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ABSTRACT 

Metal contamination is a major environmental concern especially in metal mining countries 

like Canada. The assessment and cleanup of soils with elevated metal concentrations is an area 

that has been widely studied. A major challenge faced by environmental scientists when assessing 

metal toxicity in soils is the wide difference in toxic effects between laboratory spiked soils and 

field contaminated soils. Also, since contamination occur as mixtures, researchers are faced with 

understanding metal mixture interactions in soil to help quantify risks associated with metal 

mixture contamination. When assessing the toxic effects of metals in a laboratory setting, it is 

recommended to use fixed ratio rays, but maintaining desired metal ratios in soils is challenging 

because of metal loss from leaching metal salt-spiked soils. To eliminate leaching, which is a 

required step, two alternative metal types (metal oxides and spinel minerals) were evaluated. The 

main objectives of the thesis were to investigate the differences in toxicity of three metal types 

found in contaminated soils and to test the adherence of mixture toxicity to additivity models using 

the activity of soil enzymes as model toxicity endpoints. I also extended our understanding of the 

effects of metal mixtures on the quality of ecosystem services using soil properties as predictors. 

First, the toxicity of metal salts, metal oxides and spinel minerals were assessed using acid 

phosphatases (ACP) and ammonia monooxygenases (AMO) as model processes in three Canadian 

soils. The activity of both enzymes in the soils were determined in leached and non-leached soils, 

as well as soils spiked with mixtures containing Pb, Cu, Ni, Co, and Zn in five fixed ratio rays. 

The results showed that the activity of AMO was inhibited when soils were leached with artificial 

rainwater. Generally, metal salts were the most toxic, while the spinel minerals were the least toxic. 

Two extractants, CaCl2 and Diethylenetriamine Pentaacetic Acid (DTPA), were evaluated for their 

ability to link toxicity to metals across all three metal forms. Salt toxicity was closely linked to 

CaCl2 extractable concentrations but DTPA was the most appropriate for oxides. I determined that 
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combining fixed ratio rays with metal oxides for metal mixture studies was more appropriate for 

conducting mixture studies since soil ratios created using oxides were more precise and required 

less experimental effort compared to salts and spinel minerals. 

Following the investigation into the differences in toxicity of metal mixture types, I 

evaluated the adherence of metal mixture toxicity to the concentration addition (CA) and response 

addition (RA) models. I assessed mixture toxicity using metal oxides (Cu, Co, Pb, Zn, and Ni) in 

two Canadian soils. The additivity models were used because current risk assessment is conducted 

assuming metals are non-interactive and have similar modes of action. I investigated the sensitivity 

of the carbon (C) and phosphorus (P) cycles to the mixtures using two soil enzymes, beta 

glucosidases (BGD) and ACP as model processes. In general, P cycling (ACP) was a more 

sensitive enzyme to both single and metal mixtures compared to C cycling (BGD). Upon exposure 

to quinary mixtures, both synergistic and antagonistic deviations from both reference models were 

observed. The antagonistic deviations were observed across all concentrations, thus from low to 

high, but synergism was only observed at lower concentrations for both additivity models. The 

results indicate that, the effects of metal mixtures are greater than singles at lower concentrations 

which is important in the risk assessment of metal mixtures. I also observed that Cu, an essential 

metal, may be protecting biogeochemical cycles from mixture toxicity. 

In the third chapter, I developed adverse ecosystem service pathway (AESP) models to 

study the soil ecosystem’s response to a metal mixture containing Cu, Pb, Zn, Co, and Ni. I 

assessed the effects using the relationships between soil properties and ecosystem services (ES) in 

the presence and absence of the metal mixtures. Forty-seven (47) soils were sampled and 15 soil 

processes that represented five ES including food production and water purification were 

measured. Using a Pearson bivariate correlation matrix, I confirmed that ecosystem services were 
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closely linked to soil properties, especially cation exchange capacity and organic carbon. Results 

from t-tests also showed that, except for the three soil enzyme activities measured (p < 0.05), the 

processes underlying ecosystem services are significantly reduced in metal-impacted soils. Using 

soil properties as the main predictors of ecosystem services, I built two AESP models: one for 

metal-impacted soils and another for control soils. These models showed adverse effects to 

ecosystem services in metal-impacted soils, depicted as changes in partial correlation coefficients. 

An AESP model, therefore, can be an important tool to better understand complex ecosystems and 

improve site specific risk assessment and natural resource management. 
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NOTE TO READERS 

This thesis is organized and formatted to follow the University of Saskatchewan College 

of Graduate Studies and Research guidelines for a manuscript-style thesis. Chapter 1 is a general 

introduction, including objectives and hypothesis, Chapter 2 is the literature review, and Chapter 

6 reviews the principle findings, synthesis, general discussion and conclusions tying the chapters 

together. Chapters 3, 4 and 5 of this thesis are organized as manuscripts for publication in peer 

reviewed scientific journals. Chapter 3 has been published in Chemosphere, Chapter 4 has been 

formatted for submission to Science of Total environment, and Chapter 5 has been submitted to 

Environmental Science and Technology. Full citations for the published research manuscripts are 

provided in the preface section to each chapter. As a result of the manuscript-style format, there 

is repetition of material in the materials and methods sections of the thesis. Tables, figures, 

supporting information and references cited in these research chapters have been reformatted 

here to a consistent thesis style. References cites in each chapter are combined and listed in the 

References section of the thesis. Supporting information associated with research chapters are 

presented in the Appendix section at the end of this thesis.  
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1 INTRODUCTION 

Metal concentrations in the environment have continuously been increasing above 

background since the industrial revolution. Subsequently, the surge in population and 

developments in technology has caused an increase in the demand for natural resources such as 

oil, gas, and metals. As a result, several mining explorations have been established to meet this 

high demand. Over the span of a century (between 1900 to 2000), global material extraction has 

increased from less than 10 billion tons, to over 90 billion tons (Carvalho, 2017). The 

explorations which include metal mining, smelting and refining have caused elevated metal 

concentrations in aquatic and terrestrial ecosystems around the world. For example, Hamilton et 

al. (2016) reported over 20,000 ppm of Zn in soils at a Canadian smelter in Flin Flon, Manitoba.  

Elevated soil metal concentrations are deemed unsafe by environmental regulatory 

agencies like the Canadian Council of Ministers for the Environment (CCME) because of the 

potential toxicity of metals to humans and soil organisms. Metals such as Zn, Cu, Co, and Mg 

are required for normal metabolic activities and growth of biota at low concentrations. Others 

like Pb, Hg, and Cd, have no known biological role. In contaminated soils, metals usually occur 

as mixtures rather than singles. The effects of single metal exposure to soil biota have been 

investigated for several decades, and the knowledge of these effects is well established 

(Chaperon and Sauvé, 2007; Jegede et al., 2019; Versieren et al., 2017). However, the behavior 

and toxic effects of metal mixtures in soils is complex, and researchers are still preoccupied with 

attempts to comprehend metal interactions to improve the prediction of mixture toxicity (Farley 

and Meyer, 2015; Meyer et al., 2015). The complexity results from a combination of differences 

in the behavior of metals, and modification from soil properties. When environmental 

concentrations of each metal in a whole mixture are below regulatory limits, there is a question 
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of additivity or possible interactions between the components (Cedergreen, 2014). Mixture 

effects are particularly important for metals since metals cannot be degraded or destroyed but can 

only be transformed from one species to another. The persistence of metals theoretically plays a 

role in estimating the toxicity, since the components can interact to produce lesser or stronger 

effects in the short or long term. Current risk assessment of metal mixtures in Canada assume 

concentration addition (CA) to be the best approach amidst the uncertainties. On the contrary, 

studies have often shown that the approach conservatively estimates toxic effects of metal 

mixtures. Another area of concern is how metal mixture tests and experiments are designed for 

soils, particularly with the selection of metal form and dosing method. Differences in dosing 

methods have been shown to affect toxicity estimates for single metal toxicity tests in soils 

(Schwertfeger, 2010). In this PhD thesis, I determined an appropriate experimental approach for 

dosing metal mixtures in soils while minimizing artefacts and disruptions to soil properties and 

microorganisms. I further investigated the toxicity of metal mixtures consisting of Pb, Cu, Ni, 

Zn, and Co to the Carbon and Phosphorus cycles, and developed an adverse ecosystem service 

pathway (AESP) that utilizes a site specific approach by using soil properties to predict the 

effects of mixtures on ecosystem services (ES). The AESP model can be used as a tool to 

improve site specific ecological risk assessment. 

1.1 Objectives and hypotheses 

The cardinal objective of this PhD research is to understand interactions between metal 

mixtures and soil biota to improve the accuracy of estimates derived from mixture models to 

improve the risk assessments of mixtures in Canada. Three main hypotheses were evaluated in 

this study: (1) The toxicity of metal mixtures to soil organisms is determined by the metal 

spiking method, (2) Concentration addition (CA) explains the toxicity of metal mixtures to 
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carbon (C) and phosphorus (P) cycles, (3) Metal mixtures alter intimate relationships that exist 

between soil properties and the processes that generate ecosystem services. 

The first hypothesis investigated the differences in toxicity between three metal mixture 

types; metal salts, metal oxides and spinel minerals in five mixture ratio rays in three soils. The 

toxicity of the metal types was assessed using the activity of two soil enzymes, acid phosphatases 

(ACP), and ammonia monooxygenases (AMO). The results for the first hypothesis are presented 

in Chapter 3 (Toxicity of metal mixtures to soil enzymes is determined by metal spiking 

method). Chapter 3 provided a levelled foundation for testing the second hypothesis where the 

toxicities of metal mixtures calculated for 10 fixed ratio rays in 10 doses were assessed in two 

soils using ACP and beta glucosidases (BGD) as model toxicity endpoints. The results are 

presented in chapter 4 (Response Addition (RA) is more protective of biogeochemical cycles 

compared to Concentration Addition (CA): a metal mixture modeling perspective). For the last 

hypothesis, 47 soils were used to investigate the intimate links between soil properties and 15 

endpoints that underlie ecosystem services and is presented in Chapter 5 (Introducing adverse 

ecosystem service pathways (AESP) as a tool in predictive ecological risk assessment). In 

chapter 6, I discuss the implications and future directions of the study while opening avenues for 

further research. 
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2 LITERATURE REVIEW 

2.1 History and overview of the Canadian metal mining industry 

Metal mining and smelting in Canada began in the mid-1700s along the St. Lawrence 

River in Quebec, Canada (Cranstone, 2002). The industry initially started with the smelting of 

iron (Fe) ore till the first nonferrous metal (copper) production began in Ontario in the year 1848 

(Cranstone, 2002). In the same century, gold (Au) was discovered in Quebec, Ontario, Nova 

Scotia, and British Columbia. Production of Au in Canada commenced in the late 1850s in 

British Columbia. Other metals that were subsequently produced included nickel (Ni), zinc (Zn), 

lead (Pb), silver (Ag), cadmium (Cd), and tin (Sn). Between 1900 and 2000, the industry 

annually produced up to 300,000 tons of Ni, 850,000 tons of Cu, 1.4 million tons of Zn, 60 

million tons of iron ore, and 10 million tons of gypsum (CaSO₄·2H₂O) (Natural Resources 

Canada, 2000). The nation’s huge contribution to the world mineral market has made Canada a 

world leader in mining and one of the largest producers of minerals and metals. In 2001, Canada 

was a top five world producer of 16 minerals and metals (Marshall, 2016). Despite the 

displacement from the topmost position, the nation is still a leading producer of Au, Cd and 

diamond. The mining industry provides most of the materials that Canadians rely on to build 

infrastructure, instruments, electronics and automotive.  

The industry contributes significantly to the growth of the nation’s economy and 

infrastructural developments especially in the rural and northern regions. The industry currently 

employs almost 600,000 workers both direct and indirectly and contributed 56 billion dollars to 

the nation’s gross domestic product (GDP) in 2015 (Marshall, 2016). It is obvious that the 

industry is a building block for the Canadian economy. Despite the huge positive contribution of 

mining operations to economic development, the process is accompanied with environmental 
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degradation and contamination that can have huge impacts on humans and terrestrial organisms. 

These environmental problems occur even in the presence of environmental management 

techniques. Documented issues associated with metal mining in Canada include greenhouse gas 

emissions, acid rock drainage, metal leaching and groundwater contamination, soil 

contamination, erosion and sedimentation (Hatch, 2013). These concerns have both direct and 

indirect impacts on biodiversity and human health. Several contaminated sites have resulted from 

mining explorations in Canada. In 2012, a report from Canada’s Environmental Commissioner 

identified four contaminated sites with the most expensive financial liabilities (Scott Vaughan, 

2012). Interestingly, soils found at these sites were contaminated with metals and metalloids 

including radium (Ra), uranium (U) and arsenic (As). 

2.2 The soil ecosystem 

 Soil is an indispensable part of human existence and is described as the foundation that 

nurtures life. It provides several functions such as the regulation and purification of water, 

serving as a medium that supports the growth of plants and waste recycling, provides a specie-

rich habitat and support for human infrastructure. Serving as the most populated habitat, the soil 

contains about 360, 000 animal species (ITPS, 2015). An estimation of more than a thousand 

bacterial cells from more than 106 species exist in 10 g of soil (ITPS, 2015). Soils are therefore 

complex systems made up of a mixture of moisture, minerals, air, humus and organisms. Soils 

contain more C than both the atmosphere and terrestrial vegetation making it a major C reservoir. 

The economic value of agro-sylvo-pastoral products and services are supported by soils. 

Specifically, the production of food, meat and fiber will not be feasible without soil and its rich 

biodiversity.  
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The propensity of soils to provide these functions depend on the physical, chemical and 

biological components that are regularly in communication with each other. The ability of the 

soil to function within the scope for its given purpose is dependent on specific characteristics of 

the soil components collectively termed soil quality (Winder, 2003). The components are viewed 

as indicators that are measurable and influence the capacity of soils to function. These 

components inform and allow scientists to categorize soils on relative scales that differ in 

biological, chemical or physical characteristics. The Canadian System of Soil Classification 

(CSSC) defines soils as a naturally occurring unconsolidated mineral or organic material that 

form at the surface of the earth and is capable of supporting plant growth. Some authors have 

economically defined soil as a natural capital or stock that sustainably yields the flow of goods 

and services (Dominati et al., 2010).  

2.2.1 Soil microbes 

 The soil’s invisible majority has significantly shaped the environment since the beginning 

of evolution. The biosphere in its current state is even more dependent on the action of 

microorganisms. For example, microorganisms are involved in food production, degradation of 

xenobiotics, and remediation of contaminated sites through (co)metabolic pathways. Soil 

microbial abundance is higher in the rhizosphere compared to other parts of the soil. The 

increase in abundance is due to the secretions and root exudates from plants that contain 

chemicals that attract archaea, fungi, bacteria, viruses and oomycetes. Microbes are also able to 

adapt and to most extreme life conditions in terms of salinity, temperature, and pH due to their 

phenotypic plasticity. Soil microorganisms play multifaceted roles as consumers, producers and 

decomposers. They are significant organic matter decomposers and certain transformation 

processes solely depend on them. They play important roles in food webs and chains. The 
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biogeochemical cycling of elements can continue in the absence of plants, animals and soil 

invertebrates. Soil microbes have proven to be good indicators of soil quality and soil health 

(Smolders et al., 2001a). This is because of their sensitivity to climate, contamination, changes in 

land management, their relationships with soil processes and ecosystem functions, and its 

affordability (Lukac et al., 2017). 

2.2.2 Soil invertebrates 

 The diversity of soil invertebrates is wide. Recent studies have reported that soil 

microarthropods and other micro invertebrates represent about 23% of the entire diversity of 

biological organisms that have ever been described (Decaëns et al., 2006).These soil animals live 

in different parts of the soil but interact with each other. Microfauna like nematodes and protists 

consists of the smallest group in size (~200 µm) and live in soil pore water. Microarthropods 

(mesofauna) which include enchytraeids, mites and other groups of mesofauna live in the 

interstitial air-filled spaces of surface and some mineral soil. It’s been reported that collembolans 

are the most abundant soil mesofauna (George et al., 2017). The largest soil arthropods 

(macrofauna) which includes earthworms and pseudoscorpions live in burrows or surface litters 

of the soil. The activity of soil invertebrate communities plays a vital role in the maintenance of 

soil health and quality. These organisms are involved with several stages of soil formation, soil 

aggregation, and erosion control. They are active performers in the decomposition of soil organic 

matter, nutrient cycling, and climate regulation. Soil invertebrates have been successfully used as 

bioindicators in both disturbed and undisturbed soils. A decline in the abundance of mesofauna 

was observed on agricultural sites due to high disturbance (Rutgers et al., 2009). Another study 

reported that the abundance of collembola on agricultural lands is an indication of appropriate 

agricultural management and organic fertilizers (Cluzeau et al., 2011).     
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2.2.3 Ecosystem services 

A wide range of goods and services utilized by humans are provided by the soil 

ecosystem. The United Nations Environmental Program (UNEP) defines Ecosystem Services 

(ES) as the benefits people obtain from ecosystems (Millenium Ecosystem Assessment, 2005). 

The various services encompass food and water provision, flood and disease control, nutrient 

cycling, spiritual, recreational, and cultural benefits that are necessary to maintain the right 

conditions for life on Earth. Ecosystem services are grouped into provisioning services, 

regulating services, cultural services and supporting services. Authors like Dominati et al. (2010) 

argue that the value of services and natural stocks of soils are poorly understood.  

The processes and functions that occur in soils provide a multi-dimensional benefit that 

cover all ecosystem service categories outlined by UNEP. Apart from the service to humans, the 

lithosphere (pedosphere) plays a key role as an interface between components of the Earth which 

include the atmosphere, biosphere, and hydrosphere. The lithosphere serves as a major control of 

climate change and biodiversity. Several functional roles are provided by soils due to the wide 

diversity of organisms that inhabit the soil. Microbes are important because they provide 

functions that maintain all other lives. Hence, elucidating the relationships between ecosystem 

functions, microbial activity, processes and diversity is important to predict how ecosystems 

respond to environmental changes caused by stressors.  

Depending on the functional roles, soil organisms can be viewed as chemical, biological, 

mechanical or ecosystem engineers (Fajana et al., 2019). Soil microbes and invertebrates degrade 

organic matter to release locked nutrients for plant uptake, growth and production of food, 

thereby regulating about 90% of the energy flux in soils (Lukac et al., 2017). When the simplest 

form of organic compounds like water and carbon dioxide are complexed into long organic 

structures, soil organisms are needed for their breakdown. For example, the conversion of urea, 
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an organic compound, to nitrite for plant use is mediated by microbial enzymes including urease, 

ammonia monooxygenases and hydroxalamine oxidoreductase (Das and Varma, 2011). 

Furthermore, glucosidases and galactosidases in soils play a major role by degrading 

carbohydrates into simple sugars for use by other microorganisms. Plants and other soil 

organisms serve as a carbon sink that stores large quantities of carbon. Due to their role, a 

change in soil health can potentially reduce the ability of the soil to sequester organic carbon by 

up to 60%, nutrient cycling and habitat quality leading to losses of biodiversity (Ding et al., 

2018). Interactions have been reported to exist between soil enzymes, plants and invertebrates 

that supports and enhances ecosystem functions. As plants grow and shed litter into soils, they 

serve as a source of carbon and energy that promotes the growth and diversity of fauna 

decomposers. The decomposers in turn enhance the supply of nutrients like phosphorus, nitrogen 

and potassium to the plants (Scheu et al., 2005). Due to natural resource explorations and the use 

of xenobiotics in agriculture, soils are exposed to several anthropogenic chemicals that, for the 

most part are degraded by soil organisms. Soil organisms also prevent diseases through the 

predation on other soil organisms that would otherwise cause harm to humans and other 

organisms.   

2.3 Metals in soils 

Soils serve as a major sink for heavy metals that are released into the environment from 

mining explorations. Unlike organic chemicals that can be degraded through oxidization or 

reduction, metals do not undergo biochemical degradation. Soil naturally contains a wide range 

metals at background concentrations. Increased metal concentrations above background in soils 

from metal mining can potentially adversely affect the environment and surrounding ecosystems. 

Elevated metal concentrations result from released dust that contain particulate heavy metals, 



10 
 

and from tailings and waste rocks that contain heavy metals. Common heavy metals found in 

Canadian soils include Aluminum (Al), Manganese (Mn), Iron (Fe), Zinc (Zn), Lead (Pb), Nickel 

(Ni), Copper (Cu), and Cobalt (Co) (Frank et al., 1976; Gopalapillai et al., 2018; Ihnat et al., 

1996). The rest of the review will emphasize on the last five metals (i.e. Zn, Pb, Ni, Cu, Co) 

because they were the metals of potential concern tested in this thesis. Concentrations of these 

metals (i.e. Zn, Pb, Ni, Cu, Co) in Canadian soils are usually found around background levels 

unless elevated from accumulated contamination from mining and smelting activities (Frank et 

al., 1976). Elevated concentrations of metals in soils can leach into groundwater or surface 

waters but can also be absorbed by soil invertebrates or plants and end up in the food chain. 

