ausbildung neuer funktioneller Einheiten kommen und das Spektrum der ursprünglichen Gen-Aktivität erweitert werden [176]. Das humane Genom setzt sich zu lediglich 5 % aus humanspezifischen Sequenzen zusammen. Diese sind meist aus segmentalen Duplikationen hervorgegangen, welche während der Abspaltung der humanen Linie von nicht-humanen Primaten vor 6 Mio. Jahren stattfanden [177]. Es konnte gezeigt werden, dass ein Großteil dieser spezifisch für die humane Linie duplizierten Gene im Hirn exprimiert wird. Ihnen könnte folglich eine Schlüsselrolle in der Entwicklung humanspezifischer Merkmale, wie der Größe und Komplexität des Gehirns zufallen [178]. So spielen die Gene SRGAP2 und ARHGAP11B, welche wie STAiR18 auch eine humanspezifische intrachromosomale Duplikation durchlaufen haben, eine entscheidende Rolle bei der Expansion und Faltung des humanen Neocortex [179–181]. Die Vermutung, dass auch STAiR18 an der Entwicklung des Gehirns oder der Ausübung der humanen kognitiven Fähigkeiten beteiligt sein könnte, wird durch die in dieser Arbeit ermittelte verstärkte Expression der STAiR18-Isoform 1-7 in Alzheimer-Proben gegenüber Kontrollproben des humanen Temporallappens gestützt. Die Deregulation von IncRNAs scheint nicht nur mit Tumorerkrankungen, sondern auch mit neurodegenerativen Erkrankungen, wie beispielsweise der Alzheimer-Erkrankung, assoziiert werden zu können, weshalb sie hier einen neuen Ansatz für zukünftige therapeutische Anwendungen darstellen [152,182]. Inwiefern auch STAiR18 zur Entwicklung von Alzheimer beitragen kann, bleibt allerdings Gegenstand aktueller Forschung.

Im Rahmen dieser Arbeit wurde ermittelt, dass STAiR18 von beiden Loci aktiv transkribiert wird, wobei der STAiR18-A-Locus der aktivere zu sein scheint. Ob die Transkripte beider Loci aber auch zu den von STAiR18 vermittelten Effekten beitragen, bleibt offen. Auf Grund der enormen Homologie der beiden STAiR18-Loci kann über die eingesetzte RNAi-Technik zwar ein höchst effektiver STAiR18-KD erreicht werden, jedoch ist es durch siRNAs nicht möglich die beiden STAiR18-Loci getrennt voneinander auszuschalten. Mit der Entwicklung der höchst spezifischen CRISPR-Cas9-Technologie steht nun allerdings eine Methode zur Verfügung, die einen locus-spezifischen KD von STAiR18 ermöglichen würde [183,184].

Für beide STAiR18-Loci sind verschiedene, durchgängig als nicht protein-kodierend beschriebene Transkriptvarianten im UCSC-Genome-Browser hinterlegt. Diese weisen die Exon-Intron-Struktur einer typischer mRNA auf. Zudem konnte gezeigt werden, dass STAiR18 gespleißt wird und einen poly-A-Schwanz trägt. STAiR18 weist somit eine hohe strukturelle mRNA-Ähnlichkeit auf. Des Weiteren konnten mehrere theoretische ORFs für die verschiedenen annotierten Isoformen von STAiR18 ermittelt werden, welche allerdings nicht zur Translation bereits identifizierter Peptide beizutragen scheinen. Innerhalb des zweiten Exons von STAiR18 wurde jedoch ein ORF ermittelt, der eine hohe Kongruenz mit dem als theoretisch in *Homo Sapiens* existierenden Protein MGC4677 aufweist. Dieses Protein konnte bislang nicht identifiziert werden und scheint nach jetzigem Erkenntnisstand nur hypothetisch zu existieren. Die für diesen ORF kodierende Sequenz weist zudem im Vergleich zu anderen STAiR18-Regionen eine nur geringe Konservierung innerhalb der Säuger auf, was darauf hindeutet, dass sie nicht zur Synthese eines funktionellen Peptides zu dienen scheint. Auch das Fehlen einer Kozak-Sequenz innerhalb der STAiR18, da diese eine entscheidende Rolle für die Initiation der Translation spielt [145,146].

Das proteinkodierende Potential einer RNA wird zumeist über die Existenz langer ORFs, Codon-Konservierung und der Konservierung funktioneller Domänen abgeschätzt [185]. So wurden bei den ersten Sequenzierungen eukaryotischer Genome zahlreiche Transkripte, die keinen wenigstens 100 aa langen ORF aufwiesen, als nichtkodierend eingestuft [186]. Tatsächlich konnte gezeigt werden, dass über 90 % der durch das ENCODE-Projekt als IncRNAs klassifizierten Genloci kein proteinkodierendes Potential haben und nicht in Peptide umgesetzt werden [187,188]. Durch die exakte Analyse Ribosomen-gebundener RNAs offenbarten neuere Studien jedoch ein größeres Translationsvermögen nichtkodierender Trankripte [189,190]. Bis zu 40 % der als nichtkodierend annotierten Transkripte könnten demnach doch translatiert werden und für kleine Peptide kodieren, welche dann allerdings meist unstabile Nebenprodukte ohne Funktion zu sein scheinen [191]. Es konnten jedoch auch einige funktionelle Peptide, welche von IncRNAs kodiert werden, ausgemacht werden [192,186]. Zum jetzigen Zeitpunkt ist allerdings davon auszugehen, dass es sich bei STAiR18 um eine nicht-kodierende RNA handelt, deren Transkripte nicht zur Synthese eines Peptides oder Proteins dienen. Mit Hilfe eines spezifischen Antikörpers gegen das theoretisch in Homo Sapiens existierende und durch STAiR18 kodierte Protein MGC4677 und dessen Synthese in vitro könnte das proteinkodierende Potential von STAiR18 weiter abgeschätzt werden.

4.2 STAiR18 als möglicher Biomarker

Lange nicht-kodierende RNAs weisen häufig eine gewebsspezifischere Expression als proteinkodierende Gene auf und werden auch im Laufe der Entwicklung streng reguliert und spezifisch exprimiert [147,148,193]. STAiR18 konnte im Rahmen dieser Arbeit in jedem untersuchten gesunden humanen Gewebe nachgewiesen werden und scheint folglich ubiquitär exprimiert zu sein. Ubiquitär exprimierte Gene werden häufig für eine Aufrechterhaltung der grundlegenden zellulären Funktionen benötigt und können essentiell für das Überleben der Zellen sein, unabhängig von deren spezifischen Rolle im Organismus [149]. Allerdings unterlag die STAiR18-Expression innerhalb der verschiedenen Gewebe hohen Schwankungen von teilweise bis zu 70-fach erhöhten Expressionsleveln. Ebenso fielen Expressionsunterschiede von STAiR18 zwischen fötalem und adultem Gewebe auf. Die Expressionlevel der einzelnen STAiR18-Isoformen schwanken zum einen stark innerhalb der untersuchten Gewebe. Zum anderen konnte auch gezeigt werden, dass sich die Isoformen in den verschiedenen Geweben aus verschiedenen Exonkombinationen zusammensetzen und STAiR18 zelltypspezifisch prozessiert wird. Die STAiR18-Expression ist folglich ubiquitär, scheint aber äußerst komplexen Regulationsmechanismen zu unterliegen, die durch alternative Spleißvorgänge weiter verfeinert werden können. Ebenso wie die Loci proteinkodierender Gene können folglich auch die Loci von IncRNAs durch alternatives Spleißen eine Vielzahl verschiedener Transkript-Isoformen hervorbringen. Diese werden offenbar sehr spezifisch exprimiert und können innerhalb der Zelle verschiedene Funktionen innehaben [194,150,151]. So konnte zum Bsp. auch für die IncRNA ANRIL durch alternative Spleißvorgänge ein komplexes Muster verschiedener Trankriptvarianten nachgewiesen werden. Die ANRIL-Expression scheint mit dem Risiko einer Atherosklerose-Erkrankung zu korrelieren. In Abhängigkeit eines Alu-Motivs innerhalb des ANRIL-Transkripts wirken sich die verschiedenen Isoformen hier unterschiedlich auf die Regulation der ANRIL-Zielgene in trans und die damit verbundenen Effekte auf die Proliferation und Adhäsion der Zellen aus [151].

Wie in dieser Arbeit gezeigt werden konnte, liegt STAiR18 in jedem untersuchten Tumortyp im Vergleich zum Normalgewebe verstärkt exprimiert vor. Dies könnte auf eine umfassende, Zelltypunabhängige Rolle von STAiR18 während der Tumorgenese hindeuten. Auch in einem ersten Atlas von Gibb *et. al.* für die Expression von IncRNAs in normalen und malignen humanen Geweben wird STAIR18 als linc00152 geführt und scheint in verschiedenen Tumortypen (Gallenblasenkrebs, Hodkin Lymphom, Weichteilsarkom, Retinoblastom, Bronchialkarzinom, Hirntumor und Magenkrebs) verstärkt exprimiert zu werden [195]. Des Weiteren konnte eine erhöhte STAiR18-Expression im Magensaft von Magenkrebs-Patienten detektiert werden [196]. Eine potentielle Verwendung von STAIR18 als allgemeiner Tumormarker, der teilweise sogar über nicht-invasive Methoden nachweisbar zu sein scheint, ist folglich denkbar.

In den letzten Jahren wurde die Bedeutung langer ncRNAs als neue Biomarker für die Diagnose und Prognose von Tumorerkrankungen immer ersichtlicher. Ihre Expressionslevel können mit der Tumorgenese, der Tumoraggressivität und -prognose korrelieren, aber auch zur Tumorklassifikation dienen [99]. Da IncRNAs zudem im Plasma oder Urin von Tumorpatienten detektiert wurden, könnten sie einen vielversprechenden Ansatz zur Entwicklung nicht-invasiver diagnostischer und prognostischer Biomarker für eine Vielzahl von Tumorerkrankungen liefern [100–102]. Neben der bereits als Biomarker für das Prostatakarzinom zugelassenen IncRNA PCA3, werden zum Beispiel auch die IncRNAs HOTAIR, MALAT-1 und NEAT1 als potentielle Biomarker für etliche Tumorerkrankungen wie Brust-, Blasen-, Dickdarm- und Lungenkrebs diskutiert [99,104–108].

Die erhöhten Expressionslevel von STAiR18 im Tumor scheinen auch für Gliome zuzutreffen, bei welchen sich eine erhöhte Expression von STAiR18 mit steigendem WHO-Grad vom Meningeom über das Astrozytom bis hin zum Glioblastom andeutet. Dies kann auch durch eine in der Datenbank des EMBL-EBI Expression Atlas hinterlegte Studie zu DNA-Methylierungsmustern im Glioblastom untermauert werden, bei welcher STAiR18 als zumindest 2-fach verstärkt in Glioblastomproben hinterlegt ist [197]. Überraschenderweise konnte in einer weiteren Studie auch die verstärkte Expression zweier weiterer durch STAT3-induzierter Transkripte, STAiR1 und STAiR2, in Astrozytomen (WHO-Grad III) und Glioblastomen (WHO-Grad IV) im Vergleich zur Expression in Meningeomen (WHO-Grad I) festgestellt werden [137]. Dies könnte auf eine übergreifende Rolle der durch STAT3 induzierten IncRNAs in der Entwicklung von Gliomen hindeuten. So konnte bereits ein Set aus sechs IncRNAs (MIAT, KIAA0495, PART1, MGC21881, GAS5, PAR5) identifiziert werden, deren Expressionsstärken in direktem Zusammenhang mit der Überlebensrate von Glioblastom-Patienten stehen [109]. Dabei handelt es sich bei einer dieser IncRNAs, MIAT, um STAiR15 und damit ebenfalls um eine STAT3-induzierte nichtkodierende RNA [138]. Diese Daten belegen, dass eine anormale Expression von IncRNAs eine kritische Rolle in der Entwicklung und Progression von Gliomen spielen kann. Durch den Vergleich der IncRNA-Expressionsprofile von Glioblastompatienten und altersgepaarten gesunden Spendern konnte gezeigt werden, dass über 600 IncRNAs im Glioblastom mehr als 4-fach induziert vorliegen [109]. Die Expressionsmuster einiger dieser IncRNAs scheinen eng mit dem Malignitätsgrad und der histologischen Differenzierung der Gliome zu korrelieren [198]. Auf Grundlage von IncRNA-Expressionsprofilen konnten Gliome so in drei neue molekulare Subtypen mit unterschiedlichen Prognosen klassifiziert werden [110]. In einer weiteren Studie konnte gezeigt werden, dass vor allem Hox-Cluster-assoziierte IncRNAs durch Interaktion mit verschiedenen mRNAs in die Pathogenese des Glioblastoms eingreifen [199]. Die Analysen der spezifischen Expressionslevel von IncRNAs können folglich zu einem tieferen Verständnis des Glioblastoms auf genetischem Level und zum Auffinden neuer therapeutischer Ansätze beitragen [200,111].

4.3 Die STAiR18-Transkriptstruktur im Glioblastom

Die STAiR18-Expression scheint äußerst komplexen Regulationsmechanismen zu unterliegen. STAiR18 wird zelltypspezifisch prozessiert und die einzelnen STAiR18-Transkriptvarianten in unterschiedlichen Geweben verschieden stark exprimiert. Da gezeigt werden konnte, dass die einzelnen Transkript-Isoformen von IncRNAs innerhalb der Zelle verschiedene Funktionen übernehmen können [194,150,151], ist die Aufklärung der exakten Transkriptstruktur der beiden STAiR18-Loci im Glioblastom unerlässlich. Die im UCSC-Browser annotierten Transkriptvarianten der beiden STAiR18-Loci geben einen ersten Eindruck der Komplexität der verschiedenen Transkriptstrukturen und Spleißmuster. Beide Regionen weisen STAiR18-Transkripte verschiedener Längen auf, welche sich aus unterschiedlichen Exon-Kombinationen zusammensetzen und sich auch in ihrem Transkriptionsstart unterscheiden.

Zunächst wurden die Expressionslevel ausgewählter STAiR18-Isoformen in der Glioblastomzelllinie A172 mittels qPCR bestimmt. Wie schon bei der Analyse der STAiR18-Expression in verschiedenen humanen Geweben, konnten die Isoformen STAiR18 K-2 und STAiR18 1-7 nur als äußerst schwach exprimiert detektiert werden, während die Isoformen bestehend aus dem ersten und zweiten bzw. dem ersten und dritten Exon hochabundant in den Zellen vorliegen und ein zur STAT3-mRNA ähnliches Expressionsniveau aufweisen. Durch die Bestimmung der RNAi-vermittelten

127 | DISKUSSION

Knockdowneffizienzen auf ausgewählte STAiR18-Isoformen bei Verwendung verschiedener siRNAs konnte die breite Varianz an Transkriptvarianten innerhalb der A172-Zellen verdeutlicht werden. Die Daten deuten darauf hin, dass neben den bereits annotierten Isoformen, welche sich aus den Exon 1-2 bzw. aus den Exon 1-3-4-5-7 zusammensetzen, auch nicht annotierte Trankriptvarianten vorliegen. Diese scheinen aus Exon 1-3, Exon 1-K-2-3 und den Exons 1-2-3-4-5-7 aufgebaut zu sein.

Da mittels qPCR allerdings nur ausgewählte Isoformen analysiert werden können, wurde die A172spezifische Transkriptarchitektur von STAiR18 mittels MinION[™]-Sequenzierung exakt aufgeschlüsselt und zellspezifische Spleißvarianten und Transkriptionsstartpunkte analysiert. Die MinIONTM-Technologie stellt eine innovative Sequenziermethode der dritten Generation dar und basiert auf Nanoporen-Sequenzierung. Dabei können durchgehende Reads mit einer Länge von mehreren kb prozessiert werden. Nachdem die STAiR18-Transkripte über biotinylierte Oligonukleotide spezifisch angereichert und aus der total-RNA der A172-Zellen isoliert wurden, konnte die komplette Struktur der beiden STAiR18-Loci und die von ihnen erzeugten Transkriptvarianten so direkt analysiert werden. 35 % aller eindeutig mappenden und gespleißten Reads auf Chromosom 2 überlappten mit dem STAiR18-A-Locus, wohingegen lediglich 6 % dem STAiR18-B-Locus zugeordnet worden sind. Die zu Beginn dieser Arbeit mittels gPCR ermittelte Beobachtung, dass beide STAiR18-Loci in A172-Zellen aktiv transkribiert werden, es sich allerdings bei STAiR18-A um den aktiveren Locus zu handeln scheint, ließ sich mittels MinION[™]-Sequenzierung folglich bestätigen. STAiR18-Transkriptvarianten, welche vom STAiR18-A-Locus prozessiert werden, setzten sich aus zwei bis maximal acht Exons zusammen. Dabei traten die Isoformen mit einer geringen Exonanzahl etwa 10-fach häufiger auf als Isoformen, die sich aus mehreren Exons zusammensetzten. Neben dem bereits bekannten annotierten Transkriptionsstart bei Exon 1 konnten zwei weitere für A172-Zellen spezifische Transkriptionsstartpunkte ermittelt werden. Im Gegensatz dazu diente Transkripten des STAiR18-B-Locus nur das erste Exon als Trankriptionsstartpunkt. Die Isoformen des STAiR18-B-Locus setzten sich aus bis zu 14 Exons zusammen, wobei Isoformen mit fünf bis sieben Exons am abundantesten auftraten. Die MinIONTM-Sequenzierung offenbarte mehrere unbekannte Exons für den STAiR18-B-Locus, welche vor allem im hinteren Transkriptbereich zu finden waren. Die anfängliche auf den bereits annotiertien STAiR18-Isoformen beruhende Vermutung, dass die Duplikation von STAiR18 sich auf die vorderen Exons 1 bis 4 beschränkt, konnte somit widerlegt werden. Die MinION[™]-Ergebnisse verdeutlichen die äußerst vielschichtige Transkriptarchitektur beider STAiR18-Loci und bilden erstmals ein konkretes Bild der für die A172-Zellen spezifischen Transkriptvarianten von STAiR18 ab. Durch die Vielzahl an

möglichen Exon-Kombinationen ergibt sich ein komplexes Muster verschiedener Isoformen, welches zwischen den beiden STAiR18-Loci zu variieren scheint. Die unterschiedliche Exonzusammensetzung und Sequenz der verschiedenenen Transkriptvarianten bedingt auch das Ausbilden ungleicher Sekundär- und Tertiärstrukturen der einzelnen Isoformen. IncRNAs stellen eine sehr vielfältige Gruppe dar, die eine große Anzahl unterschiedlicher Funktionen in der Zelle ausüben. Dabei scheint vor allem die strukturelle Vielseitigkeit und das Ausbilden komplexer Sekundär- und Tertiärstrukturen kritisch für das Ausüben der verschiedenen Funktionen zu sein [201–203]. Es scheint folglich plausibel, dass die einzelnen STAiR18-Isoformen verschiedene Funktionen in der Zelle ausüben.

Die Möglichkeit mittels MinION[™]-Sequenzierung lange durchgehende Reads mit einer Länge von bis zu 20 kb zu lesen, stellt einen großen Vorteil bei der Aufklärung struktureller Variationen dar. Zwar zeichnen sich Sequenziermethoden der sogenannten zweiten Generation durch eine höhere basengenaue Spezifität aus, die kurzen Readlängen von meist unter 300 bp führen allerdings zu Mehrdeutigkeiten und Ungenauigkeiten beim Alignment von bspw. repetitiven Sequenzen. Auf Grund der hohen Geschwindigkeit sowie geringen Kosten, einer leichten Handhabung und der hohen Readlängen stellt die MinION[™]-Sequenzierung dagegen eine innovative und vielsprechende Möglichkeit zur Aufklärung komplexer Transkriptstrukturen dar [204,205]. So konnten mittels MinION[™]-Sequenzierung bereits strukturelle Varianten, wie Deletionen, Inversionen und Translokationen in den Tumorsuppressor-Genen CDKN2A/p16 und SMAD4/PPC4 im Pankreaskrebs bestätigt werden [206]. Darüber hinaus scheint die MinION[™]-Methode so sensitiv zu sein, dass auch chemische Modifikationen an einzelnen Basen, wie Methylierungen an Cytosinen und Adenosinen, detektiert und damit neue Einblicke in die Genomregulierung gewonnen werden können [207,208].

Die subzelluläre Lokalisation von IncRNAs kann erste Hinweise auf ihre funktionelle Wirkweise liefern. Die intrazelluläre Verteilung der STAiR18-Isoformen in A172-Zellen wurde zunächst über eine getrennte Aufreinigung der zytoplasmatischen und nukleären RNA bestimmt. Durch die anschließende qPCR konnten für die untersuchten Isoformen verschiedene Lokalisationen ausgemacht werden. Während die Isoform STAiR18 1-2 im Zytoplasma angereichert ist, sind die Isoformen STAiR18 1-3, STAiR18 1-7 eher im Kern exprimiert. Dies konnte durch eine neuartige Methode der RNA-Fluoreszenz *in situ* Hybridisierung, genannt ViewRNA[™], bestärkt werden. Mit Hilfe der Sonden, welche das erste und zweite Exon von STAiR18 binden, wurden gleichmäßig im Zytoplasma verteilte Signale detektiert. Die Sonden gegen das dritte Exon lieferten dagegen sowohl Signale im Kern als auch im Zytoplasma. Dies traf auch für die Sonden gegen das siebte Exon zu,

129 DISKUSSION

wobei hier deutlich weniger Signale auftraten, was sich mit der bereits durch die mittels qPCR ermittelte geringe Expression der Isoform STAiR18 1-7 deckt. Außerdem kamen Sonden gegen das erste Intron von STAiR18 zum Einsatz, welche das ungespleißte Primärtranskript binden und ausschließlich zur Detektion nukleärer Signale führten.

Da RNAs sowohl Aufgaben im Zellkern als auch im Zytoplasma ausführen, muss die Zelle eine Möglichkeit haben zwischen den RNAs, welche im Kern verbleiben und jenen, die in das Zytoplasma exportiert werden, zu unterscheiden. Dabei scheinen kurze Trankripte mit einer Länge unter 200 Nukleotiden, wie bspw. tRNAs und miRNAs, direkt exportiert zu werden, während längere RNAs, darunter mRNAs und auch lncRNAs unter anderem über den Export-Komplex TREX exportiert werden [209,210]. Es konnte gezeigt werden, dass Spleißen und weiteres Prozessieren der RNA den Export aus dem Kern fördert, aber dafür nicht zwingend erforderlich ist. IncRNAs, die im Kern verbleiben, scheinen dagegen sogenannte Kern-Retention-Elemente zu tragen. Werden diese Elemente entfernt oder mutiert, kommt es zum Export der IncRNAs [211–213]. Es ist folglich davon auszugehen, dass durch das alternative Prozessieren des STAiR18-Primärtranskripts auch die subzelluläre Lokalisation der STAiR18-Isoformen beeinflusst wird. Dabei könnten sich alternative Spleißvorgänge auch auf Kern-Retention-Elemente ausüben. Dies stellt einen weiteren Hinweis dafür dar, dass die Prozessierung des STAiR18-Primärtranskripts zu unterschiedlichen Funktionen der STAiR18-Transkriptvarianten führen kann.

Mit Hilfe der ViewRNA[™]-Analysen wurde auch die Anzahl der detektierten Signale unter Verwendung der verschiedenen Sonden gegen die einzelnen Exons von STAiR18 ermittelt. Dadurch lassen sich auch Rückschlüsse auf die Anzahl der jeweiligen Transkriptvarianten pro Zelle ziehen. Je nach Sonde ergab sich dabei eine STAiR18-Kopienzahl von 12 bis etwa 150 Kopien pro Zelle. Wobei die Sonden gegen Exon 1 und Exon 2 die meisten Signale lieferten und die Sonden gegen das siebte Exon die wenigsten Signale. Es ist jedoch davon auszugehen, dass die tatsächliche Transkriptanzahl pro Zelle über diesen Werten liegt, da sicherlich nicht jedes Transkript von den ViewRNA[™]-Sonden gebunden worden ist. Vergleicht man die STAiR18-Expression in A172-Zellen mit der anderer bereits beschriebener IncRNAs, fällt die mögliche enorme Spannweite an Kopien pro Zelle auf. Dabei können auch extrem niedrig exprimierte IncRNAs entscheidende Funktionen ausüben. Die IncRNA HOTTIP, welche die Expression distaler Hox-Gene reguliert, liegt bspw. mit unter einer Kopie pro Zelle äußerst gering exprimiert vor [214]. Auch das RepA-Transkript, welches eine entscheidende Rolle bei der Inaktivierung des zweiten X-Chromosoms in weiblichen Säugern spielt, wird mit 5 bis 10 Kopien pro Zelle nur schwach exprimiert [215]. Die IncRNA HOTAIR dagegen wird mit etwa 100

Kopien pro Zelle deutlich stärker exprimiert. HOTAIR reguliert über Interaktion mit dem PRC2-Komplex die Genexpression seiner Zielgene im HOX-Locus in *trans,* während HOTTIP und RepA Zielgene in *cis,* meist in unmittelbarer genomischer Nähe, regulieren. Es scheint, als würde die Kopienanzahl einer IncRNA einen Hinweis darauf liefern, ob die Regulation der Zielgene in *cis* durch eine sehr geringe Anzahl an Transkripten oder in *trans* durch eine hohe Kopienzahl reguliert wird [216]. Dem zu Folge wird für die STAiR18-abhängige Genregulation ein Mechanismus vermutet, über welchen STAiR18 seine Zielgene in *trans* reguliert.

4.4 Die Wirkung von STAiR18 und weiterer IncRNAs im Glioblastom

Wie bereits aus vorhergehenden Studien der AG Horn bekannt war, fällt STAiR18 eine Schlüsselrolle in der Regulation des Überlebens Multipler Myelomzellen zu. Ein Knockdown von STAiR18 leitet in diesen die Apoptose ein und es kommt zu einem drastischen Vitalitätsverlust binnen 72 h [139]. Um zu überprüfen, ob STAiR18 auch die Vitalität anderer Zellsysteme reguliert, wurde es in verschiedenen humanen Zelllinien mittels siRNAs ausgeschaltet. Trotz der ubiquitären Expression von STAiR18 konnten allerdings in den meisten untersuchten Zelllinien keine Effekte auf die Zellmorphologie oder Vitalität nach einem STAiR18-KD beobachtet werden. In Glioblastomzellen zeigte sich jedoch ein veränderter Phänotyp nach STAiR18-KD. Nach einer Trypsin-Zugabe konnte in A172- und MZ18-Glioblastomzellen eine verstärkte Adhärenz der Zellen an die Zellkulturschale beobachtet werden. In einer dritten Glioblastomzelllinie, U87-Zellen, traten diese Effekte jedoch nicht auf. Auf Grund der erhöhten Adhärenz nach STAiR18-KD in A172-Zellen wurde der veränderte Phänotyp hier genauer untersucht. Dabei konnte ein gesteigertes Migrationsverhalten der A172-Zellen nach einem STAiR18-KD beobachtet werden. Durch Einsatz des Zytostatikums Mitomycin C ließ sich die gesteigerte Migration unabhängig von möglichen Effekten auf die Proliferation der A172-Zellen bestätigen. Im 3D-Zellkulturmodell, bei dem die Invasion der Zellen ausgehend von einem kompakten Spheroid in die Invasionsmatrix untersucht wurde, zeigten die STAiR18-KD-Zellen des Weiteren ein aggressiveres Invasionsverhalten. Es wurde dagegen weder nach STAiR18- noch nach STAT3-KD eine veränderte Vitalität oder Proliferation der A172-Zellen ermittelt. Des Weiteren wurden die MZ18-Zellen auf ein verändertes Migrationsverhalten untersucht, welches sich allerdings nicht bestätigen ließ. Hier zeigte sich jedoch ein schwacher Vitalitätsverlust nach STAiR18und STAT3-KD.

Auf Grund der Aggressivität und hohen Sterblichkeit von Glioblastomen ist ein tieferes Verständniss der molekularen Mechanismen zur Entwicklung neuer Therapieansätze nötig. In den letzten Jahren sind dabei auch IncRNAs in den Fokus der Forschung gerückt. Dabei konnte eine Reihe IncRNAs identifiziert werden, die unter anderem die Proliferation, Vitalität, Migration bzw. Invasion und Angiogenese von Gliomen beeinflussen. Diese IncRNAs greifen folglich in die sogenannten "Hallmarks of Cancer" von Gliomen ein und können eine entscheidende Rolle bei der Entwicklung neuer Biomarker und therapeutischer Targets spielen.

Wie Tabelle 5 entnommen werden kann, wirken die beschriebenen IncRNAs auf molekularer Ebene häufig durch ihre Interaktion mit miRNAs oder Chromatin-modifizierenden Komplexen [217,218]. Dabei können durch Interaktion mit verschiedenen miRNAs bzw. Bindungspartnern von einer IncRNA mehrere, teilweise sogar gegensätzliche, Funktionen vermittelt werden. So sind für MALAT-1 sowohl proliferations-fördernde als auch die Proliferation hemmende Mechanismen beschrieben. Auch auf die Migration der Zellen kann MALAT-1 scheinbar gegensätzliche Einflüsse nehmen [218]. MALAT-1 scheint je nach untersuchtem Zelltyp folglich sowohl als Onkogen als auch als Tumorsupressor wirken zu können und verdeutlicht beispielhaft die komplexe Rolle, die IncRNAs gemeinsam mit ihren Interaktionspartnern in Gliomen spielen.

132 | DISKUSSION

Tabelle 5: Funktionen und Wirkmechanismen ausgewählter IncRNAs mit Einfluss auf verschiedene Gliomedarunter das Glioblastom. Modifiziert aus [218].

Phänotyp	IncRNA	Funktion	Mechanismus	Referenz
Proliferation	MALAT-1	Förderung der Proliferation	Wegfangen von miR-101	[219,220]
		Förderung der Tumorgenese	Steigerung der SOX2-Expression und	[221]
			Unterdrückung der miR-129	
	HOTAIR	Förderung des Zellwachstums	Interaktion mit EZH2	[115,222]
			Interaktion mit miR-326/FGF1	[223]
	CRNDE	Förderung des Zellwachstums	Einfluss auf mTOR-Signalweg	[224]
		Förderung der Proliferation	Unterdrückung der miR-136-5p	[225]
	MALAT-1 .	Unterdrückung der	Inaktivierung des ERK/MAPK-	[226]
		Proliferation	Signalwegs	
		Unterdrückung des Tumor-	Unterdrückung der miR-155 und	[227]
Wachstums-		Wachstums	Aktivierung von FBXW7	
unterdrückung	HOTTIP	Unterdrückung der	Unterdrückung von BRE	[228]
		Proliferation		
	GAS5	Unterdrückung der	Unterdrückung von miR-222, miR-18a-	[229,230]
		Proliferation	5р	
Migration	MALAT-1	Förderung der Migration	Interaktion mit WNT-Signalweg	[231]
		Unterdrückung der Invasion	Unterdrückung von MMP2	[226]
	GAS5	Unterdrückung der Invasion	Unterdrückung von miR-222, miR-18a-	[229,230]
		und Migration	5р	
	NEAT1	Förderung der Migration und	Interaktion mit EGRF/EZH2/ß-Catenin	[112]
		Invasion	Interaktion mit miR132/SOX2	[232]
Vitalität	HOXA11-AS	Unterdrückung der Apoptose	Wegfangen von miR-140-5p, miR-124-	[233]
			Зр	
	XIST	Unterdrückung der Apoptose	Interaktion mit miR-152	[234]
	CASC2a	Förderung der Apoptose	Interaktion mit miR-21	[235]
Angiogenese	H19	Förderung der Angiogenese	Interaktion mit miR29a/VASH2	[237]
	XIST	Förderung der Angiogenese	Interaktion mit miR-137/FOXC1/CXCR7	[238]
			Wegfangen von miR429	[239]

4.5 Die molekulare Wirkweise von STAiR18

Um die molekularen Mechanismen aufzuklären, die hinter dem Einfluss von STAiR18 auf die Migration und Invasion von Glioblastomzellen liegen, wurden die durch STAiR18-regulierten Gene in einer genomweiten Transkriptionsanalyse bestimmt. Die differenzielle Expression der STAiR18-Zielgene wurde an ausgewählten, sowohl induzierten als auch reprimierten, Zielgenen mittels qPCR validiert und Off-Target-Effekte durch den Einsatz weiterer siRNAs gegen das erste Exon von STAiR18 ausgeschlossen. Unter den Top-Kandidaten der am stärksten durch den STAiR18-KD reprimierten Transkripte fanden sich mit LINC00152 und MIR4435-1HG sowohl der STAiR18-A- als auch der STAiR18-B-Locus selbst, was für die Güte der Transkriptionsanalyse spricht. Im Anschluss an die Transkriptionsanalysen wurde mit Hilfe der ChIRP-Technik eine mögliche direkte Interaktion von STAiR18 und ausgewählten Zielgenen auf RNA-, DNA- und Proteinebene untersucht.