Reported cases of metal uptake in plants above regulatory limits include Cd and Pb uptake in 

lettuce, cauliflower, tomato, potato and spinach, and Cr uptake in rice, maize, beans and radish 

(Khan et al. 2015). The ability of plants like phragmites (reed) to accumulate metals has made it 

an option for phytoremediation (Etim, 2012). Generally, the remediation of heavy metals in soils 

are comparatively more expensive and time consuming due to the difficulty in extracting metals 

from the soil. The basic properties of the five heavy metals of interest in this study are discussed 

below. 

2.3.1 Zinc 

Zinc is a shiny bluish-white metal that is a brittle and crystalline at room temperatures 

with a 420oC melting point and a 907oC boiling point. When heated to temperatures above 100oC 

and below the melting point, the metal becomes ductile and malleable. The metal has anti-rust 

properties that enables its use as a coating for steel and iron in a process called galvanization. It 

is also found in alloys like brass and bronze. Labelled as one of the most common metals on 

earth, Zn is found in all environmental media including food and water in low concentrations. It 
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is an essential metal that is required for normal biological functions in living organisms. Elevated 

concentrations of Zn have resulted from mining and smelting activities across the globe. The 

solubility, mobility and bioaccessibility of Zn largely determines its toxicity to soil organisms. 

Zinc is released into the environment primarily as a mineral from smelting activities. Zinc is 

comparatively more soluble and mobile (McLean and Bledsoe, 1992). Common Zn minerals 

include franklinite, sphalerite and willemite. These minerals can undergo weathering releasing 

Zn into soil over long time periods (Hamilton et al., 2016). Zinc compounds can dissolve in acids 

to release Zn2+ or in alkaline solutions to form anions (e.g. [Zn(OH)3]
-, [Zn(OH)4]

2-, and 

[Zn(OH)4(H2O)2]
2-) due to its amphoteric properties. When in solution, Zn can exist as a free ion 

or react with chloride and sulfate to form soluble compounds. Zinc can also be hydrolyzed to 

form hydroxides or hydrated zinc oxides or react with carbonates to form ZnCO3. The toxicity of 

Zn to human and ecological health will be discussed in sections 2.5 and 2.6. 

2.3.2 Lead 

Lead is a soft silvery transition metal found in period 6 and group 14 (IVA) of the 

periodic table. Its solid at room temperature with melting and boiling points of 327.5oC and 

1749oC respectively. Its anti-corrosive and low melting point have enabled its extensive use in 

pipes, batteries and weights. The metal can exist in 0, +2 and +4 oxidation states. Under normal 

environmental conditions, the metal exists in its divalent state switching into its tetravalent state 

in highly oxidizing environmental conditions. It is usually found in combination with elements 

such as Sulphur and Carbon and Phosphorus to form minerals. Lead concentrations in soils range 

from 10 parts per million to 67 parts per million and it is one of the top five metal mined in 

Canada (Ihnat et al., 1996). Lead is primarily released from smelting activities as stable sulfur 

compounds that include PbSO4, PbO.PbSO4 and PbS. Lead in soils can be found in the ionic, 
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oxides or hydroxide forms. Lead (Pb2+) is the more reactive and predominantly forms ionic 

bonds while Pb4+ is more stable and forms covalent bonds with ligands. Chaney et al. (1989) 

reported that PbSO4 is unstable and is quickly transformed into other species of Pb when spiked 

in soils. According to Khan and Frankland (1983), only a small proportion of lead is water 

soluble in soils. The solubility of the metal is highly driven by soil pH. Its solubility at low pH 

correlates with the sorption and solubility of iron and manganese oxyhydroxides (Agency for 

Toxic Substances and Disease Registry, 2007). Lead can form insoluble compounds with 

phosphates and carbonates in soils (Chaney et al., 1989). The toxicity of Pb to human and 

ecological health will be discussed in Chapters 2.5 and 2.6. 

2.3.3 Nickel 

Described as a strong lustrous metal with high melting (1455oC) and boiling points 

(2913oC), Ni is considered the 24th most abundant metal on earth (Agency for Toxic Substances 

and Disease Registry, 2005). The average concentration of Ni within the Earth’s crust is around 

86 ppm (Duke, 1990). It is found in period 4 and group 10 of the periodic table with an atomic 

number of 28 and exists in the environment in three main oxidation states; 0, +2 and +3. It is 

found in combination with iron, zinc, chromium and copper, and is a popular metal in alloys and 

stainless steel. Nickel is extensively mined in Southwestern Ontario and is associated particularly 

with environmental contamination of soils. The average concentrations in soils in the vicinity of 

operations are around 25 mg per kg. Nickel is primarily produced from pentlandite, nickel 

silicates or oxides. The metal purifying process causes the release of different species of the 

metal into soils. Nickel can be found as chloride, nitrate or sulphate salt that are soluble in soils. 

Nickel can also exist in its subsulfide or sulfide form in anthropogenic nickel deposits (Duke, 

1990). Other important species are nickel carbonates, hydroxides, sulfide and ferrite. Ni 



13 
 

hydroxides species are predominant in alkaline soils while NiSO4 and NiHPO4 species dominate 

in acidic soils. Nickel ferrite has been reported to be the solid species of the metal that is likely to 

precipitate in soils. Free Ni2+ is found in both acidic and alkaline soils. The toxicity of Ni to 

human and ecological health will be discussed in sections 2.5 and 2.6. 

2.3.4 Copper 

Copper is a reddish non-ferrous metal that naturally occurs in rocks, air soil and water in 

relatively low levels. It is found in period 4 and group 11 of the periodic table. It’s a solid at 

room temperature with melting and boiling points of 1084.6oC and 2560oC respectively. 

Common oxidation states found in the environment are +1 and +2. It’s been reported that the 

average concentration of copper in soils is 50 part per million (Agency for Toxic Substances and 

Disease Registry, 2004a). Copper is very useful in the manufacturing of electronics and other 

products due to its corrosion resistance, and electrical and thermal conducting properties. Of all 

metals, Copper has the best electrical conductivity apart from silver. Copper is an essential metal 

that is naturally found at low levels in all known plants and animals. Copper exists in soils as 

both primary and secondary minerals. These minerals are primarily found bound to sulphide as 

found in tetrahedrite, chalcocite, chalcopyrite, and bornite. Secondary forms of copper in soils 

include cuprite, malachite, azurite, brochantite, and antlerite (Canadian Council of Ministers for 

Environment, 1999). Copper has a high affinity  and forms complexes with organic matter, 

carbonates and clay minerals that reduces the metal’s concentrations likely to be found in soil 

solution (Wuana and Okieimen, 2014). Davis-Colley et al. (1984) confirmed the latter in an 

experiment that tested the adsorption of Copper to organic matter, clay, iron and manganese 

oxides, and aluminosilicates. They found that Copper preferentially binds to manganese-iron 

oxides and organic compounds compared to aluminosilicates and clay. This suggests that Cu will 
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have a high potential for leaching out of soils with low pH and low clay and organic matter 

content. The toxicity of Cu to human and ecological health will be discussed in Chapters 2.5 and 

2.6. 

2.3.5 Cobalt 

A naturally occurring magnet with the ability to retain its magnetism at temperatures (~ 

1100oC), cobalt is a transition metal that primarily exists in its stable isotope 59Co (Agency for 

Toxic Substances and Disease Registry, 2004b). It is a hard-silvery colored metal. The metal is 

commonly found in its divalent oxidation state but can also be found in its tetravalent state 

(Collins and Kinsela, 2010). It’s solid at room temperature with melting and boiling points of 

1945oC and 2927oC respectively. Cobalt is naturally found in most rocks and living organisms in 

minute concentrations primarily as cyanocobalamin (Agency for Toxic Substances and Disease 

Registry, 2004b). Cyanocobalamin is biochemically important in animals and essential for good 

health. The average concentration of cobalt in the environment is 27 ppm and 110 ppm in 

ultramafic rocks. It is found in combination with elements such as nickel, iron, arsenic and 

copper. Examples of cobalt minerals are erythrite, skutterudite, spherocobaltite and cobaltite. 

The metal is used in high technology industries for the manufacturing of rechargeable batteries, 

generators, turbines and magnets. Cobalt speciation is controlled by the presence of both organic 

and inorganic ligands like humic acids, chlorides, hydroxides, carbonates and sulphates. Divalent 

cobalt dominates in soil solution because the tetravalent state is extremely insoluble. In highly 

oxidized soils, Co2+ may be oxidized to Co3+ which will then precipitate unless complexed with a 

strong chelating organic molecule (Collins and Kinsela, 2010). The mobility of Co in soils 

depends on its solubility which is primarily driven by soil pH. Cobalt (Co) can form an 

octahedral coordination complex with six molecules of water to form Co(H2O)6
2+, but can 
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undergo hydrolysis to form Co(H2O)5(OH)+ or Co(H2O)4(OH)2 at alkaline pH. The toxicity of 

Co to human and ecological health will be discussed in Chapters 2.5 and 2.6. 

2.4 Soil-metal interactions 

Interactions between soil and metals control the fate and transport of metals in the 

environment. Like most xenobiotics, metals partition into the liquid, solid and gaseous phases in 

soils (McLean and Bledsoe, 1992). Specific kinetics control the partitioning of metals between 

the solid and aqueous phases and in turn determines metal availability in soils (Baker, 2008). The 

degree of metal mobility is influenced by desorption and sorption reactions. Apart from 

differences in metal properties, soil properties like pH, percent clay, percent organic carbon 

(OC), cation exchange capacity (CEC), reduction-oxidation (redox) potential and the 

concentration of base cations and anions control the rate of metal reactions in soil (Tatara et al., 

1998). According to Shuman (1991), metals in soil can either exist as free metals in solution, can 

be exchangeably held or adsorbed onto inorganic soil constituents, complexed with insoluble 

organic matter, precipitate as oxides, or exist in the structure of both primary and secondary 

minerals. Furthermore, the existence of metals in primary or secondary minerals is unlikely to 

result from the anthropogenic contamination of soils. When considering fate and mobility of 

metals, the aqueous, labile and exchangeable fractions are of primary importance (Elikem et al., 

2019; Laird et al., 2011). The concentration of metals in the aqueous phase is the most reactive, 

and the metals can be transferred into groundwater through leaching, taken up by plants or soils 

organisms, or can be chemically immobilized in the soil. The ability to predict metal behavior in 

soils requires an in-depth understanding of the major factors governing metal speciation in soils 

(i.e. soil properties) (McLean and Bledsoe, 1992). 
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2.4.1 Role of soil properties 

Soil pH is a major driver of speciation, mobility and fate of heavy metals in the 

environment (Alamgir, 2016; McLean and Bledsoe, 1992; Rieuwerts et al., 1998b). The 

adsorption of cations to ligands and nucleophilic sites is generally pH-dependent because the 

quantity of electrical charges on the surface of soil colloids is controlled by the pH of the soil 

solution (Alamgir, 2016). The negativity of the colloidal surfaces increases with pH, which 

increases the adsorption of cations in soils (McLean and Bledsoe, 1992). The relationship 

between soil pH and adsorption is influenced by proton and Al3+ ions concentrations particularly 

at low pH (Figure 2-1). The increase in the concentration of protium/ Al3+ also affects the 

intensity of heavy metal mobilization in soils especially at high heavy metal concentrations. 

Protium competes with cations for sorption sites at low pH, resulting in a decrease in cation 

retention in soils. Acidic soils favor the mobilization of metals compared to neutral or alkaline 

soils. Harter’s (1983) experiment on the adsorption of four metals (Pb, Cu, Ni, Zn) in two soils 

across an adjusted pH range showed an increase in cation adsorption with pH. The mobility of 

metals differs in acidic soils and reduces in the order of Cd>Ni>Zn>Mn>Cu>Pb (Fijalkowski et 

al., 2012). In alkaline or neutral soils complexation and immobilization of heavy metals become 

important drivers of metal transport. Hence, the adsorption of metal cations largely increases 

with pH as shown by Rieuwerts et al. (1998b) in Figure 2-1. Some authors have reported that the 

hydrolyzed concentration of metals increase with pH and are preferentially adsorbed compared 

to free metal ions (Elliott et al., 1986a, 1986b). The differences in pH-dependent hydrolysis 

explains the differences in adsorption between Cu at pH 6 and Cd at pH 8 (McLean and Bledsoe, 

1992). 
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Figure 2-1. Graph showing decrease in metal (Pb) solubility with increasing soil pH. X-axis is 

soil pH and y-axis is the difference between the base log of total Pb concentration and the base 

log of 0.01 M CaCl2 extracted Pb. Soils were collected from North Wales, UK (modified from 

Rieuwerts et al., 1998b). 

 

Soil organic matter (SOM) content is a combination of plant and animal residues 

undergoing decomposition in the soil. The decomposition of soil organic matter produces low 

molecular weight organic acids, stable and insoluble humic substances (Jackson et al., 2015). 

Humic substances include humic acids that are soluble at alkaline and fulvic acids that are 

soluble at all pH values. Alloway (1990) reported that the adsorption capacity of SOM is high at 

pH 5 and above. Metals have high affinity for SOM and tend to sorb or form strong complexes. 

An increase in soil organic matter content causes a decrease in the amount of available metals 

that might potentially cause toxicity to plants and soil organisms (Rieuwerts et al., 1998). The 

effect of SOM on metal availability depends on the quantity and quality of the SOM 

(Barančíková and Makovníková, 2003). It’s been reported that metal binding affinity to humic 

acids increased with increasing amounts of nonprotonated aromatic carbon (Preston, 1996). The 

high surface area to volume ratio increases the reactivity of SOM. SOM also contains sulfhydryl, 

carboxylic and amine functional groups with soft Lewis base characteristics (Jackson et al., 
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2015). An increase in the amount of SOM in soil solution will cause a decrease in the availability 

of the dissolved fractions of metal cations in soil solution. SOM is a major contribution to the 

water holding capacity (WHC) and cation exchange capacity (CEC) in soils.  

Soil texture is an important factor that regulates heavy metal mobility in soils. Texture is 

defined as the relative proportion of sand, silt and clay. Clay consists of a large group of minerals 

that mainly contain silica, iron and alumina oxides (Uddin, 2017). Clay materials have particle 

sizes below 2 µm and belong to a family of minerals with similar chemical compositions and 

common crystal structural characteristics (Velde, 1995). The main types of clay minerals are iron 

and aluminum oxides, layer silicates, amorphous and allophones, and clay-humus particles 

(Uddin, 2017). The capacity of clays to adsorb heavy metals is highly dependent on the clay type 

(Singh et al., 2010). For example, kaolinite is a 1:1 clay mineral that consists of one octahedral 

aluminum sheet and one tetrahedral silica sheet (Barton and Karathanasis, 2002). The sheets are 

held together by van der Waals forces and hydroxyls of the octahedral sheet. Specific 

characteristics of kaolinite include high swelling, relatively large particle size (0.1-0.5 µm), and 

low cation exchange capacity (Barton and Karathanasis, 2002). On the other hand, smectite is a 

2:1 clay mineral that consists of one aluminum octahedral sheet and two silica tetrahedral sheets 

also held together by van der Waals forces. Smectites are smaller in size (0.001-0.1 µm) and 

have a high cation exchange capacity (Uddin, 2017). The size and high CEC of smectite clays 

makes it a better heavy metal adsorbent compared kaolinite and other clay families (Singh et al., 

2010). Furthermore, soil colloids that contain clay particles below 1 µm are considered the most 

reactive portion of clays. The net negative charge on clay particles explains their high sorption 

ability and affinity for metals. This explains the differences in sorption capacities and nutrient 

retention between sandy and clayey soils.  
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The cation exchange capacity (CEC) of soils is defined as the sum of the available 

negatively charged sites to which cations or positively charged ions can sorb. It is expressed as 

centimoles per kilogram soil. Soil CEC is dependent on major soil properties such as soil organic 

matter, percent clay, iron and manganese oxyhydroxides, and soil pH. Many studies have 

interestingly shown that percent clay, percent organic carbon and soil pH can predict CEC of 

soils (R2=0.90) (Curtin and Rostad, 1997; Saidi, 2012). Organic matter alone can contribute 

greater than 200 meq per 100 g in surface (~30 cm) mineral soils. Mclean and Bledsoe (1992) 

reported that organic matter is the major contribution to CEC in surface mineral soils while the 

mineral constituents become more important as organic matter content decreases especially with 

depth. The higher the CEC, the more sorption sites available for cations. In Table 2-1, I show a 

list of properties for the major metals under study (Cu, Ni, Pb, Co, Zn) that control metal binding 

and availability in the environment. 

Table 2-1. Selected metals and their properties  

 Metal          pKa      Radius   Charge    Electronegativity   Redox        Covalent      Ionic Binding 

                             (Å)                                                Potential     Binding        Index 

                                      r          Z                   X                     Eh             Index (Xr)     (Z2/r) 

Cobalt  9.85 2.008    2  1.91  -0.28        3.83528 1.9920 

Copper  8.0 1.865    2  1.65  0.337        3.07725 2.1447 

Lead  7.8 2.36    2  2  -0.126        4.72 1.6949 

Nickel  9.86 1.934    2  1.9  -0.25        3.6746 2.0683 

Zinc  8.96 1.8    2  1.81  -0.7618       3.258 2.2222 

(Ghosh, 2002; Haynes et al., 2016; Kortum et al., 1961; Perrin, 1965)  

 

The oxidation-reduction (redox) potential of the soil measures the availability of 

electrons in the soil and is reported in millivolts as electrochemical energy. Redox reactions in 

soil are an important regulatory factor in the mobility and availability of heavy metals (McLean 

and Bledsoe, 1992). Some metals can exist in different oxidation states depending on 

environmental factors and the redox potential of the soil. For example, in highly oxidized 
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conditions, Fe is oxidized to Fe (III) while Mn is oxidized to Mn (III/IV) causing them to form 

complexes with other metals and thereby reducing their availability (Roberts et al., 2005). The 

mobility of metals like Iron (Fe) and Manganese (Mn) is highly influenced by the redox state of 

soils. In the appropriate conditions, metals can gain electrons and be reduced or lose electrons 

and become oxidized. Measuring the redox potential of the soil can give an indication or help 

predict the valence state of metals in the soil. The redox potential of oxidized soils average 

around +500 mV while reduced soils average around -250 mV (Roberts et al., 2005). Factors that 

cause reduced conditions include flooding of oxidized soils (Alamgir, 2016). Flooding results in 

decreased transportation of oxygen which causes reduction and deoxygenation of hydrolyzed 

metals increasing their mobility.  

2.4.2 Metal speciation 

 Metal speciation is a broad term used to denote the chemical form of metals in soils and 

consists of the solid, liquid and gaseous phases. Metals in the liquid and gaseous phases are 

supplied by the solid phase to establish chemical equilibrium (Fijalkowski et al., 2012; McLean 

and Bledsoe, 1992; Roberts et al., 2005). The concentration of metals in all three phases are 

determined by processes that include, adsorption-desorption, dissolution-precipitation, reduction-

oxidation, occlusion-sequestration, migration-diffusion, immobilization-mobilization by soil 

organisms, and metal competition (Alamgir, 2016; McLean and Bledsoe, 1992). These processes 

result in metals undergoing several transformations due to interactions among chemical, 

biological and physical components of the soil. Metals tend to exist as free ions in solution, form 

complexes with either organic or inorganic ligands, sorb to soil surfaces, and precipitate as 

oxides, hydroxides or carbonates. Sorption kinetics and dissolution-precipitation reactions 
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determining metal partitioning between the different phases while redox and metal complexation 

control the solubility and bioaccessibility of metals (Chaney et al., 1989; Rieuwerts et al., 1998). 

2.4.3 Bioaccessibility and bioavailability 

Understanding the factors that drive the bioavailability of heavy metals in soil is important 

in toxicity estimation and risk assessment. Bioavailability is even more important when heavy 

metals exist as mixtures in soils and individual concentrations are below regulatory limits. The 

incorporation of bioavailability in assessing the risk of metal mixtures has proven difficult because 

of the protective role of metals like Zn in mixtures, hence, their bioavailability might not 

necessarily mean toxicity (Versieren et al., 2017). The bioavailable fraction as defined by 

toxicologists is the proportion of a chemical that reaches the systemic circulation in an unchanged 

form (Semple et al., 2004). Bioaccessibility in soils is defined as the concentration of free metals 

that can be mobilized from soil and potentially taken up by soil organisms (Semple et al., 2004). 

When modeling the toxicity of heavy metals to soil organisms, both schools of thought need to be 

considered in order to more accurately predict the actual concentrations that interact with 

biological targets to cause the measured apical effects. As previously discussed, bioavailability of 

metal ions in soils is controlled by pH, cation exchange capacity (CEC), organic matter, and clay, 

although pH is the main determinant of speciation (Roberts et al., 2005).  