Durch den KD von STAiR18 mit Hilfe einer siRNA gegen das erste Exon in A172-Zellen wurden neben anderen nichtkodierenden RNAs vor allem proteinkodierende Zielgene signifikant reguliert, welche einen direkten oder indirekten Einfluss auf Komponenten des Zytoskeletts nehmen können. So wurden mit ABLIM3, FILIP1L und MAP1LC3C an verschiedene Kompartimente des Zytoskeletts bindende Proteine nach dem STAiR18-KD vermindert exprimiert [157,158]. Des Weiteren zählen etliche Typ I-Keratine bzw. deren Pseudogene zu den am stärksten nach dem STAiR18-KD induzierten Transkripten.

Obwohl durch den KD von STAiR18 in A172-Zellen kein Effekt auf deren Proliferation und Vitalität beobachtet wurde, scheint ein großer Prozentsatz der STAiR18-Zielgene beim KD mit siRNA gegen das erste Exon eine Rolle in der Kontrolle und Aufrechterhaltung des Zellzyklus oder bei der Einleitung der Apoptose zu spielen. Zudem sind viele der STAiR18-Zielgene als Onkogene oder Tumorsuppressoren beschrieben. Mit Cyclin A1 (CCNA1) wurde ein entscheidender Regulator des Zellzyklus nach dem STAiR18-KD reprimiert [159]. Zu den am stärksten induzierten Genen zählte der Transkriptionsfaktor MafB, welcher in etlichen Tumorsuppressor wirken kann [155]. Mit RAB3D wurde durch den STAiR18-KD ein in etlichen Tumoren verstärkt exprimierts Mitglied der Onkogenen Ras-Familie unterdrückt, für welches bereits ein Einfluss auf die Migration und Invasion bestimmter Tumorzellen beschrieben worden ist [163]. SAA1, eines der Haupt-Akute-Phase-Proteine, welches als Antwort auf Infektionen, Gewebeverletzungen oder maligne Erkrankungen induziert wird, lag

nach dem STAiR18-KD dagegen verstärkt exprimiert vor. Wie bereits gezeigt werden konnte, scheint auch SAA1 die Migration und Invasion von Glioblastomzellen zu beeinflussen [156]. Die Expression von CCNA1, MAFB und SAA1 scheint jedoch nicht durch eine direkte Interaktion mit STAiR18 reguliert zu werden, da mittels ChIRP keine direkte Bindung von STAiR18 an diese Zieltranskripte nachgewiesen werden konnte.

Als epitheliale-mesenchymale Transition (EMT) bezeichnet man den biologischen Prozess, bei dem immobile Epithelzellen in einen mesenchymalen Phänotyp übergehen und ein verstärktes Migrations- und Invasionsverhalten annehmen. EMT ist ein wichtiger Bestandteil der Embryogenese, Gastrulation und Organentwicklung, spielt aber auch eine entscheidende Rolle bei der Invasion und Metastasierung von Tumorzellen [240]. Auch im Glioblastom zeigen etliche Gene eine Überexpression, welche dem mesenchymalen Phänotyp zugeordnet werden [241,242]. Trotz der beobachteten Effekte von STAiR18 auf die Migration und Invasion von Glioblastomzellen, scheint STAiR18 allerdings keinen direkten Einfluss auf typische EMT-Marker zu nehmen. So werden bspw. die Marker E-Cadherin, N-Cadherin, Vimentin, Fibronectin, TWIST, SNAI1 und SNAI2 [243,244] nach dem STAiR18-KD nicht signifikant differenziell exprimiert.

Betrachtet man die nach dem STAiR18-KD induzierten Transkripte, fällt auf, dass es sich bei den fünf am stärksten regulierten Zielgenen von STAiR18 um Typ I-Keratine bzw. deren Pseudogene handelte. So wurden Keratin 14 und Keratin 16 nach dem STAiR18-KD etwa 10-fach verstärkt exprimiert. Keratinfilamente setzen sich als Heterodimere aus Typ I- und Typ II-Keratinen zusammen [154]. Typ II-Keratine schienen nach dem STAiR18-KD allerdings nicht verstärkt exprimiert zu werden. Wie am Beispiel von KRT16 gezeigt wurde, bezieht sich die gesteigerte Keratin-Expression aber offenbar vor allem auf die Keratin-Transkripte und kann nicht uneingeschränkt auf das Proteinlevel übertragen werden. Mittels Immunoblot konnte keine STAiR18-Abhängigkeit bei der Expression des KRT16-Proteins festgestellt werden. Die sensitiveren Immunfluoreszenzfärbungen zeigten eine verstärkte Ansammlung von KRT16 in zytoplasmatischen Granula nach STAiR18-KD. Da nur Typ I- und nicht Typ II-Keratinfilamente nach dem STAiR18-KD induziert werden, kommt es nicht zu verstärkten Ausbildung eines Keratin-Zytoskeletts. Zwar konnte bereits gezeigt werden, dass Keratine das invasive Verhalten von Zellen beeinflussen und die Zellmigration unterdrücken [245,246], der Einfluss von STAiR18 auf die Keratin-Genexpression scheint allerdings im Fall der A172-Zellen nicht zum veränderten Migrationsverhalten beizutragen.
135 | DISKUSSION

Der als Proto-Onkogen beschriebene Transkriptionsfaktor FoxM1 wird in etlichen humanen Tumoren, so auch im Glioblastom, verstärkt exprimiert [167]. FoxM1 fällt nicht nur eine Schlüsselrolle in der Regulation des Zellzyklus zu, der Transkriptionsfaktor scheint auch auf Mechanismen wie Tumorinvasion, Angiogenese und Metastasierung Einfluss zu nehmen [160]. Wie in dieser Arbeit und weiteren Studien bereits gezeigt werden konnte, wird die Migration von Glioblastomzellen durch FoxM1 beeinflusst. Darüber hinaus korreliert eine erhöhte FoxM1-Expression in Patientenproben des Glioblastoms mit einer negativen Prognose [167,168]. Als Transkriptionsfaktor reguliert FoxM1 seine Zielgene durch direkte Bindung an deren Promotorbereiche. So konnte gezeigt werden, dass FoxM1 direkt an den Promotor der Matrix-Metalloproteinase MMP-2 bindet und deren Expression induziert [247]. MMP-2 steht in direktem Zusammenhang mit der enormen Invasivität von Glioblastomzellen. Das Enzym scheint eine tragende Rolle beim Zerfall der extrazellulären Matrix zu spielen, wodurch ein Einwandern des Tumors in angrenzendes gesundes Gewebe ermöglicht wird [161,162]. Nach dem STAiR18-KD in A172-Zellen wurden sowohl das FoxM1-Gen als auch dessen Zielgen MMP-2 signifikant vermindert exprimiert. Der STAiR18-KD führte ebenso zu einem verminderten Proteinlevel von FoxM1. Überraschenderweise wurde nicht nur die FoxM1-Expression durch den STAiR18-KD unterdrückt, nach einem FoxM1-KD lag auch eine verminderte STAiR18-Expression vor. Unter physiologischen Bedingungen handelt es sich bei FoxM1 folglich um ein Zieltranskript von STAiR18, welches durch die nichtkodierende RNA induziert wird. Andererseits wird auch die Transkription von STAiR18 selbst zumindest teilweise durch den Transkriptionsfaktor FoxM1 induziert. Dieser positive Rückkopplungsmechanismus wirkt sich auch auf die weiteren Zielgene von STAiR18 aus. So wird bspw. die Expression von KRT16 nicht nur nach dem STAiR18-KD, sondern indirekt, wenn auch in geringerem Ausmaß, ebenso durch einen FoxM1-KD verstärkt.

Im Rahmen der ChIRP-Untersuchungen konnte jedoch weder auf RNA-, DNA- oder Proteinebene eine direkte Bindung von STAiR18 an FoxM1 detektiert werden.

Auch der Transkriptionsfaktor STAT3 liegt in der Mehrheit aller Krebszelllinien und Tumore, darunter auch dem Glioblastom, vermehrt exprimiert und konstitutiv aktiviert vor. Er initiiert die Transkription vieler Tumor-assoziierter Gene und ist so an der Progression des Zellzyklus, Zellüberleben, Migration und Invasion von Tumorzellen beteiligt [169,236]. In vorangegangenen Studien der AG Horn konnte gezeigt werden, dass STAiR18 in Zellen des Multiplen Myeloms STAT3abhängig induziert wird und zur überlebensfördernden Wirkung des Transkriptionsfaktors im

136 | DISKUSSION

Multiplen Myelom beiträgt. Des Weiteren konnte in Multiplen Myelomzellen durch eine genomweite ChIRP-Sequenzierung der mit STAiR18 interagierenden RNAs eine direkte Interaktion von STAiR18 mit der primären STAT3-mRNA detektiert werden [139]. Anders als im Multiplen Myelom, wurde STAiR18 in den untersuchten Glioblastomzellen nicht durch STAT3, sondern durch den Transkriptionsfaktor FoxM1 induziert. Dennoch stellt STAT3 auch in A172-Zellen ein Zielgen von STAiR18 dar und wurde nach dessen KD um etwa die Hälfte vermindert exprimiert. Durch ChIRP-Untersuchungen konnte die vermutete direkte Interaktion von STAiR18 an die STAT3-mRNA auch in Glioblastomzellen bestätigt werden. Es wurde eine direkte Bindung von STAiR18 an ein SINE-Element innerhalb des ersten Introns der primären STAT3-mRNA in A172-Zellen nachgewiesen.

Die direkte Interaktion der beiden Transkriptionsfaktoren STAT3 und FoxM1 im Glioblastom und deren gegenseitige positive Regulation konnte bereits in mehreren Studien aufgezeigt werden [170,171]. Die hier ermittelte direkte Bindung von STAiR18 an die STAT3-mRNA stellt somit einen wichtigen Hinweis auf die molekularen Mechanismen dar, die der STAiR18-vermittelten Regulation von STAT3, aber auch FoxM1, zu Grunde liegen könnten.

IncRNAs können als wichtige Regulatoren des Epigenoms fungieren, indem sie mit Chromatinmodifizierenden Komplexen, wie Methyltransferasen oder Demethylasen, interagieren und diese zu spezifischen Loci im Genom rekrutieren. Die IncRNAs ANRIL und HOTAIR interagieren bspw. mit dem Polycomb Repressive Complex 2 (PRC2). Durch die Histon-Methyltransferase-Aktivität des PRC2-Komplexes kommt es zur Trimethylierung der Lysin-27-Reste des Histons H3, was die Ausbildung von Heterochromatin und folglich eine Repression der Genexpression zur Folge hat [248]. Auch für STAIR18 wird eine Rolle in der Regulation der Genexpression seiner Zielgene durch Interaktion mit Chromatin-modifizierenden Komplexen vermutet. In vorangegangen Studien der AG Horn konnte eine direkte Interaktion der Histon-Methyltransferase SETD2 sowohl mit STAiR18 als auch mit der STAT3-mRNA detektiert werden [139]. SETD2 vermittelt Trimethylierungen von Lysin 36 des Histons H3, welche zur Transkription aktiver Genbereiche nötig sind [249]. Es liegt folglich nahe, dass STAIR18 zum aktiven Chromatin-Status des STAT3-Locus beitragen könnte, indem es die Bindung von SETD2 an den STAT3-Locus vermittelt. Auf diese Weise wird auch das Expressionslevel des STAT3-Proteins erhöht. Durch den positiven Rückkopplungsmechanismus zwischen dem STAT3-Protein und FoxM1 kommt es somit auch zur verstärkten FoxM1-Expression, welche wiederrum die verstärkte Induktion von STAiR18 selbst, aber bspw. auch der MMP-2-Proteinase, zur Folge hat. STAIR18 scheint folglich eine zentrale Rolle in der Regulation der Migration und Invasion von Glioblastomzellen zu spielen und ein Gleichgewicht zu den Migrations-, und Invasionsfördernden Proteinen FoxM1 und MMP-2 herzustellen. Dabei gilt es zu beachten, dass STAiR18 zwar durch FoxM1 induziert wird, sich die Expression von STAiR18 nach einem FoxM1-KD allerdings nur um etwa die Hälfte reduzierte. Dies spricht für die zusätzliche Induktion von STAiR18 durch weitere, noch nicht bestimmte, Transkriptionsfaktoren. Ob es sich bei diesen noch unbekannten Transkriptionsfaktoren, wohlmöglich um Tumorsuppressoren handelt, welche die Migration und Invasion der Glioblastomzellen hemmen, bleibt Gegenstand weiterer Untersuchungen.

Abbildung 44: Modell der möglichen Rolle von STAiR18 bei der Regulation der Migration von Glioblastomzellen. STAiR18 geht eine direkte Interaktion mit der STAT3-mRNA und der Histon-Methyltransferase SETD2 ein. Da durch SETD2 Trimethylierungen an Lysin 36 des Histons H3 vermittelt werden, welche zur Transkription aktiver Genbereiche nötig sind, könnte STAiR18 durch Rekrutierung von SETD2 zur Aufrechterhaltung eines aktiven STAT3-Locus beitragen. Auf diese Weise wird auch die Expression des STAT3-Proteins gefördert, wodurch, auf Grund eines positiven Rückkopplungseffekts zwischen STAT3 und FoxM1, auch die Expression des Transkriptionsfaktors FoxM1 verstärkt wird. FoxM1 induziert daraufhin die Expression seiner Zielgene, wozu u. a. die Proteinase MMP-2, aber auch STAiR18 selbst gehören. Des Weiteren wird die STAiR18-Expression auch durch weitere noch zu ermittelnde Transkriptionsfaktoren induziert. Während MMP-2 und FoxM1 die Migration und Invasion der Glioblastomzellen fördern, kommt es durch STAiR18 zu einem verzögerten Migrationsverhalten. Welchen Einfluss die unbekannten Transkiptionsfaktoren auf die Migration ausüben, bleibt noch ungeklärt. Auch die Aktivierung der anderen von STAiR18 induzierten Zielgene könnte durch die STAiR18vermittelte Rekrutierung von SETD2 an den jeweiligen Genlocus erfolgen. Wie die Ergebnisse der Transkriptionsanalyse zeigen, vermittelt STAiR18 jedoch nicht nur die Induktion, sondern auch die Repression einiger Zielgene. STAiR18 könnte neben seiner Bindung an SETD2 folglich auch mit weiteren Chromatin-modifizierenden Komplexen, wie dem PRC2-Komplex, interagieren und somit zur Gen-Stilllegung seiner Zielgene beitragen. Für einige IncRNAs konnte bereits eine parallele Interaktion mit verschiedenen Chromatin-modifizierenden Komplexen beschrieben werden. So wurde neben der Interaktion von HOTAIR mit dem PRC2-Komplex auch eine Bindung an die Lysinspezifische Demethylase 1 (LSD1-CoREST) detektiert. Ein weiteres Beispiel stellt die IncRNA Kcnq1ot1 dar, welche Bindungen mit den Histonmethyltransferasen PRC2 und G9a sowie mit der DNA-Methyltransferase Dnmt1 eingehen kann [250].

Bedenkt man die verstärkte Expression von STAiR18 in jedem untersuchten Tumortyp, darunter auch dem Glioblastom, läge eine onkogene Wirkweise von STAiR18 nahe, bei welcher der STAiR18-KD zu einer verminderten Migration der Glioblastomzellen führen würde. Tatsächlich wurde auch in zwei kürzlich erschienenen Publikationen nach STAiR18-KD eine verminderte Migration und Invasion in U87- und LN229-Glioblastomzellen detektiert [251,252]. In der vorliegenden Arbeit wurden diese Glioblastom-Zelllinien jedoch nicht näher untersucht. PTEN und p53 sind die am häufigsten mutierten Tumor-Suppressor-Gene in humanen Tumoren und auch die Mehrheit der malignen Gliome trägt PTEN- oder p53-Mutationen [253]. Betrachtet man den Mutationstatus der verschiedenen Glioblastomzelllinien, fällt auf, dass sie in der Expression der beiden Tumorsuppressoren variieren. Während A172-Zellen und MZ18-Zellen ein mutiertes p53-Gen tragen, liegt p53 in U87-Zellen als Wildtyp und in LN229-Zellen sowohl als Wildtyp als auch als mutierte Variante vor [254-256]. Des Weiteren handelt es sich bei U87 und A172 um Zellen mit einem mutierten PTEN-Status, während LN229- und MZ18-Zellen das Wildtyp-PTEN exprimieren [257–260]. Es ist folglich vorstellbar, dass STAiR18 je nach Mutationstatus und damit in Abhängigkeit der untersuchten Zelllinie, sowohl eine onkogene als auch eine Rolle als Tumorsuppressor übernehmen kann. Gestützt wird diese These durch die beobachteten Effekte auf die Adhärenz der Glioblastomzellen nach Trypsin-Zugabe. Während sich die A172- und MZ18-Zellen nach STAiR18-KD stark verzögert von der Zellkulturschale lösten, war dies bei U87-Zellen nicht der Fall. STAiR18 scheint damit eine Schlüsselrolle in der Regulation der Migration und Invasion von Glioblastomzellen zu übernehmen und diese in Abhängigkeit des p53- und PTEN-Status sowohl fördern als auch unterdrücken zu können. Dies gilt überraschenderweise auch für das im Allgemeinen als

139 | DISKUSSION

Tumorsuppressor beschriebene PTEN selbst. Während PTEN in U87- und A172-Zellen das Fortschreiten des Zellzyklus und die Proliferation unterdrückt, wird in den Glioblastomzelllinien U373 und SNB19 der Zellzyklusverlauf und die Proliferation induziert [253]. Der Transkriptionsfaktor STAT3 wiederrum, welcher in etlichen humanen Tumoren konstitutiv aktiviert vorliegt und eine Rolle bei der Onkogenese spielt, kann bei der Entwicklung des Glioblastoms, in Abhängigkeit des PTEN-Mutationsstatus, auch die gegensätzliche Rolle eines Tumorsuppressors einnehmen [261]. Auch die IncRNA MALAT-1 kann die Migration und Proliferation von Glioblastomzellen durch Interaktion mit verschiedenen Bindungspartnern je nach untersuchtem Zelltyp hemmen oder unterstützen und somit als Onkogen aber auch als Tumorsuppessor fungieren [218]. Die gegensätzliche Rolle, die STAiR18 in der Regulation der Migration von Glioblastomzellen einnehmen kann, scheint folglich keine Seltenheit darzustellen. STAiR18 verdeutlicht somit die komplexen Mechanismen zwischen IncRNAs und deren Bindungspartnern, welche in Abhängigkeit des Zellkontexts und genomischen Hintergrunds der untersuchten Zellen, ambivalente Funktionen ausführen können. Der Entwicklung von Glioblastomen liegt ein breites Spektrum verschiedener Mutationen und derer Kombinationsmöglichkeiten zu Grunde. Die in dieser Arbeit erhobenen Daten heben die Notwendigkeit einer exakten Analyse des genomischen Hintergrunds von Glioblastomerkrankungen im Vorfeld der Entwicklung neuer Therapie-Ansätze hervor.

4.6 Die globale Rolle von STAiR18 in weiteren Zellsystemen

Im Rahmen der Transkriptionsanalyse wurden nicht nur die differenziell nach dem Knockdown des ersten Exons von STAiR18 exprimierten Gene analysiert, sondern auch die Gene bestimmt, welche nach einem siRNA-vermittelten Knockdown von STAiR18 mit siRNAs gegen das zweite, dritte und siebte Exon sowie gegen Exon K differenziell exprimiert wurden. Durch den Einsatz der verschiedenen siRNAs gegen STAiR18 wurden zwischen 200 und 769 Gene differenziell und spezifisch reguliert. Dies entspricht 0,4 % bis 1,5 % der gesamt betrachteten Gene. Das Verhältnis von nach dem Knockdown reprimierten beziehungsweise induzierten Genen hing vom Einsatz der entsprechenden siRNA ab. Auch die Überschneidungen der differenziell regulierten Gene der einzelnen Knockdowns schwankten stark und fielen geringer aus als ursprünglich erwartet. Das spiegelte sich auch im Vergleich der GO-Term-Analysen der KDs von Exon 1, Exon 3 und Exon 7 wider. Bei GO-Term-Analysen handelt es sich um eine Methode zur Interpretation differenziell regulierter Gensets. Dabei können Rückschlüsse über die zellulären Kompartimente, molekularen Funktionen und biologischen Prozesse, welche durch die differenziellen Genexpressionen am stärksten betroffen sind, gezogen werden [164][165].

Bei einem KD mit siSTAiR18_Ex1 wurden in erster Linie Gene reguliert, die dem Mikrotubuli-Zytoskelett zugeordnet werden können oder auch Cycline und Cyclin-Kinase-Komplexe beeinflussen. Auf molekularer Ebene wurden verschiedene Gene zur Bindung an Nukleoside, vor allem an Purinnukleoside, differenziell reguliert. Des Weiteren scheinen bei einem KD mit siSTAiR18_Ex1 Gene betroffen zu sein, die einen Einfluss auf die Entwicklung und Differenzierung von Monozyten nehmen. Von einem KD mit siSTAiR18_Ex3 waren dagegen Gene betroffen, welche extrazellulären und intrazellulären Organellen zugeordnet werden. Der KD wirkte sich ebenso auf Komponenten des Zytoskeletts aus, wobei hier besonders Gene für die Bindung an Aktinfilamente und Spektrine reguliert wurden. Außerdem wurden Gene reguliert, welche in den T-Zell-Rezeptorweg eingreifen und ein Rolle bei der Entwicklung von Herzkammern und –ventrikeln spielen. Der KD mit siSTAiR18_Ex7 nahm dagegen Einfluss auf die kondensierten Bereiche am Zentromer der Chromosomen. Es wurden vor allem Gene reguliert, welche die Bindung an doppelsträngige RNAs und an Proteine mit F-Box-Domäne, welche häufig in die Regulation des Zellzyklus eingreifen [166], beeinflussen. So wurde durch den KD mit siSTAiR18_Ex7 besonders die Organisation des Zytoskeletts und die Zytoskelett-abhängige Zellteilung stark reguliert.

Durch die Verwendung der siRNAs gegen das erste, dritte und siebte Exon bei einem STAiR18-KD werden die verschiedenen STAiR18-Isoformen unterschiedlich effektiv ausgeschaltet. Die Unterschiede in den GO-Term-Analysen von siSTAiR18_Ex1, siSTAiR18_Ex3 und siSTAiR18_Ex7 liefern somit Hinweise darauf, dass die Transkriptvarianten von STAiR18 einen Einfluss auf unterschiedliche Prozesse in den Zellen nehmen und ihre Funktion an verschiedenen Zellkompartimenten ausüben können.

Tatsächlich konnten in der AG Horn neben der bereits erwähnten Rolle von STAiR18 bei der Aufrechterhaltung der Vitalität von Multiplen Myelomzellen [139] auch Hinweise für eine mögliche Funktion von STAiR18 bei der T-Zellaktivierung detektiert werden (Dissertation Nadine Hösler, AG Horn, Institut für Klinische Immunologie, Leipzig). In einigen kürzlich erschienen Publikationen zu STAiR18, welches dort als linc00152 bzw. CYTOR beschrieben ist, wird die vielfältige Rolle von STAiR18 bei der Entstehung und Progression verschiedener Tumortypen verdeutlicht. STAiR18 fördert den Zellzyklus-Verlauf und die Proliferation von Magenkrebszellen durch eine Interaktion mit der EZH2-Untereinheit des PRC2-Komplex, wodurch die Expression der Zellzyklusregulatoren p15

und p21 unterdrückt wird. Die STAiR18-Expression korreliert hier mit einer schlechten Prognose und der Bildung von Lymphknoten-Metastasen [262]. Auch die Proliferation von Lungenkrebszellen wird durch die Interaktion zwischen STAiR18 und EZH2 gefördert. Erhöhte Expressionslevel von STAiR18 scheinen auch in diesem Tumortyp mit einer erhöhten Tumorgröße, der Bildung von Lymphknoten-Metastasen und einer schlechten Prognose einherzugehen [263]. Diese Beobachtungen verstärken die Hypothese, dass STAiR18 ebenso in den untersuchten Glioblastomzellen durch eine Bindung an den PRC2-Komplex zur Stilllegung seiner Zielgene beitragen könnte. Des Weiteren wurde eine Regulation der Mcl-1-Expression auf Grund der STAiR18-vermittelten Unterdrückung von miR193a-3p in Magenkrebszellen bzw. der miR125b in Eierstockkrebszellen detektiert. Auf diese Weise fördert STAiR18 die Zellproliferation und unterdrückt die Apoptose dieser Tumore [264,265]. Auch die Regulation des Tumorwachstums, der Metastasenbildung und der epithelialenmesenchymalen Transition scheint über STAiR18 und die Interaktion mit verschiedenen miRNAs gesteuert zu werden. So fördert STAiR18 im Gallenblasenkrebs die Metastasenbildung und EMT durch Interaktion mit miR138, was zur Regulation des PI3K/AKT-Signalwegs führt [266,267]. In Glioblastomzellen konnte dagegen eine Interaktion mit miR107 und miR612 detektiert werden, was ebenso in einem gesteigerten Tumorwachstum und EMT mündete [251,252,268]. Darüber hinaus scheint STAiR18 durch die Regulation verschiedener miRNAs auch die Zellproliferation in Darm- und Dickdarmkrebs zu regulieren und als prognostischer Marker für eine mögliche Resistenz gegenüber Chemotherapeutika dienen zu können [269,270]. Durch Interaktion mit verschiedenen Bindungspartnern und der Regulation von miRNA-Expressionen greift STAiR18 folglich in die Proliferation und Apoptose, Migration und Invasion sowie EMT und Metastasenbildung verschiedenster Tumorzellen ein. Damit scheint es eine Schlüsselrolle in nahezu allen als "Hallmarks of Cancer" beschriebenen Eigenschaften von Tumorzellen zu übernehmen. Weiterhin kann die STAiR18-Expression mit einer schlechten Prognose und der Resistenzmöglichkeit gegenüber Chemotherapeutika korreliert werden. Die verschiedenen Transkriptvarianten, welche in bislang keiner Publikation genauer beleuchtet worden sind, scheinen dabei unterschiedliche Aufgaben zu erfüllen und von Zelltyp zu Zelltyp zu variieren. Auch der genetische Hintergrund des untersuchten Tumors scheint die Funktion von STAiR18 entscheidend zu beeinflussen. Eine exakte Analyse der zelltypspezifischen STAiR18-Transkriptarchitektur und der damit verbundenen teilweise scheinbar gegensätzlichen Aufgaben von STAiR18 ist folglich notwendig, bevor STAiR18 zukünftig als diagnostischer bzw. prognostischer Marker oder auch als therapeutisches Target bei einer Vielzahl verschiedener Tumortypen genutzt werden könnte.

5 ZUSAMMENFASSUNG

Mit einer durchschnittlichen Überlebensrate von nur einem reichlichen Jahr stellt das Glioblastom nicht nur den häufigsten, sondern auch den aggressivsten und tödlichsten humanen Hirntumor dar. Seine molekulare Heterogenität, die rapide und diffuse Invasion der Tumorzellen in das angrenzende gesunde Hirngewebe und die schnelle Ausbildung von Rezidiven machen das Glioblastom zu einem der am schwersten zu behandelnden Tumore. Bis heute ist eine endgültige Heilung im Regelfall nicht möglich. Ein tieferes Verständnis der molekularen Grundlagen, die hinter dem hochinvasiven Verhalten dieses aggressiven Tumors liegen, ist folglich unabdingbar, um neue therapeutische Ansätze entwickeln zu können. In den letzten Jahren sind nichtkodierende RNAs und ihre potentielle Einsatzmöglichkeit als innovative Biomarker oder therapeutische Targets in den Fokus der Forschung gerückt. Ein Großteil des humanen Genoms wird auf einem oder sogar beiden Strängen transkribiert, was in einer Vielzahl von Trankripten mündet, welche nicht für Proteine kodieren und als nichtkodierende RNAs bezeichnet werden. Im Rahmen der Entschlüsselung des humanen Genoms durch das ENCODE-Projekt konnten über 28.000 lange nichtkodierende RNAs identifiziert werden. Viele Funktionen der IncRNAs sind noch unbekannt. Sie werden allerdings zumeist entwicklungs- oder gewebespezifisch exprimiert und ihre Expressionslevel können mit mehreren Krankheiten assoziiert werden. Anhand ausgewählter Vertreter konnte das breite Spektrum der zellulären Funktionen, die IncRNAs ausüben, deutlich gemacht werden. So fungieren IncRNAs durch Interaktion mit chromatin-modifizierenden Komplexen als wichtige Regulatoren des Epigenoms und können die Expression ihrer Zielgene weiterhin auf transkriptioneller und posttranskriptioneller Ebene oder durch die Vermittlung von alternativen Spleißprozessen modulieren. Mittlerweile konnte mehrfach gezeigt werden, dass Fehlregulationen von IncRNAs Einfluss auf die Tumorgenese, Proliferation oder Invasion verschiedener Tumortypen, darunter auch dem Glioblastom, nehmen.

Im Rahmen einer genomweiten Transkriptomanalyse, welche in verschiedenen Zellsystemen durchgeführt wurde, konnten wir bereits mehrere, zuvor unbekannte IncRNAs identifizieren, welche in onkologischen und zellzyklusrelevanten Prozessen einer differenziellen Regulation unterlagen. In der vorliegenden Arbeit wurde eines dieser Transkripte, STAiR18, als möglicher Regulator der zellulären Funktionen von Glioblastomzellen strukturell und funktionell charakterisiert. Bei STAiR18

handelt es sich um eine innerhalb der Säuger hochkonservierte IncRNA, was eine physiologische Funktion in komplexen Organismen vermuten lässt. STAiR18 wird von zwei nahezu identischen Loci des humanen Genoms aktiv transkribiert, wobei durch alternative Spleißvorgänge eine Vielzahl unterschiedlicher Isoformen prozessiert wird. Diese scheinen strikten Regulationsmechanismen zu unterliegen. So wird STAiR18 zwar ubiquitär in allen humanen Geweben exprimiert, die Expressionslevel der einzelnen Isoformen unterliegen allerdings starken Schwankungen. Des Weiteren scheint eine zelltypspezifische Prozessierung von STAiR18 stattzufinden. Die deutlich erhöhte Expression von STAiR18 in jedem untersuchten Tumortyp, einschließlich dem Glioblastom, im Vergleich zum dazugehörigen Normalgewebe könnte auf eine umfassende Rolle von STAiR18 während der Tumorgenese hindeuten. Eine potentielle Verwendung von STAiR18 als allgemeiner Tumormarker ist folglich denkbar. Im Rahmen dieser Arbeit wurde die für die Glioblastomzelllinie A172 spezifische Transkriptstruktur der STAiR18-Loci mittels RNAi-vermittelten Knockdownstudien und qPCR-Analysen, aber auch mit Hilfe der neuartigen MinION[™]-Sequenziertechnik entschlüsselt. Die subzelluläre Lokalisation und die Anzahl ausgewählter Trankriptvarianten pro Zelle wurden anschließend mittels in situ Hybridisierung bzw. der fraktionierten Aufreinigung zytoplasmatischer und nukleärer RNA bestimmt. Die einzelnen Isoformen kommen in der Zelle unterschiedlich häufig vor und weisen auch eine unterschiedliche intrazelluläre Verteilung zwischen Kern und Zytoplasma der A172-Zellen auf. Dies könnte darauf hindeuten, dass die einzelnen Isoformen verschiedene zelluläre Funktionen übernehmen. Um eine mögliche physiologische Funktion von STAiR18 in Glioblastomzellen zu detektieren, wurden die STAiR18-Isoformen mittels RNAi ausgeschaltet. Dabei zeigten sich STAiR18-vermittelte Effekte auf die Adhäsion, Migration und auch Invasion von A172-Zellen. Es konnte ein gesteigertes Migrationsverhalten der A172-Zellen nach einem STAiR18-KD beobachtet werden. Durch Einsatz des Zytostatikums Mitomycin C ließ sich die gesteigerte Migration unabhängig von möglichen Effekten auf die Proliferation der A172-Zellen bestätigen. Im 3D-Zellkulturmodell, bei dem die Invasion der Zellen ausgehend von einem kompakten Spheroid in die Invasionsmatrix untersucht wurde, zeigten die STAiR18-KD-Zellen des Weiteren ein aggressiveres Invasionsverhalten. Es wurde dagegen keine veränderte Vitalität oder Proliferation der A172-Zellen nach STAiR18-KD ermittelt.

In genomweiten Transkriptomanalysen wurden anschließend die von STAiR18 differenziell regulierten Zielgene bestimmt und mit Hilfe der ChIRP-Technik mögliche direkte Interaktionen zwischen STAiR18 und ausgewählten Zielgenen auf RNA-, DNA- und Proteinebene untersucht. Durch den Knockdown von STAiR18 wurden neben anderen nichtkodierenden RNAs vor allem

proteinkodierende Zielgene signifikant reguliert, welche Einfluss auf verschiedene Komponenten des Zytoskeletts nehmen. Des Weiteren wurde auch die Expression etlicher als Onkogen oder Tumorsuppressor beschriebener Zielgene durch STAIR18 beeinflusst, für welche bereits eine Rolle in der Regulation der Migration und Invasion von Glioblastomzellen beschrieben werden konnte. So zählt die Matrix-Metalloproteinase MMP-2 zu einem durch STAiR18 signifikant induzierten Zielgen. MMP-2 scheint in direktem Zusammenhang mit dem hochinvasiven Verhalten von Glioblastomen zu stehen, indem es den Zerfall der extrazellulären Matrix fördert, wodurch das Eindringen der Tumorzellen in angrenzendes gesundes Gewebe möglich wird. Die Expression von MMP-2 wird durch den als Proto-Onkogen beschriebenen Transkriptionsfaktor FoxM1 eingeleitet. FoxM1 fällt nicht nur eine Schlüsselrolle in der Regulation des Zellzyklus zu, es reguliert auch Mechanismen wie Tumorinvasion, Angiogenese und Metastasierung von Tumorzellen. Im Rahmen dieser Arbeit konnte ein positiver Feedbackloop zwischen FoxM1 und STAiR18 ausfindig gemacht werden. So wird die STAiR18-Expression durch den Transkriptionsfaktor FoxM1 induziert, fördert andererseits aber auch selbst dessen Expression. Mittels ChIRP-Analysen wurde eine direkte Interaktion von STAiR18 mit der mRNA des Transkriptionsfaktors STAT3 ermittelt. Durch eine Rekrutierung von Chromatinmodifizierenden Komplexen, wie SETD2, scheint STAiR18 zur Transkription von STAT3 beizutragen und damit auch die Expression des STAT3-Proteins zu steigern. STAT3 interagiert wiederum direkt mit FoxM1 und fördert dessen Expression, womit sich der Feedbackloop zwischen STAiR18, STAT3 und FoxM1 schließt. Es konnte somit gezeigt werden, dass STAiR18 Teil eines komplexen Netzwerks verschiedener Migrationsregulatoren ist. Die physiologische Rolle von STAiR18 und der Einfluss auf das Migrationsverhalten scheinen dabei auch vom genetischen Hintergrund der Glioblastomzellen, wie bspw. Mutationen in den Tumorsupressorgenen p53 und PTEN, abzuhängen. Analysen der durch die einzelnen STAiR18-Isoformen differentiell regulierten Gensets offenbarten einen möglichen Einfluss der STAiR18-Isoformen auf weitere biologische Prozesse und zelluläre Kompartimente, wie der Regulation der Proliferation und Zellzykluskontrolle. Tatsächlich konnte in einigen kürzlich erschienenen Publikationen ein Einfluss von STAiR18 auf die Proliferation, Tumorgröße und Metastasierung weiterer Tumorerkrankungen, wie Magenkrebs und Lungenkrebs, beschrieben werden. STAiR18 scheint folglich eine Schlüsselrolle bei der Entstehung verschiedener Tumore zuzufallen, wobei durch eine Interaktion der einzelnen STAiR18-Isoformen mit diversen Bindungspartnern unterschiedliche physiologische Funktionen vermittelt werden könnten.

6 SUMMARY

With an average survival rate of one year, glioblastoma is not only the most common, but also the most aggressive and deadliest human brain tumor. It is characterized by uncontrolled proliferation and diffuse infiltration of glioblastoma cells into adjacent healthy tissue, forming a tumor without clear margins. The indefinable borders complicate a complete surgical removal, leading to the formation of recurrences. Moreover, the molecular heterogeneity of glioblastoma often results in resistance to radio- and chemotherapy. Therefore, Glioblastoma remains incurable to this day. Hence, a deeper understanding of the molecular mechanisms behind the highly invasive behavior of this aggressive tumor is crucial for the optimization and development of new therapeutic approaches.

In recent years, the identification of non-coding RNAs and their potential applications as innovative biomarkers and therapeutic targets have moved into the focus of research. A majority of the human genome is transcribed on one or even both strands, resulting in a multitude of RNA transcripts that do not code for proteins, thus, are referred to as non-coding RNAs. The decoding of the human genome by the ENCODE project in 2010 revealed more than 28,000 distinct long non-coding RNAs, which are marked by a highly developmental and tissue-specific expression. In addition, their expression levels can be associated with several diseases, like cancer. Many functions of lncRNAs are still unknown. However, it has been shown that lncRNAs may act as important regulators of the epigenome by interacting with chromatin-modifying complexes. Furthermore, they can modulate the expression of target genes on transcriptional and posttranscriptional levels or by mediating alternative splicing processes. Hence, misregulation of lncRNAs can have an influence on tumorigenesis, proliferation or invasion of different tumor types, including glioblastoma.

Using genome-wide transcription analyses performed in different cell types, we were able to identify several previously unknown IncRNAs. These showed differential regulation in oncological and cell cycle relevant processes. In the present work, one of those transcripts, STAiR18, was structurally and functionally characterized and identified as a possible regulator of cellular functions of glioblastoma cells. STAiR18 is highly conserved within mammals, suggesting a physiological function in complex organisms. It is actively transcribed from two nearly identical loci of the human genome, whereby a variety of different isoforms are processed by alternative splicing. These seem

146 | SUMMARY

to be subject to strict regulatory mechanisms. Although STAiR18 is ubiquitously expressed in all human tissues, the expression levels of individual isoforms vary greatly. In addition, STAiR18 appears to be processed cell type-specifically. The significantly increased expression of STAiR18 in each tumor type tested, including glioblastoma, compared to the corresponding normal tissue may indicate a comprehensive role of STAiR18 during tumorigenesis. Therefore, possible use of STAiR18 as a general tumor marker is conceivable. In this work, the transcript structure of STAiR18 specific for the glioblastoma cell line A172 was deciphered using RNAi-mediated knockdown studies and qPCR analyses, but also using the novel MinION[™] sequencing technique. Subcellular localization and the number of selected transcript variants per cell were then determined by in situ hybridization and fractional purification of cytoplasmic and nuclear RNA. The copy number of individual isoforms varies within the cell. Moreover, the intracellular distribution of STAiR18 isoforms differs, which indicates distinct cellular functions. In order to identify a possible physiological function of STAiR18 in glioblastoma cells, the STAiR18 isoforms were knocked down using RNAi. STAiR18-mediated effects on the adhesion of A172 cells as well as an increased migration after knockdown were detected. The use of the cytostatic drug mitomycin C confirmed that the increased migration of A172 cells after STAiR18-KD occurs independently of possible effects on cell proliferation. In the 3D cell culture model, in which the invasion of the cells from a compact spheroid into the invasion matrix was investigated, the STAiR18-KD cells showed more aggressive invasion behaviour. However, no altered vitality or proliferation of A172 cells after the STAiR18-KD was observed.

Furthermore, genes differentially regulated by STAiR18 were determined by genome-wide transcriptome analyses. In addition to other non-coding RNAs, the knockdown of STAiR18 significantly regulated protein-encoding target genes, which influence different components of the cytoskeleton. Moreover, STAiR18 influenced the expression of several oncogenes and tumor suppressors, which are already described to regulate migration and invasion of glioblastoma cells. The matrix metalloproteinase MMP-2 is one of these STAiR18 targets. MMP-2 appears to be directly related to the highly invasive behaviour of glioblastomas by promoting the disintegration of the extracellular matrix. This enables tumor cells to invade into adjacent healthy tissue. The transcription factor FoxM1, described as a proto-oncogene, initiates the MMP-2 expression. FoxM1 plays a key role in the regulation of the cell cycle, tumor invasion, angiogenesis and metastasis of tumor cells. Within the scope of this work, a positive feedback loop between FoxM1 and STAiR18 could be detected, suggesting that the STAiR18 expression is induced by the transcription factor FoxM1, but also promotes its expression. In order to identify STAiR18 interaction partners, ChIRP

147 | SUMMARY

analyses uncovered a direct interaction of STAiR18 with the mRNA of the transcription factor STAT3. By recruiting chromatin-modifying complexes such as SETD2, STAiR18 seems to contribute to the expression of STAT3 on RNA and protein level. STAT3 in turn interacts with FoxM1 and promotes its expression, thus confirming the feedback loop between STAiR18, STAT3 and FoxM1. Hence, it was shown that STAiR18 is part of a complex network of different migration regulators. The physiological role of STAiR18 and its influence on migration also seems to depend on the genetic background of glioblastoma cells, e.g. mutations in the tumor suppressor genes p53 and PTEN. Analyses of gene sets differentially regulated by distinct STAiR18 isoforms revealed a potential influence on biological processes, such as proliferation and cell cycle control. In fact, some recent publications have described an influence of STAiR18 on proliferation, tumor size and metastasis of other tumor diseases, such as gastric and lung cancer. Therefore, STAiR18 seems to play a key role in the development of different tumors, whereby different physiological functions could be mediated by individual STAiR18 isoforms and their binding partners.

LITERATURVERZEICHNIS

1. Azevedo FAC, Carvalho LRB, Grinberg LT, Farfel JM, Ferretti REL et al. (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. The Journal of comparative neurology 513 (5): 532–541.

2. Parpura V, Heneka MT, Montana V, Oliet SHR, Schousboe A et al. (2012) Glial cells in (patho)physiology. Journal of neurochemistry 121 (1): 4–27.

3. Lapointe S, Perry A, Butowski NA (2018) Primary brain tumours in adults. The Lancet 392 (10145): 432–446.

4. Carlsson SK, Brothers SP, Wahlestedt C (2014) Emerging treatment strategies for glioblastoma multiforme. EMBO molecular medicine 6 (11): 1359–1370.

5. Cai X, Sughrue ME (2018) Glioblastoma. New therapeutic strategies to address cellular and genomic complexity. Oncotarget 9 (10): 9540–9554.

6. Heiland DH, Haaker G, Watzlawik R, Delev D, Masalha W et al. (2018) One decade of glioblastoma multiforme surgery in 342 elderly patients. What have we learned. Journal of neuro-oncology.

7. Porter KR, McCarthy BJ, Freels S, Kim Y, Davis FG (2010) Prevalence estimates for primary brain tumors in the United States by age, gender, behavior, and histology. Neuro-oncology 12 (6): 520–527.

8. Ohgaki H, Kleihues P (2005) Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. Journal of neuropathology and experimental neurology 64 (6): 479–489.

9. Gonzalez RS, Riddle ND (2016) Syndrome-Associated Tumors by Organ System. Journal of pediatric genetics 5 (2): 105–115.

10. Dunn GP, Rinne ML, Wykosky J, Genovese G, Quayle SN et al. (2012) Emerging insights into the molecular and cellular basis of glioblastoma. Genes & development 26 (8): 756–784.

11. Li R, Chen X, You Y, Wang X, Liu Y et al. (2015) Comprehensive portrait of recurrent glioblastoma multiforme in molecular and clinical characteristics. Oncotarget 6 (31): 30968–30974.

12. Orringer D, Lau D, Khatri S, Zamora-Berridi GJ, Zhang K et al. (2012) Extent of resection in patients with glioblastoma. Limiting factors, perception of resectability, and effect on survival. Journal of neurosurgery 117 (5): 851–859.

13. (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455 (7216): 1061–1068.

14. Sturm D, Witt H, Hovestadt V, Khuong-Quang D-A, Jones DTW et al. (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer cell 22 (4): 425–437.

15. Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y et al. (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer cell 17 (1): 98–110.

16. Ohgaki H, Kleihues P (2013) The definition of primary and secondary glioblastoma. Clinical cancer research : an official journal of the American Association for Cancer Research 19 (4): 764–772.

17. Parsons DW, Jones S, Zhang X, Lin JC-H, Leary RJ et al. (2008) An integrated genomic analysis of human glioblastoma multiforme. Science (New York, N.Y.) 321 (5897): 1807–1812.

18. Maleszewska M, Kaminska B (2013) Is glioblastoma an epigenetic malignancy. Cancers 5 (3): 1120–1139.

19. Mack SC, Hubert CG, Miller TE, Taylor MD, Rich JN (2016) An epigenetic gateway to brain tumor cell identity. Nature neuroscience 19 (1): 10–19.

20. Taft RJ, Pheasant M, Mattick JS (2007) The relationship between non-protein-coding DNA and eukaryotic complexity. BioEssays : news and reviews in molecular, cellular and developmental biology 29 (3): 288–299.

21. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC et al. (2001) Initial sequencing and analysis of the human genome. Nature 409 (6822): 860–921.

22. Rubin GM, Yandell MD, Wortman JR, Gabor Miklos GL, Nelson CR et al. (2000) Comparative genomics of the eukaryotes. Science (New York, N.Y.) 287 (5461): 2204–2215.

23. Brett D, Pospisil H, Valcárcel J, Reich J, Bork P (2002) Alternative splicing and genome complexity. Nature genetics 30 (1): 29–30.

24. Shabalina SA, Spiridonov NA (2004) The mammalian transcriptome and the function of noncoding DNA sequences. Genome biology 5 (4): 105.

25. Mattick JS (2009) The genetic signatures of noncoding RNAs. PLoS genetics 5 (4): e1000459.

26. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489 (7414): 57–74.

27. Birney E, Stamatoyannopoulos JA, Dutta A, Guigó R, Gingeras TR et al. (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447 (7146): 799–816.

28. Rosenbloom KR, Dreszer TR, Long JC, Malladi VS, Sloan CA et al. (2012) ENCODE wholegenome data in the UCSC Genome Browser. Update 2012. Nucleic acids research 40 (Database issue): D912-7.

29. Clark BS, Blackshaw S (2014) Long non-coding RNA-dependent transcriptional regulation in neuronal development and disease. Frontiers in genetics 5: 164.

30. Gibb EA, Brown CJ, Lam WL (2011) The functional role of long non-coding RNA in human carcinomas. Molecular cancer 10: 38.

31. Reis EM, Verjovski-Almeida S (2012) Perspectives of Long Non-Coding RNAs in Cancer Diagnostics. Frontiers in genetics 3: 32.

32. Vergara IA, Erho N, Triche TJ, Ghadessi M, Crisan A et al. (2012) Genomic "Dark Matter" in Prostate Cancer. Exploring the Clinical Utility of ncRNA as Biomarkers. Frontiers in genetics 3: 23.

33. Qureshi IA, Mehler MF (2013) Long non-coding RNAs. Novel targets for nervous system disease diagnosis and therapy. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics 10 (4): 632–646.

34. Wahlestedt C (2013) Targeting long non-coding RNA to therapeutically upregulate gene expression. Nature reviews. Drug discovery 12 (6): 433–446.

35. Ulitsky I, Bartel DP (2013) lincRNAs. Genomics, evolution, and mechanisms. Cell 154 (1): 26–
46.

36. Eddy SR (2001) Non-coding RNA genes and the modern RNA world. Nature reviews. Genetics 2 (12): 919–929.

37. Ravasi T, Suzuki H, Pang KC, Katayama S, Furuno M et al. (2006) Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome research 16 (1): 11–19.

38. Lafontaine DLJ (2015) Noncoding RNAs in eukaryotic ribosome biogenesis and function. Nature structural & molecular biology 22 (1): 11–19.

39. Sloan KE, Warda AS, Sharma S, Entian K-D, Lafontaine DLJ et al. (2017) Tuning the ribosome. The influence of rRNA modification on eukaryotic ribosome biogenesis and function. RNA biology 14 (9): 1138–1152.

40. Barciszewska MZ, Perrigue PM, Barciszewski J (2016) tRNA--the golden standard in molecular biology. Molecular bioSystems 12 (1): 12–17.

41. Kirchner S, Ignatova Z (2015) Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nature reviews. Genetics 16 (2): 98–112.

42. Karijolich J, Yu Y-T (2010) Spliceosomal snRNA modifications and their function. RNA biology 7 (2): 192–204.

43. Matera AG, Wang Z (2014) A day in the life of the spliceosome. Nature reviews. Molecular cell biology 15 (2): 108–121.

44. Cao T, Rajasingh S, Samanta S, Dawn B, Bittel DC et al. (2018) Biology and clinical relevance of noncoding sno/scaRNAs. Trends in cardiovascular medicine 28 (2): 81–90.

45. Jorjani H, Kehr S, Jedlinski DJ, Gumienny R, Hertel J et al. (2016) An updated human snoRNAome. Nucleic acids research 44 (11): 5068–5082.

46. Dupuis-Sandoval F, Poirier M, Scott MS (2015) The emerging landscape of small nucleolar RNAs in cell biology. Wiley interdisciplinary reviews. RNA 6 (4): 381–397.

47. Adams BD, Kasinski AL, Slack FJ (2014) Aberrant regulation and function of microRNAs in cancer. Current biology : CB 24 (16): R762-76.

48. Fiorenza A, Barco A (2016) Role of Dicer and the miRNA system in neuronal plasticity and brain function. Neurobiology of learning and memory 135: 3–12.

49. Peng JC, Lin H (2013) Beyond transposons. The epigenetic and somatic functions of the PiwipiRNA mechanism. Current opinion in cell biology 25 (2): 190–194.

50. Weick E-M, Miska EA (2014) piRNAs. From biogenesis to function. Development (Cambridge, England) 141 (18): 3458–3471.

51. Cheng X, Yang Q, Tan Z-D, Tan Y, Pu H et al. (2017) The current research status of enhancer RNAs. Yi chuan = Hereditas 39 (9): 784–797.

52. Rothschild G, Basu U (2017) Lingering Questions about Enhancer RNA and Enhancer Transcription-Coupled Genomic Instability. Trends in genetics : TIG 33 (2): 143–154.

53. Hanan M, Soreq H, Kadener S (2017) CircRNAs in the brain. RNA biology 14 (8): 1028–1034.

54. Li J, Yang J, Zhou P, Le Y, Zhou C et al. (2015) Circular RNAs in cancer. Novel insights into origins, properties, functions and implications. American journal of cancer research 5 (2): 472–480.

55. Zhu L-P, He Y-J, Hou J-C, Chen X, Zhou S-Y et al. (2017) The role of circRNAs in cancers. Bioscience reports 37 (5).

56. Han P, Chang C-P (2015) Long non-coding RNA and chromatin remodeling. RNA biology 12 (10): 1094–1098.

57. Schmitt AM, Chang HY (2016) Long Noncoding RNAs in Cancer Pathways. Cancer cell 29 (4): 452–463.

58. Ghildiyal M, Zamore PD (2009) Small silencing RNAs. An expanding universe. Nature reviews. Genetics 10 (2): 94–108.

59. Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS (2010) Non-coding RNAs. Regulators of disease. The Journal of pathology 220 (2): 126–139.

60. Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity. MicroRNA biogenesis pathways and their regulation. Nature cell biology 11 (3): 228–234.

61. Di Leva G, Garofalo M, Croce CM (2014) MicroRNAs in cancer. Annual review of pathology 9: 287–314.

62. Hesse M, Arenz C (2014) MicroRNA maturation and human disease. Methods in molecular biology (Clifton, N.J.) 1095: 11–25.

63. Romaine SPR, Tomaszewski M, Condorelli G, Samani NJ (2015) MicroRNAs in cardiovascular disease. An introduction for clinicians. Heart (British Cardiac Society) 101 (12): 921–928.

64. Furuno M, Pang KC, Ninomiya N, Fukuda S, Frith MC et al. (2006) Clusters of internally primed transcripts reveal novel long noncoding RNAs. PLoS genetics 2 (4): e37.

65. Guttman M, Amit I, Garber M, French C, Lin MF et al. (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458 (7235): 223–227.

66. Khalil AM, Guttman M, Huarte M, Garber M, Raj A et al. (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proceedings of the National Academy of Sciences of the United States of America 106 (28): 11667– 11672.

67. Zhang K, Shi Z-M, Chang Y-N, Hu Z-M, Qi H-X et al. (2014) The ways of action of long noncoding RNAs in cytoplasm and nucleus. Gene 547 (1): 1–9.

68. Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136 (4): 629–641.

69. Marchese FP, Raimondi I, Huarte M (2017) The multidimensional mechanisms of long noncoding RNA function. Genome biology 18 (1): 206.

70. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S et al. (2012) The GENCODE v7 catalog of human long noncoding RNAs. Analysis of their gene structure, evolution, and expression. Genome research 22 (9): 1775–1789.

71. St Laurent G, Wahlestedt C, Kapranov P (2015) The Landscape of long noncoding RNA classification. Trends in genetics : TIG 31 (5): 239–251.

72. Johnsson P, Lipovich L, Grandér D, Morris KV (2014) Evolutionary conservation of long noncoding RNAs; sequence, structure, function. Biochimica et biophysica acta 1840 (3): 1063–1071.

73. Necsulea A, Soumillon M, Warnefors M, Liechti A, Daish T et al. (2014) The evolution of IncRNA repertoires and expression patterns in tetrapods. Nature 505 (7485): 635–640.

74. Diederichs S (2014) The four dimensions of noncoding RNA conservation. Trends in genetics : TIG 30 (4): 121–123.

75. Smith MA, Gesell T, Stadler PF, Mattick JS (2013) Widespread purifying selection on RNA structure in mammals. Nucleic acids research 41 (17): 8220–8236.

76. Ulitsky I, Shkumatava A, Jan CH, Sive H, Bartel DP (2011) Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 147 (7): 1537–1550.

77. Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS (2008) Specific expression of long noncoding RNAs in the mouse brain. Proceedings of the National Academy of Sciences of the United States of America 105 (2): 716–721.

78. Ward M, McEwan C, Mills JD, Janitz M (2015) Conservation and tissue-specific transcription patterns of long noncoding RNAs. Journal of human transcriptome 1 (1): 2–9.

79. Mondal T, Rasmussen M, Pandey GK, Isaksson A, Kanduri C (2010) Characterization of the RNA content of chromatin. Genome research 20 (7): 899–907.

80. Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L et al. (2008) Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Molecular cell 32 (2): 232–246.

81. Tsai M-C, Manor O, Wan Y, Mosammaparast N, Wang JK et al. (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science (New York, N.Y.) 329 (5992): 689–693.

82. Wang X, Arai S, Song X, Reichart D, Du K et al. (2008) Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature 454 (7200): 126–130.

83. Cajigas I, Leib DE, Cochrane J, Luo H, Swyter KR et al. (2015) Evf2 IncRNA/BRG1/DLX1 interactions reveal RNA-dependent inhibition of chromatin remodeling. Development (Cambridge, England) 142 (15): 2641–2652.

84. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs. Insights into functions. Nature reviews. Genetics 10 (3): 155–159.

85. Faghihi MA, Modarresi F, Khalil AM, Wood DE, Sahagan BG et al. (2008) Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of beta-secretase. Nature medicine 14 (7): 723–730.

86. Faghihi MA, Zhang M, Huang J, Modarresi F, van der Brug MP et al. (2010) Evidence for natural antisense transcript-mediated inhibition of microRNA function. Genome biology 11 (5): R56.

87. Gong C, Maquat LE (2011) IncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3' UTRs via Alu elements. Nature 470 (7333): 284–288.

88. Lucas BA, Lavi E, Shiue L, Cho H, Katzman S et al. (2018) Evidence for convergent evolution of SINE-directed Staufen-mediated mRNA decay. Proceedings of the National Academy of Sciences of the United States of America 115 (5): 968–973.

89. Paci P, Colombo T, Farina L (2014) Computational analysis identifies a sponge interaction network between long non-coding RNAs and messenger RNAs in human breast cancer. BMC systems biology 8: 83.

90. Melissari M-T, Grote P (2016) Roles for long non-coding RNAs in physiology and disease. Pflugers Archiv : European journal of physiology 468 (6): 945–958.

91. Hung T, Chang HY (2010) Long noncoding RNA in genome regulation. Prospects and mechanisms. RNA biology 7 (5): 582–585.

92. Huarte M, Rinn JL (2010) Large non-coding RNAs. Missing links in cancer. Human molecular genetics 19 (R2): R152-61.

93. Gutschner T, Diederichs S (2012) The hallmarks of cancer. A long non-coding RNA point of view. RNA biology 9 (6): 703–719.

94. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM et al. (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464 (7291): 1071–1076.

95. Shi X, Sun M, Liu H, Yao Y, Song Y (2013) Long non-coding RNAs. A new frontier in the study of human diseases. Cancer letters 339 (2): 159–166.

96. Gutschner T, Hämmerle M, Diederichs S (2013) MALAT1 -- a paradigm for long noncoding RNA function in cancer. Journal of molecular medicine (Berlin, Germany) 91 (7): 791–801.

97. Li J, Bian E-B, He X-J, Ma C-C, Zong G et al. (2016) Epigenetic repression of long non-coding RNA MEG3 mediated by DNMT1 represses the p53 pathway in gliomas. International journal of oncology 48 (2): 723–733.

98. Zhou Y, Zhong Y, Wang Y, Zhang X, Batista DL et al. (2007) Activation of p53 by MEG3 noncoding RNA. The Journal of biological chemistry 282 (34): 24731–24742.

99. Bhan A, Soleimani M, Mandal SS (2017) Long Noncoding RNA and Cancer: A New Paradigm. Cancer research 77 (15): 3965–3981.

100. Shi T, Gao G, Cao Y (2016) Long Noncoding RNAs as Novel Biomarkers Have a Promising Future in Cancer Diagnostics. Disease markers 2016: 9085195.

101. Melo CPdS, Campos CB, Rodrigues JdO, Aguirre-Neto JC, Atalla et al. (2016) Long noncoding RNAs: biomarkers for acute leukaemia subtypes. British journal of haematology 173 (2): 318– 320.

102. Deng H, Wang JM, Li M, Tang R, Tang K et al. (2017) Long non-coding RNAs: New biomarkers for prognosis and diagnosis of colon cancer. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 39 (6): 1010428317706332.

103. Wei JT, Feng Z, Partin AW, Brown E, Thompson I et al. (2014) Can urinary PCA3 supplement PSA in the early detection of prostate cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 32 (36): 4066–4072.

104. Xue Y, Gu D, Ma G, Zhu L, Hua Q et al. (2015) Genetic variants in IncRNA HOTAIR are associated with risk of colorectal cancer. Mutagenesis 30 (2): 303–310.

105. Zhang L, Song X, Wang X, Xie Y, Wang Z et al. (2015) Circulating DNA of HOTAIR in serum is a novel biomarker for breast cancer. Breast cancer research and treatment 152 (1): 199–208.

106. Shang C, Guo Y, Zhang H, Xue Y-X (2016) Long noncoding RNA HOTAIR is a prognostic biomarker and inhibits chemosensitivity to doxorubicin in bladder transitional cell carcinoma. Cancer chemotherapy and pharmacology 77 (3): 507–513.

107. Guo F, Yu F, Wang J, Li Y, Li Y et al. (2015) Expression of MALAT1 in the peripheral whole blood of patients with lung cancer. Biomedical reports 3 (3): 309–312.

108. Weber DG, Johnen G, Casjens S, Bryk O, Pesch B et al. (2013) Evaluation of long noncoding RNA MALAT1 as a candidate blood-based biomarker for the diagnosis of non-small cell lung cancer. BMC research notes 6: 518.

109. Han L, Zhang K, Shi Z, Zhang J, Zhu J et al. (2012) LncRNA profile of glioblastoma reveals the potential role of lncRNAs in contributing to glioblastoma pathogenesis. International journal of oncology 40 (6): 2004–2012.

110. Li R, Qian J, Wang Y-Y, Zhang J-X, You Y-P (2014) Long noncoding RNA profiles reveal three molecular subtypes in glioma. CNS neuroscience & therapeutics 20 (4): 339–343.

111. Yan Y, Xu Z, Li Z, Sun L, Gong Z (2017) An Insight into the Increasing Role of LncRNAs in the Pathogenesis of Gliomas. Frontiers in molecular neuroscience 10: 53.

112. Chen Q, Cai J, Wang Q, Wang Y, Liu M et al. (2018) Long Noncoding RNA NEAT1, Regulated by the EGFR Pathway, Contributes to Glioblastoma Progression Through the WNT/ β -Catenin Pathway by Scaffolding EZH2. Clinical cancer research : an official journal of the American Association for Cancer Research 24 (3): 684–695.

113. Hirose T, Virnicchi G, Tanigawa A, Naganuma T, Li R et al. (2014) NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies. Molecular biology of the cell 25 (1): 169–183.