Due to the high influence of soil properties on metal bioavailability and the wide variation 

in soil properties, appropriate models have been developed to predict the bioavailability and 

toxicity of single metals and metal mixtures to soil organisms (Gopalapillai et al., 2018; Tipping, 

1994; Tipping et al., 2011). These equilibrium-based models predict toxicity by determining the 

speciation and the concentration of free metal ions that can potentially bind and interact with biotic 
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ligands (Tipping, 1994; Tipping et al., 2011). The free ion activity and biotic ligand models (BLM) 

will be briefly discussed while highlighting their pros and cons.  

2.4.3.1 Free ion activity and biotic ligand models 

There has been massive development and improvements in our understanding of metal 

speciation and the predictive power of toxicity models in both aquatic and terrestrial ecosystems 

(Cedergreen, 2014; Farley et al., 2015; Nys et al., 2018; Tipping et al., 2011). Earlier studies 

conducted to determine the toxicity of metals identified that the effect might be related to a fraction 

of the total metal concentrations, speciation and chemical complexation (Black, 1973; Vuceta, 

1979). Further research introduced the importance of speciation of metals, and suggested that metal 

speciation and not total concentrations needed to be considered in order to fully understand toxicity 

to organisms (Martyn, 1988; Vuceta, 1979). A study by Sunda and Guillard (1975) confirmed the 

importance of speciation when they related the toxicity of Cu to algae by a measure of free ion 

activity using a Cu selective electrode and observed better correlations with toxicity. In defining 

the bioavailable portion which was assumed to be the dissolved concentration of metals in solution, 

the pore water hypothesis was proposed and suggested that the uptake of metals is mediated by 

pore water concentrations (Crommentuijn et al., 1997; Van Gestel, 1997). Robert et al. (2005) also 

reported that soil aqueous phase determined the soils reactivity, nevertheless, the solid phase 

contains majority of the metals in soils and supplies them accordingly.  

The free ion activity model (FIAM) has been widely used in elucidating the uptake of 

nutrients and metals by cells (Hare and Tesier, 1996; Parker and Pedler, 1997). The FIAM 

describes metal-organism interactions that determine the toxicity of metals and assumes that the 

primary form of metal uptake is the free fraction in pore water. Furthermore, FIAM assumes that 

the plasma membrane is the primary metal interactive site in cells and the biological response is 
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strictly dependent on the concentration of the metal bound to the cell surface. This model further 

explains that the concentration of metals bound to a surface is proportional to the free ions in 

solution and not the ligand concentration, which is only true when the speciation of the metal is 

not altered by the introduction of a ligand (Hare and Tesier, 1996). The FIAM has been 

successfully used in predicting toxicity of Cd to gram negative soil bacteria and also the inhibition 

of nitrification by Cd and Ni in a lab bioreactor (Hu et al., 2002; Slaveykova et al., 2009). A major 

weakness of the model is its failure to fully account for metal-metal competitions and metal ligand 

complexes. This was confirmed in a study by Ytreberg et al. (2011) where FIAM failed to predict 

copper accumulation to Ceramium tenuicorne. Another study has reported wide deviations from 

FIAM predictions because of the addition of chelators (Zitko et al., 1973). Metal-metal 

competitions and absorption of complexed metal forms can possibly explain the modification of 

toxicity and the weak prediction from FIAM. For example, it was discovered by Moberley et al. 

(2010) that metal complexes may enter cells through diffusion and transportation by endogenous 

anion transporters.  

The biotic ligand model (BLM) was initially developed to predict acute and chronic 

toxicity to aquatic organisms and was coined from both the gill interaction model and the FIAM 

(Stefaniak, 2007). The main difference between BLM and FIAM is that, the former includes 

competition and interaction among metals, protons and essential cations such as Ca and Mg (Qiu 

et al., 2013; Steenbergen et al., 2005). Furthermore, the bioavailability of a metal is dependent on 

the concentrations of Ca, Mg and other protons due to competition for ligands (Srivastava et al., 

2010). Also, high organic matter content in soils has been linked to lower toxicity of the metals to 

the mite Oppia nitens (Jegede et al., 2019). The toxicity is dependent, however, on the affinity of 

the metal ion to the organic ligand. The characteristicx of metal ions have been used to predict 
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metal toxicity with success using the properties like the log of the first hydrolysis constant, charge 

and radius (Tatara et al., 1998). The BLM also accounts for metal complexes with inorganic 

ligands and humic substances and has been widely accepted following extensive validation 

(Thakali et al., 2006).  

The BLM has been successfully applied to soils in predicting toxicity of metals to Folsomia 

candida, Aporrectodea caliginosa and microbes (Slaveykova and Wilkinson, 2005; Steenbergen 

et al., 2005; Van Gestel and Koolhaas, 2004). However, a study by Ponizosky et al. (2006) pointed 

out that when the moisture content of soils is below their maximum water holding capacity the 

pore water concentration is insignificant. To account for the differences in soil properties, Thakali 

et al. (2006) applied some modifications to the BLM, which he named the terrestrial BLM 

(TBLM). They applied the TBLM to a study using non-calcareous soils amended with Cu and 

showed that Cu ions significantly adsorb to soil organic matter. Their results agreed with the 

modeling results from Windermere Humic Aqueous Model (WHAM). It has hence been accepted 

as a model that sufficiently predicts bioavailability of single metals across different soils and 

suitable for risk assessments (Stefaniak, 2007).  

2.5 Ecological Health 

 Heavy metals found in contaminated soils in Canada that are of potential concern include 

lead, copper, nickel, zinc and cobalt. Metal concentrations in soil pose a wide range of threats to 

plants and soil organisms. Concentrations of Pb as low as 1 ppm affect 16S and nirK genes 

(Sobolev and Begonia, 2008). Metals at toxic concentrations generally result in the deactivation 

of enzymes and cause damage to microbial cells by acting as antimetabolites, forming 

precipitates or chelating essential metabolites (Sobolev and Begonia, 2008). Soil enzymes such 

as ammonia monooxygenases and beta glucosidases that are involved in biogeochemical cycles 



25 
 

are sensitive and inhibited by metals in soils (Ruyters et al., 2013; Wang et al., 2018). Despite 

the differences in toxicokinetics and sensitivity of enzymes to metals, substantial effects on 

enzymes can occur even at sub-lethal concentrations, that can indirectly affect ecological health 

(Hayes et al., 2018). The impacts of metals on soil enzymes can potentially affect nutrient uptake 

by plants, because, some plants secrete enzymes (e.g. acid phosphatases) to enhance the 

solubilization and mobilization of nutrients (e.g. phosphorus) during stressed conditions(Das and 

Varma, 2011). Apart from the direct effects of metals on plant exoenzymes, metals such as lead 

are easily absorbed and accumulated in different parts of plants. The mode of action of these 

metals in plants is through the inhibition a number of key processes in plants including 

photosynthesis, osmotic balance, hormonal balance, and cell integrity (Sharma and Dubey 2005). 

Metals like lead and zinc induce the generation of reactive oxygen species that overwhelm the 

detoxifying enzymes in plants and cause toxicity. Manifestation of lead toxicity in plants include 

reduction in growth, darkening of the root system and chlorosis (Sharma and Dubey 2005). 

Metals accumulated in plants are found in cell walls, vacuoles, and vascular bundles 

(Etim, 2012). These metals are localized in their salts form or complexed with proteins and 

carbohydrates (Göhre and Paszkowski, 2006). Continuous accumulation of metals in plant parts 

cause increases in concentrations that may be toxic to plants (Gamalero et al., 2009). 

Hyperaccumulators have developed specific metal resistant and detoxifying mechanisms (Göhre 

and Paszkowski, 2006). Some metals are detoxified in the cytosol by amino or organic acids 

produced by the plants. Phytochelins and metallothioneins are two cysteine-rich detoxifying 

proteins that have high affinities for metals. Salt et. al (1995) reiterated that the detoxicification 

of Cd is achieved by complexation with phytochelatins, while Cu forms complexes with 

metallothionein and other similar compounds (Salt et al., 1995). In an experiment where 
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Brassica juncea was exposed to high Pb concentrations, phytochelatins were produced in roots, 

which suggests that as a detoxifying mechanism for Pb (Salt et. al, 1995). Furthermore, the Zn 

accumulator Thlaspi caerulescens precipitates the metal into Zn-phytate. In the detoxicification 

of Ni, Alyssum lesbiacum releases dose-dependent amounts of histidine that forms stable 

complexes with Ni (Verbruggen, 2009).  

2.6 Human health 

 Elevated concentration of metals can cause a wide range of toxicological effects to 

humans. Effects range from subtle symptoms like skin irritation or nausea, to tumor and cancer 

and sometimes death (US Environmental Protection Agency, 2007). Some metals are known to 

target specific organs while others exhibit a wide range of targets. Humans are exposed to metals 

in contaminated soils through direct skin contact with contaminated soil and by the ingestion and 

inhalation of dust. Indirect routes of exposure include accumulation in ingested plants and 

ground or surface waters that have elevated metal concentrations. The route of exposure is 

important because it can be used to predict the toxicodynamics and toxicokinetics of the metal.  

The route of exposure for lead is less important because its effect on the target organ; the 

nervous system is not altered by differences in exposure routes (Agency for Toxic Substances 

and Disease Registry, 2007). Lead concentrations in the body after exposure has been shown to 

accumulate in bones; 95% for adults and 70% for children (Agency for Toxic Substances and 

Disease Registry, 2007). The absorption of lead in the gastrointestinal tract is controlled by a 

person’s diet and the role of phosphate, calcium and iron as lead reducers (Agency for Toxic 

Substances and Disease Registry, 2007). Studies showed that the cognitive performance of adults 

that were exposed to lead were decreased (Dietrich et al., 1993, 1987). Exposure to lead also 

caused high blood pressure and weakness in joints. Lead causes hypertension, anemia and 
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miscarriage in pregnant women (Borja-Aburto et al., 1999; Rabinowitz et al., 1987). In high 

concentrations, the metal causes death in children. Even though lead is not classified as a 

carcinogen, it has been reported to cause tumor in the kidneys of rats and mice (IARC, 2006). 

Zinc is a micronutrient that is required for metalloenzymes and for a variety of functions 

that include cell division and growth, metabolism of proteins and maintenance and function of 

membranes in the animals and humans (Agency for Toxic Substances and Disease Registry, 

2013). Metalloenzymes are enzymes with metal cofactors and include deoxyribonucleic acid 

polymerase, ribonucleic acid polymerase, superoxide dismutase, alcohol dehydrogenase, 

carbonic anhydrase, and leucine aminopeptidase (McCall et al., 2000; Vallee and Williams, 

1968). Hence, the toxicity of Zinc does not only occur at high doses but also at concentrations 

below that required for normal body functions. There are no sensitive indicators for marginal 

zinc deficiency in humans but some research has shown signs of impairment that include both 

physical and neuropsychological abnormal developments in children (Hambidge, 2000). Zinc 

deficiency has also been linked with attention deficits and disorders in motor neurons in infants 

that can persist into adulthood (Hambidge, 2000). Prasad (2012) reported stunted growth and 

development in humans with severe Zinc deficiency, a finding that was derived from patients 

with acrodermatitis enteropathica, a genetic condition that results in the impaired uptake and 

transport of zinc. Exposure to high concentrations of Zinc can cause toxicity to a wide range of 

organs. Zinc can affect the reproductive and nervous systems. The metal exhibits immunological, 

systematic, genotoxic and carcinogenic effects (Agency for Toxic Substances and Disease 

Registry, 2013).  

 The essentiality of Nickel to humans is debatable, but studies have reported that the metal 

is needed in concentrations below 35 µg per day by humans (Anke et al., 1995). It is believed 
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that Nickel deficiency affects the metabolism of calcium, iron and vitamin B12 (Dwivedi et al., 

2015). Symptoms of the deficiency includes dysfunction of the liver, hormonal imbalance and 

anomalies in bone growth. High concentrations of Nickel affect the skin, respiratory tracts, 

immune and reproductive systems (Agency for Toxic Substances and Disease Registry, 2005). 

Dermatitis is frequently encountered from Nickel exposure through skin contact from nickel-

containing jewelry and prosthetics or contaminated soil (Nielsen et al., 1999). 

 Copper is an essential component of several metalloenzymes that are required for normal 

body functions in humans (Vallee and Williams, 1968). Copper dependent metalloenzymes 

include super oxide dismutase, monoamine oxidase, cytochrome c oxidase, and ferroxidases 

(Cobine et al., 2006). These metalloenzymes are involved in metabolic reactions that control the 

metabolism of xenobiotics and carbohydrates, hemoglobin synthesis and defense against 

antioxidants. In Canada, the estimated daily intake of the metal in children and adults is up to 66 

µg kg -1 per body weight and 74 µg kg -1 per body weight respectively (CCME, 2004). The 

absorption of copper occurs in the stomach and intestines. The synthesis of the metal binding 

protein metallothionein is activated when absorbed Copper concentrations are above that 

required by the body (Cobine et al., 2006). Metallothionein binds, stores, transports and aids in 

the excretion of copper and other metals (Hamer, 1986). Overwhelming concentrations of copper 

can cause damage to the liver and kidney, and cause toxicity to development and the immune 

system (Agency for Toxic Substances and Disease Registry, 2004a). Copper’s mode of action is 

by binding to cysteine rich macromolecules, creating reactive oxygen species and interfering 

with cellular protection (Wuana and Okieimen, 2014). 

 Cobalt is needed in minute concentrations by humans for nutrition and growth, making it 

an essential metal (Agency for Toxic Substances and Disease Registry, 2004b). The estimated 
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daily consumption of cobalt from diet in the general human population is between 5-40 µg 

(Agency for Toxic Substances and Disease Registry, 2004b). Cobalt is a component of 

cobalamin (vitamin B12) and is involved in the synthesis of DNA, and the metabolism of amino 

and fatty acids (Andrès et al., 2004). The highest concentrations of cobalt in the body are found 

in the liver. Exposure to high concentration of Cobalt can affect the nervous and respiratory 

systems through ingestion and inhalation respectively (Agency for Toxic Substances and Disease 

Registry, 2004b; Leyssens et al., 2017). Humans that were occupationally exposed to cobalt 

metal (0.015–0.13 mg Co/m3) developed health effects that included asthma, lung diseases, 

dyspnea, and decreased pulmonary function (Leyssens et al., 2017). 

2.7 Metal toxicity and mixture modeling 

 Metals and metallic compounds are potentially toxic to all biological organisms including 

humans (Dietrich et al., 1993; Jegede et al., 2019; Qiu et al., 2016). Even though the toxicity of 

metals depends on the concentration, speciation is of critical importance when estimating their 

toxicity (Nys et al., 2017; Tipping, 1994). Metals in their solid state (zero valence) are insoluble 

compared to metals in their free or ionic state. This plays a significant role in the bioavailability 

and reactivity of the metal, and subsequent toxicity. Metals typically exist in environmental 

media as a mixture of metals (Farley and Meyer, 2015; Meyer et al., 2015). The toxicity of metal 

mixtures is very complex due to a variety of reasons. First, the metals comprising the mixture 

might or might not interact (Ross and Warne, 1997; Warne and Hawker, 1995). If they do not 

interact, the toxicity of the mixture could be estimated from their individual concentrations or 

responses. However, if interactions occur between metals in a mixture, it could result in lesser or 

stronger effects compared to their individual effects as usually observed from the traditional 

mixture models (i.e. concentration addition and response addition models). 
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2.7.1 Modeling metal mixture toxicity 

2.7.1.1 Concentration addition 

       The German pharmacologist Loewe originally articulated this in 1926 for a mixture with non-

interactive components that simply act similarly in their effects. For a mixture of n chemicals, it 

can be arithmetically illustrated as:  

∑ 𝑇𝑈𝑖 = ∑
𝑐𝑖

𝐸𝐶𝑥𝑖

𝑛
𝑖=1 = 1                                                                                                              Equation 2-1 

Where 𝑐𝑖 is the concentration of chemical i in the mixture containing n components exhibiting an 

effect x% and 𝐸𝐶𝑥𝑖 is the concentration of i that exhibits same x% effect when singly applied. 

The quotient of 𝑐𝑖 and 𝐸𝐶𝑥𝑖 is referred to as the toxic unit (TU) which represents the fractional 

potency contributed by each component in the mixture. If the TU’s of all the components in the 

mixture add up to 1 at a mixture concentration provoking x%, then the CA model holds. On the 

other hand, if it’s less or greater than 1, then it is either antagonistic or synergistic respectively. 

Following the assumptions of CA, one component of the mixture can be replaced with an 

equitoxic (same TU) chemical with same mode of action without altering the overall effect.  

2.7.1.2 Response addition 

The response addition concept is based on dissimilarly acting components in a mixture, hence it is 

expressed mathematically as a product of the probability of nonresponse, thus: 

𝐸(𝑐𝑚𝑖𝑥)=1- ∏ [1 − 𝐸(𝑐𝑖)]𝑛
𝑖=1                                                                                                   Equation 2-2 

 Where 𝐸(𝑐𝑚𝑖𝑥) is the proportional effect of the total mixture at a particular concentration 

𝑐𝑀𝑖𝑥 = ∑ 𝑐𝑖
𝑛
𝑖=1                                                                                                                              Equation 2-3 
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and 𝐸(𝑐𝑖) is the proportional effect of the individual components when applied singly at the same 

concentrations present in the mixture and 𝑐𝑀𝑖𝑥 is the sum of concentration of the components in 

the mixture (Van Gestel et al., 2016). Equation 2.4 can be rewritten as:  

𝐸𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑀𝑎𝑥𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ∏ 𝑞𝑖(𝑐𝑖)
𝑛
𝑖=1                                                                                        Equation 2-4 

Where Eactivity  represents the observed enzyme activity while Maxactivity  represents the enzyme 

activity in control soils and 𝑞𝑖(𝑐𝑖) replaces  𝐸(𝑐𝑖) as in Equation 2.4 as the the proportional effect 

of the individual components when applied singly at the same concentrations present in the 

mixture. 

2.8 Human health and ecological risk assessment 

Risk is defined as the likelihood of an event or substance to cause harm, coupled with its 

ability to be severe (Canadian Standards Association, 1997). Mathematically, it is a function of 

exposure and hazard. Hazard is when a substance has the potential to cause harm, injury or damage 

(Schierow, 2002). The assessment of risks associated with contaminants is conducted to protect 

either the lives of human beings (i.e. human health risk assessment) or population of organisms 

and ecological integrity (Golder Associates, 2013). Both forms of assessments follow similar 

structures (Figure 2-2) and use similar models to inform the characterization of risks associated 

with environmental concentrations of xenobiotics. The framework for estimating risks to humans 

and ecology following exposure to chemicals is described in detail below.  

2.8.1 The risk assessment process 

As defined by the United States Environmental Protection Agency (USEPA), risk 

assessment is a process that is used to evaluate the nature and probability of adverse effects on 

humans health and ecology upon exposure to chemicals through contaminated environmental 

media now or in the future (Department for environment food and rural affairs, 2011; United States 
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Environmental Protection Agency, 1986). The approaches applied in RA have developed 

progressively over the last few decades. The framework is divided into four (4) main steps namely: 

the problem formulation step, the hazard identification step, the exposure and dose-response 

assessment steps, and the risk characterization step. 

The various steps are structured to answer simple questions like; 

• Problem Formulation Step: This is the planning stage where basic questions like what the 

problem is, who are being exposed, how are people or organisms being exposed are 

answered. 

• Hazard Identification Step: At this stage, the most important question is defining what level 

of exposure is safe. 

• Exposure Assessment & Dose-Response Assessment Step: This answer questions such as 

the exposure level, the duration of exposure, frequency of exposure. The dose-response 

assessment step quantifies the relationship between effects and degree of exposure. 

• Risk Characterization Step: This step answers how exposure compares to what is deemed 

safe. 
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Figure 2-2. A flow diagram of the risk assessment framework. Modified from Canadian Council 

of Ministers for the Environment (Canadian Council of Ministers for Environment, 1997), 

United States Environmental Protection Agency (United States Environmental Protection 

Agency, 1998) and Department for Environment, Food and Rural Affairs (Department for 

environment food and rural affairs, 2011).  

2.8.1.1 Conducting a Risk Assessment 

Once concerns are raised about a potential chemical hazard, the source of the hazard is 

determined, potential receptors are identified, and concentrations are measured or estimated. Risk 

assessment exists in a tiered approach (Tier 1, Tier 2, Tier 3), and all four steps are part of each 

tier. Overall, the complexity, costs, amount of data, and characterization of sites, receptors, and 

contaminants of the assessment increases from Tier 1 to Tier 3. The following provides an 

overview of the steps involved in risk assessment. 

(1) Problem Formulation 

(3.b) Exposure 
Assessment 

(4) Risk Characterization 

(3.a) Dose-Response 
Assessment 

(2) Hazard Identification 
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2.8.1.2 Problem Formulation 

The problem formulation stage involves identifying chemicals of potential concern (COPC). 