114. Ke H, Zhao L, Feng X, Xu H, Zou L et al. (2016) NEAT1 is Required for Survival of Breast Cancer Cells Through FUS and miR-548. Gene regulation and systems biology 10 (Suppl 1): 11–17.

115. Li W, Notani D, Ma Q, Tanasa B, Nunez E et al. (2013) Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498 (7455): 516–520.

116. Subramani R, Camacho FA, Levin CI, Flores K, Clift A et al. (2018) FOXC1 plays a crucial role in the growth of pancreatic cancer. Oncogenesis 7 (7): 52.

117. Singh R, Gupta SC, Peng W-X, Zhou N, Pochampally R et al. (2016) Regulation of alternative splicing of Bcl-x by BC200 contributes to breast cancer pathogenesis. Cell Death Dis 7 (6): e2262-e2262.

118. Zhang S, Zhao BS, Zhou A, Lin K, Zheng S et al. (2017) m 6 A Demethylase ALKBH5 Maintains Tumorigenicity of Glioblastoma Stem-like Cells by Sustaining FOXM1 Expression and Cell Proliferation Program. Cancer cell 31 (4): 591-606.e6.

119. Zhang L, Yang Z, Trottier J, Barbier O, Wang L (2017) Long noncoding RNA MEG3 induces cholestatic liver injury by interaction with PTBP1 to facilitate shp mRNA decay. Hepatology (Baltimore, Md.) 65 (2): 604–615.

120. Quagliata L, Matter MS, Piscuoglio S, Arabi L, Ruiz C et al. (2014) Long noncoding RNA HOTTIP/HOXA13 expression is associated with disease progression and predicts outcome in hepatocellular carcinoma patients. Hepatology (Baltimore, Md.) 59 (3): 911–923.

121. Zhang S-R, Yang J-K, Xie J-K, Zhao L-C (2016) Long noncoding RNA HOTTIP contributes to the progression of prostate cancer by regulating HOXA13. Cellular and molecular biology (Noisy-le-Grand, France) 62 (3): 84–88.

122. Li D, Feng J, Wu T, Wang Y, Sun Y et al. (2013) Long intergenic noncoding RNA HOTAIR is overexpressed and regulates PTEN methylation in laryngeal squamous cell carcinoma. The American journal of pathology 182 (1): 64–70.

123. Kim K, Jutooru I, Chadalapaka G, Johnson G, Frank J et al. (2013) HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene 32 (13): 1616–1625.

124. Ji P, Diederichs S, Wang W, Böing S, Metzger R et al. (2003) MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22 (39): 8031–8041.

125. Matouk IJ, Halle D, Raveh E, Gilon M, Sorin V et al. (2016) The role of the oncofetal H19 IncRNA in tumor metastasis. Orchestrating the EMT-MET decision. Oncotarget 7 (4): 3748–3765.

126. Raveh E, Matouk IJ, Gilon M, Hochberg A (2015) The H19 Long non-coding RNA in cancer initiation, progression and metastasis - a proposed unifying theory. Molecular cancer 14: 184.

127. Liao Y, Shen L, Zhao H, Liu Q, Fu J et al. (2017) LncRNA CASC2 Interacts With miR-181a to Modulate Glioma Growth and Resistance to TMZ Through PTEN Pathway. Journal of cellular biochemistry 118 (7): 1889–1899.

128. Guo G, Kang Q, Zhu X, Chen Q, Wang X et al. (2015) A long noncoding RNA critically regulates Bcr-Abl-mediated cellular transformation by acting as a competitive endogenous RNA. Oncogene 34 (14): 1768–1779.

129. Yu H, Lee H, Herrmann A, Buettner R, Jove R (2014) Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nature reviews. Cancer 14 (11): 736–746.

130. Bromberg J, Darnell JE (2000) The role of STATs in transcriptional control and their impact on cellular function. Oncogene 19 (21): 2468–2473.

131. Johnston PA, Grandis JR (2011) STAT3 signaling: anticancer strategies and challenges. Molecular interventions 11 (1): 18–26.

132. Wu P, Wu D, Zhao L, Huang L, Shen G et al. (2016) Prognostic role of STAT3 in solid tumors: a systematic review and meta-analysis. Oncotarget 7 (15): 19863–19883.

133. Yuan J, Zhang F, Niu R (2015) Multiple regulation pathways and pivotal biological functions of STAT3 in cancer. Scientific reports 5: 17663.

134. Yu H, Kortylewski M, Pardoll D (2007) Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nature reviews. Immunology 7 (1): 41–51.

135. Schramedei K, Mörbt N, Pfeifer G, Läuter J, Rosolowski M et al. (2011) MicroRNA-21 targets tumor suppressor genes ANP32A and SMARCA4. Oncogene 30 (26): 2975–2985.

136. Löffler D, Brocke-Heidrich K, Pfeifer G, Stocsits C, Hackermüller J et al. (2007) Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood 110 (4): 1330–1333.

137. Hackermüller J, Reiche K, Otto C, Hösler N, Blumert C et al. (2014) Cell cycle, oncogenic and tumor suppressor pathways regulate numerous long and macro non-protein-coding RNAs. Genome biology 15 (3): R48.

138. Binder S, Hösler N, Riedel D, Zipfel I, Buschmann T et al. (2017) STAT3-induced long noncoding RNAs in multiple myeloma cells display different properties in cancer. Scientific reports 7 (1): 7976.

139. Manuskript im Reviewprozess. Noch nicht veröffentlichte Daten. Stefanie Binder, Ivonne Zipfel, Maik Friedrich, Diana Riedel, Stefanie Ende et al. Master and servant: LINC00152 – a STAT3induced long noncoding RNA regulates STAT3 in a positive feedback in human multiple myeloma. BMC Genomics 2019.

140. Crick F (1970) Central dogma of molecular biology. Nature 227 (5258): 561–563.

141. Peng Z, Liu C, Wu M (2018) New insights into long noncoding RNAs and their roles in glioma. Molecular cancer 17 (1): 61.

142. Chu C, Qu K, Zhong FL, Artandi SE, Chang HY (2011) Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Molecular cell 44 (4): 667–678.

143. Pang KC, Frith MC, Mattick JS (2006) Rapid evolution of noncoding RNAs. Lack of conservation does not mean lack of function. Trends in genetics : TIG 22 (1): 1–5.

144. Sinha KM, Gu J, Chen Y, Reddy R (1998) Adenylation of small RNAs in human cells. Development of a cell-free system for accurate adenylation on the 3'-end of human signal recognition particle RNA. The Journal of biological chemistry 273 (12): 6853–6859.

145. Kozak M (1987) An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucl Acids Res 15 (20): 8125–8148.

146. Kozak M (1984) Point mutations close to the AUG initiator codon affect the efficiency of translation of rat preproinsulin in vivo. Nature 308 (5956): 241–246.

147. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B et al. (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes & development 25 (18): 1915–1927.

148. Yunusov D, Anderson L, DaSilva LF, Wysocka J, Ezashi T et al. (2016) HIPSTR and thousands of IncRNAs are heterogeneously expressed in human embryos, primordial germ cells and stable cell lines. Scientific reports 6: 32753.

149. Eisenberg E, Levanon EY (2013) Human housekeeping genes, revisited. Trends in genetics : TIG 29 (10): 569–574.

150. Sen R, Doose G, Stadler PF (2017) Rare Splice Variants in Long Non-Coding RNAs. Non-coding RNA 3 (3).

151. Holdt LM, Hoffmann S, Sass K, Langenberger D, Scholz M et al. (2013) Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS genetics 9 (7): e1003588.

152. Maoz R, Garfinkel BP, Soreq H (2017) Alzheimer's Disease and ncRNAs. Advances in experimental medicine and biology 978: 337–361.

153. Braak H, Braak E (1995) Staging of Alzheimer's disease-related neurofibrillary changes. Neurobiology of aging 16 (3): 271-8; discussion 278-84.

154. Magin TM, Vijayaraj P, Leube RE (2007) Structural and regulatory functions of keratins. Experimental cell research 313 (10): 2021–2032.

155. Eychène A, Rocques N, Pouponnot C (2008) A new MAFia in cancer. Nature reviews. Cancer 8 (9): 683–693.

156. Knebel FH, Uno M, Galatro TF, Bellé LP, Oba-Shinjo SM et al. (2017) Serum amyloid A1 is upregulated in human glioblastoma. Journal of neuro-oncology 132 (3): 383–391.

157. Barrientos T, Frank D, Kuwahara K, Bezprozvannaya S, Pipes GCT et al. (2007) Two novel members of the ABLIM protein family, ABLIM-2 and -3, associate with STARS and directly bind F-actin. The Journal of biological chemistry 282 (11): 8393–8403.

158. Kwon M, Lee SJ, Wang Y, Rybak Y, Luna A et al. (2014) Filamin A interacting protein 1-like inhibits WNT signaling and MMP expression to suppress cancer cell invasion and metastasis. International journal of cancer 135 (1): 48–60.

159. Yang R, Müller C, Huynh V, Fung YK, Yee AS et al. (1999) Functions of Cyclin A1 in the Cell Cycle and Its Interactions with Transcription Factor E2F-1 and the Rb Family of Proteins. Molecular and Cellular Biology 19 (3): 2400–2407.

160. Wang Z, Zhang S, Siu TL, Huang S (2015) Glioblastoma multiforme formation and EMT. Role of FoxM1 transcription factor. Current pharmaceutical design 21 (10): 1268–1271.

161. Hu B, Jarzynka MJ, Guo P, Imanishi Y, Schlaepfer DD et al. (2006) Angiopoietin 2 induces glioma cell invasion by stimulating matrix metalloprotease 2 expression through the alphavbeta1 integrin and focal adhesion kinase signaling pathway. Cancer research 66 (2): 775–783.

162. Mayes DA, Hu Y, Teng Y, Siegel E, Wu X et al. (2006) PAX6 suppresses the invasiveness of glioblastoma cells and the expression of the matrix metalloproteinase-2 gene. Cancer research 66 (20): 9809–9817.

163. Zhang J, Kong R, Sun L (2017) Silencing of Rab3D suppresses the proliferation and invasion of esophageal squamous cell carcinoma cells. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 91: 402–407.

164. (2008) The Gene Ontology project in 2008. Nucl Acids Res 36 (Database issue): D440-4.

165. Bauer S, Grossmann S, Vingron M, Robinson PN (2008) Ontologizer 2.0--a multifunctional tool for GO term enrichment analysis and data exploration. Bioinformatics (Oxford, England) 24 (14): 1650–1651.

166. Craig KL, Tyers M (1999) The F-box: a new motif for ubiquitin dependent proteolysis in cell cycle regulation and signal transduction. Progress in Biophysics and Molecular Biology 72 (3): 299–328.

167. Liu M, Dai B, Kang S-H, Ban K, Huang F-J et al. (2006) FoxM1B is overexpressed in human glioblastomas and critically regulates the tumorigenicity of glioma cells. Cancer research 66 (7): 3593–3602.

168. Wang S, Zhang S, Li J, Xu X, Weng Y et al. (2014) CXCL12-induced upregulation of FOXM1 expression promotes human glioblastoma cell invasion. Biochemical and biophysical research communications 447 (1): 1–6.

169. Luwor RB, Stylli SS, Kaye AH (2013) The role of Stat3 in glioblastoma multiforme. Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia 20 (7): 907–911.

170. Gong A-H, Wei P, Zhang S, Yao J, Yuan Y et al. (2015) FoxM1 Drives a Feed-Forward STAT3-Activation Signaling Loop That Promotes the Self-Renewal and Tumorigenicity of Glioblastoma Stemlike Cells. Cancer research 75 (11): 2337–2348.

171. Maachani UB, Shankavaram U, Kramp T, Tofilon PJ, Camphausen K et al. (2016) FOXM1 and STAT3 interaction confers radioresistance in glioblastoma cells. Oncotarget 7 (47): 77365–77377.

172. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100 (1): 57–70.

Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144 (5): 646–

174. Hezroni H, Koppstein D, Schwartz MG, Avrutin A, Bartel DP et al. (2015) Principles of long noncoding RNA evolution derived from direct comparison of transcriptomes in 17 species. Cell reports 11 (7): 1110–1122.

175. Quinn JJ, Zhang QC, Georgiev P, Ilik IA, Akhtar A et al. (2016) Rapid evolutionary turnover underlies conserved lncRNA-genome interactions. Genes & development 30 (2): 191–207.

176. Franke M, Ibrahim DM, Andrey G, Schwarzer W, Heinrich V et al. (2016) Formation of new chromatin domains determines pathogenicity of genomic duplications. Nature 538 (7624): 265–269.

177. Heide M, Florio M, Huttner WB (2016) Die Rolle humanspezifischer Gene in der Gehirnentwicklung und -evolution. Biospektrum 22 (4): 352–355.

178. Fortna A, Kim Y, MacLaren E, Marshall K, Hahn G et al. (2004) Lineage-Specific Gene Duplication and Loss in Human and Great Ape Evolution. PLoS Biology 2 (7).

179. Florio M, Namba T, Pääbo S, Hiller M, Huttner WB (2016) A single splice site mutation in human-specific ARHGAP11B causes basal progenitor amplification. Science Advances 2 (12).

180. Dennis MY, Nuttle X, Sudmant PH, Antonacci F, Graves TA et al. (2012) Evolution of humanspecific neural SRGAP2 genes by incomplete segmental duplication. Cell 149 (4): 912–922.

181. Charrier C, Joshi K, Coutinho-Budd J, Kim J-E, Lambert N et al. (2012) Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation. Cell 149 (4): 923–935.

182. Millan MJ (2017) Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer's disease: An integrative review. Progress in neurobiology 156: 1–68.

183. Joung J, Konermann S, Gootenberg JS, Abudayyeh OO, Platt RJ et al. (2017) Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nature protocols 12 (4): 828–863.

184. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA et al. (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science (New York, N.Y.) 343 (6166): 84–87.

185. Dinger ME, Pang KC, Mercer TR, Mattick JS (2008) Differentiating Protein-Coding and Noncoding RNA: Challenges and Ambiguities. PLoS Computational Biology 4 (11).

186. Li L-J, Leng R-X, Fan Y-G, Pan H-F, Ye D-Q (2017) Translation of noncoding RNAs: Focus on IncRNAs, pri-miRNAs, and circRNAs. Experimental cell research 361 (1): 1–8.

187. Guttman M, Russell P, Ingolia NT, Weissman JS, Lander ES (2013) Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell 154 (1): 240–251.

188. Bánfai B, Jia H, Khatun J, Wood E, Risk B et al. (2012) Long noncoding RNAs are rarely translated in two human cell lines. Genome research 22 (9): 1646–1657.

189. Ingolia NT (2014) Ribosome profiling: new views of translation, from single codons to genome scale. Nature reviews. Genetics 15 (3): 205–213.

190. Pauli A, Valen E, Schier AF (2014) Identifying (non-)coding RNAs and small peptides: Challenges and opportunities. BioEssays : news and reviews in molecular, cellular and developmental biology 37 (1): 103–112.

191. Ji Z, Song R, Regev A, Struhl K (2015) Many IncRNAs, 5'UTRs, and pseudogenes are translated and some are likely to express functional proteins. eLife 4: e08890.

192. Nelson BR, Makarewich CA, Anderson DM, Winders BR, Troupes CD et al. (2016) A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science (New York, N.Y.) 351 (6270): 271–275.

193. Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A et al. (2015) The landscape of long noncoding RNAs in the human transcriptome. Nature genetics 47 (3): 199–208.

194. Bozgeyik E, Igci YZ, Sami Jacksi MF, Arman K, Gurses SA et al. (2016) A novel variable exonic region and differential expression of LINC00663 non-coding RNA in various cancer cell lines and normal human tissue samples. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 37 (7): 8791–8798.

195. Gibb EA, Vucic EA, Enfield KSS, Stewart GL, Lonergan KM et al. (2011) Human cancer long non-coding RNA transcriptomes. PloS one 6 (10): e25915.

196. Pang Q, Ge J, Shao Y, Sun W, Song H et al. (2014) Increased expression of long intergenic non-coding RNA LINC00152 in gastric cancer and its clinical significance. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 35 (6): 5441–5447.

197. Etcheverry A, Aubry M, Tayrac M de, Vauleon E, Boniface R et al. (2010) DNA methylation in glioblastoma: impact on gene expression and clinical outcome. BMC Genomics 11: 701.

198. Zhang X, Sun S, Pu JKS, Tsang ACO, Lee D et al. (2012) Long non-coding RNA expression profiles predict clinical phenotypes in glioma. Neurobiology of disease 48 (1): 1–8.

199. Yan Y, Zhang L, Jiang Y, Xu T, Mei Q et al. (2015) LncRNA and mRNA interaction study based on transcriptome profiles reveals potential core genes in the pathogenesis of human glioblastoma multiforme. Journal of cancer research and clinical oncology 141 (5): 827–838.

200. Chen Y, Wu J-J, Lin X-B, Bao Y, Chen Z-H et al. (2015) Differential IncRNA expression profiles in recurrent gliomas compared with primary gliomas identified by microarray analysis. International journal of clinical and experimental medicine 8 (4): 5033–5043.

201. Yan K, Arfat Y, Li D, Zhao F, Chen Z et al. (2016) Structure Prediction: New Insights into Decrypting Long Noncoding RNAs. International journal of molecular sciences 17 (1).

202. Guo X, Gao L, Wang Y, Chiu DKY, Wang T et al. (2016) Advances in long noncoding RNAs: identification, structure prediction and function annotation. Briefings in functional genomics 15 (1): 38–46.

203. Smith MA, Mattick JS (2017) Structural and Functional Annotation of Long Noncoding RNAs. Methods in molecular biology (Clifton, N.J.) 1526: 65–85.

204. Lu H, Giordano F, Ning Z (2016) Oxford Nanopore MinION Sequencing and Genome Assembly. Genomics, proteomics & bioinformatics 14 (5): 265–279.

205. Goodwin S, Wappel R, McCombie WR (2017) 1D Genome Sequencing on the Oxford Nanopore MinION. Current protocols in human genetics 94: 18.11.1-18.11.14.

206. Norris AL, Workman RE, Fan Y, Eshleman JR, Timp W (2016) Nanopore sequencing detects structural variants in cancer. Cancer biology & therapy 17 (3): 246–253.

207. Simpson JT, Workman RE, Zuzarte PC, David M, Dursi LJ et al. (2017) Detecting DNA cytosine methylation using nanopore sequencing. Nature methods 14 (4): 407–410.

208. Rand AC, Jain M, Eizenga JM, Musselman-Brown A, Olsen HE et al. (2017) Mapping DNA methylation with high-throughput nanopore sequencing. Nature methods 14 (4): 411–413.

209. Masuyama K, Taniguchi I, Kataoka N, Ohno M (2004) RNA length defines RNA export pathway. Genes & development 18 (17): 2074–2085.

210. Strässer K, Masuda S, Mason P, Pfannstiel J, Oppizzi M et al. (2002) TREX is a conserved complex coupling transcription with messenger RNA export. Nature 417 (6886): 304–308.

211. Palazzo AF, Lee ES (2018) Sequence Determinants for Nuclear Retention and Cytoplasmic Export of mRNAs and IncRNAs. Frontiers in genetics 9: 440.

212. Lubelsky Y, Ulitsky I (2018) Sequences enriched in Alu repeats drive nuclear localization of long RNAs in human cells. Nature 555 (7694): 107–111.

213. Shukla CJ, McCorkindale AL, Gerhardinger C, Korthauer KD, Cabili MN et al. (2018) Highthroughput identification of RNA nuclear enrichment sequences. The EMBO journal 37 (6).

214. Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R et al. (2011) A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472 (7341): 120–124.

215. Zhao J, Sun BK, Erwin JA, Song J-J, Lee JT (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science (New York, N.Y.) 322 (5902): 750–756.

216. Dodd DW, Gagnon KT, Corey DR (2013) Digital Quantitation of Potential Therapeutic Target RNAs. Nucleic Acid Therapeutics 23 (3): 188–194.

217. Vecera M, Sana J, Lipina R, Smrcka M, Slaby O (2018) Long Non-Coding RNAs in Gliomas: From Molecular Pathology to Diagnostic Biomarkers and Therapeutic Targets. International journal of molecular sciences 19 (9).

218. Li J, Zhu Y, Wang H, Ji X (2018) Targeting Long Noncoding RNA in Glioma: A Pathway Perspective. Molecular therapy. Nucleic acids 13: 431–441.

219. Li Z, Xu C, Ding B, Gao M, Wei X et al. (2017) Long non-coding RNA MALAT1 promotes proliferation and suppresses apoptosis of glioma cells through derepressing Rap1B by sponging miR-101. Journal of neuro-oncology 134 (1): 19–28.

220. Fu Z, Luo W, Wang J, Peng T, Sun G et al. (2017) Malat1 activates autophagy and promotes cell proliferation by sponging miR-101 and upregulating STMN1, RAB5A and ATG4D expression in glioma. Biochemical and biophysical research communications 492 (3): 480–486.

221. Xiong Z, Wang L, Wang Q, Yuan Y (2018) LncRNA MALAT1/miR-129 axis promotes glioma tumorigenesis by targeting SOX2. Journal of cellular and molecular medicine.

222. Zhang K, Sun X, Zhou X, Han L, Chen L et al. (2015) Long non-coding RNA HOTAIR promotes glioblastoma cell cycle progression in an EZH2 dependent manner. Oncotarget 6 (1): 537–546.

223. Ke J, Yao Y-I, Zheng J, Wang P, Liu Y-h et al. (2015) Knockdown of long non-coding RNA HOTAIR inhibits malignant biological behaviors of human glioma cells via modulation of miR-326. Oncotarget 6 (26): 21934–21949.

224. Wang Y, Wang Y, Li J, Zhang Y, Yin H et al. (2015) CRNDE, a long-noncoding RNA, promotes glioma cell growth and invasion through mTOR signaling. Cancer letters 367 (2): 122–128.

225. Li D-X, Fei X-R, Dong Y-F, Cheng C-D, Yang Y et al. (2017) The long non-coding RNA CRNDE acts as a ceRNA and promotes glioma malignancy by preventing miR-136-5p-mediated downregulation of Bcl-2 and Wnt2. Oncotarget 8 (50): 88163–88178.

226. Han Y, Wu Z, Wu T, Huang Y, Cheng Z et al. (2016) Tumor-suppressive function of long noncoding RNA MALAT1 in glioma cells by downregulation of MMP2 and inactivation of ERK/MAPK signaling. Cell Death Dis 7: e2123.

227. Cao S, Wang Y, Li J, Lv M, Niu H et al. (2016) Tumor-suppressive function of long noncoding RNA MALAT1 in glioma cells by suppressing miR-155 expression and activating FBXW7 function. American journal of cancer research 6 (11): 2561–2574.

228. Xu L-M, Chen L, Li F, Zhang R, Li Z-Y et al. (2016) Over-expression of the long non-coding RNA HOTTIP inhibits glioma cell growth by BRE. Journal of experimental & clinical cancer research : CR 35 (1): 162.

229. Zhao X, Wang P, Liu J, Zheng J, Liu Y et al. (2015) Gas5 Exerts Tumor-suppressive Functions in Human Glioma Cells by Targeting miR-222. Molecular therapy : the journal of the American Society of Gene Therapy 23 (12): 1899–1911.

230. Liu Q, Yu W, Zhu S, Cheng K, Xu H et al. (2018) Long noncoding RNA GAS5 regulates the proliferation, migration, and invasion of glioma cells by negatively regulating miR-18a-5p. Journal of cellular physiology 234 (1): 757–768.

231. Vassallo I, Zinn P, Lai M, Rajakannu P, Hamou M-F et al. (2016) WIF1 re-expression in glioblastoma inhibits migration through attenuation of non-canonical WNT signaling by downregulating the IncRNA MALAT1. Oncogene 35 (1): 12–21.

232. Zhou K, Zhang C, Yao H, Zhang X, Zhou Y et al. (2018) Knockdown of long non-coding RNA NEAT1 inhibits glioma cell migration and invasion via modulation of SOX2 targeted by miR-132. Molecular cancer 17 (1): 105.

233. Cui Y, Yi L, Zhao J-Z, Jiang Y-G (2017) Long Noncoding RNA HOXA11-AS Functions as miRNA Sponge to Promote the Glioma Tumorigenesis Through Targeting miR-140-5p. DNA and cell biology 36 (10): 822–828.

234. Yao Y, Ma J, Xue Y, Wang P, Li Z et al. (2015) Knockdown of long non-coding RNA XIST exerts tumor-suppressive functions in human glioblastoma stem cells by up-regulating miR-152. Cancer letters 359 (1): 75–86.

235. Wang P, Liu Y-h, Yao Y-l, Li Z, Li Z-q et al. (2015) Long non-coding RNA CASC2 suppresses malignancy in human gliomas by miR-21. Cellular signalling 27 (2): 275–282.

236. Sansone P, Bromberg J (2012) Targeting the interleukin-6/Jak/stat pathway in human malignancies. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 30 (9): 1005–1014.

237. Jia P, Cai H, Liu X, Chen J, Ma J et al. (2016) Long non-coding RNA H19 regulates glioma angiogenesis and the biological behavior of glioma-associated endothelial cells by inhibiting microRNA-29a. Cancer letters 381 (2): 359–369.

238. Yu H, Xue Y, Wang P, Liu X, Ma J et al. (2017) Knockdown of long non-coding RNA XIST increases blood-tumor barrier permeability and inhibits glioma angiogenesis by targeting miR-137. Oncogenesis 6 (3): e303.

239. Cheng Z, Li Z, Ma K, Li X, Tian N et al. (2017) Long Non-coding RNA XIST Promotes Glioma Tumorigenicity and Angiogenesis by Acting as a Molecular Sponge of miR-429. Journal of Cancer 8 (19): 4106–4116.

240. Zhang Y, Weinberg RA (2018) Epithelial-to-mesenchymal transition in cancer: complexity and opportunities. Frontiers of medicine 12 (4): 361–373.

241. Freije WA, Castro-Vargas FE, Fang Z, Horvath S, Cloughesy T et al. (2004) Gene expression profiling of gliomas strongly predicts survival. Cancer research 64 (18): 6503–6510.

242. Tso C-L, Shintaku P, Chen J, Liu Q, Liu J et al. (2006) Primary glioblastomas express mesenchymal stem-like properties. Molecular cancer research : MCR 4 (9): 607–619.

243. Lee J-K, Joo KM, Lee J, Yoon Y, Nam D-H (2014) Targeting the epithelial to mesenchymal transition in glioblastoma: the emerging role of MET signaling. OncoTargets and therapy 7: 1933–1944.

244. Pala A, Karpel-Massler G, Kast RE, Wirtz CR, Halatsch M-E (2012) Epidermal to Mesenchymal Transition and Failure of EGFR-Targeted Therapy in Glioblastoma. Cancers 4 (2): 523–530.

245. Seltmann K, Fritsch AW, Käs JA, Magin TM (2013) Keratins significantly contribute to cell stiffness and impact invasive behavior. Proceedings of the National Academy of Sciences of the United States of America 110 (46): 18507–18512.

246. Seltmann K, Roth W, Loschke F, Lederer M, Hüttelmaier S et al. (2012) Keratins mediate localization of hemidesmosomes and repress cell motility. The Journal of investigative dermatology 133 (1): 181–190.

247. Dai B, Kang S-H, Gong W, Liu M, Aldape KD et al. (2007) Aberrant FoxM1B expression increases matrix metalloproteinase-2 transcription and enhances the invasion of glioma cells. Oncogene 26 (42): 6212–6219.

248. Sun W, Yang Y, Xu C, Guo J (2017) Regulatory mechanisms of long noncoding RNAs on gene expression in cancers. Cancer genetics 216-217: 105–110.

249. Li J, Duns G, Westers H, Sijmons R, van den Berg A et al. (2016) SETD2: an epigenetic modifier with tumor suppressor functionality. Oncotarget 7 (31): 50719–50734.

250. Marchese FP, Huarte M (2014) Long non-coding RNAs and chromatin modifiers. Their place in the epigenetic code. Epigenetics 9 (1): 21–26.

251. Cai J, Zhang J, Wu P, Yang W, Ye Q et al. (2018) Blocking LINC00152 suppresses glioblastoma malignancy by impairing mesenchymal phenotype through the miR-612/AKT2/NF-κB pathway. Journal of neuro-oncology 140 (2): 225–236.

252. Liu X, Yidayitula Y, Zhao H, Luo Y, Ma X et al. (2018) LncRNA LINC00152 promoted glioblastoma progression through targeting the miR-107 expression. Environmental science and pollution research international 25 (18): 17674–17681.

253. Li Y, Guessous F, Kwon S, Kumar M, Ibidapo O et al. (2008) PTEN has tumor promoting properties in the setting of gain-of-function p53 mutations. Cancer research 68 (6).

254. Elhag R, Mazzio EA, Soliman KFA (2015) The effect of silibinin in enhancing toxicity of temozolomide and etoposide in p53 and PTEN-mutated resistant glioma cell lines. Anticancer research 35 (3): 1263–1269.

255. Harter PN, Dützmann S, Drott U, Zachskorn C, Hattingen E et al. (2013) Anti-tissue factor (TF9-10H10) treatment reduces tumor cell invasiveness in a novel migratory glioma model. Neuropathology : official journal of the Japanese Society of Neuropathology 33 (5): 515–525.

256. Combs SE, Bohl J, Elsasser T, Weber K-J, Schulz-Ertner D et al. (2009) Radiobiological evaluation and correlation with the local effect model (LEM) of carbon ion radiation therapy and temozolomide in glioblastoma cell lines. International journal of radiation biology 85 (2): 126–137.

257. Memmel S, Sukhorukov VL, Höring M, Westerling K, Fiedler V et al. (2014) Cell Surface Area and Membrane Folding in Glioblastoma Cell Lines Differing in PTEN and p53 Status. PloS one 9 (1).

258. Zhang R, Banik NL, Ray SK (2008) Differential sensitivity of human glioblastoma LN18 (PTENpositive) and A172 (PTEN-negative) cells to Taxol for apoptosis. Brain research 1239: 216–225.

259. Ren Y, Zhou X, Mei M, Yuan X-B, Han L et al. (2010) MicroRNA-21 inhibitor sensitizes human glioblastoma cells U251 (PTEN-mutant) and LN229 (PTEN-wild type) to taxol. BMC cancer 10: 27.

260. Senft C, Priester M, Polacin M, Schröder K, Seifert V et al. (2011) Inhibition of the JAK-2/STAT3 signaling pathway impedes the migratory and invasive potential of human glioblastoma cells. Journal of neuro-oncology 101 (3): 393–403.

261. La Iglesia N de, Konopka G, Puram SV, Chan JA, Bachoo RM et al. (2008) Identification of a PTEN-regulated STAT3 brain tumor suppressor pathway. Genes & development 22 (4): 449–462.

262. Chen W-m, Huang M-d, Sun D-p, Kong R, Xu T-p et al. (2016) Long intergenic non-coding RNA 00152 promotes tumor cell cycle progression by binding to EZH2 and repressing p15 and p21 in gastric cancer. Oncotarget 7 (9): 9773–9787.

263. Chen Q-N, Chen X, Chen Z-Y, Nie F-Q, Wei C-C et al. (2017) Long intergenic non-coding RNA 00152 promotes lung adenocarcinoma proliferation via interacting with EZH2 and repressing IL24 expression. Molecular cancer 16 (1): 17.

264. Huang Y, Luo H, Li F, Yang Y'e, Ou G et al. (2018) LINC00152 down-regulated miR-193a-3p to enhance MCL1 expression and promote gastric cancer cells proliferation. Bioscience reports 38 (3).

265. Chen P, Fang X, Xia B, Zhao Y, Li Q et al. (2018) Long noncoding RNA LINC00152 promotes cell proliferation through competitively binding endogenous miR-125b with MCL-1 by regulating mitochondrial apoptosis pathways in ovarian cancer. Cancer Medicine 7 (9): 4530–4541.

266. Cai Q, Wang Z, Wang S, Weng M, Di Zhou et al. (2017) Long non-coding RNA LINC00152 promotes gallbladder cancer metastasis and epithelial–mesenchymal transition by regulating HIF-1 α via miR-138. Open Biology 7 (1).

267. Cai Q, Wang Z-Q, Wang S-H, Li C, Zhu Z-G et al. (2016) Upregulation of long non-coding RNA LINC00152 by SP1 contributes to gallbladder cancer cell growth and tumor metastasis via PI3K/AKT pathway. American Journal of Translational Research 8 (10): 4068–4081.

268. Mueller S, He D, Hayes J, Liu S, Malatesta M et al. (2017) GENE-06. EXPRESSION OF LINCO0152, A PUTATIVE SPONGE FOR TUMOR-SUPPRESSIVE micro-RNA, CORRELATES WITH GLIOMA GRADE. Neuro-oncology 19 (Suppl 6): vi93.

269. Bian Z, Zhang J, Li M, Feng Y, Yao S et al. (2017) Long non-coding RNA LINC00152 promotes cell proliferation, metastasis, and confers 5-FU resistance in colorectal cancer by inhibiting miR-139-5p. Oncogenesis 6 (11).

270. Yue B, Cai D, Liu C, Fang C, Yan D (2016) Linc00152 Functions as a Competing Endogenous RNA to Confer Oxaliplatin Resistance and Holds Prognostic Values in Colon Cancer. Molecular therapy : the journal of the American Society of Gene Therapy 24 (12): 2064–2077.

ABKÜRZUNGSVERZEICHNIS

Abkürzung		Bedeutung
Α	А	Adenin
	A ₂₆₀	Absorption bei 260 nm
	аа	amino acid
	AD	Alzheimer-Demenz
	AG	Arbeitsgruppe
	Air	antisense IGFR2 RNA
	ANRIL	antisense non-coding RNA in the INK4 locus
	ATP	Adenosintriphosphat
В	BSA	Bovines Serumalbumin
	Bcl-2	B-cell lymphoma 2
	Bcl-X _L	B-cell lymphoma extra large
С	С	Cytosin
	CBP	CREB bindendes Protein
	CCNA1	Cyclin A1
	cDNA	complementary DNA
	ChIRP	Chromatin Isolation by RNA Purification
	circRNA	zirkuläre RNA
	C _T	Treshhold Cycle
	CRISPR	Clustered Regularly Interspaced Short Palindromic Repeats
	Су	Cyanin
D	DAPI	4',6-Diamidin-2-phenylindol
	DNA	Desoxyribonukleinsäure
	dNTPs	Desoxyribonukleosidtriphosphat
Е	EGF	epidermal growth factor
	EMT	Epithelial-mesenchymale Transition
	ENCODE	Encyclopedia of DNA Elements
	eRNA	enhancer RNA
	Ex	Exon
_	EZH2	Enhancer of Zeste Homolog 2
F	FA	Formaldehyd
	FACS	fluorescence-activated cell sorter
	FCS	fetales Kalberserum
	FDA	Food and Drug Administration
	FISH	Fluoreszenz- <i>III-situ</i> -Hybridisierung
	FILC FoxM1	Fluorescent-isochiocyanac
G	G	
U	G2-Phase	Gan 2-Phase
	GADDH	Gup 2-Filase Glycerinaldebyd-3-Dhosphat-Debydrogenase
	GO	Gene Ontology
н	H3K27me3	Trimethylierung an Histon 3 Lysin 27
	HOTAIR	HOX transcript antisense intergenic RNA
	ΗΟΤΤΙΡ	HOXA transcript at the distal tin
	НОХС	Homeobox C Cluster
	ll	Interleukin
•	IDH-1	Isocytratdehydrogenase-1
	IDH-2	Isocvtratdehvdrogenase-1

170 | ABKÜRZUNGSVERZEICHNIS

J	JAK	Januskinase
К	Kcnq1ot1	KCNQ1 overlapping transcript 1
	KD	Knockdown
	KRT16	Keratin 16
L	lincRNA	long intergenic RNA
	IncRNA	lona noncodina RNA
м	Μ	Methionin
	M-Phase	Mitose-Phase
	MAFB	MAF BZIP Transcription Factor B
	MALAT-1	metastasis associated lung adenocarcinoma transcript 1
	Mcl-1	mveloid cell leukemia 1
	MDM-2	Mouse double minute 2 homolog
	MEG3	maternally expressed 3
	MMP-2	Matrix-Metalloprotease 2
	miRNA	micro RNA
	mRNA	messenger RNA
Ν	NCBI	National Center for Biotechnology Information
	ncRNA	noncoding RNA
	NEAT1	Nuclear Enriched Abundant Transcript 1
	nt	Nukleotid(e)
0	ORF	Open Reading Frame
Ρ	PAA	Polyacrylamid
	PABP1	Polyadenylate-binding protein 1
	PBS	phosphate buffered saline
	PCA3	prostate cancer antigen 3
	PCR	Polymerase-Kettenreaktion
	PI	Propidiumiodid
	PI3K	Phosphoinositid-3-Kinase
	piRNA	PIWI-RNA
	PRC2	Polycomb-Repressive-Complex-2
	PTEN	Phosphatase and tensin homolog
	PVDF	Polyvinylidentluorid
•	p-Wert	Signifikanzwert
Q	qPCR	quantitative PCR
к	RAB3D	Ras-related protein
	Kas	Rat sarcoma
	KB	
		PNA Integrity Number
	RIN-Wert	RNA-Integrity-Number
		RIDUITUKIEIIISdure
		Reverse Translyintian
c		Serum amulaid A1
3	SAAI	seramble (Negativkontrollo)
	201	Standardahwaishung
	אטא	Sodiumdodoculaulfat
	SETU2	Set domain containing 2
	SINE	st i domani containing z chart interspersed nuclear element
	SINL	snort interspersed nuclear cicilient small intefering RNA
	snRNA	small nuclear RNA
	SIIIIIA	
	snoRNA	small nucleolar RNA
---	--------	--
	STAiR	STAT3 induzierte ncRNA
	STAT3	Signal transducer and activator of transcription 3
	STAU1	Staufen homolog 1
Т	TBS	Tris-buffered saline
	TF	Transkriptionsfaktor
	TGF	transforming growth factor
	TMZ	Temozolomid
	TP53	Tumor Protein 53
	tRNA	transfer RNA
U	UCSC	University of California, Santa Cruz
	UTR	untranslated regions
W	WHO	Weltgesundheitsorganisation
Х	Xist	X inactive specific transcript
Z	Zeb2	Zinc finger E-box-binding homeobox 2

ABBILDUNGSVERZEICHNIS

Abbildung 1: Schematische Übersicht der Funktionen langer nichtkodierender RNAs.	8
Abbildung 2: Die STAiR18-Duplikation	44
Abbildung 3: Schematische Übersicht der beiden STAiR18-Loci, Homologie und Konservierung.	46
Abbildung 4: Die mRNA-Ähnlichkeit von STAiR18.	48
Abbildung 5: Expressionsanalyse der STAiR18-Isoformen in gesunden humanen Geweben.	54
Abbildung 6: STAiR18 wird alternativ gespleißt.	55
Abbildung 7: Erhöhte Expression von STAiR18 im Tumor- gegenüber Normalgewebe.	57
Abbildung 8: Die STAiR18-Expression in Alzheimer-Proben.	59
Abbildung 9: Adhärenz der Glioblastomzellen nach Trypsin-Zugabe in Abhängigkeit von STAiR18.	62
Abbildung 10: Migration der A172-Zellen in Abhängigkeit von STAiR18.	64
Abbildung 11: Ermittlung der geeigneten Mitomycin C-Inkubationsbedingungen.	65
Abbildung 12: Migration und Vitalität der A172-Zellen nach Mitomycin C-Inkubation.	66
Abbildung 13: Die STAiR18-Isoformen beeinflussen die Migration von A172-Zellen gleichermaßen	. 68
Abbildung 14: STAiR18 hat keinen Einfluss auf die Migration von MZ18-Zellen.	69
Abbildung 15: Die Invasion der A172-Zellen in Abhängigkeit von STAiR18.	70
Abbildung 16: Vitalität der A172-Zellen nach STAT3- und STAiR18-KD.	72
Abbildung 17: xCELLigence [®] -Messungen nach STAT3- und STAiR18-KD in A172-Zellen.	73
Abbildung 18: Vitalität der MZ18-Zellen nach STAiR18- und STAT3-KD.	74
Abbildung 19: Expressionslevel ausgewählter STAiR18-Isoformen und von STAT3 in A172-Zellen.	75
Abbildung 20: Expressionslevel ausgewählter STAiR18-Isoformen in Gehirntumoren.	77
Abbildung 21: Bestimmung der RNAi vermittelten STAiR18-Knockdowneffizienzen.	80
Abbildung 22: Anreicherung der STAiR18-Transkripte in Vorbereitung zur MinION-Sequenzierung	. 82
Abbildung 23: Verteilung der MinION [™] -Reads über das humane Genom.	83
Abbildung 24: Die mittels MinION [™] ermittelte Transkriptstruktur des STAiR18-A-Locus.	85
Abbildung 25: Die mittels MinION [™] ermittelte Transkriptstruktur des STAiR18-B-Locus.	86
Abbildung 26: Die subzellulären Lokalisation ausgewählter STAiR18-Isoformen.	87
Abbildung 27: Optimierung der nukleären Sondenhybridisierung der ViewRNA [™] -Methode.	89
Abbildung 28: Optimierung der zytoplasmatischen Sondenhybridisierung der ViewRNA-Methode	90

Abbildung 29: Visualisierung von STAiR18 in A172-Zellen mittels ViewRNA [™] .	92
Abbildung 30: Überprüfung der Spezifität der ViewRNA [™] -Signale.	94
Abbildung 31: Klassifizierung der am stärksten regulierten Gene nach STAiR18-KD (Exon 1).	98
Abbildung 32: Validierung der STAiR18-Zielgene mittels qPCR.	99
Abbildung 33: Ausschluss von off-Target-Effekten nach STAiR18-KD.	101
Abbildung 34: Anzahl der in der Transkriptionsanalyse differenziell regulierten Gene.	102
Abbildung 35: Überschneidung der durch die einzelnen STAiR18-KDs regulierten Zielgene.	103
Abbildung 36: GO-Term-Analyse zur funktionellen Klassifizierung der STAiR18-Zielgene.	106
Abbildung 37: Regulation der KRT16-Proteinexpression durch den STAiR18-Knockdown.	108
Abbildung 38: Spezifische Präzipitation von STAiR18 mittels ChIRP.	110
Abbildung 39: Positive Rückkopplung zwischen STAiR18 und dem Transkriptionsfaktor FoxM1.	112
Abbildung 40: Migration und Vitalität der A172-Zellen in Abhängigkeit von FoxM1.	113
Abbildung 41: Analyse der direkten Bindung zwischen STAiR18 und FoxM1 mittels ChIRP.	114
Abbildung 42: Regulation des Transkriptionsfaktors STAT3 durch STAiR18.	117
Abbildung 43 Analyse der direkten Bindung zwischen STAiR18 und STAT3 mittels ChIRP.	118
Abbildung 44: Die Rolle von STAiR18 bei der Regulation der Migration von Glioblastomzellen.	137
Abbildung 45: Die Thymus-spezifische Sequenz der Isoform STAiR18 1-7.	175
Abbildung 46: Die Fettgewebe-spezifische Sequenz der Isoform STAiR18 1-7.	176
Abbildung 47: Die Schilddrüsen-spezifische Sequenz der Isoform STAiR18 1-7.	177
Abbildung 48: Die Hoden-spezifische Sequenz (Spleißvariante I) der Isoform STAiR18 1-7.	178
Abbildung 49: Die Hoden-spezifische Sequenz (Spleißvariante II) der Isoform STAiR18 1-7.	179
Abbildung 50: Die Milz-spezifische Sequenz (Spleißvariante I) der Isoform STAiR18 1-7.	180
Abbildung 51: Die Milz-spezifische Sequenz (Spleißvariante II) der Isoform STAiR18 1-7.	181
Abbildung 52: Die Milz-spezifische Sequenz (Spleißvariante III) der Isoform STAiR18 1-7.	182
Abbildung 53: Die mittels MinION [™] -Sequenzierung ermittelten Transkriptstruktur von STAiR18	. 185

TABELLENVERZEICHNIS

Tabelle 1: Ausgewählte Gruppen nichtkodierender RNAs und deren Funktionen.	5
Tabelle 2: Funktionen langer nichtkodierender RNAs und deren Rolle in Tumorerkrankungen.	12
Tabelle 3: Analyse möglicher ORFs der annotierten STAiR18-Transkriptvarianten.	50
Tabelle 4: Auflistung der am stärksten regulierten Gene nach STAiR18-KD (Exon 1).	96
Tabelle 5: Wirkmechanismen ausgewählter IncRNAs mit Einfluss auf Gliome.	132
Tabelle 6: Die differenziell und signifikant durch einen STAiR18_Ex1-KD regulierten Gene.	186
Tabelle 7: Die differenziell und signifikant durch einen STAiR18_Ex2-KD regulierten Gene.	188
Tabelle 8: Die differenziell und signifikant durch einen STAiR18_ExK-KD regulierten Gene.	189
Tabelle 9: Die differenziell und signifikant durch einen STAiR18_Ex3-KD regulierten Gene.	193
Tabelle 10: Die differenziell und signifikant durch einen STAiR18_Ex7-KD regulierten Gene.	196
Tabelle 11: Die differenziell und signifikant durch einen STAT3-KD regulierten Gene.	200
Tabelle 12: Rohdaten der GO-Term-Analyse zur Klassifizierung der STAiR18_Ex 1-Zielgene.	202
Tabelle 13: Rohdaten der GO-Term-Analyse zur Klassifizierung der STAiR18_Ex 3-Zielgene.	203
Tabelle 14: Rohdaten der GO-Term-Analyse zur Klassifizierung der STAiR18_Ex 7-Zielgene.	204

ANHANG

Ex1+3+4+7	GCCTGTCT	TCAGATCTTC	ACAGCACAGT	TCCTGGGAAG	GTGGAGCCAC	CAGCCTCTCC	TTGACAAGCA	AAGTGGATCA
Thymus	GT						C	
Identity	*****	****	*****	****	****	***	*****	***
Ex1+3+4+7	GCAAAGGCTG	CAGTCACCAG	CATCTTTTCC	AACCTTAATG	AACTGTATCC	TCAAAAGAAC	ACTATCAGAC	TGGGCTCTGC
Thymus								
Identity	******	*******	*******	*******	*******	*******	******	*** *****
E 112.1.2								
EXI+3+4+/	CGACTTCCAG	TTCTGGAACA	AGATGGTTAA	ACTCATTTTT	CCCTGCTCTG	CTCCTCTAAA	TACAACTAAG	TACCTTGGAA
Identity				••••••••••••••••••••••••••••••••••••••	••••••••••••••••••••••••••••••••••••••	••••••••••••••••••••••••••••••••••••••	••••••••••••••••••••••••••••••••••••••	
Identity								
Ex1+3+4+7	ACTATTCACC	ACACAATCAT	AAAGGGCTCT	CARACCTACA	ACAAAACCTC	TACTTCCAAC	AAACCTCAGG	ACTUCACTAN
Thymus	normirenoe	nonomioni	TERIOCOCICI	ormitocinon	101010010	Inclidente	inmicerence	nerionomi
Identity	*******	*******	*******	*******	******	*******	*******	******
Ex1+3+4+7	CAGCAACATG	GAAAGGAGAA	AGAGACTACC	TACTGCATTT	CTGTCACTCG	CTGAAAAGGA	CACTCTGTCA	GAAAATCTTC
Thymus	decourses and		c					
Identity	******	******	***** ***	********	*****	*******	******	*******
Ex1+3+4+7	TAGCAAACTT	CAAAGGGCAA	AATCACCCCT	TGTTACTGAT	AAAGCCCAGA	GAGCTTCAGC	AGCTAACATT	CCCTGGACAG
Thymus								
Identity	*****	*****	******	*****	*****	******	*****	*****
Ex1+3+4+7	GGCACAGCAA	GGATTTGAAC	CTAGGTCAGT	CTGGCCAGAA	CACCCACAAG	CTTTCCTTAA	CTCAGTGTGC	TATCTCCCCA
Thymus								
Identity	******	*****	******	****	******	******	******	******
E-1121417								
EXIT5T4T/	CGACTAGGTC	ACTACTGCTT	TATAATCACC	TTTGTAGCCA	CCAGTGGATT	TTGCTCATCA	GTATTTTTCA	GGCAATTGAT
I flythus Identity								
Identity								
Ex1+3+4+7	АСПППАСАПА	TTCACCTCCA	AGACCTATCC	ACTITUTO	CACATCTTTT	CCACAAACTC	ACABACCTCC	АСФИСАСИНА
Thymus								
Identity	****	*****	******	****	****	****	****	******
Ex1+3+4+7	ATGCCTTTGG	AACCTTCCAA	GATGTTATAT	AACTCTAGAT	AGAAGGCTGG	GCCTCCATGA	TGTCAGGAAT	GTTGCATTCT
Thymus							c	
Identity	*****	*****	******	*****	*****	*****	*****	******
Ex1+3+4+7	TATTTCCCCA	TAGATAAACC	CATTTGTCC-	ACAAAGTCAA	GGAGTCAGGC	AGAGGCCCTT	GCCATGGG	
Thymus			C			AAT.G-	G	
Identity	*******	*****	******	******	***	**** *	** *	

Abbildung 45: Die Thymus-spezifische Sequenz der Isoform STAiR18 1-7 gegenüber der im UCSC-Browser annotierten STAiR18-Sequenz. Jeweils 1 µg DNase-verdauter RNA des Thymus (Human Total RNA Master Panel II) wurde in cDNA umgeschrieben und für die anschließende qPCR 1:10 verdünnt. Die qPCR wurde mit dem Primerpaar STAiR18 1-7 durchgeführt und die amplifizierten Produkte in einem 2 %igen Agarosegel aufgetrennt, mittels QIAquick Gel Extraction Kit (Qiagen) nach Herstellerangaben isoliert und durch die Core-Unit-DNA-Technologien (IZKF, Leipzig) sequenziert. Die erhaltenen Sequenzen wurden mit den im UCSC-Genome-Browser hinterlegten STAiR18-Sequenzen abgeglichen. Es ergab sich eine Thymus-spezifische STAiR18-Transkriptvariante, welche sich aus den annotierten Exons 1, 3, 4 und 7 zusammensetzte. Durch alternative Spleißvorgänge liegt das 3. Exon mit 90 Nukleotiden in einer gegenüber der annotierten Variante verkürzten Form vor.

Ex1+3+4+7	GCCTGTC	TTCAGATC-T	TCACAGCACA	GTTCCTGGGA	AGGTGGAGCC	ACCAGCCTCT	CCTTGACAAG	CAAAGTGGAT
Fett	TGT	A.		G			A.C	
Identity	******	******	*******	**** *****	******	*******	* ******	******
Ex1+3+4+7	CAGCAAAGGC	TGCAGTCACC	AGCATCTTTT	CCAACCTTAA	TGAACTGTAT	CCTCAAAAGA	ACACTATCAG	ACTGGGCTCT
Fett								
Identity	*****	*****	******	******	*****	******	*****	****
Ex1+3+4+7	GCCGACTTCC	AGTTCTGGAA	CAAGATGGTT	AAACTCATTT	TTCCCTGCTC	TGCTCCTCTA	AATACAACTA	AGTACCTTGG
Fett								
Identity	*****	******	******	******	******	******	*****	******
Survey and Many								
Ex1+3+4+7	AAACTATTCA	GCAGACAATG	ATAAAGGGCT	CTGAAAGCTA	GAAGAAAAGG	TGTACTTGCA	AGAAACCTCA	GGACTTGAGT
Fett								
Identity	******	******	*******	*******	*****	*******	******	*****
Ex1+3+4+7	AACAGCAACA	TGGAAAGGAG	AAAGAGACTA	CCTACTGCAT	TTCTGTCACT	CGCTGAAAAG	GACACTCTGT	CAGAAAATCT
Fett			c.					
Identity	*****	******	*******	*******	******	*******	******	******
Ex1+3+4+7	TCTAGCAAAC	TTCAAAGGGC	AAAATCACCC	CTTGTTACTG	ATAAAGCCCA	GAGAGCTTCA	GCAGCTAACA	TTCCCTGGAC
Fett								
Identity	******	********	*******	********	*******	******	******	*******
Ex1+3+4+7	AGGGCACAGC	AAGGATTTGA	ACCTAGGTCA	GTCTGGCCAG	AACACCCACA	AGCTTTCCTT	AACTCAGTGT	GCTATCTCCC
Fett								
Identity	*****	******	******	******	******	*******	*****	******
Ex1+3+4+7	CACGACTAGG	TCACTACTGC	TTTATAATCA	CCTTTGTAGC	CACCAGTGGA	TTTTGCTCAT	CAGTATTTTT	CAGGCAATTG
Fett								
Identity	******	******	*******	********	******	******	*****	******
10000000000000000000000000000000000000								
Ex1+3+4+7	ATACTTTAGA	TATTCAGCTG	CAAGACGTAT	GCAGTTTTCA	TTGACATCTT	TTGGAGAAAC	TGACAAACCT	GGACTTGACT
Fett								
Identity	*****	******	*******	******	******	******	******	******
Ex1+3+4+7	TAATGCCTTT	GGAACCTTCC	AAGATGTTAT	ATAACTCTAG	ATAGAAGGCT	GGGCCTCCAT	GATGTCAGGA	ATGTTGCATT
Fett								
Identity	******	******	*******	******	******	*******	******	******
Ex1+3+4+7	CTTATTCCC	CATAGATAAA	CCCATTGTC	CACAAAGTCA	AGGAGTCAGG	CAGAGGCCCT	TGCCATGGG	
Fett								
Identity	*******	*******	********	*******	*******	*****		

Abbildung 46: Die Fettgewebe-spezifische Sequenz der Isoform STAiR18 1-7 gegenüber der im UCSC-Browser annotierten STAiR18-Sequenz. Jeweils 1 µg DNase-verdauter RNA aus Fettgewebe (Human Total RNA Master Panel II) wurde in cDNA umgeschrieben und für die anschließende qPCR 1:10 verdünnt. Die qPCR wurde mit dem Primerpaar STAiR18 1-7 durchgeführt und die amplifizierten Produkte in einem 2 %igen Agarosegel aufgetrennt, mittels QIAquick Gel Extraction Kit (Qiagen) nach Herstellerangaben isoliert und durch die Core-Unit-DNA-Technologien (IZKF, Leipzig) sequenziert. Die erhaltenen Sequenzen wurden mit den im UCSC-Genome-Browser hinterlegten STAiR18-Sequenzen abgeglichen. Es ergab sich eine Fett-spezifische STAiR18-Transkriptvariante, welche sich aus den annotierten Exons 1, 3, 4 und 7 zusammensetzte. Durch alternative Spleißvorgänge liegt das 3. Exon mit 90 Nukleotiden in einer gegenüber der annotierten Variante verkürzten Form vor.

Ex1+3+4+7	GCCTGTC	TTCAGATC-T	TCACAGCACA	GTTCCTGGGA	AGGTGGAGCC	ACCAGCCTCT	CCTTGACAAG	CAAAGTGGAT
Schilddrüse	CGT	A.						
Identity	******	****	******	******	*****	******	*** *****	******
Ex1+3+4+7	CAGCAAAGGC	TGCAGTCACC	AGCATCTTTT	CCAACCTTAA	TGAACTGTAT	CCTCAAAAGA	ACACTATCAG	ACTGGGCTCT
Schilddrüse								
Identity	*******	******	*******	******	******	******	*******	**** ****
Ex1+3+4+7	GCCGACTTCC	AGTTCTGGAA	CAAGATGGTT	AAACTCATTT	TTCCCTGCTC	TGCTCCTCTA	AATACAACTA	AGTACCTTGG
Schilddrüse								
Identity	******	******	*****	******	*****	******	******	*****
Ex1+3+4+7	AAACTATTCA	GCAGACAATG	ATAAAGGGCT	CTGAAAGCTA	GAAGAAAAGG	TGTACTTGCA	AGAAACCTCA	GGACTTGAGT
Schilddrüse								
Identity	*******	******	******	******	*****	******	*****	*****
Ex1+3+4+7	AACAGCAACA	TGGAAAGGAG	AAAGAGACTA	CCTACTGCAT	TTCTGTCACT	CGCTGAAAAG	GACACTCTGT	CAGAAAATCT
Schilddrüse			C.					
Identity	******	******	******	*****	*****	******	******	*****
Ex1+3+4+7	TCTAGCAAAC	TTCAAAGGGC	AAAATCACCC	CTTGTTACTG	ATAAAGCCCA	GAGAGCTTCA	GCAGCTAACA	TTCCCTGGAC
Schilddrüse								
Identity	******	*******	*******	******	*****	******	*****	*****
Ex1+3+4+7	AGGGCACAGC	AAGGATTTGA	ACCTAGGTCA	GTCTGGCCAG	AACACCCACA	AGCTTTCCTT	AACTCAGTGT	GCTATCTCCC
Schilddrüse			T					
Identity	*******	*****	** ******	*****	*****	******	******	*****
Ex1+3+4+7	CACGACTAGG	TCACTACTGC	TTTATAATCA	CCTTTGTAGC	CACCAGTGGA	TTTTGCTCAT	CAGTATTTTT	CAGGCAATTG
Schilddrüse								
Identity	******	*******	*******	*******	******	******	******	*******
Ex1+3+4+7	ATACTTTAGA	TATTCAGCTG	CAAGACGTAT	GCAGTTTTCA	TTGACATCTT	TTGGAGAAAC	TGACAAACCT	GGACTTGACT
Schilddrüse								
Identity	*******	*****	***	*****	****	****	*****	****
Ex1+3+4+7	TAATGCCTTT	GGAACCTTCC	AAGATGTTAT	ATAACTCTAG	ATAGAAGGCT	GGGCCTCCAT	GATGTCAGGA	ATGTTGCATT
Schilddrüse								
Identity	******	*****	******	******	*****	******	*******	******
Ex1+3+4+7	CTTATTTCCC	CATAGATAAA	CCCATTTGTC	CACAAAGTCA	AGGAGTCAGG	CAGAGGCCCT	TGCCATGGG	
Schilddrüse						C		
Identity	*******	*******	******	********	********	*****		

Abbildung 47: Die Schilddrüsen-spezifische Sequenz der Isoform STAiR18 1-7 gegenüber der im UCSC-Browser annotierten STAiR18-Sequenz. Jeweils 1 µg DNase-verdauter RNA der Schilddrüse (Human Total RNA Master Panel II) wurde in cDNA umgeschrieben und für die anschließende qPCR 1:10 verdünnt. Die qPCR wurde mit dem Primerpaar STAiR18 1-7 durchgeführt und die amplifizierten Produkte in einem 2 %igen Agarosegel aufgetrennt, mittels QIAquick Gel Extraction Kit (Qiagen) nach Herstellerangaben isoliert und durch die Core-Unit-DNA-Technologien (IZKF, Leipzig) sequenziert. Die erhaltenen Sequenzen wurden mit den im UCSC-Genome-Browser hinterlegten STAiR18-Sequenzen abgeglichen. Es ergab sich eine Schilddrüsenspezifische STAiR18-Transkriptvariante, welche sich aus den annotierten Exons 1, 3, 4 und 7 zusammensetzte. Durch alternative Spleißvorgänge liegt das 3. Exon mit 90 Nukleotiden in einer gegenüber der annotierten Variante verkürzten Form vor.

Ex1+3+4+7	GCCTGTC	TTCAGATCTT	CACAGCACAG	TTCCTGGGAA	GGTGGAGCCA	CCAGCCTCTC	CTTGACAAGC	AAAGTGGATC
Hoden I	CGT						.C	
Identity	******	*****	******	*****	*****	*****	* *******	*****
Ex1+3+4+7	AGCAAAGGCT	GCAGTCACCA	GCATCTTTTC	CAACCTTAAT	GAACTGTATC	CTCAAAAGAA	CACTATCAGA	CTGGGCTCTG
Hoden I								
Identity	******	*******	*******	******	*******	******	******	**** *****
Ex1+3+4+7	CCGACTTCCA	GTTCTGGAAC	AAGATGGTTA	AACTCATTTT	TCCCTGCTCT	GCTCCTCTAA	ATACAACTAA	GTACCTTGGA
Hoden I								
Identity	*****	*****	*****	*****	****	*****	*****	****
Ex1+3+4+7	AACTATTCAC	CACACAATCA	TAAACCCCTC	TCABACCTAC	AACAAAACCT	CTACTTCAA	CAAACCTCAC	CACTTCACTA
Hoden I	moiniiono	CHOROMITON	11111000010	Tommocimo	Intornanio01	ormerroem	ommeeteno	onerronorn
Identity:							*********	
Identity								
E-1121417								
EX1+3+4+7	ACAGCAACAT	GGAAAGGAGA	AAGAGACTAC	CTACTGCATT	TCTGTCACTC	GCTGAAAAGG	ACACTCTGTC	AGAAAATCTT
Hoden I			C					
Identity	******	******	****** **	******	*******	******	*******	*******
Ex1+3+4+7	CTAGCAAACT	TCAAAGGGCA	AAATCACCCC	TTGTTACTGA	TAAAGCCCAG	AGAGCTTCAG	CAGCTAACAT	TCCCTGGACA
Hoden I								
Identity	*****	****	*****	******	*****	*****	*****	****
Ex1+3+4+7	GGGCACAGCA	AGGATTTGAA	CCTAGGTCAG	TCTGGCCAGA	ACACCCACAA	GCTTTCCTTA	ACTCAGTGTG	CTATCTCCCC
Hoden I								
Identity	********	*******	******	********	******	*******	********	********
Ex1+3+4+7	ACCACTACCT	CACTACTCCT	TTATATTATCAC	CHERCEACCC	ACCACTCCAT	THECHOATC	ACTATTTT	ACCCAATTCA
Hoden I	ACCACIACCI	CACIACIOCI	TINIATOAC	CITIGINGCO	ACCAGIGGAI	THECTORIC	AGIAIIIIIC	AGGCAATIGA
Identity	**********	*********	*********	*********			**********	*********
Identity								
E-1121417						-		
EXITOT4T/	TACTTTAGAT	ATTCAGCTGC	AAGACGTATG	CAGTTTTCAT	TGACATCTTT	T-GGAGAAAC	TGACAAACCT	GGACTTGACT
Hoden I						.T		
Identity	******	******	******	******	******	* ******	*****	****
Ex1+3+4+7	TAATGCCTTT	GGAACCTTCC	AAGATGTTAT	ATAACTCTAG	ATAGAAGGCT	GGGCCTCCAT	GATGTCAGGA	ATGTTGCATT
Hoden I								
Identity	******	*******	*******	******	******	******	******	******
Ex1+3+4+7	CTTATTTCCC	CATAGATAAA	CCCATTTG	TCCACAAAGT	CAAGGAGTCA	GGCAGAGGCC	CTTGCCATGG	G
Hoden I			TGT	c			.GG.AAT	т
Identity	*******	********	******	********	********	******	* ** *	1000

Abbildung 48: Die Hoden-spezifische Sequenz (Spleißvariante I) der Isoform STAiR18 1-7 gegenüber der im UCSC-Browser annotierten STAiR18-Sequenz. Jeweils 1 µg DNase-verdauter RNA der Schilddrüse (Human Total RNA Master Panel II) wurde in cDNA umgeschrieben und für die anschließende qPCR 1:10 verdünnt. Die qPCR wurde mit dem Primerpaar STAiR18 1-7 durchgeführt und die amplifizierten Produkte in einem 2 %igen Agarosegel aufgetrennt, mittels QIAquick Gel Extraction Kit (Qiagen) nach Herstellerangaben isoliert und durch die Core-Unit-DNA-Technologien (IZKF, Leipzig) sequenziert. Die erhaltenen Sequenzen wurden mit den im UCSC-Genome-Browser hinterlegten STAiR18-Sequenzen abgeglichen. Es ergab sich eine Schilddrüsenspezifische STAiR18-Transkriptvariante, welche sich aus den annotierten Exons 1, 3, 4 und 7 zusammensetzte. Durch alternative Spleißvorgänge liegt das 3. Exon mit 90 Nukleotiden in einer gegenüber der annotierten Variante verkürzten Form vor.