The maximum estimated or measured concentrations of chemicals are compared to the allowable 

concentrations from guidelines. Regulatory limits/values of most chemicals in environmental 

media (soil, air, water, food) are available in guidelines that can be found on government websites 

(Canadian Water Quality Guidelines, Canadian Soil Quality Guidelines, Canadian Food and Drugs 

Act, USEPA, WHO, IPCS). The contaminant of potential concern undergoes different levels of 

screening to determine if the risk assessment process should proceed (Canadian Council of 

Ministers for Environment, 1997). Three main steps are used in the contaminant screening stage; 

1. If the concentration of the chemical exceeds the maximum regulatory allowable 

concentration in the media, then the chemical is of potential concern and vice versa. 

2. If the concentration of the chemical exceeds normal or natural background levels especially 

for inorganics, the chemical is considered a COPC and vice versa. 

3. If a chemical has no guideline and considered nocuous but exceeds background or has no 

background information, then it is considered a COPC. 

2.8.1.2.1 Receptor Identification 

After identification of COPC’s, potential receptors such as employees, community member 

and general members of the public are identified. There is a variation in sensitivity of receptors to 

the COPCs. Health Canada defines five age classes that can be used in identifying the most 

sensitive receptors based on the nature of the COPC. These classes are; 

a. Infants 0-6 months 

b. Toddlers 7 months-4 years 

c. Child 5 years-11 years 
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d. Teen 12years-19 years 

e. Adult 20 years and over 

For situations of soil contamination, identification of sensitive population is further divided based 

on land use (Canadian Council of Ministers for Environment, 1997). The guidelines enumerate 

four different land uses and their sensitive receptors with respect to age. Generally, toddlers are 

considered the most sensitive population due to their large surface area to volume ratio (SAVR) 

compared to adults. 

• Agricultural Land-use: - Toddlers are designated as the most sensitive population due to 

their pica behavior. It is estimated that toddlers ingest 80 mg of soil in a day while adults 

ingest 20 mg. If COPCs end up in agricultural produce toddlers will be the ones most at 

risk. Time of exposure is calculated as 24 hours per day. 

• Residential Land-use: - Toddlers are designated as the most sensitive in for similar reasons 

as outlined above. Time of exposure is calculated as 24 hours per day. 

• Commercial Land-use: - Toddlers are designated as the most sensitive for similar reasons 

as outlined above. Time of exposure is calculated as less 24 hours per day. 

• Industrial Land-use: - Adults are designated as the most sensitive population for industrial 

land-use due to their exposure during work shifts calculated as 8-hour per day and 40-hour 

per week of exposure. 

Receptors can also be identified based on the mode of action, toxicokinetic or toxicodynamic 

of the COPC (Canadian Council of Ministers for Environment, 1997). Adults are the most sensitive 

population if the COPC is a known carcinogen, infant and women of child-bearing ages are the 

most sensitive population if the COPC is a known neurotoxin. Other sensitive populations are also 

identified on the merit of specific lifestyles. For example, if the COPC is a persistent pollutant that 
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bioaccumulates and biomagnifies, fishing communities and eaters are considered the most 

sensitive population. If the COPC is in a consumer product, users of the products are designated 

as the most sensitive population. 

2.8.1.2.2 Exposure Pathways 

After identification of the sensitive populations, exposure pathways and routes of exposure to 

receptors need to be defined. Three main routes of exposure have been identified; 

• Inhalation: - Of ambient air contaminated with vapors or PM 

• Ingestion: - Contaminated soil or dust 

• Dermal absorption: - Contaminated soil or water 

2.8.1.2.3 Conceptual Model 

A conceptual model is developed after identifying COPCs, receptors, and pathways of 

exposure. The model gives a visual representation of the COPC’s origin, release and medium of 

transfer to the receptor that could result in potential adverse effects. Below is an example of a 

conceptual model developed for lead (Pb) as a COPC in contaminated soil. The model incorporates 

the media of exposure for Pb and the exposure pathways that define possible doses associated with 

each pathway. 
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Figure 2-3. A conceptual model of Pb exposure from soil contamination, and how the fate and 

transport of Pb contaminates groundwater and food for human health risk assessment. 

2.8.1.3 Hazard Identification 

This is the process of describing the likely increase in the incidence of a particular adverse 

effect (or important endpoints) upon exposure to the COPC (United States Environmental 

Protection Agency, 1998). Adverse effects could include cancer, birth defects, other diseases. 

Mode of action and the absorption, distribution, metabolism, and excretion of the COPC are 

employed because the cardinal objective is to find a relationship between the COPC and the 

biological response or adverse effect. Information collected from the Problem formulation step is 

combined with weight of evidence identified in publications and other sources of data on the COPC 

to establish this link.  

2.8.1.4 Exposure Assessment  

This step is done to evaluate how receptors are being exposed, how much they are being 

exposed to, and the duration of exposure (Means, 1989). Exposure can either be speculated 

(predicted) or measured (empirical). The estimated environmental concentrations (EEC) and 
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reasonable maximum exposure are determined for each chemical of potential concern (COPC). 

Concentrations of COPC’s measured within 20 cm of the soil surface are used in determining 

EEC’s (United States Environmental Protection Agency, 1998). Toxic or potency equivalency 

factor is an approach that compares the toxicity of COPCs with the same mode of action and 

expresses the toxicity relative to the most potent compound (United States Environmental 

Protection Agency, 1986). It can be used when dealing with multiple contaminants only if they 

have the same modes of action and are additive (e.g. dioxin-like compounds) (United States 

Environmental Protection Agency, 2010).  

Exposure is calculated as a function of ingestion or inhalation rate (IR), estimated duration 

(ED), exposed concentration (C) or EEC, body weight (BW) and average time (AT). The reference 

dose (RfD) or the tolerable daily intake (TDI) from guidelines are compared to the estimated daily 

intake (EDI) to estimate risks (Means, 1989). The duration used in calculating exposure is different 

for threshold and non-threshold contaminants. For threshold contaminants, exposure is averaged 

across the length of exposure, but for non-threshold contaminants, exposure is averaged over a 

lifetime (LT). As a result, adults are the most sensitive population for a possible carcinogen while 

children are the most sensitive population for non-carcinogens.  

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑓𝑜𝑟 𝑛𝑜𝑛 − 𝑐𝑎𝑟𝑐𝑖𝑛𝑜𝑔𝑒𝑛𝑠 (𝐸𝐷𝐼) =
[𝐶]∗𝐼𝑅∗𝐸𝐷

𝐵𝑊∗𝐴𝑇
                                                   Equation 2-5 

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑓𝑜𝑟 𝑐𝑎𝑟𝑐𝑖𝑛𝑜𝑔𝑒𝑛𝑠 (𝐸𝐷𝐼) =
[𝐶]∗𝐼𝑅∗𝐸𝐷

𝐵𝑊∗𝐿𝑇
                                                                Equation 2-6 

2.8.1.5 Risk Characterization 

This is the final risk assessment step. It combines all the previous steps, particularly hazard 

identification and exposure assessment to estimate potential risks associated with the exposure of 

the COPC to receptors (Means, 1989). Risk is calculated for different routes of exposure for 

threshold and non-threshold toxicants. This process involves the comparison of exposure estimates 
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to toxic reference values (TRV) also known as TDI or RfD. Hazard quotients are used for 

estimating risks of non-carcinogens while the cancer slope factor (CSF) is used for carcinogens 

(Means, 1989; United States Environmental Protection Agency, 1998). 

𝑅𝑖𝑠𝑘 𝑓𝑜𝑟 𝑎 𝑛𝑜𝑛 − 𝑐𝑎𝑟𝑐𝑖𝑛𝑜𝑔𝑒𝑛 (𝐻𝑄) =
𝐸𝐷𝐼

𝑇𝐷𝐼
                    Equation 2-7 

 
𝑅𝑖𝑠𝑘 𝑓𝑜𝑟 𝑐𝑎𝑟𝑐𝑖𝑛𝑜𝑔𝑒𝑛 = 𝐸𝐷𝐼 ∗ 𝐶𝑎𝑛𝑐𝑒𝑟 𝑆𝑙𝑜𝑝𝑒 𝐹𝑎𝑐𝑡𝑜𝑟 (𝐶𝑆𝐹)                     Equation 2-8 

2.8.2 Human health risk assessment  

Even the indispensables of life (e.g. water and air) can be harmful at high concentrations. 

People have died from water intoxication, and babies exposed to high oxygen levels in incubators 

have experienced defects in blood vessels of the eye, increasing the risk of losing their sight (Terry, 

1942; Williams, 2007). Paracelsus established that “everything is poisonous, and nothing is not 

poisonous, it is factually the dose that defines the poison”. Several activities from both natural and 

anthropogenic sources release chemicals into the environment. These chemicals classified as 

hazards potentially cause adverse effects to humans and the environment (receptors) when they 

exceed levels that are deemed “safe”.  

Once an identified hazard overlaps with a receptor and an exposure pathway, risk is defined 

(Cooper et al., 2000). Risk assessment (RAs) is therefore undertaken to acquire an in-depth 

knowledge of the contaminant or hazard, its effects on the environment or humans and its 

associated risks (Berglund and Järup, 2001; Gentile et al., 1991).  RAs is also done to determine a 

solution that combines an optimum balance of risk control and societal benefit usually through a 

cost-benefit analysis. The precautionary principle is applied to identify appropriate balances when 

managing risks and making decisions (Cooper et al., 2000; Gentile et al., 1991). A systematic 

approach and framework were developed several decades ago to be used in assessing the risks of 
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chemicals to humans and ecology. It is a multi-step process that employs the organization and 

analyses of knowledge from both scientific and social contexts.  

2.8.3 Ecological risk assessment 

The ecological risk assessment (ERA) process is used to evaluate the possibility of adverse 

ecological effects that might occur after exposure to stressors (United States Environmental 

Protection Agency, 1998). The definition of adverse effects in ecological risk assessment is 

complex because of the differences in sensitivity of ecological components to metals and 

mixtures (United States Environmental Protection Agency, 1998). Hence, selecting an 

assessment endpoint in ERAs are based on susceptibility of the endpoint, ecological relevance of 

the endpoint, and management goals (United States Environmental Protection Agency, 1998). 

An endpoint is ecologically relevant, when it represents significant physiognomies of the system, 

and is functionally associated to other endpoints (United States Environmental Protection 

Agency, 2003). The identification of relevant endpoints by risk assessors can be decided at the 

individual, population, community or ecosystem levels. The relationship between the level of the 

selected endpoint and stressor level can be used in the analysis of ecological responses to 

determine plausible impacts from the stressor. A more holistic approach however, will be to 

incorporate all relevant endpoints into a statistical distribution that can describe the variation of 

exerted toxic effects among the endpoints (Posthuma et al., 2002). From the distribution, the 

potentially affected fraction (PAF) defined as the fraction of endpoints that will be adversely 

affected by the stressor, can be estimated (Klepper et al., 1998). This approach to ERAs is 

termed the species sensitivity distribution (SSD) and aims to protect a wide range of organisms 

(endpoints). A major advantage of SSD is that, it utilizes entire knowledge on the toxic effects of 

xenobiotics (Posthuma et al., 2002). Despite the advantages of an SSD, it fails to incorporate the 
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effects of the toxicant on interactions that occur between components of the ecosystem (i.e. 

between microbes and plants, or invertebrates). Hence, an approach that incorporates direct 

effects of toxicants including metal and mixtures on component interactions will be a better 

representation of risks. 

There are certain aspects of our present risk assessment practice that can be improved. For 

example, the current RA practice does not entirely consider the unique properties of metals in 

risk assessment. Furthermore, the persistent nature of metals is typically underestimated when 

characterizing associated risks. The valence state of metals is largely not considered when 

characterizing risks. Regulation largely focuses on total metal concentrations, when the soluble 

fractions are the actual culprits (United States Environmental Protection Agency, 1986). This 

implies that, there should be a tiered level approach that associates different risk levels to valence 

states of metals in the environment, to improve site specific risk assessment.  
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3.1 Preface 

The following chapter has been published as a peer-reviewed article in the Chemosphere 

journal with the following co-authors:  

Mark cousins (University of Saskatchewan) – involved with experimental design, data analysis, 

and editorial;  

Mathieu Renaud (University of Saskatchewan) – involved with experimental design, statistical 

analysis, and editorial;  

Olukayode Jegede (University of Saskatchewan) – involved with experimental design and 

editorial;  

Beverley Hale (University of Guelph) – co-supervisor involved with all aspects of project 

oversight.  
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Steven D Siciliano (University of Saskatchewan) – supervisor involved with all aspects of 

project oversight.  

 

As the lead author, Kobby Awuah, was involved in every aspect of the article. More specially, 

Kobby performed approximately 30% of soil preparation and dosing, 80% of the lab work 

(enzyme assays, metal extractions and analysis), 90% of the data analysis and 95% of the 

manuscript writing.  

 

This chapter focuses on how the differences in toxicity of metals dosed as salts, oxides and 

spinel minerals. The objective of the chapter was to determine an appropriate experimental 

method for carrying out metal mixture toxicity tests in soils. 
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3.2 Abstract 

Metals are present as mixtures in the environment, yet testing such complex mixture poses 

design and technical challenges. One possible solution is the use of fixed ratios, i.e. rays of 

increasing metal concentrations. But fixed ratios rays are compromised when soils dosed with 

metal salts are leached due to metal-soil selectivity rules.  Two alternative metal forms, metal 

oxides and spinel minerals of quinary metal mixtures (Pb, Cu, Co, Ni, Zn), were evaluated for 

their toxicity to soil microorganisms measured by the activity of ammonia monooxygenases and 

acid-phosphatases in three soils.  Leaching, a required step for salts, had a larger effect on 

ammonia monooxygenases than metals. Generally, metal salts were the most toxic form, while 

the spinel minerals were the least toxic form.  Two extractants, CaCl2 and DTPA, were evaluated 

for their ability to link toxicity to metals across all three metal forms. Salt toxicity was closely 

linked to CaCl2 extractable concentrations but DTPA was the most appropriate for oxides. I 

strongly recommend combining fixed ratio rays with metal oxides for metal mixture studies, 

since soil ratios created using oxides were more precise and required less experimental effort 

compared to salts and spinel minerals.  Furthermore, because DTPA and CaCl2 closely tracked 

the toxicity of more realistic metal forms (i.e. oxides), I recommend that field studies 

investigating metal mixtures use both DTPA or CaCl2. 

Keywords: Fixed ratio ray, metal oxides, spinel minerals, leaching, metal salts, enzymes 
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3.3 Introduction  

The study of heavy metal exposure to soil biota beyond binary mixtures has received 

increased attention in the last two decades (Khalil et al., 1996; Nys et al., 2017). The interest is 

growing because we have yet to decipher how to address metal mixtures in risk assessment. 

Despite the improved understanding of chemical exposures, legislation still largely focuses on 

assessing individual chemicals while excluding possible interactions. Much of the advancements 

in metal mixture studies apply and improve existing predictive models to help advance the risk 

assessment of metal mixtures (Cedergreen et al., 2008; Jonker et al., 2005; Thakali et al., 2006). 

The classic empirical models widely used to predict mixture toxicity are concentration addition 

(CA) and response addition (RA), but there are concerns that these models have significant 

drawbacks. For example, Zwart and Posthuma (de Zwart and Posthuma, 2005) stated that the 

models were ineffective beyond binary mixtures. Modeling the toxicity of a chemical mixture on 

an organism while assuming a one-compartment distribution kinetics and not accounting for the 

toxicokinetics of the chemicals in other compartments of the organism is a major flaw of both 

models (Cedergreen et al., 2008; de Zwart and Posthuma, 2005). Furthermore, inferences from 

the models are typically based on statistically significant evidence and ignore the biology of the 

endpoint of interest. To bridge this knowledge gap, extensive modifications of the mixture 

models and their deviations (interactions) by including bioaccessibility and free ion activity has 

improved the prediction of metal mixture toxicity in soils (Cipullo et al., 2018; Jonker et al., 

2004; Nys et al., 2017).  

However, an area that has received little attention despite its pertinence in elucidating 

mixture toxicity is the metal type or form used when conducting metal mixture tests in soils. Soil 

organisms are usually exposed to metals dosed as salts in laboratory experiments (Mertens et al., 

2009; Ruyters et al., 2013). This method, including ageing and leaching of the soils before the 
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toxicity testing, is widely accepted by the European Union’s Regulation on Registration, 

Evaluation, Authorization and Restriction of Chemicals (EU-REACH) (Assessing risks of 

chemicals, 2017). The major issue with metal salts is the fact that the counterions increase metal 

accessibility and may be toxic to soil dwelling organisms especially ammonia oxidizing bacteria 

(Cui et al., 2016; Dinçer and Kargi, 1999; Owojori et al., 2008). To reduce the salt effect, metal 

salt-spiked soils are usually leached with artificial rain or deionized water to return the electrical 

conductivity of the spiked soils to control levels (Bongers et al., 2004; Schwertfeger and 

Hendershot, 2012). Metal salt-spiked soils are also aged and leached in some studies to mimic 

natural attenuation of the metals thereby reducing their accessibility (Lock et al., 2006; Oorts et 

al., 2007; Van Gestel et al., 2012). 

Leaching removes essential ions and clays from soil, alters the soil’s physicochemical 

properties (Gordon et al., 2008; Haynes and Swift, 1986), and reduces the nominal metal 

concentrations in spiked soils (Schwertfeger and Hendershot, 2013; Stevens et al., 2003). Apart 

from the effects of salts and leaching on the physicochemical properties of the soil, the microbial 

community can also be compromised (Chen et al., 2017; Gordon et al., 2008). Metal loss via 

leaching is also uneven due to differences in the physicochemical properties of metals and soils, 

which determines metal speciation and availability (Langdon et al., 2015; Li et al., 2011). Soil 

properties like pH and cation exchange capacity (CEC), and metal properties like lability and 

covalent binding indices affect metal loss (Laird et al., 2011; Tatara et al., 1998). Differential 

metal loss is a problem in mixture toxicity testing because it causes significant changes to metal 

ratios in dosed soils and ultimately confounds links between nominal and actual concentrations.     

When conducting metal mixture studies, it is better to use an optimized fixed ratio ray 

design. This design ensures that metals are tested as rays, with each ray consisting of a specific 
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number of metals tested in specific ratios at different concentrations. It is an economical design 

that allows estimation of both additivity and interactions with reduced laboratory efforts (Coffey 

et al., 2005). The optimized fixed ratio design also has an increased power of determining 

departures from additivity compared to standard non-optimized designs (Yeatts et al., 2010). A 

fixed ratio can be calculated based on environmentally relevant concentrations of one or more 

metals, or regulatory concentrations to represent a ray. Thus, one can select rays of interest to all 

stakeholders in a risk assessment. However, the uneven metal loss associated with leaching 

compromises the fixed ratio ray design by altering ratios in a concentration dependent and ratio 

dependent manner. Therefore, an exposure method that maintains ratios without compromising 

soil properties and biota would increase the reliability and precision of effective concentrations 

estimated from concentration-response curves when coupled with the optimal fixed ratio ray 

design.  