Ex1+3+7	GCCTGTC	TTCAGATCTT	CACAGCACAG	TTCCTGGGAA	GGTGGAGCCA	CCAGCCTCTC	CTTG-CTCTG	CCGACTTCCA
Hoden II	CGT			A			.CG	
Identity	******	******	*****	***** ***	******	******	* ** *****	******
-								
Ex1+3+7	GTTCTGGAAC	AAGATGGTTA	AACTCATTTT	TCCCTGCTCT	GCTCCTCTAA	АТАСААСТАА	GTACCTTGGA	AACTATTCAG
Hoden II								
Identity	*******	******	*******	********	*******	*******	*******	********
recinity								
Ex1+3+7	CACACAAMCA	TAACCCC	mcaaacomac	AACAAAACCE	CHACHINCCAA	CAAACCHCAC	CACHINCACHA	ACACCAACAM
Hoden II	CHORICHILION	11111000010	10/1/1/00/1/10	10101001	omerioemi	onnicerene	0//0110//01//	nonoomoni
Tioden II								
Identity	********	********	********	********	********	********	********	********
E+1+2+7		2202020020		mamamanama		a da de de ced	20222220000	00000000000
LAI ISI7	GGAAAGGAGA	AAGAGACTAC	CTACTGCATT	TETGTCACIC	GCTGAAAAGG	ACACICIGIC	AGAAAATCIT	CTAGCAAACT
rioden II		C						
Identity	*******	****** **	******	*******	******	*******	*******	******
Ex1+3+7	TCAAAGGGCA	AAATCACCCC	TTGTTACTGA	TAAAGCCCAG	AGAGCTTCAG	CAGCTAACAT	TCCCTGGACA	GGGCACAGCA
Hoden II								
Identity	****	*****	*****	******	*****	******	*****	*****
Ex1+3+7	AGGATTTGAA	CCTAGGTCAG	TCTGGCCAGA	ACACCCACAA	GCTTTCCTTA	ACTCAGTGTG	CTATCTCCCC	ACGACTAGGT
Hoden II				T				
Identity	******	*****	*****	****** **	*****	*****	*****	*****
2777777 7								
Ex1+3+7	CACTACTGCT	TTATAATCAC	CTTTGTAGCC	ACCAGTGGAT	TTTGCTCATC	AGTATTTTC	AGGCAATTGA	TACTTTAGAT
Hoden II								
Identity	*******	******	********	*******	******	*******	*******	******
Identity								
Ex1+3+7	ATTCACCTCC	AACACCTATC	CACHTTTCAT	TCACATCTT	TCCACAAACT	CACABACCTC	CACTUCACTU	AATCCCTTTC
Hoden II	mitomotice	moneomio	GROTTIGHT	TOMOMOTIC	roomonier	Onernicero	onerioneri	Innocorrito
Idontita:	*********	*********		*********	*********	*********	*********	*********
Identity								
E-1+2+7	C2220000000	2 02 00002 02			CCOCRORATEC		memmeda mad	
EXITST/	GAACCTTCCA	AGATGTTATA	TAACTCTAGA	TAGAAGGCTG	GGCCTCCATG	ATGTCAGGAA	TGTTGCATTC	TTATTTCCCCC
Hoden II								
Identity	******	******	*****	******	******	******	******	******
Ex1+3+7	ATAGATAAAC	CCATTTGTCC	ACAAAGTCAA	GGAGTCAGGC	AGAGGCCCTT	GCCATGGG		
Hoden II								
Identity	*******	********	*******	********	****			

Abbildung 49: Die Hoden-spezifische Sequenz (Spleißvariante II) der Isoform STAiR18 1-7 gegenüber der im UCSC-Browser annotierten STAiR18-Sequenz. Jeweils 1 µg DNase-verdauter RNA der Schilddrüse (Human Total RNA Master Panel II) wurde in cDNA umgeschrieben und für die anschließende qPCR 1:10 verdünnt. Die qPCR wurde mit dem Primerpaar STAiR18 1-7 durchgeführt und die amplifizierten Produkte in einem 2 %igen Agarosegel aufgetrennt, mittels QIAquick Gel Extraction Kit (Qiagen) nach Herstellerangaben isoliert und durch die Core-Unit-DNA-Technologien (IZKF, Leipzig) sequenziert. Die erhaltenen Sequenzen wurden mit den im UCSC-Genome-Browser hinterlegten STAiR18-Sequenzen abgeglichen. Es ergab sich eine Hoden-spezifische STAiR18-Transkriptvariante, welche sich aus den annotierten Exons 1, 3 und 7 zusammensetzte. Durch alternative Spleißvorgänge liegt das 3. Exon mit 177 Nukleotiden in einer gegenüber der annotierten Variante verkürzten Form vor.

Ex1+3+4+7	GCCTGTC	TTCAGATC-T	TCACAGCACA	GTTCCTGGGA	AGGTGGAGCC	ACCAGCCTCT	CCTTGACAAG	CAAAGTGGAT
Milz I	CGT	A.						
Identity	******	******	*****	******	******	******	*** *****	*****
Ex1+3+4+7	CAGCAAAGGC	TGCAGTCACC	AGCATCTTTT	CCAACCTTAA	TGAACTGTAT	CCTCAAAAGA	ACACTATCAG	ACTGGGCTCT
Milz I								
Identity	******	*******	*****	******	******	*****	******	****
Ex1+3+4+7	GCCGACTTCC	AGTTCTGGAA	CAAGATGGTT	AAACTCATTT	TTCCCTGCTC	TGCTCCTCTA	AATACAACTA	AGTACCTTGG
Milz I								
Identity	******	******	*****	******	*****	*****	*****	*****
Ex1+3+4+7	AAACTATTCA	GCAGACAATG	ATAAAGGGCT	CTGAAAGCTA	GAAGAAAAGG	TGTACTTGCA	AGAAACCTCA	GGACTTGAGT
Milz I								
Identity	******	******	******	******	******	*****	*******	*****
Ex1+3+4+7	AACAGCAACA	TGGAAAGGAG	AAAGAGACTA	CCTACTGCAT	TTCTGTCACT	CGCTGAAAAG	GACACTCTGT	CAGAAAATCT
Milz I			C.					
Identity	*****	******	******	******	******	*****	******	*****
Ex1+3+4+7	TCTAGCAAAC	TTCAAAGGGC	AAAATCACCC	CTTGTTACTG	ATAAAGCCCA	GAGAGCTTCA	GCAGCTAACA	TTCCCTGGAC
Milz I								
Identity	******	*******	*******	*****	*******	*******	*******	*****
Ex1+3+4+7	AGGGCACAGC	AAGGATTTGA	ACCTAGGTCA	GTCTGGCCAG	AACACCCACA	AGCTTTCCTT	AACTCAGTGT	GCTATCTCCC
Milz I								
Identity	******	****	*****	*****	*****	*****	*****	*****
Ex1+3+4+7	CACGACTAGG	TCACTACTGC	TTTATAATCA	CCTTTGTAGC	CACCAGTGGA	TTTTGCTCAT	CAGTATTTTT	CAGGCAATTG
Milz I								
Identity	******	******	******	*****	******	*****	******	*****
Ex1+3+4+7	ATACTTTAGA	TATTCAGCTG	CAAGACGTAT	GCAGTTTTCA	TTGACATCTT	TTGGAGAAAC	TGACAAACCT	GGACTTGACT
Milz I								
Identity	******	*****	*****	*****	*****	*****	*****	*****
Ex1+3+4+7	TAATGCCTTT	GGAACCTTCC	AAGATGTTAT	ATAACTCTAG	ATAGAAGGCT	GGGCCTCCAT	GATGTCAGGA	ATGTTGCATT
Milz I								
Identity	******	******	******	*****	******	******	*******	*****
Ex1+3+4+7	CTTATTTCCC	CATAGATAAA	CCCATTTGTC	CACAAAGTCA	AGGAGTCAGG	CAGAGGCCCT	TGCCATGGG	
Ex1+3+4+7 Milz I	CTTATTTCCC	CATAGATAAA	CCCATTTGTC	CACAAAGTCA	AGGAGTCAGG	CAGAGGCCCT	TGCCATGGG	

Abbildung 50: Die Milz-spezifische Sequenz (Spleißvariante I) der Isoform STAiR18 1-7 gegenüber der im UCSC-Browser annotierten STAiR18-Sequenz. Jeweils 1 µg DNase-verdauter RNA der Schilddrüse (Human Total RNA Master Panel II) wurde in cDNA umgeschrieben und für die anschließende qPCR 1:10 verdünnt. Die qPCR wurde mit dem Primerpaar STAiR18 1-7 durchgeführt und die amplifizierten Produkte in einem 2 %igen Agarosegel aufgetrennt, mittels QIAquick Gel Extraction Kit (Qiagen) nach Herstellerangaben isoliert und durch die Core-Unit-DNA-Technologien (IZKF, Leipzig) sequenziert. Die erhaltenen Sequenzen wurden mit den im UCSC-Genome-Browser hinterlegten STAiR18-Sequenzen abgeglichen. Es ergab sich eine Milz-spezifische STAiR18-Transkriptvariante, welche sich aus den annotierten Exons 1, 3, 4 und 7 zusammensetzte. Durch alternative Spleißvorgänge liegt das 3. Exon mit 90 Nukleotiden in einer gegenüber der annotierten Variante verkürzten Form vor.

Ex1+3+7	GCCTGTC	TTCAGATCTT	CACAGCACAG	TTCCTGGGAA	GGTGGAGCCA	CCAGCCTCTC	CTTG-CTCTG	CCGACTTCCA
Milz II	CGT						.CG	
Identity	******	******	*******	********	*******	******	* ** *****	******
10000000000000000000000000000000000000								
Ex1+3+7	GTTCTGGAAC	AAGATGGTTA	AACTCATTTT	TCCCTGCTCT	GCTCCTCTAA	ATACAACTAA	GTACCTTGGA	AACTATTCAG
Milz II								
Identity	*****	*****	*****	****	******	*****	*****	****
Ex1+3+7	CAGACAATGA	TAAAGGGCTC	TGAAAGCTAG	AAGAAAAGGT	GTACTTGCAA	GAAACCTCAG	GACTTGAGTA	ACAGCAACAT
Milz II								
Identity	******	******	******	******	******	******	******	*****
Ex1+3+7	GGAAAGGAGA	AAGAGACTAC	CTACTGCATT	TCTGTCACTC	GCTGAAAAGG	ACACTCTGTC	AGAAAATCTT	CTAGCAAACT
Milz II	Commodition	C	01110100111	101010101010	00101111100			official and t
Identity	*******	****** **	******	*******	******	******	******	******
intennet,								
Ex1+3+7	TCABACCCA	AAATCACCCC	TTCTTACTCA	TANDORGAG	ACACCUTCAC	CACCTAACAT	TCCCTCCACA	GGGCACAGCA
Milz II	10mmilliooodii		1101110101			0110011110111	10001001001	0000110110011
Identity	*******	********	********	********	*******	********	*******	********
ruchury								
Ex1+3+7	ACCAMMUCAA	COTACOTCAC	TCTCCCCACA	ACACCCACAA	ССФФФССФФА	ACTCACTO	CTATCTCCCC	ACCACTACCT
Milz II	AGOMITIONA	CCIMBOICHO	ICIGOCCHON	nenecenenn	Gerriceria	ACTOROIOIO	CIMICICCCC	ACCACIACCI
Identity	******	*******	********	******	*******	******	******	*****
Identity								
Ex1+3+7	CACTACTCCT	THATATCAC	CUTTO	ACCACTCCAT	THE CHEATE	ACTATION	ACCCAATTCA	TACTTACAT
Milz II	Chichhoroch	1 Internet Office	CITIOTHOUG	neenoroomi	TTTOOTOTTO	101111110	1000010111011	indifficiti
Identity	******	*****	******	*****	******	*****	******	*******
identity								
Ex1+3+7	ATTCACCTCC	AACACCTATC	CACHUTTCAT	MCACATCOTT	TCCACAAACT	CACAAACCTC	CACTUCACTU	AAMCCOMMUC
Milz II	milenderde	IntoneoInto	GHOITTIGHT	Ionomotiti	roomoniner	Onernicero	onerioneri	milocollic
Identity	******	******	*******	******	******	******	*******	********
internet,								
Ex1+3+7	CAACCUTCCA	асалеллала	TAACTCTACA	TACAACCOTC	GCCCCCATC	ATCTCACCAA	TOTTCCATTC	THE THE COOL
Milz II	GAACCIICCA	AGAIGITATA	INACICIAGA	INGANGGCIG	GOULICCAIG	AIGICAGGAA	IGIIGCAIIC	TIMITICCCC
Identity	******	******	*******	*******	*******	*****	*******	******
includy .								
Fx1+3+7	ATTACATTAAAC	CCAMMMCMCC	ACAAACTCAA	CCACTCACCC	ACACCCCC	CCCARCCC		
Milz II	ATAGATAAAC	COMPTIGACE	ACAMAGICAA	GONGICAGGC	AGAGGCCCTT	GCCAIGGG		
Identity:								
rachuty								

Abbildung 51: Die Milz-spezifische Sequenz (Spleißvariante II) der Isoform STAiR18 1-7 gegenüber der im UCSC-Browser annotierten STAiR18-Sequenz. Jeweils 1 µg DNase-verdauter RNA der Schilddrüse (Human Total RNA Master Panel II) wurde in cDNA umgeschrieben und für die anschließende qPCR 1:10 verdünnt. Die qPCR wurde mit dem Primerpaar STAiR18 1-7 durchgeführt und die amplifizierten Produkte in einem 2 %igen Agarosegel aufgetrennt, mittels QIAquick Gel Extraction Kit (Qiagen) nach Herstellerangaben isoliert und durch die Core-Unit-DNA-Technologien (IZKF, Leipzig) sequenziert. Die erhaltenen Sequenzen wurden mit den im UCSC-Genome-Browser hinterlegten STAiR18-Sequenzen abgeglichen. Es ergab sich eine Milz-spezifische STAiR18-Transkriptvariante, welche sich aus den annotierten Exons 1, 3 und 7 zusammensetzte. Durch alternative Spleißvorgänge liegt das 3. Exon mit 177 Nukleotiden in einer gegenüber der annotierten Variante verkürzten Form vor.

182 AN	HANG							
Ex1+3+4+7	GCCTGTC	TTCAGATCTT	CACAGCACAG	TTCCTGGGAA	GGTGGAGCCA	CCAGCCTCTC	CTTGACAAGC	AAAGTGGATC

Milz III	CGT	Contractor and the lot	Internation and a state	The second second second	Water and the second		C	a and the factor of the factor of
Identity	******	******	********	********	*******	********	* *******	*******
Identity								
En1+2+4+7	1001110000							
EX1+3+4+/	AGCAAAGGCT	GCAGTCACCA	GCATCTTTTC	CAACCTTAAT	GAACTGTATC	CTCAAAAGAA	CACTATCAGA	CTGGGCTCTG
Milz III			· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • •		· · · · · · · · ·
Identity	****	*****	****	****	****	****	****	**** *****
Ex1+3+4+7	CCGACTTCCA	GTTCTGGAAC	AAGATGGTTA	AACTCATTTT	TCCCTGCTCT	GCTCCTCTAA	ATACAACTAA	GTACCTTGGA
Milz III	and a strange of the		and the second second second	Concession and the second	the station of the state of the		A THE PARTY AND	Contractor Street, Street, Street,
Identity	********	*******	*******	********	*******	*******	*******	********
Identity								
E-1121417								
EXIT5T4T/	AACTATTCAG	CAGACAATGA	TAAAGGGGCTC	TGAAAGCTAG	AAGAAAAGGT	GTACTTGCAA	GAAACCTCAG	GACTTGAGTA
Milz III								
Identity	*****	**						
Ex1+3+4+7	ACAGCAACAT	GGAAAGGAGA	AAGAGACTAC	CTACTGCATT	TCTGTCACTC	GCTGAAAAGG	ACACTCTGTC	AGAAAATCTT
Milz III								
Identity								
rucinity								
E-1121417								
EXITST4T/	CTAGCAAACT	TCAAAGGGCA	AAATCACCCC	TTGTTACTGA	TAAAGCCCAG	AGAGCTTCAG	CAGCTAACAT	TCCCTGGACA
Milz III								
Identity								
Ex1+3+4+7	GGGCACAGCA	AGGATTTGAA	CCTAGGTCAG	TCTGGCCAGA	ACACCCACAA	GCTTTCCTTA	ACTCAGTGTG	CTATCTCCCC
Milz III			tore characterization	and a second second				tent and the second
Identity		*******	********	********	******	*******	*******	******
racing								
En1+2+4+7	1001001000					mmmeanana	1 001 0000000	1000110000
EXITOTAT/	ACGACTAGGT	CACTACTGCT	TTATAATCAC	CTTTGTAGCC	ACCAGTGGAT	TTTGCTCATC	AGTATTTTTC	AGGCAATTGA
Milz III								
Identity	*****	******	******	******	******	*******	******	******
Ex1+3+4+7	TACTTTAGAT	ATTCAGCTGC	AAGACGTATG	CAGTTTTCAT	TGACATCTTT	TGGAGAAACT	GACAAACCTG	GACTTGACTT
Milz III								
Identity	********	********	********	******	*******	********	*******	*******
includy (
Ev1+2+4+7	a a me commerce	CAR COMMON	2 C2 0 C002 02		macaaccome	CCOOMOON		memmedamme
LATISTAT	MATGCCTTTG	GAACUTTCCA	AGATGTTATA	TAACTCTAGA	TAGAAGGCTG	GGCCTCCATG	AIGTCAGGAA	TGITGCATTC
IVINZ III								
Identity	******	*******	*******	*******	*******	*******	******	******
Ex1+3+4+7	TTATTTCCCC	ATAGATAAAC	CCATTTGTCC	ACAAAGTCAA	GGAGTCAGGC	AGAGGCCCTT	GCCATGGG	
Milz III								
Identity	*****	******	******	*******	*******	****		

Abbildung 52: Die Milz-spezifische Sequenz (Spleißvariante III) der Isoform STAiR18 1-7 gegenüber der im UCSC-Browser annotierten STAiR18-Sequenz. Jeweils 1 µg DNase-verdauter RNA der Schilddrüse (Human Total RNA Master Panel II) wurde in cDNA umgeschrieben und für die anschließende qPCR 1:10 verdünnt. Die qPCR wurde mit dem Primerpaar STAiR18 1-7 durchgeführt und die amplifizierten Produkte in einem 2 %igen Agarosegel aufgetrennt, mittels QIAquick Gel Extraction Kit (Qiagen) nach Herstellerangaben isoliert und durch die Core-Unit-DNA-Technologien (IZKF, Leipzig) sequenziert. Die erhaltenen Sequenzen wurden mit den im UCSC-Genome-Browser hinterlegten STAiR18-Sequenzen abgeglichen. Es ergab sich eine Milz-spezifische STAiR18-Transkriptvariante, welche sich aus den annotierten Exons 1, 3, 4 und 7 zusammensetzte. Durch alternative Spleißvorgänge liegen die Exons 4 und 7 gegenüber der Spleißvariante I weiter verkürzt vor, wodurch sich die Deletion im *Alignment* begründet.

184 |ANHANG

Abbildung 53: Übersicht der mittels MinION[™]-Sequenzierung ermittelten Transkriptstruktur von STAiR18. Die eindeutig mit den STAiR18-Loci überlappenden Reads wurden nach der Anzahl ihrer Introns eingruppiert, wobei unter **A** der STAiR18-A-Locus und unter **B** und **C** der STAiR18-B-Locus dargestellt ist. Exons werden als rote Punkte dargestellt, welche durch Introns (schwarze Linien) verbunden sind.

Tabelle 6: Die differenziell und signifikant durch einen STAiR18_Ex1-Knockdown regulierten Gene.Cutoff: $p \le 0,05$ und FC $\ge 3,0$. Die Daten wurden 48 h nach der Transfektion in A172-Zellen erhoben (n=3).

ProbeName	р	Regulation	FC (abs)	FC	Log FC	GeneSymbol
A_32_P62963	0,000	up	12,951	12,951	3,695	KRT16P2
A_33_P3345534	0,001	up	10,293	10,293	3,364	KRT14
A_21_P0011517	0,000	up	10,196	10,196	3,350	KRT14
A_23_P38537	0,000	up	9,761	9,761	3,287	KRT16
A_23_P139786	0,003	down	8,509	-8,509	-3,089	OASL
A_24_P887857	0,001	up	7,454	7,454	2,898	
A_24_P882732	0,004	up	6,743	6,743	2,753	
A_21_P0011578	0,004	up	6,200	6,200	2,632	
A_33_P3857239	0,001	up	6,189	6,189	2,630	KRT42P
A_24_P273143	0,000	down	6,116	-6,116	-2,613	LINC00152
A_33_P3220837	0,000	up	5,902	5,902	2,561	MAFB
A_24_P123408	0,001	down	5,642	-5,642	-2,496	ABLIM3
A_21_P0012079	0,000	down	5,410	-5,410	-2,436	MIR4435-1HG
A_23_P369899	0,007	down	5,323	-5,323	-2,412	TMEM158
A_23_P96158	0,004	up	5,180	5,180	2,373	KRT17
A_23_P252052	0,010	down	5,141	-5,141	-2,362	FILIP1L
A_23_P407206	0,003	down	5,071	-5,071	-2,342	CLN8
A_33_P3571901	0,002	down	4,951	-4,951	-2,308	LOC100287387
A_33_P3386970	0,003	down	4,943	-4,943	-2,305	
A_24_P216456	0,005	down	4,740	-4,740	-2,245	MAP1LC3C
A_24_P335092	0,043	up	4,727	4,727	2,241	SAA1
A_23_P207507	0,014	down	4,663	-4,663	-2,221	ABCC3
A_24_P265832	0,004	down	4,660	-4,660	-2,220	SUCNR1
A_24_P220485	0,020	down	4,655	-4,655	-2,219	OLFML2A
A_23_P404678	0,003	down	4,655	-4,655	-2,219	RAB3D
A_23_P48414	0,015	down	4,594	-4,594	-2,200	CCNA1
A_23_P39550	0,011	down	4,540	-4,540	-2,183	TMEM163
A_33_P3290729	0,012	down	4,460	-4,460	-2,157	POU3F2
A_23_P361584	0,028	down	4,305	-4,305	-2,106	TMEM154
A_21_P0006861	0,003	up	4,241	4,241	2,085	XLOC_008466
A_23_P46844	0,000	down	4,200	-4,200	-2,070	TRIM8
A_24_P93664	0,042	down	4,176	-4,176	-2,062	C1orf145
A_23_P31896	0,048	up	4,006	4,006	2,002	ST3GAL1
A_33_P3270668	0,041	down	3,998	-3,998	-1,999	FAM131B
A_21_P0011334	0,011	down	3,977	-3,977	-1,992	LOC101929690
A_24_P364807	0,006	down	3,964	-3,964	-1,987	LPCAT2
A_23_P94571	0,008	up	3,956	3,956	1,984	ELAVL2
A_33_P3236177	0,010	up	3,934	3,934	1,976	ANG
A_24_P120734	0,029	down	3,885	-3,885	-1,958	LINC00525

A_21_P0010620	0,007	up	3,879	3,879	1,956	XLOC_I2_000942
A_23_P110879	0,034	down	3,823	-3,823	-1,935	TRAF3IP2
A_23_P419714	0,032	down	3,792	-3,792	-1,923	BTBD11
A_23_P8452	0,011	down	3,756	-3,756	-1,909	LFNG
A_33_P3341656	0,017	down	3,738	-3,738	-1,902	MEF2D
A_24_P827037	0,000	down	3,733	-3,733	-1,900	LRRC15
A_19_P00322895	0,048	down	3,727	-3,727	-1,898	LINC00973
A_24_P941831	0,033	down	3,707	-3,707	-1,890	TMEM237
A_24_P935986	0,033	down	3,668	-3,668	-1,875	BCAT1
A_21_P0011948	0,014	down	3,665	-3,665	-1,874	
A_19_P00319646	0,042	down	3,650	-3,650	-1,868	LINC00673
A_23_P390596	0,009	down	3,619	-3,619	-1,856	PSKH1
A_33_P3225186	0,001	up	3,592	3,592	1,845	
A_33_P3289025	0,003	down	3,576	-3,576	-1,838	EVA1A
A_23_P111995	0,008	down	3,565	-3,565	-1,834	LOXL2
A_24_P212811	0,023	down	3,552	-3,552	-1,829	ANKRD34A
A_21_P0012357	0,017	down	3,523	-3,523	-1,817	
A_33_P3352019	0,001	down	3,494	-3,494	-1,805	SCARA3
A_24_P218265	0,001	down	3,478	-3,478	-1,798	TNFRSF10B
A_23_P154806	0,030	down	3,455	-3,455	-1,789	EPB41L1
A_19_P00320723	0,007	down	3,449	-3,449	-1,786	SRP14-AS1
A_24_P226970	0,010	down	3,447	-3,447	-1,785	ZNF365
A_23_P64792	0,032	up	3,444	3,444	1,784	KCNMB4
A_19_P00319528	0,022	down	3,444	-3,444	-1,784	
A_32_P138042	0,004	down	3,427	-3,427	-1,777	
A_33_P3243419	0,004	up	3,404	3,404	1,767	
A_23_P397910	0,016	up	3,403	3,403	1,767	CBLC
A_23_P125829	0,008	down	3,356	-3,356	-1,747	PGK1
A_33_P3401586	0,007	down	3,322	-3,322	-1,732	EFCAB10
A_33_P3329013	0,030	up	3,309	3,309	1,726	SSTR2
A_19_P00316109	0,024	down	3,302	-3,302	-1,723	LINC00313
A_33_P3404480	0,018	down	3,302	-3,302	-1,723	MPP4
A_21_P0005963	0,002	down	3,293	-3,293	-1,719	LOC100507420
A_23_P73809	0,023	down	3,278	-3,278	-1,713	LRCH2
A_23_P302005	0,044	down	3,274	-3,274	-1,711	STON1
A_24_P40907	0,022	down	3,258	-3,258	-1,704	PPAPDC2
A_24_P413126	0,003	down	3,249	-3,249	-1,700	PMEPA1
A_33_P3354703	0,043	up	3,241	3,241	1,696	MYADML
A_21_P0011675	0,001	down	3,238	-3,238	-1,695	XLOC_I2_006609
A_33_P3237135	0,037	down	3,227	-3,227	-1,690	MMP2
A_33_P3281795	0,012	down	3,170	-3,170	-1,664	MGLL
A_23_P53193	0,007	down	3,165	-3,165	-1,662	SYTL2
A_21_P0008795	0,025	down	3,150	-3,150	-1,656	LOC101927310

A_33_P3380647	0,017	up	3,145	3,145	1,653	FRAS1
A_23_P121795	0,014	up	3,102	3,102	1,633	SORBS2
A_21_P0004900	0,023	up	3,094	3,094	1,630	XLOC_005355
A_24_P69095	0,029	down	3,089	-3,089	-1,627	ENC1
A_33_P3354256	0,037	up	3,077	3,077	1,621	MTSS1
A_23_P77135	0,040	down	3,072	-3,072	-1,619	DPH6
A_33_P3298024	0,000	down	3,069	-3,069	-1,618	ABCC3
A_19_P00807374	0,035	up	3,064	3,064	1,616	XLOC_l2_010558
A_23_P109034	0,026	down	3,054	-3,054	-1,611	SDC4
A_23_P383227	0,034	up	3,050	3,050	1,609	S100A1
A_33_P3330079	0,034	down	3,049	-3,049	-1,608	LOC100128242
A_23_P205778	0,021	down	3,042	-3,042	-1,605	GNB5
A_32_P743407	0,006	down	3,036	-3,036	-1,602	GLYR1
A_21_P0005745	0,022	down	3,034	-3,034	-1,601	
A_23_P212800	0,024	down	3,029	-3,029	-1,599	FGF5
A_24_P294821	0,001	down	3,024	-3,024	-1,597	SYNJ2
A_23_P163567	0,027	up	3,005	3,005	1,587	SMPD3
A_23_P47924	0,001	down	3,004	-3,004	-1,587	PTPRR
A_33_P3398411	0,008	down	3,000	-3,000	-1,585	RASSF3

Tabelle 7: Die differenziell und signifikant durch einen STAiR18_Ex2-Knockdown regulierten Gene.Cutoff: $p \le 0,05$ und FC $\ge 3,0$. Die Daten wurden 48 h nach der Transfektion in A172-Zellen erhoben (n=3).

ProbeName	р		Regulation	FC (abs)	FC	Log FC	GeneSymbol
A_23_P216448	(0,004	down	6,016	-6,016	-2,589	NFIB
A_24_P658427	(0,035	down	5,605	-5,605	-2,487	NFIB
A_24_P237270	(0,008	up	4,837	4,837	2,274	ADORA2A
A_23_P382705	(0,018	down	4,492	-4,492	-2,167	TMTC2
A_21_P0008712	(0,047	up	4,354	4,354	2,122	XLOC_011406
A_21_P0004898	(0,015	up	4,184	4,184	2,065	XLOC_005347
A_24_P366607	(0,018	up	4,119	4,119	2,042	SERTM1
A_21_P0007514	(0,032	up	3,843	3,843	1,942	XLOC_009626
A_21_P0003468	(0,010	up	3,772	3,772	1,915	
A_33_P3805819	(0,021	up	3,740	3,740	1,903	SORCS3-AS1
A_21_P0005276	(0,023	up	3,675	3,675	1,878	LINC00689
A_21_P0002218	(0,019	down	3,668	-3,668	-1,875	EML6
A_21_P0010620	(0,009	up	3,582	3,582	1,841	XLOC_I2_000942
A_21_P0001880	(0,021	up	3,552	3,552	1,829	LINC01293
A_33_P3320082	(0,002	down	3,545	-3,545	-1,826	NFIB
A_21_P0007196	(0,025	up	3,464	3,464	1,792	XLOC_009112
A_21_P0012529	(0,034	up	3,384	3,384	1,759	LOC101927347
A 33 P3303890	(0,042	down	3,342	-3,342	-1,741	OR52A4

A_21_P0002662	0,009	up	3,323	3,323	1,733	XLOC_002120
A_21_P0011981	0,030	up	3,314	3,314	1,729	LOC101927217
A_21_P0004994	0,026	up	3,312	3,312	1,728	XLOC_005589
A_33_P3343506	0,003	up	3,306	3,306	1,725	OR5M3
A_24_P245838	0,008	down	3,257	-3,257	-1,704	MGAT3
A_33_P3348569	0,021	up	3,256	3,256	1,703	OR9G4
A_33_P3296707	0,034	down	3,252	-3,252	-1,702	FAM127C
A_21_P0008349	0,037	down	3,252	-3,252	-1,701	
A_23_P17393	0,044	down	3,221	-3,221	-1,688	CSE1L
A_23_P332713	0,006	down	3,205	-3,205	-1,680	ZFR2
A_21_P0000645	0,049	up	3,180	3,180	1,669	APCDD1L-AS1
A_21_P0002736	0,040	up	3,162	3,162	1,661	LOC101929859
A_23_P37068	0,012	down	3,118	-3,118	-1,641	TRAF3
A_23_P370666	0,003	up	3,102	3,102	1,633	GLYATL1
A_21_P0008216	0,028	up	3,094	3,094	1,630	XLOC_010724
A_21_P0010346	0,011	up	3,078	3,078	1,622	
A_21_P0012933	0,046	up	3,070	3,070	1,618	LOC643201
A_32_P47157	0,020	up	3,058	3,058	1,613	LINC00950
A_21_P0003867	0,047	up	3,049	3,049	1,608	XLOC_003805
A_33_P3315659	0,032	down	3,044	-3,044	-1,606	
A_21_P0005375	0,044	up	3,024	3,024	1,596	XLOC_006062
A_21_P0002600	0,007	down	3,013	-3,013	-1,591	XLOC_001556

Tabelle 8: Die differenziell und signifikant durch einen STAiR18_ExK-Knockdown regulierten Gene. Cutoff:

 $p \le 0,05$ und FC $\ge 3,0$. Die Daten wurden 48 h nach der Transfektion in A172-Zellen erhoben (n=3).

ProbeName	р	Regulation	FC (abs)	FC	Log FC	GeneSymbol
A_33_P3393200	0,0	16 up	19,249	19,249	4,267	SRRM4
A_33_P3402419	0,0	37 up	12,074	12,074	3,594	
A_33_P3393010	0,0	01 up	7,586	7,586	2,923	PKDCC
A_33_P3241135	0,0	44 up	7,146	7,146	2,837	GRM8
A_21_P0001862	0,0	40 up	7,032	7,032	2,814	
A_21_P0006332	0,0	45 up	6,763	6,763	2,758	XLOC_007892
A_23_P114862	0,0	29 up	6,690	6,690	2,742	ANGPTL7
A_23_P88865	0,0	00 down	6,667	-6,667	-2,737	CMTM3
A_33_P3242693	0,0	46 up	6,664	6,664	2,736	SLC22A11
A_21_P0008216	0,0	05 up	6,564	6,564	2,715	XLOC_010724
A_23_P215461	0,0	10 down	6,246	-6,246	-2,643	LIMK1
A_24_P701776	0,0	29 up	5,772	5,772	2,529	ARHGEF35
A_24_P97526	0,0	25 down	5,655	-5 <i>,</i> 655	-2,499	CMTM6
A_33_P3778618	0,0	42 up	5,598	5 <i>,</i> 598	2,485	PACRG-AS1
A_21_P0001047	0,0	45 up	5 <i>,</i> 598	5 <i>,</i> 598	2,485	

A_33_P3539345	0,029	down	5,591	-5,591	-2,483	MYO6
A_24_P344516	0,047	up	5,415	5,415	2,437	ZNF702P
A_33_P3340342	0,000	down	5,218	-5,218	-2,384	CMTM3
A_23_P211957	0,013	down	4,985	-4,985	-2,318	TGFBR2
A_33_P3298216	0,021	up	4,683	4,683	2,227	MYO16
A_21_P0008417	0,036	up	4,513	4,513	2,174	XLOC_010988
A_23_P142574	0,038	up	4,489	4,489	2,166	MOGAT1
A_24_P388528	0,035	down	4,476	-4,476	-2,162	ST6GAL1
A_21_P0007540	0,036	up	4,459	4,459	2,157	XLOC_009706
A_33_P3270956	0,040	up	4,393	4,393	2,135	SAMD12
A_33_P3276748	0,026	up	4,283	4,283	2,099	LOC100128573
A_23_P369899	0,042	down	4,237	-4,237	-2,083	TMEM158
A_21_P0009466	0,047	up	4,237	4,237	2,083	
A_21_P0001323	0,037	up	4,228	4,228	2,080	XLOC_000263
A_21_P0004122	0,032	up	4,207	4,207	2,073	
A_21_P0000427	0,032	up	4,200	4,200	2,071	SNORD114-30
A_33_P3213311	0,002	up	4,151	4,151	2,054	
A_21_P0013530	0,023	up	4,097	4,097	2,034	XLOC_I2_014086
A_21_P0004291	0,030	up	4,058	4,058	2,021	XLOC_004539
A_21_P0001644	0,001	up	4,057	4,057	2,020	XLOC_001265
A_33_P3339269	0,032	up	4,048	4,048	2,017	
A_21_P0000645	0,047	up	4,047	4,047	2,017	APCDD1L-AS1
A_33_P3403242	0,006	up	4,042	4,042	2,015	
A_24_P326398	0,016	up	4,042	4,042	2,015	CRB2
A_32_P228167	0,008	up	4,034	4,034	2,012	C12orf50
A_33_P3387493	0,003	up	3,975	3,975	1,991	FTH1P18
A_21_P0007636	0,046	up	3,967	3,967	1,988	XLOC_009896
A_21_P0006895	0,022	up	3,942	3,942	1,979	XLOC_008561
A_33_P3267305	0,003	down	3,940	-3,940	-1,978	ANKRD52
A_21_P0010854	0,034	up	3,899	3,899	1,963	AKR1CL1
A_23_P129332	0,036	up	3,878	3,878	1,955	PKD1L2
A_33_P3216819	0,050	up	3,814	3,814	1,931	SPATA31D4
A_33_P3309289	0,002	up	3,812	3,812	1,931	ST3GAL4
A_23_P81369	0,023	down	3,804	-3,804	-1,928	ADAM19
A_32_P218355	0,009	up	3,792	3,792	1,923	C6orf132
A_21_P0006750	0,036	up	3,779	3,779	1,918	
A_23_P100654	0,023	down	3,769	-3,769	-1,914	ZBTB4
A_23_P142310	0,010	down	3,746	-3,746	-1,905	MKNK2
A_33_P3286066	0,042	down	3,742	-3,742	-1,904	PHLDB2
A_24_P751074	0,031	down	3,721	-3,721	-1,896	ETS1
A_23_P328259	0,020	up	3,710	3,710	1,892	FHDC1
A_21_P0001880	0,033	up	3,702	3,702	1,888	LINC01293
A 21 P0013150	0,046	up	3,699	3,699	1,887	LOC100422737

A_2	23_P131676	0,006	up	3,649	3,649	1,867	ACKR3
A_2	21_P0004396	0,028	up	3,635	3,635	1,862	XLOC_004832
A_2	24_P933418	0,033	down	3,618	-3,618	-1,855	ABI2
A_2	24_P933908	0,040	up	3,617	3,617	1,855	GPNMB
A_3	33_P3211198	0,036	up	3,600	3,600	1,848	NCMAP
A_2	21_P0002325	0,017	up	3,580	3,580	1,840	LOC101927156
A_2	21_P0005049	0,027	up	3,579	3,579	1,840	XLOC_005803
A_2	23_P118246	0,049	down	3,567	-3,567	-1,835	GINS2
A_2	24_P225970	0,045	down	3,561	-3,561	-1,832	SGOL1
A_2	23_P118406	0,001	down	3,544	-3,544	-1,825	C17orf62
A_2	23_P391228	0,002	down	3,535	-3,535	-1,822	MANEAL
A_2	21_P0010620	0,043	up	3,532	3,532	1,820	XLOC_I2_000942
A_2	21_P0012972	0,019	up	3,529	3,529	1,819	
A_3	33_P3290800	0,013	up	3,521	3,521	1,816	DDX26B
A_2	21_P0006106	0,039	up	3,514	3,514	1,813	
A_2	21_P0001535	0,018	up	3,513	3,513	1,813	XLOC_000904
A_2	21_P0003790	0,049	up	3,510	3,510	1,811	XLOC_004141
A_2	21_P0014161	0,044	up	3,503	3,503	1,809	LOC100505711
A_2	24_P357847	0 <i>,</i> 034	up	3,467	3,467	1,794	
A_2	23_P96383	0,029	down	3,448	-3,448	-1,786	SRPX
A_2	21_P0010271	0,009	up	3,444	3,444	1,784	XLOC_014010
A_3	33_P3306103	0,031	down	3,441	-3,441	-1,783	CALCRL
A_2	21_P0000060	0,003	up	3,432	3,432	1,779	FRAS1
A_2	23_P118571	0,001	up	3,428	3,428	1,778	SOST
A_2	23_P46351	0,015	down	3,421	-3,421	-1,774	TDRKH
A_2	23_P15864	0,017	down	3,419	-3,419	-1,774	MBD2
A_2	24_P82957	0,045	down	3,413	-3,413	-1,771	RNF114
A_2	24_P107336	0,030	down	3,401	-3,401	-1,766	VPS26B
A_2	21_P0001444	0,014	up	3,389	3,389	1,761	XLOC_000638
A_2	21_P0006359	0,049	up	3,388	3,388	1,760	XLOC_007475
A_2	23_P77304	0,025	up	3,378	3,378	1,756	AP3B2
A_2	24_P299318	0,029	down	3,365	-3,365	-1,750	FAM101B
A_2	23_P374082	0,009	down	3,359	-3,359	-1,748	ADAM19
A_2	23_P329340	0,039	up	3,357	3,357	1,747	DNAH3
A_2	21_P0014006	0,034	up	3,332	3,332	1,736	LOC102724286
A_2	21_P0010053	0,030	up	3,332	3,332	1,736	XLOC_013779
A_2	23_P146444	0,021	down	3,326	-3,326	-1,734	CORO2A
A_2	21_P0012529	0,034	up	3,318	3,318	1,730	LOC101927347
A_2	24_P218265	0,036	down	3,314	-3,314	-1,729	TNFRSF10B
A_3	33_P3238285	0,031	up	3,312	3,312	1,728	INE2
A_2	23_P94660	0,030	down	3,302	-3,302	-1,723	TBC1D13
A_2	23_P67725	0,021	down	3,291	-3,291	-1,719	LMNB2
A_3	32_P207169	0,004	down	3,286	-3,286	-1,716	SERTAD4-AS1

A_33_P3335614	0,017	up	3,285	3,285	1,716	LINC00696
A_21_P0011517	0,031	up	3,285	3,285	1,716	KRT14
A_24_P500422	0,017	down	3,275	-3,275	-1,712	LOC730101
A_24_P943393	0,039	down	3,259	-3,259	-1,704	AHNAK
A_33_P3399638	0,028	up	3,251	3,251	1,701	ZNF257
A_23_P404667	0,032	up	3,251	3,251	1,701	BIK
A_33_P3325097	0,021	up	3,250	3,250	1,701	
A_33_P3287223	0,045	up	3,244	3,244	1,698	DPP4
A_33_P3511265	0,027	down	3,235	-3,235	-1,694	POSTN
A_33_P3393617	0,032	up	3,234	3,234	1,693	
A_23_P100764	0,007	down	3,231	-3,231	-1,692	SLC25A39
A_33_P3682006	0,040	up	3,231	3,231	1,692	DBH-AS1
A_23_P36187	0,048	up	3,221	3,221	1,688	SYT8
A_21_P0005661	0,046	up	3,218	3,218	1,686	XLOC_006724
A_21_P0009689	0,034	up	3,210	3,210	1,683	
A_23_P357284	0,024	up	3,210	3,210	1,682	GPR4
A_21_P0008816	0,035	up	3,206	3,206	1,681	XLOC_011183
A_21_P0002356	0,018	up	3,195	3,195	1,676	XLOC_001870
A_33_P3345881	0,050	up	3,188	3,188	1,673	
A_23_P103919	0,018	down	3,180	-3,180	-1,669	B4GALT3
A_23_P390596	0,002	down	3,179	-3,179	-1,669	PSKH1
A_23_P431139	0,016	up	3,172	3,172	1,665	CTRB1
A_21_P0000653	0,042	up	3,159	3,159	1,659	SBF2-AS1
A_32_P152696	0,024	down	3,134	-3,134	-1,648	
A_21_P0004742	0,030	up	3,126	3,126	1,644	
A_24_P185368	0,046	up	3,116	3,116	1,640	ZSCAN4
A_24_P136758	0,004	down	3,114	-3,114	-1,639	SAMD4B
A_33_P3213832	0,047	up	3,110	3,110	1,637	
A_23_P151805	0,014	down	3,100	-3,100	-1,632	FBLN5
A_23_P361419	0,021	down	3,100	-3,100	-1,632	DEPDC1B
A_33_P3258607	0,033	up	3,091	3,091	1,628	LOC100506422
A_24_P306304	0,020	up	3,086	3,086	1,626	PRAMEF16
A_21_P0011351	0,034	up	3,077	3,077	1,621	XLOC_I2_004843
A_24_P224727	0,019	down	3,074	-3,074	-1,620	CEBPA
A_23_P56787	0,046	down	3,061	-3,061	-1,614	CNTNAP5
A_24_P419300	0,035	down	3,059	-3,059	-1,613	PP7080
A_21_P0008069	0,046	up	3,055	3,055	1,611	XLOC_010407
A_21_P0012412	0,013	up	3,047	3,047	1,607	EGFEM1P
A_33_P3461258	0,031	up	3,043	3,043	1,605	DEFA11P
A_24_P23921	0,049	up	3,036	3,036	1,602	C17orf98
A_23_P133691	0,013	down	3,031	-3,031	-1,600	RRAGD
A_21_P0012694	0,020	up	3,016	3,016	1,593	XLOC_l2_011327
A 21 P0001165	0,040	up	3,012	3,012	1,591	KCNC4-AS1

Tabelle 9: Die differenziell und signifikant durch einen STAiR18_Ex3-Knockdown regulierten Gene. Cutof
p ≤ 0,05 und FC ≥ 3,0. Die Daten wurden 48 h nach der Transfektion in A172-Zellen erhoben (n=3).

ProbeName	р		Regulation	FC (abs)	FC	Log FC	GeneSymbol
A_21_P0005398		0,046	up	10,392	10,392	3,377	XLOC_006166
A_23_P17769		0,020	down	8,243	-8,243	-3,043	DDT
A_23_P202143		0,021	down	8,140	-8,140	-3,025	NOLC1
A_24_P322474		0,004	up	6,450	6,450	2,689	PDE4A
A_24_P366607		0,028	up	6,361	6,361	2,669	SERTM1
A_33_P3412262		0,018	down	5,790	-5,790	-2,534	JAKMIP2-AS1
A_23_P258944		0,029	down	5,633	-5,633	-2,494	DNAJB9
A_24_P237270		0,001	up	5,495	5,495	2,458	ADORA2A
A_32_P41065		0,006	down	5,487	-5,487	-2,456	TMCC1
A_23_P53126		0,012	up	5,417	5,417	2,437	LMO2
A_23_P90679		0,016	down	5,406	-5,406	-2,435	STRADB
A_23_P36611		0,035	down	5,368	-5,368	-2,424	APAF1
A_23_P6914		0,048	down	5,319	-5,319	-2,411	OSBPL11
A_24_P71244		0,013	down	5,277	-5,277	-2,400	PIK3CD
A_19_P00318559		0,005	up	5,251	5,251	2,393	LINC01021
A_33_P3395206		0,008	up	5,239	5,239	2,389	
A_21_P0006028		0,013	up	5,234	5,234	2,388	TCERG1L-AS1
A_23_P1331		0,022	up	5,234	5,234	2,388	COL13A1
A_23_P94552		0,002	down	5,200	-5,200	-2,379	TMEM2
A_19_P00321089		0,000	ир	4,950	4,950	2,308	LINC00963
A_23_P168211		0,008	down	4,930	-4,930	-2,302	VOPP1
A_33_P3421656		0,012	up	4,806	4,806	2,265	TINAG
A_23_P92057		0,033	down	4,680	-4,680	-2,227	PIK3CA
A_33_P3390708		0,009	down	4,665	-4,665	-2,222	TMEM2
A_23_P61149		0,046	up	4,646	4,646	2,216	INPP5D
A_23_P104188		0,006	down	4,632	-4,632	-2,212	ELF3
A_23_P62890		0,002	down	4,628	-4,628	-2,210	GBP1
A_21_P0011948		0,018	down	4,627	-4,627	-2,210	
A_24_P131236		0,000	down	4,609	-4,609	-2,204	SV2A
A_23_P19291		0,001	down	4,517	-4,517	-2,175	TUBB2A
A_33_P3511265		0,012	down	4,480	-4,480	-2,164	POSTN
A_23_P214267		0,037	up	4,284	4,284	2,099	GPR110
A_21_P0013139		0,026	up	4,283	4,283	2,099	LOC102724609
A_23_P252052		0,033	down	4,254	-4,254	-2,089	FILIP1L
A_24_P158089		0,023	down	4,216	-4,216	-2,076	SERPINE1
A_24_P497464		0,015	up	4,183	4,183	2,064	SOX9-AS1
A_23_P212339		0,012	down	4,179	-4,179	-2,063	FYCO1
A_24_P113824		0,001	down	4,147	-4,147	-2,052	TMEM50A
A 24 P144439		0,019	up	4,141	4,141	2.050	EFHB

A_23_P168882	0,007	up	4,112	4,112	2,040	TP53INP1
A_24_P319364	0,003	down	4,057	-4,057	-2,020	F11R
A_23_P117546	0,031	down	4,033	-4,033	-2,012	SOS2
A_33_P3421163	0,002	up	3,965	3,965	1,987	TP53INP1
A_33_P3214650	0,042	down	3,964	-3,964	-1,987	TAP2
A_23_P16523	0,030	up	3,922	3,922	1,972	GDF15
A_24_P40907	0,021	down	3,896	-3,896	-1,962	PPAPDC2
A_33_P3220833	0,037	down	3,869	-3,869	-1,952	ΡΑΚ2
A_21_P0011126	0,033	down	3,864	-3,864	-1,950	NUS1
A_24_P753161	0,028	down	3,826	-3,826	-1,936	BMPR2
A_21_P0002784	0,008	up	3,819	3,819	1,933	
A_23_P134125	0,002	up	3,815	3,815	1,932	MAP3K5
A_21_P0001478	0,011	up	3,812	3,812	1,930	XLOC_000737
A_21_P0011957	0,025	up	3,811	3,811	1,930	XLOC_I2_008221
A_33_P3281283	0,022	down	3,757	-3,757	-1,910	S1PR3
A_23_P94703	0,022	down	3,754	-3,754	-1,909	TOR1B
A_23_P151506	0,001	up	3,751	3,751	1,907	PLEK2
A_23_P98900	0,005	down	3,750	-3,750	-1,907	CCDC92
A_21_P0007540	0,007	up	3,746	3,746	1,905	XLOC_009706
A_23_P93562	0,012	up	3,694	3,694	1,885	SESN1
A_23_P54612	0,014	up	3,683	3,683	1,881	DNAAF1
A_33_P3565342	0,025	up	3,679	3,679	1,879	LOC400644
A_33_P3396692	0,014	down	3,664	-3,664	-1,873	SSR1
A_21_P0014310	0,001	up	3,634	3,634	1,862	GS52
A_23_P45166	0,002	down	3,590	-3,590	-1,844	PROSC
A_33_P3277714	0,004	up	3,574	3,574	1,837	BACH2
A_23_P410965	0,000	down	3,564	-3,564	-1,833	KIAA1522
A_23_P126869	0,045	up	3,552	3,552	1,828	PADI3
A_23_P338603	0,028	down	3,551	-3,551	-1,828	CHCHD7
A_33_P3346643	0,041	up	3,533	3,533	1,821	
A_21_P0010425	0,024	up	3,533	3,533	1,821	XLOC_014278
A_24_P299318	0,013	down	3,532	-3,532	-1,821	FAM101B
A_23_P371824	0,028	down	3,527	-3,527	-1,819	TUFT1
A_24_P935986	0,028	down	3,501	-3,501	-1,808	BCAT1
A_33_P3288329	0,022	up	3,488	3,488	1,802	SORBS1
A_23_P380614	0,004	down	3,473	-3,473	-1,796	ATP9A
A_21_P0011003	0,016	up	3,472	3,472	1,796	XLOC_I2_002537
A_21_P0002278	0,050	up	3,451	3,451	1,787	XLOC_001641
A_23_P216108	0,001	up	3,446	3,446	1,785	ANK1
A_21_P0012785	0,020	up	3,441	3,441	1,783	XLOC_I2_011218
A_32_P112881	0,017	down	3,424	-3,424	-1,776	SNX12
A_21_P0002460	0,011	down	3,422	-3,422	-1,775	XLOC_002160
A_21_P0013916	0,036	up	3,408	3,408	1,769	ANKRD62

A_23_P109171	0,004	up	3,375	3,375	1,755	BFSP1
A_21_P0002779	0,008	up	3,373	3,373	1,754	TM4SF1-AS1
A_23_P142574	0,001	up	3,368	3,368	1,752	MOGAT1
A_24_P11900	0,029	up	3,363	3,363	1,750	MYH15
A_24_P860797	0,038	down	3,361	-3,361	-1,749	PAIP2B
A_23_P81369	0,043	down	3,349	-3,349	-1,744	ADAM19
A_33_P3278475	0,007	down	3,347	-3,347	-1,743	FOXN2
A_23_P407142	0,000	down	3,344	-3,344	-1,742	LUZP1
A_24_P827037	0,003	down	3,344	-3,344	-1,741	LRRC15
A_33_P3323136	0,007	up	3,309	3,309	1,727	ENKUR
A_33_P3238425	0,049	up	3,308	3,308	1,726	SLC2A7
A_33_P3319276	0,033	up	3,306	3,306	1,725	FAM178B
A_33_P3296707	0,028	down	3,298	-3,298	-1,722	FAM127C
A_21_P0004122	0,032	up	3,297	3,297	1,721	
A_21_P0014365	0,000	up	3,289	3,289	1,718	MTCL1-AS1
A_23_P132226	0,019	down	3,273	-3,273	-1,711	TPST2
A_33_P3270104	0,039	up	3,261	3,261	1,705	FAM26D
A_21_P0008237	0,047	up	3,259	3,259	1,705	XLOC_010419
A_21_P0013405	0,019	up	3,257	3,257	1,704	XLOC_l2_013577
A_21_P0003373	0,042	up	3,230	3,230	1,691	
A_21_P0000571	0,048	up	3,203	3,203	1,679	ADORA2A-AS1
A_23_P146284	0,027	down	3,202	-3,202	-1,679	SQLE
A_24_P772436	0,040	up	3,199	3,199	1,678	DCTN1-AS1
A_24_P105733	0,036	down	3,184	-3,184	-1,671	TNS1
A_19_P00322531	0,038	down	3,180	-3,180	-1,669	CRNDE
A_21_P0008821	0,016	up	3,179	3,179	1,669	LOC102725022
A_21_P0008922	0,025	up	3,178	3,178	1,668	XLOC_011694
A_32_P36694	0,012	down	3,170	-3,170	-1,664	JAZF1
A_33_P3307465	0,013	up	3,169	3,169	1,664	LOC100130817
A_21_P0011162	0,014	up	3,168	3,168	1,663	XLOC_I2_003843
A_19_P00316144	0,024	up	3,165	3,165	1,662	
A_33_P3370404	0,001	down	3,156	-3,156	-1,658	PANX1
A_32_P137783	0,002	up	3,147	3,147	1,654	LOC101929926
A_32_P52153	0,002	up	3,134	3,134	1,648	UNC5B-AS1
A_24_P331704	0,002	down	3,133	-3,133	-1,648	KRT80
A_33_P3433873	0,048	down	3,125	-3,125	-1,644	ZWILCH
A_21_P0001905	0,037	up	3,120	3,120	1,642	XLOC_001627
A_21_P0007405	0,045	up	3,118	3,118	1,641	XLOC_009564
A_21_P0001385	0,023	up	3,116	3,116	1,640	XLOC_000456
A_21_P0002662	0,013	up	3,106	3,106	1,635	XLOC_002120
A_24_P73730	0,049	up	3,105	3,105	1,635	CCDC113
A_24_P8371	0,027	down	3,102	-3,102	-1,633	SPNS2
A_21_P0005049	0,045	up	3,090	3,090	1,628	XLOC_005803

A_33_P3211229	0,005	down	3,084	-3,084	-1,625	SLC35F2
A_33_P3359160	0,005	down	3,079	-3,079	-1,622	FAM189B
A_23_P67980	0,025	down	3,070	-3,070	-1,618	KLF7
A_23_P201628	0,018	down	3,059	-3,059	-1,613	LAMC1
A_21_P0002539	0,047	up	3,054	3,054	1,611	XLOC_002478
A_23_P250302	0,035	up	3,053	3,053	1,610	CCR3
A_23_P368896	0,004	down	3,042	-3,042	-1,605	SNX12
A_33_P3375314	0,000	down	3,035	-3,035	-1,602	ATP9A
A_33_P3348569	0,039	up	3,019	3,019	1,594	OR9G4
A_23_P363896	0,002	down	3,001	-3,001	-1,585	LRRC75A-AS1

Tabelle 10: Die differenziell und signifikant durch einen STAiR18_Ex7-Knockdown regulierten Gene. Cutoff:

 $p \le 0,05$ und FC $\ge 3,0$. Die Daten wurden 48 h nach der Transfektion in A172-Zellen erhoben (n=3).

ProbeName	р	Regulation	FC (abs)	FC	Log FC	GeneSymbol
A_21_P0011948	0,024	down	12,972	-12,972	-3,697	
A_24_P886040	0,005	down	9,468	-9,468	-3,243	DCP2
A_23_P97423	0,005	down	8,301	-8,301	-3,053	UBE2Q1
A_32_P52816	0,004	down	7,884	-7,884	-2,979	TM7SF3
A_33_P3832857	0,007	down	7,366	-7,366	-2,881	HAUS2
A_24_P137434	0,007	down	6,409	-6,409	-2,680	DCBLD2
A_23_P40025	0,017	down	6,219	-6,219	-2,637	DAZAP2
A_24_P940125	0,043	down	6,064	-6,064	-2,600	CNOT6
A_24_P160874	0,020	down	6,036	-6,036	-2,594	DUT
A_23_P335428	0,001	down	5,992	-5,992	-2,583	HIBADH
A_23_P64121	0,000	down	5 <i>,</i> 458	-5 <i>,</i> 458	-2,448	KIAA1549L
A_33_P3278293	0,005	down	5,351	-5,351	-2,420	METTL16
A_33_P3276918	0,000	down	5,291	-5,291	-2,403	FAM64A
A_23_P323751	0,009	down	5,263	-5,263	-2,396	FAM83D
A_23_P218047	0,031	down	5,181	-5,181	-2,373	KRT5
A_23_P81650	0,001	down	5,068	-5,068	-2,342	C5orf15
A_33_P3277898	0,019	up	4,940	4,940	2,305	VSTM2A
A_23_P321354	0,026	up	4,933	4,933	2,303	TMEM71
A_33_P3284734	0,012	up	4,874	4,874	2,285	
A_23_P361419	0,035	down	4,666	-4,666	-2,222	DEPDC1B
A_32_P78101	0,038	down	4,648	-4,648	-2,217	IGSF21
A_33_P3348569	0,023	up	4,592	4,592	2,199	OR9G4
A_23_P435501	0,000	down	4,540	-4,540	-2,183	SERINC3
A_33_P3231888	0,013	down	4,489	-4,489	-2,166	C5orf15
A_21_P0011162	0,016	up	4,406	4,406	2,139	XLOC_I2_003843
A_24_P237270	0,032	up	4,399	4,399	2,137	ADORA2A
A_21_P0002651	0,009	up	4,397	4,397	2,136	XLOC_002010

A_33_P3214650	0,016	down	4,393	-4,393	-2,135	TAP2
A_23_P80940	0,008	down	4,328	-4,328	-2,114	PPAT
A_23_P167276	0,033	down	4,322	-4,322	-2,112	PAQR3
A_24_P313186	0,000	down	4,256	-4,256	-2,090	CALM1
A_21_P0004492	0,008	up	4,245	4,245	2,086	XLOC_004308
A_23_P256956	0,003	down	4,233	-4,233	-2,082	KIF20A
A_23_P390700	0,015	down	4,212	-4,212	-2,074	CNTN1
A_23_P369899	0,008	down	4,066	-4,066	-2,023	TMEM158
A_21_P0014704	0,021	down	4,062	-4,062	-2,022	
A_23_P357881	0,034	up	4,052	4,052	2,019	CD8B
A_32_P36694	0,017	down	4,052	-4,052	-2,019	JAZF1
A_23_P72668	0,001	down	4,043	-4,043	-2,015	SDPR
A_21_P0002662	0,013	up	4,032	4,032	2,012	XLOC_002120
A_24_P419132	0,022	down	4,027	-4,027	-2,010	CENPI
A_21_P0001596	0,018	up	4,002	4,002	2,001	XLOC_001081
A_23_P112251	0,009	down	3,932	-3,932	-1,975	GNG10
A_23_P131676	0,036	up	3,929	3,929	1,974	ACKR3
A_23_P211627	0,007	down	3,917	-3,917	-1,970	NUP50
A_23_P53126	0,015	up	3,905	3,905	1,965	LMO2
A_24_P413884	0,006	down	3,887	-3,887	-1,959	CENPA
A_23_P379794	0,020	down	3,882	-3,882	-1,957	PIGW
A_23_P257895	0,002	down	3,875	-3,875	-1,954	MAPK1
A_24_P244699	0,005	down	3,874	-3,874	-1,954	NUDT15
A_32_P186027	0,001	down	3,871	-3,871	-1,953	ANP32A
A_23_P88484	0,001	down	3,861	-3,861	-1,949	DUT
A_32_P51905	0,024	down	3,837	-3,837	-1,940	KIAA1191
A_33_P3273063	0,006	down	3,808	-3,808	-1,929	NUP43
A_23_P156310	0,004	down	3,802	-3,802	-1,927	SKP2
A_23_P113701	0,004	down	3,773	-3,773	-1,916	PDGFA
A_23_P45294	0,006	down	3,768	-3,768	-1,914	FAM199X
A_23_P253177	0,003	down	3,738	-3,738	-1,902	STK24
A_32_P18470	0,013	down	3,720	-3,720	-1,895	TCEAL5
A_33_P3234118	0,009	down	3,710	-3,710	-1,891	FAM122B
A_23_P82868	0,040	down	3,701	-3,701	-1,888	PLAT
A_33_P3242883	0,021	up	3,698	3,698	1,887	DLX6
A_23_P5778	0,004	up	3,680	3,680	1,880	RAB17
A_23_P19663	0,042	down	3,675	-3,675	-1,878	CTGF
A_23_P54000	0,008	down	3,655	-3,655	-1,870	SNX6
A_24_P166613	0,033	down	3,650	-3,650	-1,868	EPDR1
A_33_P3335975	0,001	up	3,645	3,645	1,866	LOC100128176
A_21_P0014669	0,026	up	3,642	3,642	1,865	ZNF518A
A_23_P327140	0,009	down	3,623	-3,623	-1,857	RNF213
A_24_P69538	0,005	ир	3,602	3,602	1,849	TLR4