Maintaining the innate property of soil and its biota is even more essential when 

investigating microbial endpoints. Soil microbes play significant roles in the biogeochemical 

cycling of nutrients on a global scale (Madsen, 2011). Microbes mineralize nutrients like 

phosphorus and nitrogen allowing plants to acquire these nutrients from the soil. Furthermore, 

fungal filaments (hyphae) and other microbial secretions influence soil properties and as a result, 

the activity and composition of the microbial community, structure and diversity are intimately 

linked to the soil’s physicochemical properties (Goyal et al., 2003; Klimmek et al., 2001; 

Mapolelo et al., 2005). Microbes respond quickly to stressors such as metals because of their 

high surface to volume ratio and rapid metabolic responses (Matheron and Caumette, 2015; 

Polonenko et al., 1981; Ruyters et al., 2013). 
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Here I evaluate spiking alternatives that are environmentally relevant and avoid leaching 

and aging. According to research conducted by Hamilton et. al (Hamilton et al., 2016) and Thorn 

(Thorn, 2015), metal species found in either aged metal salt-spiked soils or field contaminated 

soils include aqueous metals (Me2+), iron spinel minerals (MeFe2O4), metal hydroxides (Me 

(OH)2), and metal oxides (MeO). Spinel minerals are naturally occurring minerals that also form 

at hot temperatures during smelting and can persist in the environment due to low rates of 

weathering (Alloway, 1990; Scheinost et al., 2002). The spinel minerals and metal oxides were 

chosen as possible alternatives to spiking with metal salts. Metal oxides were chosen based on 

their commercial availability compared to hydroxides, and spinel minerals were selected because 

of their crystalline structure and persistence (Alloway, 1990). This study had two objectives; the 

first was to determine the relative toxicities of the three-metal species (metal salts, metal oxides 

and spinel minerals) to soil microbes in three Canadian soils. The second was to determine a 

spiking method that could improve estimations of exposure concentrations from mixture models 

through the effective usage of the optimized fixed ratio ray design in soils. The five metals of 

interest cobalt, copper, lead, nickel and zinc were chosen because there were the metals of 

potential concern in sampled soils from Canadian smelting sites. The activities of ammonia 

monooxygenases and acid phosphatases were investigated because previous studies have 

established that they are good indicators of soil health (Eivazi and Tabatabai, 1977; Sharma et 

al., 2014; Smolders et al., 2001b). Therefore, I evaluated effects on the potential nitrification 

rates (PNR) and the activity of acid phosphatases in leached and metal exposed soils. I 

hypothesized that, metal salts would be more toxic to soil microorganisms compared to spinel 

minerals and metal oxides. 
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3.4 Materials and methods 

3.4.1 Soil sampling and treatments 

 Three Canadian soils were used for the study (Table 3-1). Topsoil (~30cm depth) was 

collected to cover a wide range of soil properties. The soils were air-dried and sifted using a 

2mm sieve. Background metal concentrations were determined by reverse Aqua Regia (rAR) 

method and metals were measured with an Agilent 5110 SVDV inductively coupled plasma 

optical emission spectrometer (ICP-OES) (Topper and Kotuby-Amacher, 1990). The CEC was 

determined by the methylene blue method (Yukselen and Kaya, 2008), soil pH was determined 

by 0.01 M CaCl2 in a ratio of 1:5 (solid: liquid) and measured with a Mettler Toledo pH meter 

(Conyers and Davey, 1988), soil texture was determined by the pipette method (Bouyoucos, 

1962), soil organic carbon was determined by the LECO-C632 carbon analyzer (Wang and 

Anderson, 1998), and water holding capacity (WHC) was measured with open ended test tubes 

with soil retained by filter paper placed at the bottom (Jaabiri Kamoun et al., 2018). The soils 

were stored in plastic containers at room temperature until they were used for the experiment 

(rewetting 2 weeks prior to toxicity testing). The soils were named S1, S2, and S3 with pH 

values of 3.4, 4.6 and 6.8 respectively. The soils were selected to cover a wide range of pH and 

CEC because they are modulators of metal bioaccessibility and toxicity (Brallier et al., 1996). 

Table 3-1. Physicochemical properties of experimental soils.  

 Soil   pH     CEC            Clay      Organic    Water         Texture                     Background 

                          Content   Carbon    Holding                       Zn     Cu    Ni    Co    Pb 

                  (meq/100 g)   (g/kg)    (g/kg)     Capacity                                 (mg/kg) 

           (ml/g) 

S1       3.4          8               45         17        0.29        Sandy Loam     967    303    7 7     397 

S2       4.6         16             110         25           0.35         Sandy Loam    635    107    11      9     23 

S3       6.8         20              58          27            0.30        Loamy Sand    195     11      49     4     15 

CEC=Cation Exchange Capacity. 
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3.4.2 Rays, metal types and dosing 

Soils were spiked with metal mixtures at one concentration level in five equal effect 

concentration ratio (EECR) rays (Table 3-2). Each EECR ray consisted of five heavy metals at 

different ratios calculated to exhibit equitoxic effects.  

3.4.2.1 Calculation of equal effect concentration ratios (EECR) 

3.4.2.1.1 Ratio rays 

 The five mixture ratio rays were calculated from a combination of Pb, Cu, Ni, Co, and 

Zn. The ratio of the metals was determined from either regulatory concentration (for the CSQG 

and Peaty rays) and environmentally relevant concentrations (for Flin Flon, Sudbury and Port 

Colborne rays). The maximum allowable concentrations of the five metals from the Canadian 

Soil Quality Guidelines (CSQG) for agricultural sites was used for the CSQG ray. The predicted 

no effect concentrations (PNEC) for each of the five metals from the EU-REACH PNEC 

calculator for clayey and peaty soils was averaged and computed to acquire the Peaty ray 

(Assessing risks of chemicals, 2017). For the environmental rays (Flin Flon, Sudbury and Port 

Colborne), soil samples from field contaminated soils were collected and analyzed for total 

concentrations of the metals of interest and computed into rays. Hence, each ratio ray consisted 

of 5 metals in different ratios (Table 3-2). 

3.4.2.1.2 Equal effect concentrations 

The concentration of the metals in each ray was determined from EC50 values of the five 

metals (Pb, Cu, Ni, Co, and Zn) derived from literature and the calculated ratio as shown in 

Table 3-2 (Lock and Janssen, 2002a, 2002b, 2003; Sandifer and Hopkin, 1997a). Assuming 

concentration addition (CA) from Eq. 3-1, the EC50 values of the metals were computed to 

acquire a toxic unit (TU). The quotient of 𝑐𝑖 and 𝐸𝐶𝑥𝑖 which is the TU, represents the fractional 
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potency contributed by each metal in the mixture. The mixture of n (n=5) chemicals was 

arithmetically illustrated as:  

 ∑ 𝑇𝑈𝐸𝐶50
= ∑

𝑐𝑖

𝐸𝐶50𝑖

𝑛
𝑖=1 = 1                                                                                                      Equation 3-1 

Where 𝑐𝑖 was the concentration of each metal i in the mixture containing n components 

exhibiting an effect 50%, and 𝐸𝐶50𝑖 is the concentration of metal i that exhibits same effect when 

singly applied. The concentration of each metal in the mixture derived from Eq. 3-1 was 

quadrupled for each mixture ray, such that the sum of their individual TUs equaled 4. A high TU 

was chosen to guarantee an observation of toxic effects despite the possible metal losses from 

leaching metal salt spiked soils, and low solubility of metal oxides and spinel minerals. Also, 

since this study was part of a larger mixture experiment, 4TU was chosen as the midpoint dose. 

The EC50 of a ray at a TU can be derived by combining the quotient of the ratio of the metals in 

the ray by their EC50s (Table 3-2), then dividing 1 by the results since I assumed concentration 

addition (CA).                     

3.4.2.2 Preparation of metals for spiking soils 

Metal nitrate salts (>99% purity) and metal oxides (>99% purity) were purchased from 

Sigma Aldrich. Spinel minerals were synthesized in the laboratory from metal nitrates salts (Li-

Zhai et al., 2010). Prior to spiking, metal oxides were exposed to gaseous HNO3 in a desiccator 

to remove inorganic carbon and weighed into soils. Stock solutions were prepared from metal 

nitrate salts for metal salt spiking. Briefly, metal concentrations in stock solutions were added to 

soils without exceeding 60% of the WHC of the soils. Soils were leached to remove excess salts 

per EU-REACH guidelines with artificial rainwater (Li et al., 2011). Soils were leached until 

electrical conductivity levels in control soils were reached. For spinel minerals, the stock 

solutions used for spiking metal salts were mixed in their respective ratios. Iron was added as Fe 
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(NO3)3 at 70% wt/wt of the total metals in the mixture. The pH of the mixture was adjusted to 

about 7.0 with NH4OH and shaken for 24 hours. The mixture was centrifuged at 1128 g forces 

for 30 minutes. The supernatant was separated, and the residue was air dried for about 72 hours. 

The residue was heated to 600o C in a muffle furnace for an hour and ground into a fine powder 

after cooling. For all spiking methods, soils were mixed with plastic spoons for five minutes to 

ensure homogenization. Enzyme activity was determined 48 hours after spiking. 

 

Table 3-2. Metal mixtures rays and dose at 4 times the Toxic Unit (TU). Metal mixture rays in 

the first column with their corresponding nominal metal doses and ratios in brackets. The TU 

was calculated from EC50 values of individual metals (Cu, Co, Pb, Ni, Zn) derived from 

literature in mg/kg of soil (Lock and Janssen, 2002a, 2002b, 2003; Sandifer and Hopkin, 1997a, 

1997b). 

Metal/ Ray 

EC50 

 

Copper  

  700 

(mg/kg) 

Cobalt  

1480 

(mg/kg) 

Lead  

1600 

(mg/kg) 

Nickel  

475 

(mg/kg) 

 

Zinc  

750 

(mg/kg) 

Total 

(Ratio) 

(mg/kg) 

CSQG  483 (0.151)  306 (0.096)      536 (0.167) 345 (0.108)    1532 (0.478)    3202 (~1) 

                        

Flin Flon 619 (0.202) 9 (0.003) 202 (0.066)  9 (0.003)        2223 (0.726)    3062 (~1) 

                                 

Peaty  663 (0.206) 354 (0.110) 612 (0.190)       396 (0.123)     1199 (0.372)    3224 (~1) 

                               

Port Colborne 381 (0.178) 28 (0.013) 56 (0.026)        1513 (0.707)    163 (0.076)      2141 (~1) 

                      

Sudbury 161 (0.039) 153 (0.037) 2314 (0.561)    297 (0.072)        1196(0.29)      4121 (~1) 
CSQG=Canadian Soil Quality Guidelines. 

3.4.3 Metal Concentrations 

3.4.3.1 Total metals concentration 

Total metals concentration in spiked soils was determined using an X-Ray Fluorescence 

(XRF) method as described by Margui et al. (MarguÃ­ et al., 2009). Soil (4 g dry) was ground 

and homogenized with 0.8 g of Chemplex spectroblend 44µm powder to act as an adhesive. 
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Samples were transferred into Chemplex pellet cups, covered with polypropylene thin-films and 

placed into a pellet die set. The pellet set was mounted on a hydraulic press and a force of about 

10,000 psi was applied to the samples for 5 minutes to form discs. The samples were analyzed on 

the Thermofisher ARL Optim-X X-ray analyzer for total metal concentrations. Six soil samples 

analyzed with an Agilent 5110 SVDV inductively coupled plasma optical emission spectrometer 

(ICP-OES) for metal concentrations (reverse Aqua Regia) were re-analyzed with the XRF for 

confirmation. Montana II obtained from Sigma-Aldrich was used as a standard reference 

material (SRF) on the XRF. Metal recoveries from the Montana II SRF was 90%. 

3.4.3.2 Extractable metals 

3.4.3.2.1 Calcium chloride extractable 

The mobilized metal fractions were extracted using a 0.01 M calcium chloride (CaCl2) 

solution (Quevauviller, 1998). Briefly, 2.5 g of dry soil was weighed into 50 ml test tubes, 25 mL 

of CaCl2 solution was added and shaken on an end-over-end shaker for 180 minutes. Samples 

were centrifuged at 4704 g forces for 10 minutes, filtered with a Whatman 0.45m syringe filter 

and analyzed with the Agilent 5110 SVDV ICP-OES for dissolved metal concentrations. 

Standard metal mixture solutions (VWR Zn, Cu, Ni, Pb and Co standards) prepared from a serial 

dilution (1, 5, 15, 30, and 50 mg/ L) with 0.01 M calcium chloride were used as standards. The 

quality control included blanks, duplicates and calibration standards were run every 21 samples.  

3.4.3.2.2 DTPA-TEA extractable metals  

The mobilized and mobilizable metal fractions in spiked soils were extracted using a 

solution comprising 0.005 M diethylenetriaminepentaacetic acid (DTPA), 0.01 M calcium 

chloride (CaCl2), and 0.1 M triethanolamine (TEA). Following Kulikov (Kulikov, n.d.), 3 g of 

dry soil was weighed into 15ml test tubes, 6 ml of DTPA-TEA solution was added and shaken 
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for 120 minutes on an end-over-end shaker. Samples were filtered with a Whatman 0.45m 

syringe filter and the metal concentrations determined with the Agilent 5110 SVDV ICP-OES. 

Standard metal mixture solutions (VWR Zn, Cu, Ni, Pb and Co standards) prepared from a serial 

dilution (1, 5, 15, 30, and 50 mg/ L) with DTPA were used as standards. The quality control 

included blanks, duplicates and calibration standards were run every 21 samples. 

3.4.4 Soil enzymes 

3.4.4.1 Potential nitrification rate  

The potential nitrification rate as measured by ammonia monooxygenase activity in the 

soils was measured (Berg and Rosswall, 1985). Briefly, 2g of each soil was weighed into 15ml 

test tubes, to which 10ml of 1mM NH2SO4 and 0.5ml of 1.5 M NaClO3 were added. This was 

shaken end-to-end for 6 hours at room temperature, and 2ml of 2M KCl was added and shaken 

again for about 2 minutes. The samples were then centrifuged with an Eppendorf miniSpin Plus 

at 3011 g forces for 4 minutes and read colorimetrically at 545nm with the Biorad iMark 96-

well-plate reader (Smolders et al., 2001b).  

3.4.4.2 Acid Phosphatases  

Soil (0.1g) was weighed into 1.5ml test tubes, 20µl of toluene was added, mixed and left 

in the fume hood for an hour (Eivazi and Tabatabai, 1977). After an hour, 400µl of 0.5 M acetate 

buffer (pH~5.8) and 100µl of 10mM p-nitrophenyl phosphate were added to each sample. The 

samples were incubated in a water bath at 37o C for one hour (Eivazi and Tabatabai, 1977). The 

samples were then removed and placed on ice to stop the reaction. Samples were centrifuged 

with an Eppendorf miniSpin Plus at 13148 g forces for 2 minutes and read colorimetrically at 

410nm with the Biorad iMark 96-well-plate reader. 
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3.4.5 Data Analysis 

The activity of the soil enzymes was determined from the slope of the standard curve 

derived from known concentrations of p-nitrophenyl (ACP) and nitrate (AMO). The percentage 

activity was determined relative to control soils using the Equation 3-2 below.  

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑆𝑎,𝑗,−𝑆𝑏,𝑗,

𝐶𝑎−𝐶𝑏
∗ 100%                                                                                                   Equation 3-2 

Where 𝑆𝑎,𝑗 and 𝑆𝑏,𝑗 represent analyte (p-nitrophenol or nitrate) concentrations extracted 

from incubated and non-incubated (negative control) samples respectively for a ray j, while 𝐶𝑎 

and 𝐶𝑏 represent analyte concentrations in controls. The relative activity of dosed samples was 

determined separately for leached and non-leached soils. All data were statistically analyzed with 

either a 1-way or 2-way ANOVA using the R (studio) program using a significance level of 

=0.05 (R Core Team, 2018). Data was tested for normality and homogeneity of variance to 

meet ANOVA assumptions. The Tukey HSD test was used for testing multiple comparisons 

between soils, metal types, and rays. Pearson product-moment bivariate correlations were 

performed between soil pH or activity and CaCl2 or DTPA extractions. 

3.5 Results 

3.5.1 Activity of AMO and ACP in non-metal spiked soils after leaching. 

In all three soils, leaching non-metal-spiked soils with artificial rainwater reduced 

ammonia monooxygenases activity (AMO), but not acid phosphatases (ACP) activity (Figure 3-

1). The potential nitrification rates (PNR) of leached non-metal-spiked soils showed decreases 

(27%-58%) compared to non-leached non-metal-spiked soils (p<0.01). The PNR in S1 was 

reduced by 57.5±2.2%, PNR in S2 was reduced by 56.6±7.5%, and PNR in S3 by 26.8±3.9% 

(Figure 3-1). The extent of PNR reduction from adding artificial rainwater to soils S1 and S2, 

were higher in some instances, compared to the activity in non-leached metal spiked soils. 
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Leaching however didn’t significantly inhibit acid phosphatases (ACP) activity in any of the 

experimental soils (Figure A-1). 

3.5.2 Sensitivity of AMO and ACP to metals 

3.5.2.1 Sensitivity of AMO and ACP to metal mixtures 

 AMO was generally more sensitive to the metal mixtures in comparison to ACP. The 

differences in sensitivity of both enzymes to metal mixtures was soil dependent (Figure 3-2), 

(grids a and c). In the low pH soil (S1), metal mixtures stimulated the activity of AMO (i.e. 

AMO > Control), while the highest toxicity to ACP was observed in this same soil. There was a 

10-fold reduction in PNR from S1 to the medium pH soil (S2). In this same soil (S2), the average 

AMO inhibition was about 90%. while ACP activity was not altered significantly compared to 

control. At high pH (S3), a 35% increase in PNR was observed, while ACP activity remained 

unchanged.  
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Figure 3-1. Leaching by itself reduced AMO activity in all three Canadian soils. Leaching was 

designed to remove excess salts from the soils. Control soils were leached once to determine an 

electrical conductivity baseline for metal salt spike soils. The potential nitrification rate was 

measured 7 days after leaching 210 mg of soil with 200ml of artificial rainwater. S1, S2 and S3 

represent the names of the three Canadian soils used. Horizontal broken line indicates percentage 

activity in non-leached soils. Gray vertical bars represent average AMO activity of 9 replicates 

(3 per soil) in the three soils. The standard error (SE) of the mean are represented by error bars. 

Asterisks indicate significant differences from non-leached soils (controls). 

3.5.2.2 Differences in toxicity of metal mixture types. 

Metal mixture salts were generally the most toxic (reduction in activity) metal type to 

AMO but not ACP. In the low pH soil (S1), none of the metal mixture types significantly 

inhibited AMO activity, in fact, a stimulatory effect was observed for salts and spinels minerals 

(Figure 3-2. Grid b). In the medium pH soil (S2), where AMO sensitivity to the metal mixtures 

was highest, metal salts exerted a near complete inhibition on AMO, whereas spinel minerals and 

metal oxides exhibited an equitoxic effect of 80% inhibition. Conversely, in the high pH soil 

(S3), metal oxides and salts exerted a 50% and 75% inhibition respectively to AMO, while no 

significant inhibition was observed for spinel minerals. 

 

* * * 

p-value<0.01 



58 
 

   

Figure 3-2. Sensitivity of the soil enzymes ammonia monooxygenases (AMO) and acid 

phosphatases (ACP) to metal mixtures is affected by soil and metal mixture type. Grid (a): 

potential nitrification rate (PNR) in three metal mixture spiked Canadian soils. Grid (b): PNR of 

three metal mixture types in three Canadian soils. Grid (c): Activity of ACP in three metal 

mixture spiked Canadian soils. Grid (d): Activity of ACP of three metal mixture types in three 

Canadian soils. Horizontal broken line indicates percentage activity in non-metal spiked soils. 

Gray vertical bars (Grids (a) and (c)) represent average AMO (top) and ACP (bottom) activity of 

54 replicates (9 per soil per enzyme) in the three soils. Black-Gray vertical bars (Grids (b) and 

(d)) represent average AMO (top) and ACP (bottom) activities in 3 soils spiked at one dose with 

three metal mixture types in 9 replicates (3 per soil) in three soils. The standard error (SE) of the 

mean are represented by error bars. Asterisks in grids (a) and (c) represent significant differences 

between control metal spiked soils in the three soils. Alphabets a, b and c in grids (b) and (d) 

represent significant differences between metal types. Bars with same alphabetic insets within 

the same grid are not significantly different (p > 0.05). 

 

(a) (b) 

(c) (d) 

* * 

* 

* 

a 

a a b b 

b a ab 

c b a 

c 

b a 

a 

a a a 
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Figure 3-3. Differences in toxicity of equal effect concentration ratios (EECR) of metal mixture 

types as driven by metal type to soil enzymes ammonia monooxygenases (AMO, top) and acid 

phosphatases (ACP, bottom). Left grids represent salt-spiked soils, middle grids represent oxide-

spiked soils, and right grids represent spinel mineral-spiked soils. Triangular symbols represent 

activity in soil S1, square symbols represent activity in soil S2, and round symbols represent 

activity in soil S3. Y-axes represent AMO (top) and ACP (down) activity while x-axes represent 

metal mixture rays (CSQG: SUD). Activity in each soil is connected by either a solid or broken 

line. The activity is normalized to non-metal spiked soils (leached or non-leached). The standard 

error (SE) of the mean are represented by error bars. Grid (a): Toxicity of metal salts to AMO in 

all three soils. Grid (b): Toxicity of metal oxides to AMO in all three soils.  Grid (c): Toxicity of 

spinel minerals to AMO in all three soils. Grid (d): Toxicity of metal salts to ACP in all three 

soils. Grid (e): Toxicity of metal oxides to ACP in all three soils. Grid (f): Toxicity of metal salts 

to ACP in all three soils. Horizontal broken line indicates percentage activity in non-metal spiked 

soils. Rays have been splined within soil to ease visualization.  

 
In contrast, ACP was moderately sensitive to all three metal types in S1, particularly the 

oxides (Figure 3-2. Grid d). There was no significant difference in ACP responses to spinel 

minerals and metal salts. In S2, ACP activity was not altered significantly between metal mixture 

(a) (b) (c) 

(d) (e) (f) 
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types and control. Nevertheless, metal oxides exerted a 5% toxic effect on ACP in S3, while 

metal salts exerted a 35% toxic effect (Figure 3-2d). As expected, spinel minerals were not toxic 

to ACP in the same soil due to the high soil pH and low metal solubility. Overall, the toxicity of 

the metal types was both soil and enzyme dependent. 

 

 

Figure 3-4. Stacked barplot showing concentration of CaCl2 extractable metals from metal-salt 

spiked (top), metal-oxide-spiked (middle) and spinel mineral spiked (bottom) soils (3) from 

Canada. To the left S1 with a pH value of 3.4, centered is S2 with a pH value of 4.6, and to the 

right is S3 with a pH value of 6.8. The vertical bars show the total concentration of extracted 

metals (5) from two mixture types from three Canadian soils. Each texture pattern represents a 

metal. For example, vertical patterns represent Zn, horizontal pattern represent Cu, no pattern 

represent Pb etc. as shown by the legend.   
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3.5.3 AMO and ACP responses to equal effect concentration ratio rays for metal types in 

spiked soils 

Soil and rays modulated absolute toxicity of metal mixtures to the enzymes, but the 

relative toxicity of the rays remained similar between soils and metal types. For example, the 

rays from all three metal types were most toxic only in acidic soils S1 and S2 (Figure 3-3). 

Toxicity of the rays in S3 was none or slight depending on the enzyme. At least two out of the 

five rays from all metal types were equitoxic to both enzymes in all the soils (Table 3-3). The 

toxicity of a specific ray differed in some cases between metal types, but similar trends were 

observed when all rays within a metal type were compared to the other. For example, the toxicity 

of the PC ray for S1 was different for metal types, but the ray was consistently either more or 

equally toxic compared to the PEAT and SUD rays, and less toxic compared to the CSQG and 

FF rays. The PEAT and SUD rays had the highest ratios of Cu and Pb respectively, and both 

metals have high affinity for SOM. The similarity in trend was more pronounced for metal 

oxides and spinel minerals.  
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Figure 3-5. Stacked bar plots showing concentration of DTPA extractable metals from metal-

oxide-spiked soils (3) from Canada. To the left is S1 with a pH value of 3.4, centered is S2 with 

a pH value of 4.6, and to the right is S3 with a pH value of 6.8. The vertical bars show the total 

concentration of extracted metals from one mixture type from three Canadian soils. Each texture 

pattern within a bar represents a metal. For example, vertical patterns represent Zn, horizontal 

pattern represent Cu, no pattern represent Pb etc. as shown by the legend.   

 

3.5.4 CaCl2 extractable metals  

Zn was the most mobilized metal in metal-salt, metal-oxide and spinel mineral spiked-

soils (Figure 3-4). Only the SUD ray in S1 showed substantial concentrations of Pb. The 

concentration of metals extracted from oxides and spinel metal mixtures followed known 

paradigms of pH dependence. As the pH and CEC of the experimental soils increased, the 

concentration of metals in the extracts decreased rapidly. Extracted metal concentrations were 

lowest in the high pH soil with concentrations below 100 g/g of soil. The concentration of 

metals in metal salt-spiked soils weakly adhered to pH dependence compared to oxides and 

spinel minerals. 
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3.5.5 DTPA extractable metals in oxide-spiked soils 

Cu was the most mobile and mobilizable metal extracted with DTPA from metal oxide 

spiked soils, followed by Pb and Zn (Figure 3-5). The concentration of extracted Ni and Co were 

below 50 g/g in all soils for all rays. The concentration of DTPA extracted metals didn’t show 

any strong relationship with soil pH. 

3.5.6 Total metal concentrations 

 Measured metal oxides concentrations were most similar to nominal concentrations in all 

three soils (Figure 3-6a). The concentrations of metals measured in salt spiked soils were below 

50% of the nominal concentrations after leaching in S1 (pH 3.4) when pre-leached metal spiked 

soils were compared to leached metal spiked soils (Figure 3-6). The metal retention (i.e. metals 

retained in soil after leaching) in the salt spiked soils however increased as the pH of the soils 

increased i.e. S1<S2<S3. The concentrations of metals measured in oxides and spinel mineral 

spiked soils remained constant across all three soils as expected.  

For individual metals, only Cu and Pb retained their actual concentrations in salt spiked 

soils (Figure 3-6b). At least 50% of Co, Ni, and Zn were lost in metal salt spiked soils. The 

concentrations of all metals but Co in spinel mineral spiked soils were below concentrations 

measured in metal salt spiked soils. The metal concentrations for Ni, Zn, and Co was greatly 

improved in metal oxides compared to leached salts.  
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Figure 3-6. Metal retention relative to nominal concentrations for all metals and metal types in 

all three soils. Grid (a): Percentage metal mixture retention relative to nominal concentrations 

across mixture types in three spiked Canadian soils. Grid (b): Percentage metal retention relative 

to nominal concentrations across mixture types in three spiked Canadian soils. Black-Gray 

vertical bars represent average measured concentrations (corrected for background) of oxides, 

pre-leached salts, leached salts and spinel minerals in all soils. Horizontal broken line represents 

nominal concentrations. The standard error (SE) of the mean are represented by error bars. 

Alphabets a, b and c represent significant differences between metal types within soil for grid 

(a), and metal for grid (b). Bars with same alphabetic insets within the same grid indicate no 

significant difference (p-value >0.05). 

(a) 

(b) 

c c a 
c a 

a 
b a a 

b b a b b a ab b a 
b a a a a b 

a 
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3.6 Discussion 

3.6.1 Leaching affected both AMO activity and concentration of metal ratios 

To return electrical conductivity of metal salt-spiked soils back to their original 

conductivity, soils must be leached (Table A-1) (Oorts et al., 2007).Yet, AMO activity decreased 

in all leached control soils that contained no metals. The extent of AMO inhibition from the 

leaching process was greater than the metal effect in some cases (>50% for both acidic soils). A 

probable reason for this observation was that leaching reduced microbial biomass in the soils 

(Gordon et al., 2008; Griffiths et al., 2003; Thion and Prosser, 2014) and contributed to the loss 

of NH4
+ which resulted in decreased nitrification rates (Gordon et al., 2008; Haynes and Swift, 

1986; Schwertfeger and Hendershot, 2013). In S1 and S2, the effect of leaching was amplified 

because at soil pH <6, there is a higher concentration NH4
+ compared to NH3, resulting in a 

higher loss of the nitrification substrate (NH4
+) from leaching. This could explain why I observed 

greater than 50% reduction of AMO activity in S1 and S2 compared to S3 (~25%).  

Leaching altered relative concentrations of metal mixture ratios in metal salt-spiked soils. 

Differences in metal loss was ray (metal) and soil (pH and CEC) dependent (Haynes and Swift, 

1986; Huang et al., 2015; Smolders et al., 2015). There was a higher loss of metals in S1 and S2 

due to possible competition by H+, Ca2+, and Mg2+ for sorption sites, resulting in a greater 

deviation of ratios in metal salt-spiked soils of S1 (pH=3.4) and S2 (pH=5.5). This is analogous 

to what has been reported in several studies (Haynes and Swift, 1986; Huang et al., 2015; 

Smolders et al., 2015). More metals were lost in acidic soils when leached (Smit and Van Gestel, 

1998), but relative retention of metals is determined by the binding affinities of the metals 

(Tatara et al., 1998). Higher concentrations of metals with low binding affinities i.e. (Zn, Co and 

Ni) were lost compared to Pb and Cu (Figure 3-6b). Lead (Pb) and Cu have high affinities for 
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organic matter, clay and other ligands, which explains their comparative retention (Huang et al., 

2015; Lock et al., 2006; Schwertfeger and Hendershot, 2013). The loss of metals from leaching 

metal salt spiked soils ultimately altered the concentration of total metals in soils as reported by 

Stevens et al. (Stevens et al., 2003), Smolders et al. (Smolders et al., 2009) and Bongers et al. 

(Bongers et al., 2004). 

Table 3-3. Equitoxicity of equal effect concentration ratios from metal types to soils enzymes in 

all three soils. Effects of mixture rays on enzyme activity (X) was either classified as Toxic, 

Slightly Toxic or Non-Toxic. If the activity was not significantly different from activity in 

control or higher (X≥100%), the ray was classified as Non-Toxic. If the activity was not 

significantly different or lower than 75% of the activity measured in control (X≤75%), the ray 

was classified as Toxic. If the activity was significantly higher than 75% of the activity in 

control, but significantly lower than activity in control (100%>X<75%), the ray was classified as 

Slightly Toxic. 

  

Soil       Soil                Metal Type           Equitoxic rays                Effect               Most Toxic Ray  

Name   Enzyme             Type 

 
S1 AMO  Salts  PC=PEAT=SUD           Non-Toxic     None 

S2  AMO  Salts   All Rays            Toxic                           All 

S3 AMO  Salts      CSQG=FF=SUD               Toxic        CSQG  

S1 AMO  Oxides   CSQG=FF=PEAT=PC  Slightly Toxic     CSQG 

S2  AMO   Oxides      FF=PC=PEAT   Toxic       FF=PEAT 

S3 AMO   Oxides    FF=PEAT=SUD                 Toxic       FF=PEAT 

S1 AMO        Spinel Mineral    FF=PEAT=PC=SUD  Non-Toxic      CSQG 

S2 AMO        Spinel Mineral  CSQG=FF=PEAT             Toxic       SUD 

S3 AMO        Spinel Mineral   CSQG=PC=PEAT      Slightly Toxic      FF 

S1 ACP   Salts   CSQG=FF & PEAT=PC    Toxic & Slightly Toxic  CSQG=FF 

S2  ACP  Salts       FF=PEAT=PC=SUD      Non-Toxic      CSQG 

S3 ACP                   Salts        CSQG=FF=PEAT        Toxic       CSQG=FF 

S1 ACP                 Oxides   All Rays                             Toxic       CSQG 

S2 ACP                 Oxides   CSQG=FF=PEAT            Toxic      CSQG 

S3 ACP               Oxides  CSQG=FF=PEAT=SUD Slightly Toxic     CSQG 

S1 ACP    Spinel Mineral         CSQG=FF=PEAT=PC       Toxic      CSQG=FF=PEAT=PC             

S2  ACP    Spinel Mineral          FF=PC=PEAT=SUD        Non-Toxic     CSQG 

S3 ACP    Spinel Mineral          All Rays                             Non-Toxic      None 
The “=” sign was used to denote rays of equal effects. Rays were classified as equitoxic if the responses were statistically similar (p-value>0.05). 

AMO=ammonia monooxygenases activity, ACP=acid phosphatases activity, PC=Port Colborne ray, PEAT=peaty ray, SUD=Sudbury ray, 
FF=Flin Flon ray and CSQG=Canadian soil quality guideline ray. 
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3.6.2 Toxicity of metal types 

Apart from S1, metal salts were the most toxic metal type to both AMO and ACP in soils 

where toxicity was observed. The high dissolution rate of metals in salt-spiked soils is thought to 

be the reason for the high toxicity compared to other metal types (Lock and Janssen, 2003). 

Smolders et. al reported that leaching and ageing lead (Pb) salt spiked soils for five years 

reduced or eliminated their toxicity to plants, soil invertebrates and microorganisms (Smolders et 

al., 2015). More metals were leached as the major modifying factors of toxicity (i.e. pH and 

CEC) of the soils decreased, S3<S2<S1.  As a result, the toxicity of metal salts to both soil 

enzymes in S1 was lower compared to other metal types in the same soil. These observations 

agree with previous studies where the toxicity of leached Ag, Ni, Pb and Zn spiked soils was 

reduced compared to unleached soils (Langdon et al., 2015; Lock and Janssen, 2003; Oorts et al., 

2007; Smit and Van Gestel, 1998). It is important to note here that the low total metal 

concentration (background + fraction of nominal) in salt spiked soils did not explain differences 

in toxicity but the CaCl2 extractable concentrations did. This confirms that speciation i.e. metal 

type is more important than total metal concentration in elucidating mixture toxicity.  

AMO was more sensitive to metal mixtures in S1 and S2, and less sensitive in S3 

compared to ACP. This finding agrees with Smolders et al. (Smolders et al., 2001b) who found 

AMO to be sensitive to metal toxicity and Borowik et al. (Borowik et al., 2012) who found ACP 

to be less sensitive compared to other soil enzymes. Ammonia oxidation is driven by autotrophic 

ammonia oxidizing archaea (AOA) and ammonia oxidizing bacteria (AOB) that differ in niche 

preferences (Prosser and Nicol, 2012). Soil pH and ammonia/ammonium availability are factors 

that enhance niche specification and differentiation between the two microbes (Prosser and 

Nicol, 2012). Hence, the tolerance of AMO to metal mixtures at low pH could be explained by 

the presence of extremophilic AOA (Lu et al., 2015). This is because, high expression of 
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autotrophic amoA genes (subunit A) by thermophilic Crenarchaea has been recorded particularly 

in low pH soils, resulting in an increase in the ratio of AOA to AOB gene abundance from less 

than 1 to greater than 100 with decreasing pH (Nicol et al., 2008). 

3.6.3 Factors modifying extractable metals and toxicity of mixture rays  

Mixture rays were not equally toxic between soils because of differences in leaching for 

salts and because of pH and CEC effects on oxide and spinel dissolution. As noted by others 

(Smolders et al., 2015; Stevens et al., 2003), leaching has very different effects across soils, and 

as a result, nominally equitoxic rays were not actual equitoxic rays (based on total) and thus, 

microbial responses differed.  Even for oxides and spinel minerals, where leaching is not a 

concern, toxicity of metal oxides and spinel minerals have been linked to pH and CEC (Brallier 

et al., 1996; Smolders et al., 2004).  Rays from spinel minerals were generally the least toxic 

because metals were strongly bound to iron oxides making them largely unavailable. The toxicity 

of rays from metal oxides was neither the most nor least toxic because metals were less soluble 

compared to metal salts and more soluble compared to spinel minerals.  

Stronger correlations between pH and CaCl2 extracted metals for metal oxides and spinel 

minerals were observed compared to metal salts (Figure 3-4). This was because metals are 

readily available when spiked as metal salts making surface complexation reactions with ligands 

a major determinant of availability (McBride et al., 2009). This is the probable reason why metal 

salts were comparatively more toxic. Hence, the availability of metal salts was controlled not 

only slightly by pH, but mainly by the availability of sorption sites (organic matter and clay) and 

other ligands in the soil. Unlike salts, the dissolution and desorption of metals in oxides and 

spinel minerals is highly dependent on soil pH, hence the strong correlation. 
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Extractions with DTPA and CaCl2 extractions showed significant correlations with ACP 

activity in S1 and S2 but not S3 (Figure 3-4 and 3-5).  The concentrations of CaCl2 extractable 

metals for oxides was linked by soil pH (r = -0.59), but this was not the case for DTPA 

extractable metal concentrations (r = 0.14).  As a result, higher concentrations of Cu and Pb with 

high affinities for ligands were extracted in DTPA in all soils (Figure 3-5). The strong 

correlations between enzyme activities in oxide spiked soils and CaCl2 and DTPA extractable 

metals suggests that both DTPA and CaCl2 are reliable methods for assessing metal availability 

of field contaminated soils, but toxicity of the metals may be dependent on the biological 

endpoint as observed in our study (McBride et al., 2009).  

3.7 Conclusions 

This is the first time spinel minerals have been synthesized and used in microbial toxicity 

testing. The role of metal mixture type and experimental design in modifying toxicity responses 

of soil enzymes has been established in this study. The study confirms that spiking soils with metal 

salts and leaching does not only inhibit microbial activities beyond metal effects but also 

compromises metal ratios in soils. The metal alternatives (i.e. oxides and spinel minerals) do not 

have to be leached or aged, and their toxicities are more dependent on soil properties compared to 

salts. It should be noted that the synthesis of spinel minerals required a significant laboratory effort 

to attain the desired nominal metal concentrations. Oxides are therefore recommended for metal 

and metal mixture toxicity tests when using a ratio ray design. 
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Kobby performed approximately 30% of soil preparation and dosing, 80% of the lab work 
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manuscript writing.  

 

This chapter focuses on evaluating the toxicity and sensitivity of quinary metal mixtures to the C 

and P cycles. The objective of the chapter was to assess CA as an appropriate mixture model for 

assessing the risks of metal mixtures to biogeochemical cycles. 
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4.2 Abstract 

In soils, enzymes are crucial to catalyzing reactions and cycling elements such as carbon 

(C), nitrogen (N), and phosphorus (P). Although these soil enzymes are sensitive to metals, they 

are often disregarded in risk assessments, and regulatory laws governing their existence are 

unclear. Nevertheless, there is a need to develop regulatory standards for metal mixtures that 

protect biogeochemical cycles because soil serves as a sink for metals and receptor exposures 

occur as mixtures. Using a fixed ratio ray design, we investigated the effects of 5 single metals 

and 10 quinary mixtures of Zn, Cu, Ni, Pb, and Co metal oxides on two soil enzymes (i.e., acid 

phosphatases [ACP] and beta glucosidases [BGD]) in two acidic Canadian soils (S1: acid sandy 

forest soil, and S2: acid sandy arable soil), closely matched to EU REACH standard soils. 

Compared to BGD, ACP was generally the more sensitive enzyme to both the single metals and 

the metal mixtures. The EC50 estimates for single Cu (2.1 to 160.7 mmol kg-1) and Ni (12 to 272 

mmol kg-1) showed that both metals were the most toxic to the enzymes in both soils. For metal 

mixtures, response addition (RA) was more conservative (overestimated mixture effects) in 

predicting metal effects compared to concentration addition (CA). For both additivity models, 

synergism was predicted at low effect levels, such as 10%, but antagonism occurred irrespective 

of effect levels. At higher concentrations, free and CaCl2 extractable Cu protected both enzymes 

against the toxicity of other metals in the mixture. The results suggest that (1) assuming CA at 

concentrations less than EC50 does not protect biogeochemical cycling of C and P, and (2) Cu in 

soil may protect soil enzymes from other toxic metals and thus may have an overall positive role 

in soils with elevated metal concentrations. 

 

Keywords: Acid phosphatases, beta glucosidases, metal mixtures, risk assessment, 

biogeochemical cycling. 
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4.3 Introduction 

Soils play a major role in the biogeochemical cycling of carbon (C) and nutrients such as 

nitrogen (N) and phosphorus (P), but this role depends on soil health. Soil health is evaluated by 

considering a combination of soil physicochemical properties and biological parameters, 

including survival, reproduction, and activity of soil invertebrates and microbes. Soil microbes 

drive biogeochemical cycling of C, P and N because they synthesize and excrete several 

enzymes that are crucial to the decomposition of soil organic matter (SOM) (Burns, 1977; 

Madsen, 2011; Schimel and Schaeffer, 2012). During SOM decomposition, promoted by 

microbes, nutrients are released, which in turn fill the microbes’ energy demands for growth 

(Luo et al., 2017). Similar to soil biogeochemical cycles, microbial efficiency requires optimal 

combinations of pH, organic carbon (OC), and cation exchange capacity (CEC) (Bartram et al., 

2014; Insam and Domsch, 2013; Sarapatka et al., 2004; Yan et al., 2015). Since changes in soil 

health affect microbial activity, soil enzymes are a quick and robust indicator of soil health 

(Borowik et al., 2012; Chaperon and Sauvé, 2008; Smolders et al., 2001a). 

  Elevated metal concentrations can affect soil physicochemical qualities and be toxic to 

microorganisms and enzymes crucial to biogeochemical cycles (Chaperon and Sauvé, 2007; 

Hagmann et al., 2015; Wiatrowska et al., 2015). Metals alter these cycles by generating reactive 

oxygen species (ROS) which precipitate essential metabolites or deactivate enzymes (Khalid and 

Jin, 2016; Sobolev and Begonia, 2008). Microbes can detoxify metals through redox, 

methylation, and dealkylation reactions (Gadd, 1993; White et al., 1995). However, at higher 

concentrations, these detoxifying mechanisms are overwhelmed. Although the effects of single 

metals such as Zn, Cu, and Pb on soil enzymes are known, metal mixtures are responsible for 

most soil contamination and soil organism exposures to metal (Chaperon and Sauvé, 2008; 

Mertens et al., 2009; Oorts et al., 2007; Smolders et al., 2015). As a result, risk assessment of 
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metals has shifted to accommodate typical exposures to metals as mixtures (Cedergreen, 2014; 

Nys et al., 2018). 

  The two reference models most widely used for estimating mixture toxicity are the 

concentration addition (CA) model and the response addition (RA) model. A common 

assumption for both models is that components of a mixture are non-interactive. However, the 

assumption for toxic modes of action (MoA) of mixture components differs for both models. For 

the CA model, there is an assumption that arithmetically, the overall effect of a mixture can be 

predicted from the addition of the potencies of the individual components of the mixture relative 

to their individual potencies when applied alone (Equation 4-1). Implicit in the CA model is the 

assumption that each component can be replaced by an equally effective component without 

altering the overall effect. The toxic unit (TU) is the ratio of the concentration (c) of a component 

(i) in a mixture eliciting a combined effect (ECx) to the concentration of the same component 

eliciting ECx when applied alone (Equation 4-2).   