A_23_P149545	0,014	down	3,593	-3,593	-1,845	HIST2H2BE
A_23_P12533	0,008	up	3,585	3,585	1,842	ANKRD30A
A_23_P25994	0,024	down	3,553	-3,553	-1,829	LGMN
A_33_P3343506	0,031	up	3,541	3,541	1,824	OR5M3
A_23_P7873	0,014	down	3,538	-3,538	-1,823	MCM3
A_23_P20196	0,001	down	3,536	-3,536	-1,822	ARPC1B
A_21_P0003954	0,007	up	3,532	3,532	1,821	
A_21_P0005647	0,017	up	3,511	3,511	1,812	
A_21_P0007581	0,015	up	3,490	3,490	1,803	XLOC_009804
A_21_P0004739	0,042	up	3,487	3,487	1,802	
A_21_P0003592	0,035	up	3,481	3,481	1,800	
A_32_P514599	0,002	down	3,465	-3,465	-1,793	
A_23_P417173	0,014	up	3,460	3,460	1,791	KCNA5
A_23_P121196	0,006	down	3,451	-3,451	-1,787	TMEM43
A_23_P91829	0,000	down	3,444	-3,444	-1,784	DCBLD2
A_21_P0007359	0,026	up	3,430	3,430	1,778	LOC102723765
A_21_P0007540	0,040	up	3,427	3,427	1,777	XLOC_009706
A_33_P3357445	0,011	down	3,416	-3,416	-1,772	TDG
A_23_P218988	0,009	down	3,415	-3,415	-1,772	SLC30A5
A_33_P3393617	0,017	up	3,408	3,408	1,769	
A_21_P0011058	0,020	up	3,404	3,404	1,767	OTOGL
A_33_P3397530	0,029	up	3,397	3,397	1,764	OR812
A_23_P3302	0,038	down	3,388	-3,388	-1,760	MNS1
A_19_P00322418	0,001	up	3,377	3,377	1,756	OXR1
A_21_P0005116	0,011	up	3,375	3,375	1,755	LOC101928353
A_33_P3276693	0,003	up	3,374	3,374	1,755	PGF
A_23_P112260	0,008	down	3,369	-3,369	-1,752	GNG10
A_23_P23924	0,048	down	3,368	-3,368	-1,752	CAPN2
A_23_P200222	0,016	down	3,366	-3,366	-1,751	LRP8
A_33_P3361202	0,015	down	3,353	-3,353	-1,746	CCSAP
A_33_P3242952	0,006	down	3,350	-3,350	-1,744	FAM72A
A_33_P3295625	0,007	up	3,342	3,342	1,741	MED27
A_23_P26759	0,006	down	3,325	-3,325	-1,734	CANT1
A_21_P0009246	0,020	up	3,321	3,321	1,731	XLOC_012199
A_23_P301521	0,009	up	3,311	3,311	1,727	KIAA1462
A_23_P81241	0,001	down	3,281	-3,281	-1,714	NDFIP1
A_33_P3212615	0,018	down	3,269	-3,269	-1,709	TFPI
A_21_P0008940	0,023	up	3,263	3,263	1,706	XLOC_011722
A_33_P3362567	0,007	down	3,260	-3,260	-1,705	
A_21_P0002033	0,049	up	3,256	3,256	1,703	
A_24_P51061	0,027	down	3,255	-3,255	-1,702	DCBLD2
A_24_P153831	0,041	up	3,251	3,251	1,701	CTNNA3
A_21_P0008986	0,030	ир	3,236	3,236	1,694	LINC01082

A_21_P0005030	0,021	up	3,232	3,232	1,692	XLOC_005748
A_33_P3330120	0,029	up	3,230	3,230	1,692	
A_21_P0007436	0,012	up	3,227	3,227	1,690	XLOC_009143
A_24_P330303	0,024	down	3,217	-3,217	-1,686	FRMD6
A_32_P182662	0,010	down	3,214	-3,214	-1,685	AIDA
A_33_P3901921	0,046	down	3,213	-3,213	-1,684	PARPBP
A_21_P0014006	0,010	up	3,204	3,204	1,680	LOC102724286
A_21_P0009440	0,016	up	3,204	3,204	1,680	XLOC_012609
A_24_P107859	0,048	down	3,203	-3,203	-1,679	SPRED1
A_32_P116206	0,036	down	3,197	-3,197	-1,677	RELL1
A_23_P65558	0,047	down	3,196	-3,196	-1,676	MGAT2
A_21_P0004748	0,038	up	3,196	3,196	1,676	
A_24_P329597	0,002	down	3,191	-3,191	-1,674	UBQLN1
A_21_P0002535	0,029	up	3,185	3,185	1,671	XLOC_002473
A_21_P0013079	0,033	up	3,172	3,172	1,665	XLOC_I2_012984
A_21_P0000165	0,048	up	3,171	3,171	1,665	THEG5
A_21_P0001880	0,038	up	3,164	3,164	1,662	LINC01293
A_23_P29608	0,032	up	3,156	3,156	1,658	IQCF5
A_23_P57059	0,003	down	3,145	-3,145	-1,653	STAU1
A_23_P29655	0,027	down	3,140	-3,140	-1,651	C3orf14
A_23_P406341	0,005	up	3,139	3,139	1,650	AFAP1L2
A_23_P303803	0,046	up	3,127	3,127	1,645	C19orf18
A_33_P3236030	0,030	up	3,111	3,111	1,637	ARHGAP24
A_32_P30649	0,003	down	3,100	-3,100	-1,632	ETV5
A_24_P753161	0,034	down	3,091	-3,091	-1,628	BMPR2
A_32_P108826	0,003	down	3,083	-3,083	-1,624	ZBTB41
A_23_P346093	0,002	up	3,082	3,082	1,624	TMC8
A_33_P3340620	0,030	up	3,078	3,078	1,622	CYP2G1P
A_21_P0003890	0,022	up	3,075	3,075	1,621	XLOC_003882
A_24_P329600	0,001	down	3,074	-3,074	-1,620	UBQLN1
A_33_P3302881	0,037	up	3,066	3,066	1,616	KLHL31
A_21_P0010311	0,034	up	3,062	3,062	1,614	BRWD1-AS1
A_21_P0008518	0,010	up	3,060	3,060	1,613	XLOC_010890
A_21_P0011254	0,014	up	3,050	3,050	1,609	TUNAR
A_33_P3375284	0,004	up	3,049	3,049	1,608	
A_33_P3290667	0,005	down	3,045	-3,045	-1,607	SELT
A_33_P3313539	0,016	up	3,045	3,045	1,606	
A_23_P111804	0,024	down	3,039	-3,039	-1,604	PARP12
A_33_P3244669	0,025	down	3,038	-3,038	-1,603	TMEM30A
A_21_P0013985	0,020	up	3,038	3,038	1,603	LOC100507494
A_33_P3252068	0,006	up	3,032	3,032	1,600	KDM7A
A_33_P3382229	0,011	up	3,027	3,027	1,598	TNNT3
A_33_P3637366	0,005	ир	3,024	3,024	1,597	LINC01097

A_21_P0012022	0,005	up	3,021	3,021	1,595	
A_23_P68601	0,025	up	3,020	3,020	1,595	CST7
A_33_P3421318	0,024	up	3,011	3,011	1,590	LOC101927192
A_33_P3296707	0,024	down	3,009	-3,009	-1,589	FAM127C
A_21_P0012509	0,024	up	3,009	3,009	1,589	
A_23_P432034	0,021	down	3,006	-3,006	-1,588	CCDC117

Tabelle 11: Die differenziell und signifikant durch einen STAT3-Knockdown regulierten Gene. Cutoff: p ≤ 0,05

und FC \geq 3,0. Die Daten wurden 48 h nach der Transfektion in A172-Zellen erhoben (n=3).

ProbeName	р	Regulation	FC (abs)	FC	Log FC	GeneSymbol
A_23_P306105	0,002	down	8,227	-8,227	-3,040	GALNT1
A_23_P388433	0,039	down	8,020	-8,020	-3,004	C4orf3
A_24_P265832	0,002	down	7,692	-7,692	-2,943	SUCNR1
A_24_P234792	0,005	down	7,613	-7,613	-2,929	CSNK1G3
A_24_P116805	0,000	down	7,352	-7,352	-2,878	STAT3
A_24_P192994	0,001	down	6,799	-6,799	-2,765	FADS1
A_23_P254756	0,037	down	6,492	-6,492	-2,699	CD164
A_33_P3210218	0,041	down	5,188	-5,188	-2,375	GALNT1
A_23_P204536	0,039	down	5,167	-5,167	-2,369	SENP1
A_23_P68007	0,041	down	4,901	-4,901	-2,293	ATP1B3
A_24_P658427	0,033	down	4,874	-4,874	-2,285	NFIB
A_32_P175539	0,004	down	4,721	-4,721	-2,239	RCN2
A_32_P40288	0,039	down	4,634	-4,634	-2,212	TMEM200A
A_24_P133488	0,015	down	4,396	-4,396	-2,136	CDCA4
A_23_P350451	0,029	down	4,322	-4,322	-2,112	PRDM1
A_24_P211420	0,003	up	4,259	4,259	2,091	SPEF1
A_23_P54612	0,012	up	4,185	4,185	2,065	DNAAF1
A_24_P612446	0,001	down	4,118	-4,118	-2,042	C6orf89
A_33_P3249793	0,008	up	4,115	4,115	2,041	FOXO4
A_24_P202497	0,010	down	4,101	-4,101	-2,036	TWSG1
A_23_P390700	0,040	down	4,041	-4,041	-2,015	CNTN1
A_23_P390172	0,005	down	4,030	-4,030	-2,011	RNASEL
A_23_P384044	0,042	down	3,989	-3,989	-1,996	CNIH3
A_23_P369899	0,007	down	3,863	-3,863	-1,950	TMEM158
A_24_P827037	0,001	down	3,830	-3,830	-1,937	LRRC15
A_32_P190049	0,048	down	3,792	-3,792	-1,923	LRRC58
A_23_P326170	0,015	down	3,774	-3,774	-1,916	CALM2
A_33_P3236177	0,010	up	3,565	3,565	1,834	ANG
A_32_P72181	0,041	down	3,553	-3,553	-1,829	LINC00669
A_24_P106591	0,032	down	3,546	-3,546	-1,826	BLOC1S5
A_21_P0006938	0,002	up	3,499	3,499	1,807	LOC101927435

A_33_P3296707	0,021	down	3,468	-3,468	-1,794	FAM127C
A_24_P62237	0,002	down	3,453	-3,453	-1,788	CERK
A_33_P3212782	0,024	down	3,421	-3,421	-1,774	CALM2
A_21_P0010620	0,030	up	3,418	3,418	1,773	XLOC_I2_000942
A_23_P206059	0,014	down	3,310	-3,310	-1,727	PRC1
A_32_P218989	0,021	down	3,305	-3,305	-1,725	YBX1
A_24_P98109	0,013	down	3,302	-3,302	-1,723	SNX10
A_21_P0002871	0,005	up	3,293	3,293	1,719	LINC00635
A_33_P3278475	0,012	down	3,275	-3,275	-1,712	FOXN2
A_24_P169343	0,016	down	3,261	-3,261	-1,705	AAED1
A_24_P364807	0,006	down	3,257	-3,257	-1,703	LPCAT2
A_24_P329487	0,028	down	3,231	-3,231	-1,692	FAM84B
A_33_P3210585	0,001	down	3,217	-3,217	-1,686	AAK1
A_21_P0014658	0,003	down	3,215	-3,215	-1,685	
A_21_P0014508	0,035	up	3,191	3,191	1,674	
A_32_P185628	0,009	down	3,179	-3,179	-1,669	
A_21_P0004122	0,012	up	3,157	3,157	1,658	
A_23_P131676	0,008	up	3,149	3,149	1,655	ACKR3
A_24_P160680	0,015	up	3,125	3,125	1,644	CCDC40
A_32_P156851	0,003	up	3,123	3,123	1,643	RCAN2
A_24_P354715	0,018	down	3,118	-3,118	-1,641	NT5E
A_33_P3348569	0,021	up	3,117	3,117	1,640	OR9G4
A_23_P216448	0,017	down	3,086	-3,086	-1,626	NFIB
A_21_P0007236	0,002	down	3,073	-3,073	-1,620	XLOC_009208
A_21_P0001599	0,032	up	3,062	3,062	1,614	XLOC_001121
A_24_P81514	0,019	down	3,059	-3,059	-1,613	RPP30
A_33_P3394744	0,039	up	3,043	3,043	1,606	DMRT2
A_21_P0007414	0,016	up	3,036	3,036	1,602	XLOC_009584
A_23_P349025	0,016	up	3,025	3,025	1,597	SAMD15
A_21_P0009954	0,040	up	3,022	3,022	1,595	XLOC_013507
A 33 P3321946	0,013	up	3,021	3,021	1,595	MOSPD3

GO:0002573

GO:0071218

GO:0002068

GO:0003309

myeloid leukocyte differentiation

cellular response to misfolded protein

glandular epithelial cell development

type B pancreatic cell differentiation

Tabelle 12: Rohdaten der GO-Term-Analyse zur funktionellen Klassifizierung der STAiR18_Ex 1-Zielgene. Die nach dem STAiR18-KD durch siSTAiR18_Ex1, gegenüber der scramble-Kontrolle differenziell regulierten Gene (LogFC > 0,5 und einem p-Wert < 0,05; Anzahl: 50) flossen in die GO-Term-Analyse ein. Dabei wird jedes Gen hierarschich klassifiziert und verschiedenen Funktionen, sogenannten GO-Termini zugeordnet. Dargestellt sind die Top10 regulierten GO-Termini, welche den Kategorien "Zelluläres Kompartiment", "Molekulare Funktion" und "Biologischer Prozess" zugeordnet werden.

Cellular Comp	onent							
GO.ID	Term	Annotated	Significant	Expected	classicFisher			
GO:0042470	melanosome	89	3	0.27	0.0025			
GO:0048770	pigment granule	89	3	0.27	0.0025			
GO:0097132	cyclin D2-CDK6 complex	1	1	0.00	0.0030			
GO:0000307	cyclin-dependent protein kinase holoenzy	34	2	0.10	0.0047			
GO:0005856	cytoskeleton	1762	12	5.34	0.0052			
GO:0070062	extracellular exosome	2260	14	6.85	0.0056			
GO:1903561	extracellular vesicle	2276	14	6.90	0.0059			
GO:0043230	extracellular organelle	2277	14	6.90	0.0059			
GO:0097123	cyclin A1-CDK2 complex	2	1	0.01	0.0061			
GO:0015630	microtubule cytoskeleton	948	8	2.87	0.0070			
Molecular Function								
GO.ID	Term	Annotated	Significant	Expected	classicFisher			
GO:0004994	somatostatin receptor activity	5	2	0.01	8.7e-05			
GO:0005200	structural constituent of cytoskeleton	86	4	0.26	0.00012			
GO:0003924	GTPase activity	231	5	0.69	0.00060			
GO:0042923	neuropeptide binding	19	2	0.06	0.00145			
GO:0005525	GTP binding	305	5	0.91	0.00207			
GO:0032550	purine ribonucleoside binding	309	5	0.92	0.00219			
GO:0001883	purine nucleoside binding	312	5	0.93	0.00228			
GO:0032549	ribonucleoside binding	313	5	0.94	0.00232			
GO:0046966	thyroid hormone receptor binding	25	2	0.07	0.00251			
GO:0001882	nucleoside binding	320	5	0.96	0.00255			
Biological Proc	cess							
GO.ID	Term	Annotated	Significant	Expected	classicFisher			
GO:0038169	somatostatin receptor signaling pathway	5	2	0.02	9.2e-05			
GO:0038170	somatostatin signaling pathway	5	2	0.02	9.2e-05			
GO:0030224	monocyte differentiation	30	3	0.09	0.0001			
GO:1903131	mononuclear cell differentiation	30	3	0.09	0.0001			
GO:0003323	type B pancreatic cell development	16	2	0.05	0.0011			
GO:1903020	positive regulation of glycoprotein meta	18	2	0.06	0.0014			

165

20

21

22

4

2

2

2

0.51 0.0016

0.0017

0.0019

0.0020

0.06

0.06

0.07

Tabelle 13: Rohdaten der GO-Term-Analyse zur funktionellen Klassifizierung der STAiR18_Ex 3-Zielgene. Die nach dem STAiR18-KD durch siSTAiR18_Ex3, gegenüber der scramble-Kontrolle differenziell regulierten Gene (LogFC > 0,5 und einem p-Wert < 0,05; Anzahl: 94) flossen in die GO-Term-Analyse ein. Dabei wird jedes Gen hierarschich klassifiziert und verschiedenen Funktionen, sogenannten GO-Termini zugeordnet. Dargestellt sind die Top10 regulierten GO-Termini, welche den Kategorien "Zelluläres Kompartiment", "Molekulare Funktion" und "Biologischer Prozess" zugeordnet werden.

Cellular Compo	nent				
GO.ID	Term	Annotated	Significant	Expected	classicFisher
GO:0031982	vesicle	3565	37	19.73	2.5e-05
GO:0005776	autophagosome	75	5	0.41	5.9e-05
GO:0005737	cytoplasm	9581	69	53.01	0.00011
GO:0043226	organelle	11263	76	62.32	0.00016
GO:0044444	cytoplasmic part	7976	60	44.13	0.00031
GO:0032059	bleb	7	2	0.04	0.00062
GO:0043229	intracellular organelle	10466	71	57.91	0.00084
GO:0070062	extracellular exosome	2260	24	12.51	0.00092
GO:1903561	extracellular vesicle	2276	24	12.59	0.00102
GO:0043230	extracellular organelle	2277	24	12.60	0.00103
Molecular Func	tion				
GO.ID	Term	Annotated	Significant	Expected	classicFisher
GO:0035005	1-phosphatidylinositol-4-phosphate 3-kin	7	2	0.04	0.00073
GO:0051015	actin filament binding	139	5	0.83	0.00146
GO:0005200	structural constituent of cytoskeleton	86	4	0.51	0.00175
GO:0016307	phosphatidylinositol phosphate kinase ac	14	2	0.08	0.00307
GO:0005515	protein binding	9720	70	58.15	0.00316
GO:0004747	ribokinase activity	1	1	0.01	0.00598
GO:0008555	chloride-transporting ATPase activity	1	1	0.01	0.00598
GO:0043849	Ras palmitoyltransferase activity	1	1	0.01	0.00598
GO:0030507	spectrin binding	23	2	0.14	0.00825
GO:0001968	fibronectin binding	24	2	0.14	0.00896
Biological Proce	255				
GO.ID	Term	Annotated	Significant	Expected	classicFisher
GO:0003231	cardiac ventricle development	111	6	0.64	4.4e-05
GO:0009888	tissue development	1660	22	9.61	0.00014
GO:0003205	cardiac chamber development	147	6	0.85	0.00021
GO:0003206	cardiac chamber morphogenesis	114	5	0.66	0.00052
GO:0003208	cardiac ventricle morphogenesis	67	4	0.39	0.00061
GO:0071560	cellular response to transforming growth	192	6	11.01	0.00086
GO:0071559	response to transforming growth factor b	195	6	1.13	0.00093
GO:0060056	mammary gland involution	9	2	0.05	0.00116
GO:0050852	T cell receptor signaling pathway	137	5	0.79	0.00118
GO:0007029	endoplasmic reticulum organization	39	3	0.23	0.00147

204 | ANHANG

Biological Process

Tabelle 14: Rohdaten der GO-Term-Analyse zur funktionellen Klassifizierung der STAiR18_Ex 7-Zielgene. Die nach dem STAiR18-KD durch siSTAiR18_Ex1, gegenüber der scramble-Kontrolle differenziell regulierten Gene (LogFC > 0,5 und einem p-Wert < 0,05; Anzahl: 205) flossen in die GO-Term-Analyse ein. Dabei wird jedes Gen hierarschich klassifiziert und verschiedenen Funktionen, sogenannten GO-Termini zugeordnet. Dargestellt sind die Top10 regulierten GO-Termini, welche den Kategorien "Zelluläres Kompartiment", "Molekulare Funktion" und "Biologischer Prozess" zugeordnet werden.

Cellular Component								
GO.ID	Term	Annotated	Significant	Expected	classicFisher			
GO:0005737	cytoplasm	9581	150	116.13	3.5e-08			
GO:0044444	cytoplasmic part	7976	130	96.67	3.6e-07			
GO:0043229	intracellular organelle	10466	153	126.85	7.5e-06			
GO:0044446	intracellular organelle part	7486	120	90.73	8.7e-06			
GO:0044424	intracellular part	11985	167	145.26	1.3e-05			
GO:0044422	organelle part	7671	121	92.98	1.9e-05			
GO:0000775	chromosome, centromeric region	166	10	2.1	3.5e-05			
GO:0005622	intracellular	12234	168	148.28	4.5e-05			
GO:0012505	endomembrane system	3670	68	44.48	6.7e-05			
GO:0000780	condensed nuclear chromosome, centromeri	19	4	0.23	7.0e-05			
Molecular Function								
GO.ID	Term	Annotated	Significant	Expected	classicFisher			
GO:0003725	double-stranded RNA binding	56	7	0.72	7.1e-06			
GO:0019900	kinase binding	563	20	7.25	3.9e-05			
GO:0019901	protein kinase binding	495	18	6.37	7.2e-05			
GO:0005515	protein binding	9720	148	125.09	0.00012			
GO:0098770	FBXO family protein binding	2	2	0.03	0.00016			
GO:0016462	pyrophosphatase activity	694	20	8.93	0.00063			
GO:0016818	hydrolase activity, acting on acid anhyd	696	20	8.96	0.00065			
GO:0016817	hydrolase activity, acting on acid anhyd	697	20	8.97	0.00066			
GO:0003723	RNA binding	1281	30	16.49	0.00094			
	0							

GO.ID	Term	Annotated	Significant	Expected	classicFisher
GO:000086	G2/M transition of mitotic cell cycle	208	13	2.58	2.0e-06
GO:0044839	cell cycle G2/M phase transition	216	13	2.68	3.0e-06
GO:0051301	cell division	502	20	6.23	4.3e-06
GO:0000278	mitotic cell cycle	837	27	10.39	4.6e-06
GO:0000281	mitotic cytokinesis	41	6	0.51	1.1e-05
GO:1903047	mitotic cell cycle process	697	23	8.66	1.8e-05
GO:0010389	regulation of G2/M transition of mitotic	157	10	1.95	2.6e-05
GO:0061640	cytoskeleton-dependent cytokinesis	48	6	0.60	2.7e-05
GO:0007010	cytoskeleton organization	1039	29	12.90	3.1e-05
GO:0042221	response to chemical	3663	70	45.49	3.4e-05

205 | DANKSAGUNG

DANKSAGUNG

An dieser Stelle möchte ich mich ganz herzlich bei allen bedanken, die mich während der Promotionszeit unterstützt und zum Gelingen dieser Arbeit beigetragen haben.

Prof. Dr. Thomas Magin sei für die Möglichkeit meine Promotion an der Fakultät für Lebenswissenschaften durchzuführen, seine Unterstützung während der Promotionszeit und für die Begutachtung dieser Arbeit gedankt.

Ganz großer Dank gebührt meinem Doktorvater Prof. Dr. Friedemann Horn. Sei es für die Gelegenheit in einem aktuellen und spannenden Forschungsgebiet arbeiten zu können oder die vielen fachlichen Ratschläge und zahlreichen Diskussionen auf Augenhöhe. Besonders danke ich ihm auch für den offenen und vertrauensvollem Umgang, seine Hilfsbereitschaft und moralische Unterstützung zu jeder Zeit.

Bei allen derzeitigen und ehemaligen Mitgliedern der AG Horn, AG Grahnert und AG Jaimes möchte ich mich für den tollen Laboralltag, ihre Hilfsbereitschaft und unseren Zusammenhalt bedanken. Gabi danke ich für ihre vielen Tips am FACS-Gerät, der fortwährenden Versorgung mit Zellen und ihre Hilfe bei Bestellungen. Bei Maik möchte ich mich für die vielen kreativen Ratschläge und seinen unerschütterlichen Optimismus bedanken. Ganz besonders sei meinen Büromädels Stefanie, Diana und Steffi, die mich immer mit neuen wissenschaftlichen oder auch privaten Ideen und Ratschlägen versorgt haben, gedankt. Für eure offenen Ohren, eine Promotionszeit, die mir zu jeder Stunde großen Spaß bereitet hat, aber vor allem für eure Freundschaft. Ihr seid wunderbar!

Auch bei allen Mitgliedern der Ribolution-AG am Fraunhofer Institut IZI möchte ich mich für die immerwährende Hilfe und Unterstützung bei vielen Experimenten, wie den Microarray-Analysen und der MinION[™]-Sequenzierung, bedanken. Ein besonderes Dankeschön geht an Karolin Wiedemann für ihre bioinformatische Unterstützung, die Durchführung der GO-Term-Analysen und Auswertung der Sequenzierergebnisse. Besonders herzlich sei auch Cornelia Losmann für ihr Organisationstalent und ihre Hilfe bei Dienstreiseanträgen oder kurzfristigen Vertragsverlängerungen gedankt.

Bei Dr. Uwe Überham möchte ich mich für die zahlreichen Stunden am Mikroskop und seine Unterstützung bei der Etablierung der ViewRNA-Methode bedanken.

Ein riesiges Dankeschön geht an alle Freunde, besonders an Lisa und meine ehemaligen Kommilitoninnen Claudia, Maria und Steffi. Für eine unglaublich schöne Studienzeit, eure Motivation, Ablenkung und Optimismus.

Abschließend möchte ich meiner Familie aus ganzem Herzen danken. Allen voran meinen Eltern, die mich während des gesamtem Studiums und der Promotionszeit mit so viel Engagement, Verständnis, Zeit und Liebe unterstützt haben.

Danke! Für Alles!
AKADEMISCHER WERDEGANG

Persönliche Daten

Name	lvonne Zipfel
Geburtsdatum	24.01.1989
Geburtsort	Leipzig
Staatsbürgerschaft	deutsch

Akademischer Werdegang

1999-2007	Gymnasium; Abiturnote: 1,4
	Rudolf-Hildebrand-Schule; Markkleeberg
2007-2008	Studium der Humanmedizin
	Universität Leipzig
2008-2011	Biologiestudium; Bachelor of Science; Abschlussnote 1,9
	Universität Leipzig
	Bachelorarbeit am Fraunhofer Institut für Zelltherapie und Immunologie, Leipzig
	"Charakterisierung ausgewählter nichtkodierender RNAs mit Assoziation zum
	Mammakarzinom"
2011-2013	Biologiestudium; Master of Science; Abschlussnote: 1,1
	Universität Leipzig
	Masterarbeit am Institut für Klinische Immunologie; Universitätsklinikum Leipzig
	"Funktionelle Analyse STAT3-regulierter nichtkodierender RNAs mit Hilfe von
	Knockdown/Knockout-Techniken"
Seit 03/2014	Wissenschaftlicher Mitarbeiter als Doktorand
	Institut für Klinische Immunologie; Universitätsklinikum Leipzig
	Fraunhofer Institut für Zelltherapie und Immunologie, Leipzig
	"Die nichtkodierende RNA STAiR18 und ihre pathophysiologische Funktion im
	Glioblastom"

Vorträge

07/2015	Fraunhofer Institut für Zelltherapie und Immunologie, Leipzig
	"New insights into the pathophysiological role of the noncoding RNA STAiR18"
08/2016	CSHL Meeting Regulatory & Non-coding RNAs, New York
	"The long noncoding RNA STAiR18- The missing linc in glioblastoma cell invasion?"
06/2017	Fraunhofer Institut für Zelltherapie und Immunologie, Leipzig
	"The long noncoding RNA STAiR18- The missing linc in glioblastoma cell invasion?"
12/2018	Institut für Klinische Immunologie, Leipzig
	"Die nichtkodierende RNA STAiR18 und ihre pathophysiologische Funktion im
	Glioblastom"

Publikationen

Ein Teil dieser Arbeit wurde bzw. wird publiziert in:

Binder S, Hösler N, Riedel D, **Zipfel I**, Buschmann T, Kämpf C, Reiche K, Burger R, Gramatzki M, Hackermüller J, Stadler PF, Horn F (2017). **STAT3-induced long noncoding RNAs in multiple myeloma cells display different properties in cancer.** Sci Rep. 2017 Aug 11;7(1):7976.

Bei Jun C, Überham U, **Zipfel I**, Mills J, Bochmann J, Jendrek R, Bliim N, Kirazov L, Kirazov E, Jünger J, Brückner M, Arendt T, Janitz M (2019). **Analysis of circular transcriptome in synaptosomes of aged mice.** J. Neurochemistry. (im Reviewprozess)

Binder S, Zipfel I, Friedrich M, Riedel D, Ende S, Kämpf C, Wiedemann K, Buschmann T, Puppel SH, Reiche K, Stadler PF, Horn F (2019) Master and servant: STAiR18 – a STAT3-induced long noncoding RNA regulates STAT3 in a positive feedback in human multiple myeloma. BMC Genomics. (im Reviewprozess)

Friedrich M, Pfeifer G, **Zipfel I**, Binder S, Reuter M, , Reiche K, Wiedemann K, Buschmann T, Puppel SH, Rade M, Christ S, Wirth M, Füssel S, Fröhner M, Aigner A, Löffler M, Baretton G, Sommer U, Hönscheid P, Müller G, Engeland K, Hackermüller J, Schreiber S, Horn F (2019) **Novel tumor-associated p53 interfering lncRNAs (TAPIR) as putative therapeutic and diagnostic targets in prostate cancer** (Manuskript in Vorbereitung)

Zipfel I, Binder S, Wiedemann K, Christ S, Reiche K, Ende S, Friedrich M, Überham U, Horn F (2019) **The long noncoding RNA STAIR18 – the missing linc in glioblastoma cell migration?** (Manuskript in Vorbereitung)

SELBSTSTÄNDIGKEITSERKLÄRUNG

Hiermit erkläre ich, die vorliegende Dissertation selbstständig und ohne unzulässige fremde Hilfe angefertigt zu haben. Es wurden keine anderen Quellen genutzt als jene, die im Literaturverzeichnis aufgeführt sind. Sämtliche Textstellen, die wörtlich oder sinngemäß aus veröffentlichten oder unveröffentlichten Schriften entnommen wurden, sind als solche kenntlich gemacht. Ferner sind alle von anderen Personen bereitgestellten Materialien oder Dienstleistungen vermerkt. Ich versichere, nicht die Hilfe eines Promotionsberaters in Anspruch genommen zu haben. Zudem hat keine Person von mir geldwerte Leistungen für Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen. Die Arbeit wurde bisher weder im Inland noch im Ausland in gleicher oder ähnlicher Form einer Prüfungsbehörde zum Zwecke einer Promotion vorgelegt. Ich habe keine früheren erfolglosen Promotionsversuche unternommen.

Ivonne Zipfel; Leipzig, den 08.04.2019