∑
𝑐𝑖

𝐸𝐶𝑥𝑖

𝑛

𝑖=1

= 𝑇𝑈                                                                                                                           𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4-1 

 
 

∑ 𝑇𝑈𝐸𝐶𝑥
= ∑

𝑐𝑖

𝐸𝐶𝑥𝑖

𝑛

𝑖=1

= 1                                                                                                      𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4-2 

 
In Equations 4-1 and 4-2, 𝑐𝑖/𝐸𝐶𝑥𝑖 is the TU of a metal (i), which represents the fractional potency 

contributed by the metal (i) in the mixture. When used for assessing the risk of mixtures, 

antagonism at an effect level is inferred when the summation of the TUs (∑TU) is greater than 1 

(less than additive), synergism (more than additive) when ∑TU is more than 1, and additive ∑TU 

is equal to 1.  
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In contrast to CA, RA assumes that the toxicity of each component of the mixture is 

independent of the others. Thus, the effects of the mixture will be less than the effects of the 

individual metals acting alone due to probability. RA is mathematically expressed in Equation 4-

3, where 𝐸(𝑐𝑚𝑖𝑥) is the effect of the total mixture at a total concentration (cmix), and 𝐸(𝑐𝑖) is the 

effect of the component (i) when applied singly at the same concentration as is present in the 

mixture. The effect of each metal is subtracted from 1 (i.e., control or no inhibition) to determine 

noneffects. The products of all noneffects is subtracted from 1 (probability of effect) to 

determine the marginal effect of the mixture. 

𝐸(𝑐𝑚𝑖𝑥)=1- ∏[1 − 𝐸(𝑐𝑖)]

𝑛

𝑖=1

                                                                                                  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4-3 

 

It has been reported that 70% of mixtures have additive toxicity, 10-15% have antagonistic 

toxicity, and 10-15% have synergistic toxicity (Warne and Hawker, 1995). According to Ross 

(1996) and Ross and Warne (1997), additivity deviates by a factor greater than 2.5 for only 6% 

of the mixtures. Other studies have reported that CA is overly conservative and overestimates 

mixture toxicity, especially for metals (Nys et al., 2016; Versieren et al., 2016). Metal 

interactions produce either synergistic or antagonistic effects, rendering the current practice of 

applying CA in the risk assessment of metals quite problematic (Chaperon and Sauvé, 2007, 

2008; Nys et al., 2016, 2017; Versieren et al., 2016). For example, Chaperon and Sauvé (2007) 

reported that the activity of urease and dehydrogenase enzymes were affected by exposure to a 

quaternary mixture containing Ag, Cu, Hg, and Zn. Furthermore, they found the effects of the 

metals on enzymes deviated from additivity and exerted a higher toxicity in agricultural soils. In 

aquatic systems, Nys et al. (2017) concluded that the combined toxicity of metals that 

individually exert less than 10% effect was greater than simply adding their individual effects.  
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The aim of this study was to improve our understanding of metal mixture toxicity to soil 

enzymes and to determine the sensitivity of two biogeochemical cycles (i.e., C and P) to metal 

mixtures containing Pb, Cu, Ni, Zn, and Co. These metals match what are typically found at 

Canadian base metal mining and smelting sites. We measured the effects of the mixtures on two 

soil enzymes, beta-glucosidase (BGD) and acid phosphatase (ACP), which are involved in the C 

and P cycles, respectively. BGD is a predominant soil enzyme and is responsible for catalyzing 

the hydrolysis of glucosidic bonds and biodegradation of plant debris to release glucose, an 

important C energy source for microbial metabolism (Eivazi and Tabatabai, 1988). ACP is a 

ubiquitous soil enzyme with strong correlations to P deficiency in soils and thus is a good 

indicator of soil fertility (Eivazi and Tabatabai, 1977). We determined the effects of single 

metals and 10 quinary mixtures on both soil enzymes and compared the responses to predictions 

from the two mixture toxicity reference models (i.e., CA and RA). We hypothesized that 1) CA, 

which is the current method used in mixture assessment, will hold true for all mixtures, and 2) 

the differences in metal mixture compositions will not alter toxicities to both enzymes. 

4.4 Materials and methods 

4.4.1 Soil sampling and treatments 

 Two Canadian soils were sampled for the study. Topsoil (~30cm depth) was collected, 

air-dried, and sifted using a 2-mm sieve. Background metal concentrations were determined by 

reverse aqua Regia (rAR) method, and metals were measured with an Agilent 5110 SVDV 

inductively coupled plasma optical emission spectrometer (ICP-OES) (Topper and Kotuby-

Amacher, 1990). The CEC was determined using the methylene blue method (Yukselen and 

Kaya, 2008); soil pH was determined using 0.01 M CaCl2 in a ratio of 1:5 (solid: liquid); soil 

texture was determined by the pipette method (Bouyoucos, 1962); soil organic carbon was 
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determined by the LECO-C632 carbon analyzer (Wang and Anderson 1998); and, water holding 

capacity (WHC) was measured with open-ended test tubes with filter paper placed at the bottom 

to retain soil (Jaabiri Kamoun et al., 2018). The soils were stored in plastic containers until they 

were used for the experiment (rewetting to 65% of the WHC 2 weeks prior to toxicity testing). 

The soils were named S1 (Acid Sandy Forest) and S2 (Acid Sandy Arable) and had pH values of 

3.4 and 4.6, respectively.  

Table 4-1. Physicochemical properties of experimental soils  

 Soil   pH     CEC            Clay     Organic   Water         EU PNEC                    Background 

                          Content  Carbon  Holding       Closest                         Zn     Cu    Ni    Co    Pb 

                  (meq/100 g)   (g/kg)    (g/kg)     Capacity      Reference                           (mg/kg of soil) 

      (ml/g)  

S1       3.4          8               45          17  0.29         Acid Sandy Forest      967    303    7   7     397 

S2       4.6         16             110          25            0.35        Acid Sandy Arable    635    107    11    9     23 
CEC = Cation exchange capacity 

 

4.4.2 Mixture rays and metal dosing 

Commercial metal oxides for Pb, Cu, Zn, Co, and Ni (≥97% purity) were purchased from 

Sigma Aldrich and used to spike the soils. Prior to soil amendment, the metal oxides were 

exposed to gaseous HNO3 in a desiccator to remove inorganic carbon. The oxides were ground 

and weighed into the soils in their respective ratios (Table 4-2). Soils were spiked with single 

metals (12 doses) and 10 metal mixture rays (10 doses) (Table 4-2). Each mixture ray consisted 

of 5 heavy metals (Pb, Cu, Ni, Co, and Zn) at different ratios. The ratio of the metals was 

determined from regulatory concentrations (rays 1-4, 8), environmentally relevant concentrations 

(rays 7, 9, 10), and experimentally derived or arbitrary concentrations (rays 5, 6). For example, 

ray 4 was determined using the maximum allowable concentrations of the 5 metals according to 

the Canadian Soil Quality Guidelines (CSQG) for agricultural sites. Also, ray 3 was determined 

by averaging the predicted-no-effect-concentrations (PNEC) for each of the 5 metals from the 

EU-REACH PNEC calculator for clayey and peaty soils (Assessing risks of chemicals, 2017). 
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For the environmental rays (i.e., 7, 9, 10), samples from field-contaminated soils were collected 

and analyzed for total concentrations of the metals of interest and computed into rays. Ray 5 was 

computed following the CA assumption that the concentration of each metal in the mixture, 

relative to its individual effect when dosed alone, contributes equally to the overall effect. In 

contrast, ray 6 was computed so that the ratio of each metal in the mixture remained the same 

irrespective of effect. Hence, each ray consisted of 5 metals in fixed ratios (see Table 4-2 and 

Appendix B Table [B-2]). 

Table 4-2. Fixed rays used for the full metal mixture toxicity tests by weight-by-weight (w/w) 

and molar (mol) ratios of the metals in the mixture.  

  Dose composition 

          Co          Ni          Cu         Zn          Pb 

Ray Source w/w mol w/w mol w/w mol w/w mol w/w mol 

1 Reg. 0.097 0.123 0.109 0.138 0.155 0.182 0.421 0.479 0.218 0.078 

2 Reg. 0.100 0.122 0.118 0.144 0.184 0.208 0.423 0.465 0.175 0.061 

3 Reg. 0.110 0.135 0.123 0.152 0.206 0.234 0.372 0.412 0.190 0.066 

4 Reg. 0.013 0.013 0.707 0.736 0.178 0.172 0.076 0.071 0.026 0.008 

5 Exp. 0.090 0.110 0.110 0.134 0.160 0.181 0.470 0.516 0.170 0.059 

6 Arb. 0.037 0.065 0.072 0.128 0.039 0.064 0.290 0.461 0.561 0.282 

7 Env. 0.200 0.271 0.200 0.235 0.200 0.217 0.200 0.211 0.200 0.066 

8 Reg. 0.294 0.396 0.088 0.119 0.147 0.183 0.147 0.178 0.324 0.124 

9 Env. 0.050 0.080 0.064 0.102 0.157 0.232 0.260 0.374 0.469 0.212 

10 Env. 0.003 0.003 0.003 0.003 0.202 0.216 0.726 0.755 0.066 0.021 

Reg. = Rays derived from regulatory concentrations (e.g., CCME or EU-REACH) 

Env. = Rays derived from environmentally relevant concentrations (e.g., metals in field-contaminated soils) 

Exp. = Rays derived from experimentally derived concentrations (e.g., EC50) 

Arb. = Randomly derived ray based on equal metal ratios 

 

To calculate the 10 equitoxic dosing concentrations for each mixture ray, EC50 values of 

the 5 metals (Pb, Cu, Ni, Co, and Zn) derived from literature were used to calculate toxic units 

(TUs) ranging from 0 to 16 (Lock and Janssen, 2002a, 2002b, 2003; Sandifer and Hopkin, 

1997a, 1997b).  
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4.4.3 Metal concentrations 

4.4.3.1 Total metal concentration 

Total metal concentrations in spiked soils were determined using x-ray fluorescence 

(XRF) (Margui et al., 2009). Soil (4 g air dried) was ground and homogenized with 0.8 g of 

Chemplex SpectroBlen 44µm powder to act as an adhesive. Samples were transferred into 

Chemplex pellet cups, covered with polypropylene thin-films, and placed into a pellet die set. 

The pellet set was mounted on a hydraulic press and a force of about 10,000 psi was applied to 

the samples for 5 minutes to form discs. The samples were analyzed on the Thermofisher ARL 

OptimX XRF analyzer (1 ppm detection limit) for total metal concentrations. For confirmation, 

we used the XRF to re-analyze 6 soil samples that had been previously analyzed with an Agilent 

5110 SVDV inductively coupled plasma optical emission spectrometry (ICP-OES) for metal 

concentrations (reverse aqua Regia). Montana II was used as a standard reference material for 

the XRF with metal recoveries were between 90% to 95%. 

4.4.3.2 Metal speciation 

4.4.3.2.1 Calcium chloride extractable 

The mobilizable metals were extracted using a 0.01 M calcium chloride (CaCl2) solution 

(Quevauviller, 1998). Briefly, 2.5 g of dry soil was weighed into 50 mL test tubes, 25 mL of 

CaCl2 solution was added, and the tubes were shaken on an end-over-end shaker for 180 minutes. 

Samples were centrifuged at 4704 g for 10 minutes, filtered (Whatman 0.45m syringe), and 

analyzed with the Agilent 5110 SVDV ICP-OES for metal concentrations. Single element atomic 

absorption standards obtained from VWR and diluted with 0.01 M CaCl2 to obtain standard 

concentrations of 0, 1, 5, 15, 30 and 50 mg/L of element. Duplicates, blanks and calibration 
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standards run every 21 samples were used as quality control. The pH of the supernatant was 

measured prior to metal analysis. 

4.4.3.2.2 Base anions and cations 

Soil anions (i.e., Cl-, NO3-, SO4
2-, CO3

2-, PO4
3-) and major cations (i.e., Ca2+, Mg2+, K+) 

were determined following Quevauviller’s water method (Quevauviller, 1998). The 

concentration of anions was measured using a Dionex ICS-2000, an ion chromatograph equipped 

with a Chromeleon 7 software. The base cations were analyzed with the Agilent 5110 SVDV 

ICP-OES. Duplicates, blanks and calibration standards run every 21 samples were used as 

quality control. 

4.4.3.2.3 Dissolved organic carbon (DOC) 

The DOC was determined following Zsolnay, 2003. Briefly, 15 g of dry soil was weighed 

into 50 mL centrifuge tubes, and 30 mL of 0.005 M CaCl2 solution was added. The sample was 

gently stirred with a glass rod for about a minute. The sample was centrifuged at 12,000 g for 10 

minutes and filtered into 30-mL dram vials with a 0.45 µm polycarbonate filter and using a 

vacuum suction. Samples in the dram vials were analyzed for DOC using a Mandel total carbon 

analyzer. Percent coefficient of variation for injected replicates was less than 2%. 

4.4.3.2.4 Free ion speciation modeling 

 The free ion speciation in the soil solutions was determined using Windermere Humic 

Aqueous Model (WHAM VII) for both soils (Nys et al., 2016; Tipping et al., 2011). When 

calculating speciation, the following assumptions were applied: room temperature was 298 K, 

partial pressure was 0.00038 atm; 65% of DOC was active as fulvic acid (FA); the dissolved 

organic matter contained 50% carbon by weight (Nys et al., 2016); and colloidal precipitates 

controlled the activities of ferric (Fe [OH]3) cations (Tipping et al., 2011). WHAM VII to 
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calculate metal speciation in soil solution. We derived free metal ions (Me2+), metal hydroxides 

(MeOH, MeOH2), metal complexes with anions, and FA-bound metal fraction (FA-Me) because 

free ion activity is more representative for metal mixture toxicity than total metal concentrations. 

4.4.4 Soil toxicity tests 

4.4.4.1 Beta glucosidases 

Soil (0.1g) in 4 replicates that included a negative control, was weighed into 1.5 mL test 

tubes, 20 µL of toluene was added, and the samples were mixed and left in the fume hood for 15 

minutes (Eivazi and Tabatabai, 1988). After 15 minutes, 400 µL of modified universal buffer 

(MUB, pH~6) and 100 µL of 50mM P-nitrophenyl-B-D-glucopyranoside were added to each 

sample. The samples were then incubated in a water bath at 37o C for one hour (Eivazi and 

Tabatabai, 1977). Next, 100 µL 0.5 M CaCl2 and 400 µL of 0.1 M Tris (hydroxymethyl) 

aminomethane (THAM) buffer (pH 12) were added to the samples. Samples were centrifuged at 

13,148 g for 2 minutes and were read colorimetrically at a wavelength of 410 nm with the Biorad 

iMark 96-well plate reader. 

4.4.4.2 Acid phosphatases  

Soil (0.1g) in 4 replicates that included a negative control, was weighed into 1.5-mL test 

tubes, 20 µL of toluene was added, and the samples were mixed and left in the fume hood for an 

hour (Eivazi and Tabatabai, 1977). Next, 400 µL of 0.5 M acetate buffer (pH~5.8) and 100 µL of 

10mM p-nitrophenyl phosphate were added to each sample, and the samples were incubated in a 

water bath at 37 oC for one hour (Eivazi and Tabatabai, 1977). The samples were then removed 

and placed on ice to stop the reaction. Samples were centrifuged at 13,100 g for 2 minutes and 

read colorimetrically at a wavelength of 410 nm with the Biorad iMark 96-well plate reader. 
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4.4.5 Data analysis 

4.4.5.1 Soil enzyme activity 

Soil enzyme activity was determined from the slope of the standard curve derived from 

concentrations of p-nitrophenyl (ACP and BGD read colorimetrically at a wavelength of 410 

nm). The percentage activity was determined relative to control soils using Equation 4-4 below.  

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑆𝑎,𝑗, − 𝑆𝑏,𝑗,

𝐶𝑎 − 𝐶𝑏
∗ 100%                                                                                            𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4-4 

In Equation 4-4, 𝑆𝑎,𝑗 and 𝑆𝑏,𝑗 represent analyte (p-nitrophenol) concentrations for ray j extracted 

in incubated and non-incubated samples (negative control), respectively, and 𝐶𝑎 and 𝐶𝑏 represent 

analyte concentrations in controls.  

All data were statistically analyzed with a 2-way ANOVA with the R (studio) program 

using significance levels of α= 0.05 and 0.10 (R Core Team, 2018). Data were tested for 

normality and homogeneity of variance to determine if ANOVA assumptions were meet. To 

meet the assumptions of ANOVA data transformation was applied where necessary. The Tukey 

HSD test was used for testing multiple comparisons between rays. Pearson product moment 

bivariate correlations were performed between free and CaCl2 metal concentrations and enzyme 

activity. 

4.4.5.2 Dose response models 

 The dependent variable for the dose-response relationship was percent activity in dosed 

soils relative to control (Equation 4-4) and independent variable was XRF estimates of total 

metal concentration (Ritz and Strebig, 2016).Using a 3-parameter log-logistic function (Equation 

4-5) we determined effective concentrations (ECx) at 10%, 25%, and 50% for each metal from 

the dose-response models using the R package drc (Ritz and Strebig, 2016). 
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𝑓(𝑥) =  0 +
𝑑 − 0

1 + 𝑒𝑥𝑝(𝑏(𝑙𝑜𝑔(𝑥)−𝑙𝑜𝑔 (𝑒))
                                                                                  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4-5 

In the above quation (4-5), b represents the steepness of the dose-response curve, d is the upper 

limit of the response, c is the concentration variable, and e is the median concentration (EC50).  

4.4.5.3 Mixture analysis 

Mixture effects and interactions between metals were evaluated using CA and RA. For 

CA, TUs for all rays were calculated using Equation 4-1 for effective concentrations ECx (EC10, 

EC25, EC50). A four-parameter log-logistic function was used in fitting relative activity in 

mixture-spiked soils and the sum of TUs at each EC. Deviations from 1 (i.e., ∑TU with 

confidence intervals) were classified as antagonistic (overestimation by mixture model) or 

synergistic (underestimation by mixture model) using a t-test. For RA, the predicted activity 

from the RA model (Equation 4-3) was subtracted from the observed activity. The computed 

difference was defined as synergistic when negative values were obtained, while positive values 

were defined as antagonistic. Computed values within ±10 were defined as precise predicted by 

the RA model. The performance of both models was evaluated by comparing the observed 

versus the predicted mixture effects using the root mean square error (RMSE). 

4.5 Results 

4.5.1 Single metal experiments. 

Well-defined dose response relationships were observed for the single metals in both 

soils, except for Ni (ACP in S1) and Co (BGD in S1 and S2), where no defined sigmoidal 

responses were observed (Figure 4-1). As a result, EC10 and EC25 estimates were not available 

for both enzymes in S2, and the reported estimates for Ni (ACP in S1) and Co (BGD in S1 and 

S2) will not be discussed in our results. Table 4-3 summarizes the effective concentrations ECx 
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(EC10, EC25, EC50) of enzyme activities (ACP and BGD) expressed as mmol kg-1 of total metal 

(Pb, Cu, Ni, Zn, and Co) in both soils.  

Table 4-3. Single metal effective concentrations (EC10, EC25, EC50) in soils S1 and S2 for acid 

phosphatases (ACP) and beta glucosidases (BGD) 

S1  Lead (mmol kg-1) Copper (mmol kg-1) Nickel (mmol kg-1) Zinc (mmol kg-1) Cobalt (mmol kg-1) 

 EC10   1.43  0.03  -----  7.8  127.5 

ACP EC25 6.9  0.25  0.01  26.7  230 

EC50 33  2.1  13.6  91.7  416 

EC10  3.4  0.03  4.6  37  ----- 
BGD EC25 13  0.4  112  77  ----- 

EC50 52  5.3  272.3  160.2  2.7 

 

S2 

EC10  46.7  88.1  12.3  30.8  3.4 

ACP EC25  112.8  91.8  15.7  33.4  11.9 
EC50  250  95.3  19.5  40  36.2 

                  EC10         91.8                      23.6            0.003   16.5                 ----- 
BGD         EC25         97                      61.6            0.18   39.3                ----- 

EC50  102.7  160.7  12  93.4  47.7 

----- = Not estimated from model 

 The mean activity of both soil enzymes decreased as the concentrations of single metals 

increased (Figure 4-1). Complete inhibition of either enzyme, however, was not observed for any 

of the single metals. The toxicity thresholds for the single metals varied widely between soils and 

enzymes, with the EC50 for ACP ranging from 2.1 to 416 mmol kg-1 and 19.5 to 250 mmol kg-1 

for S1 and S2 respectively, representing a variation of 198 and 13-fold respectively (Table 4-3). 

Effective concentrations (ECx) expressed in a molar basis showed that in S1, ACP was generally 

more sensitive to all metals than to BGD. In S2, enzyme sensitivity varied with metal and ECx. 

For example, at EC10, BGD was more sensitive to Cu, Ni, and Zn, while at EC50, it was less 

sensitive to Cu and Zn (Table 4-3). Comparing only EC50 values, the results revealed that Cu was 

the most toxic single metal in S1, while Ni was the most toxic in S2. 
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Figure 4-1. Acid phosphatases (ACP) shows a higher sensitivity to single metals than beta 

glucosidases (BGD). The figure shows the concentration response relationship for the two soil 

enzymes (acid phosphatases [ACP] and beta glucosidases [BGD]) and five metals (Co, Pb, Cu, 

Ni, Zn) in two soils (S1 and S2), fitted by a log-logistic model. Y-axis represents the percentage 

activity of enzymes in soils, and x-axis represents the concentration of metals in soils. Grid (a) 

ACP response to five metals in S1, Grid (b) BGD response to five metals in S1, Grid (c) ACP 

response to five metals in S2, Grid (d) BGD response to five metals in S2. Well defined DRC 

were not derived for the solid and dashed horizontal lines i.e. Co and Ni respectively. 

  

 

4.5.2 Combined toxicity of metal mixtures 

4.5.2.1 Concentration addition 

For each ray, the observed percentage activity of both enzymes in single-metal and metal 

mixture-spiked soils was expressed as TU following Equation 4-1 (calculated from total metal 

(a) 

(d) (c) 

(b) 
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concentrations). Figure 4-3 shows the toxicity response for the 10 metal mixture rays consisting 

of Pb, Cu, Ni, Zn, and Co and the response of the enzyme ACP (Appendix B Figures [B-1] and 

[B-3] for BGD response). TUs were calculated for EC10, EC25, and EC50 for all 10 mixture rays 

and compared the results to the CA model (Table 4-4). TUs calculated for BGD (TU50 for S1 and 

TU10,25 for S2) and ACP (TU10 for S2) were not presented because we felt that the large 

magnitude of the results was unreliable. Deviations from 1 were classified as interactions 

between metals (i.e., synergism or antagonism). 

 

Table 4-4. Toxic units (∑TUs) calculated for 10 mixtures rays for acid phosphatases (ACP) and 

beta glucosidases (BGD) in both soils. 

S1 
 

Ray 1  Ray 2 Ray 3 Ray 4 Ray 5 Ray 6 Ray 7  Ray 8 Ray 9 Ray 10 Concentration 

Addition 
95%CI  

∑TU10 6.6e-

03S      

1.5e-

03S     

1.5CA 1.6e-

03S  

3.5e-

03S 

1.3CA  6.1e-

05S  

5.9e-

04S    

2.8e-

03S    

15A   0.9 - 3.8 

ACP ∑TU25 0.007S         0.003S 0.92CA  0.04S  0.02S        1.8CA 0.001S 0.002S 0.02S 3.8A 0.9 - 2.2 
 

∑TU50 0.03S 0.01S 0.66CA 0.03S 0.08S 1CA 0.02S 0.01S 0.04S 1CA 0.6- 2.7 
             

BGD ∑TU10 1.3CA 0.75CA 5.9A 8.4A 13.4A 0.4CA 2.2A 1.4CA 4.8A 16.1A -23.5-1.6 
 

∑TU25 0.53CA 2.0e-
04CA 

1.4CA 2.98A 3.5A 7.6A 2.2A 2.9A 4.98A 1.7CA -1.3-2.0 

             

S2 
            

 
∑TU25 0.01S 5.23CA 0.003S 0.62S 4.3A 0.00S 0.04S 1.3CA 0.23S 2.13CA 1.0- 3.5 

ACP ∑TU50 0.36CA 10.2CA 0.1CA 2.6CA 10CA 0.01CA 0.3CA 6.6CA 0.9CA 6CA -12.1-13.8 
             

BGD ∑TU50 >20CA >20CA 11A 9CA 6CA 7CA 12CA 6CA 5CA >20CA -1.3 – 10.5 

 
Values with superscript “CA” follow the CA model. Values with superscripts “S” synergistically deviated from CA, 

and values with superscript “A” antagonistically deviated from CA.  

∑TU10 = TUs calculated from EC10 

∑TU25 = TUs calculated from EC25 

∑TU50 = TUs calculated from EC50 

 

The CA model consistently underestimated the mixture effects on ACP activity in S1; 

thus, the CA model predicted lower effects. For rays 3 and 6, CA precisely predicted mixture 

effects irrespective of the EC, while the predictions for ray 10 were only accurate at the median 
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concentration (EC50) but overestimated at lower ECs. In general, the predictions from the CA 

model for ACP were only 20-30% accurate at all three ECs, while the actual effects were 70% 

synergistic and ≤10% antagonistic (Table 4-4). For ACP in S2, the deviations at EC25 were 60% 

synergistic and 10% antagonistic, while 30% followed CA. At the median concentration (EC50), 

100% of the mixture effects followed CA.  

For BGD in S1 where only two ECx (EC10 and EC25) were obtained from the model, only 

antagonistic deviations from CA were observed (Table 4-4). For both ECs, CA predicted 40% of 

the mixture effects to BGD, while the deviations constituted 60% of the predictions. For S2 

(BGD) CA predicted 90% of the mixture effects at EC50 with only 10% antagonistic deviations. 

In general, we observed that CA underestimated the effects of the mixtures at lower ECx (EC10, 

EC25) and either predicted or overestimated the effects at higher ECx. When we compared the 

combined mixture effects on both soil enzymes at all ECs, we observed that 25% of the effects 

followed CA, 25% of the effects were overestimated, and 50% of the effects were 

underestimated (Figure 4-2a). 
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Figure 4-2a. Predictive performance of the concetration addition model shows a 50% 

underestimation of metal mixture effects on the biogeochemical cycling of C and P. 

 

 

 

 
 

Figure 4-3b. Predictive performance of the response addition model shows a 60% overestimation of 

metal mixture effects on the biogeochemical cycling of C and P.



 

 
 

8
9
 

 

 
Figure 4-4. Concentration addition (CA) does not predict mixture toxicity to ACP below EC50. The figure shows the concentration response 

relationships between acid phosphatases (ACP) and 10 mixture rays in S1 fitted by a log-logistic model. Y-axis represents the percentage activity of 

the enzyme, and X-axis represents the toxic units (TUs) of the metals calculated from effective concentrations. Grid (a) TUs calculated from EC10, 

Grid (b) TUs calculated from EC25, Grid (c) TUs calculated from EC50. The intersection between the two blue dashed lines represent the point where 

CA occurs for the specified effective concentration, and the red shaded area represents the 95% confidence interval. The green-shaded quadrant 

represents underestimation by the CA model, and the grey-shaded quadrant represents overestimation. The root mean squared error (RMSE) for each 

TU is reported. 

(a) (c) (b) 
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4.5.2.2 Response addition 

 Overall, RA overestimated the effect of the mixtures on the enzymes in both soils, 

compared to CA. Based on the root mean square errors (RMSE), better predictions from the RA 

models were obtained for S2 compared to S1 (Figure 4-4). Also, lower RMSE values were 

obtained for the enzyme BGD compared to ACP, signifying better predictions for the latter.  

Observed and predicted data show both antagonistic and synergistic deviations of the mixtures 

from RA to ACP and BGD. The deviations were more antagonistic than synergistic for both 

enzymes. Specifically, RA overestimated the effects of the mixtures 60% of the time, 

underestimated the effects 5% of the time, and predicted the effects 35% of the time. The 

underestimated effects were observed mostly at total metal mixture concentrations below 10,000 

mg/kg soil, but antagonistic deviations were observed across all concentrations. When we 

compared the combined mixture effects on both soil enzymes, we observed that 50% of the 

effects followed RA, 60% of the effects were overestimated, and 5% of the effects were 

underestimated (Figure 4-2b). 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

9
1
 

 

 
Figure 4-5. RA predicts antagonism at all dose levels and synergism at lower concentrations (<10000 mg kg-1). The x-axis shows the 

total concentration of mixtures in mg kg -1, and the y-axis shows the difference between observed and predicted activity for ACP 

(Grids a and b) and BGD (Grid c and d), S1 on the left, and S2 on the right. Broken black line indicates the RA model, and the red 

shaded portion represents 95% confidence interval. Points in the green shaded portion are overestimated by RA, while points in the 

blue shaded area are underestimated by RA.

RMSE=6.7 

 
RMSE=11 

 

RMSE=8.7 

 
RMSE=15.9 

 
(a) 

(c) (d) 

(c) 
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4.5.3 Effects of soils and rays on enzyme activity 

Soil was a significant factor in determining the effect of metals on both ACP and BGD in 

this study (Table 4-5). The activity of both enzymes in metal-spiked soils was comparatively 

lower in S2 relative to S1. No differences in mixture rays were observed for the ACP enzyme in 

both soils. Differences in rays, however, were observed for the BGD enzyme. Specifically, in S1, 

ray 9 was significantly less toxic to BGD in S1 compared to rays 1 and 4, while in S2, ray 9 was 

significantly less toxic to BGD compared to rays 3 and 10 (Appendix B Table [B-1]).  

Table 4-5.Two-way ANOVA table for enzymes, soils, and rays 

Activity  Predictors  SS  Df  MS  F  p-value  

ACP  Soil  7515  1 7515  12.047   0.00***    

  Ray  9180  9 1020  1.635  0.11 
       Soil: Ray  5081  9 565  0.905  0.52 

  Residuals  136002  218 624   

BGD  Soil  12139  1 12139  55.875   0.00***    
  Ray  6622   9 736  3.387  0.00*** 

       Soil: Ray  3647          9 405  1.865  0.06 

  Residuals  47361  218 217   

Significance codes: * < 0.05, ** < 0.01, *** < 0.001 

*SS = sum of squares 

*Df = degrees of freedom 

*MS = mean square 

*ACP = acid phosphatases 

*BGD = beta glucosidases 

 

4.5.4 Metal speciation as related to toxicity. 

4.5.4.1 Relationship between enzyme activity and total, free, CaCl2 extractable and FA-

bound metal concentrations 

Both enzymes showed significant decreased activity with increases in total mixture 

concentrations of Pb and Zn. In S1, increases in Ni concentrations exerted significant toxic 

effects on ACP activity, while increases in Co concentrations exerted toxic effects on BGD. The 

free and CaCl2 extractable metal concentrations also showed that increases in the concentrations 

of Pb, Zn, and Ni caused decreases in the activity of both enzymes in both soils (Table 4-6). In 

contrast, the enzymes increased with concentrations of Cu in both soils, signifying a possible 
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interaction and alleviation of toxicity by Cu. Free and CaCl2-extractable Ni exerted toxic effects 

on ACP in both soils, but no significant toxic effects were observed for BGD (Table 4-6). FA-

bound Zn and Co increased with increasing enzyme activity in both soils (Table 4-6). 

Conversely, FA-bound Pb in both soils and FA-bound Ni in S2 decreased with increasing 

enzyme activity. 

Table 4-6. Influence of metal mixtures in total, CaCl2 extractable, free ion, and fraction-bound to 

fulvic acid on soil enzyme activities in both soils; no interactions specified in the models 

S1                          Total mg kg-1          R2         CaCl2 µg g-1     R2  Free ion (M)      R2  FA bound     R2 

ACP   -Pb**         0.44      +Cu*             0.48 -Ni**          0.45  +Co**    0.57 
  -Zn**       -Zn*   +Cu*   +Zn* 

  -Ni**       -Ni**   -Zn*    

         -Pb*   -Pb* 
  

BGD  -Pb**         0.62      -Zn**              0.47  -Zn**          0.45  +Co**    0.46  
  -Co**                                                                                  -Pb** 

  -Zn** 

 
S2     
ACP   -Pb**         0.56      +Cu*             0.53 -Ni*          0.42  -Ni**    0.57 

  -Zn**       -Zn**   +Cu**   +Zn** 
         -Ni*   -Zn**   -Pb* 

          

 
BGD  -Pb*         0.31      -Zn**              0.43  -Zn*           0.33  -Pb*     0.31 

  -Zn**      

Positive sign (+) = increase in enzyme activity with increase in metal concentration 

Negative sign (-) = decrease in enzyme activity with increase in metal concentration 

ACP = acid phosphatases 

BBG = beta glucosidases 

Significance codes: * *< 0.05, * < 0.1     

4.6 Discussion 

4.6.1 Single metal toxicity to soil enzymes 

In order to understand the effects of single metal and metal mixtures on the global 

biogeochemical cycling of C and P, we used ACP and BGD enzymes as model endpoints. 

Results showed less sensitivity of the soil enzymes to metal oxides compared to what has been 

reported in other studies where metals were spiked as salts (Chaperon and Sauvé, 2008, 2007). 

We found that the EC50 for Cu (2.1 to 160.7 mmol kg-1) and Zn (12 to 272 mmol kg-1) were up to 

6-fold higher compared to what has been reported for metal-salt-spiked soils (Chaperon and 
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Sauvé, 2008, 2007). The differences in ECs were explained by others to be a result of increased 

solubility of metals spiked as salts and the indirect effects of salts on microbial toxicity and soil 

ionic strength (Awuah et al., 2019; Schwertfeger and Hendershot, 2012; Stevens et al., 2003). 

For metal oxides, solubility and availability is primarily driven by soil solution pH and CEC, and 

higher toxicity is expected in soils with low pH and CEC (Schwertfeger and Hendershot, 2012; 

Stevens et al., 2003). This explains the higher sensitivity observed for both enzymes in S1, which 

has a lower pH and CEC compared to S2. EC50 estimates of the metals in both soils (Table 4-3) 

showed that ACP were more sensitive to metal oxides compared to the BGD estimates, which is 

consistent with results from several studies (Borowik et al., 2012; Moreno et al., 2003). Others 

reported that Ni and Cu were the most toxic metals to soil enzymes including phosphatases, beta 

glucosidases, and dehydrogenases, while Zn was the least toxic (Chaperon and Sauvé, 2008, 

2007; Khalil et al., 1996; Moreno et al., 2003). As reported by Feng et al.(2016) we also found 

Cu and Ni as the most toxic single metals to both enzymes (Figure 4-1 and Table 4-1). For Co, 

the model unsatisfactorily fitted the data in both soils, hence the estimates were unreliable 

despite our efforts to test other models. 

4.6.2 Predictability of metal mixture effects by CA and RA 

The predictions from both additivity models (i.e., CA and RA) showed significant 

synergistic and antagonistic deviations, suggesting possible interactions between metals (Khalil 

et al., 1996; A. Liu et al., 2017; Nys et al., 2017; Versieren et al., 2016). This finding supports 

Cedergreen et al. (2008), who observed similarities in predictions derived from both additivity 

models for metal mixtures. Even though the models were largely inadequate in predicting 

mixture effects to both enzymes, the results derived may have profound implications on risk 

assessment. For example, the toxicity of the mixtures to the less sensitive endpoint (BGD) in 
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both soils followed CA 60-70% of the time with mostly antagonistic deviations. In contrast, the 

more sensitive endpoint (ACP) followed CA only 30% of the time in both soils with mostly 

synergistic deviations. Furthermore, RA mostly overestimated (60% antagonistic) the toxic 

effects of the mixtures to both endpoints. This suggests that RA might more conservative and 

protective of both endpoints, while CA will only be accurate for the less sensitive endpoint. It 

should be acknowledged that the assumptions of the models are completely reliant on an 

understanding of the MoAs of the mixture components, which are currently not fully understood. 

However, the differences in slopes obtained from our single dose response data suggests that the 

metals have dissimilar modes of action (Table 4-7) (Chaperon and Sauvé, 2008, 2007).  

Table 4-7 Single metal dose response slopes for two soil enzymes in soils 

 Lead Copper Nickel Zinc Cobalt 

ACP/S1 0.62 0.61 0.00 0.82 1.84 

BGD/S1 0.72 0.69 1.17 1.41 0.35 

ACP/S2 2.28 0.83 0.32 0.72 5.22 

BGD/S2 0.92 1.21 0.57 1.17 0.00 

ACP/S1 = dose response for acid phosphatases in S1 

BGD/S1 = dose response for beta glucosidases in S1 

ACP/S2 = dose response for acid phosphatases in S2 

BGD/S2 = dose response for beta glucosidases in S2  

 

Additionally, the observed deviations from the models conformed with the funnel 

hypothesis suggested by Warne (2003) and Warne and Hawker (1995), where simple mixtures 

have highly variable toxicities (i.e., antagonism or synergism), while complex mixtures with 

greater than 10 components follow additive toxicity  This hypothesis implies that assuming 

additivity at the regulatory level for fewer than 10 metals, particularly at low effective 

concentrations, might not be protective. Furthermore, Nys et al. (2017) showed that combining 

Zn, Pb, and Cd in individual effect concentrations <10% can yield a combined effect of up to 

66%. Our study accordingly showed that, despite the occurrence of antagonism across all tested 

concentrations, mixture effects more than additive were only observed at lower concentrations 
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(Figures 4-3 and 4-4). The results of this study imply that CA might only be a conservative tool 

for 1) assessing mixtures at high concentrations, and 2) assessing mixtures using less sensitive 

endpoints (Cobbina et al., 2015).  

4.7 Effect of soil and ray on mixture toxicity 

Soil was the dominant factor determining enzyme activity and sensitivity to the metals. In 

contrast, mixture composition had no detectable effect on dose response. Studies have shown 

that ACP activity decreases with an increase in soil pH, which possibly increases its sensitivity to 

stressors (Liu et al., 2017; Sarapatka et al., 2004; Wang et al., 2018). Thus, soil properties like 

pH and CEC can modulate metal mixture toxicity to enzymes (Awuah et al., 2019; Wang et al., 

2018; Ying et al., 2017). In the study by Awuah et al. (2019), the equitoxicity of the mixture rays 

was questionable due to differences in metal types and leaching effects. In the current study, 

however, we found no differences in the overall effects of the mixture rays to ACP and found 

very few differences for BGD (3 differences in rays per soil) (Table 4-5). Hence, the ratios of 

metals in the mixture did not alter the overall effect of the mixture, particularly for ACP. This 

finding suggests that, the presence of the metal in the mixture might be more significant than the 

relative concentration of the metal for soil enzymes (Luo and Rimmer, 1995; McKenna et al., 

1993; Nys et al., 2018). Furthermore, its been reported that the presence Zn in metal mixture 

combinations determines the adherence of the effects to either RA or CA (Nys et al., 2017). The 

results further confirm the role of metals in modifying mixture toxicity (Awuah et al., 2019).  

When we compared TUs, we observed differences between enzymes, soils, and 

concentration levels (Table 4-4), suggesting that interactions and deviation from additivity may 

be dependent on dose, endpoint sensitivity, and soil characteristics (Karaca et al., 2010). 

According to the funnel hypothesis, less biologically sensitive endpoints that require high 
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concentrations of mixture components to exert a toxic effect would deviate from additivity 

(Warne, 2003; Warne and Hawker, 1995). We can also infer that more sensitive endpoints 

requiring low concentrations to exert toxic effects will deviate from additivity. In our case, 

synergistic deviations were observed for the more sensitive enzyme (ACP), while antagonistic 

deviations were observed for the less sensitive enzyme (BGD). Chaperon and Sauvé (2007, 

2008) observed that synergistic effects are likely to occur in soils with high metal availability. 

Again, for the more sensitive enzyme, more synergistic deviations were observed at lower 

concentrations for CA (EC10, EC25) and RA (<10,000 mg kg-1 of total mixture) in both soils, with 

greater synergism observed in S1 (lower pH and CEC) compared to S2.  

4.8 Ability of copper (Cu) to protect against mixture toxicity 

Despite Cu being one of the most toxic single metals in the study, observed trends 

suggested that Cu in a mixture with Pb, Co, Zn, and Ni may be interacting to indirectly protect 

biogeochemical cycles against other metals. It has been reported that some biomarkers can be 

more sensitive to single metals compared to mixtures, hence the most toxic single metal could be 

protective in a mixture (Versieren et al., 2017). In the regression analysis, we observed that the 

concentration of Cu in both CaCl2 and free metal extracts positively correlated with the activities 

of ACP and BGD in both soils, while Zn, Pb, and Ni exerted toxic effects (negative correlation) 

in the mixture (Table 4-6). We hypothesize that the presence of other metals (i.e. Zn, Co, Pb, and 

Ni) reduces the availability and uptake of Cu, causing lower toxic effects compared to Cu alone. 

Also, Cu strongly binds to organic matter, and can cause the displacement and increased 

availability of less toxic metals like Zn (Cedergreen, 2014).  

Furthermore, it has been reported that Cd and Cu can increase Zn availability (Luo and 

Rimmer, 1995; McKenna et al., 1993). When the bioavailability of less potent metals like Zn are 



 

98 
 

increased by other metals in a mixture due to competitive binding, the overall effect of the 

mixture would be expected to be lower than the most toxic metal alone. Because the average 

concentration of Cu in all mixture rays was about 16%, with Zn and Pb at 34% and 24% 

respectively, it is possible that Cu could be acting as an antioxidant, potentially protecting the 

enzymes from other metals in the mixture. Versieren et al. (2017) reported that Zn alleviates the 

toxicity of other metals in mixtures, which is contrary to what was observed in this study. 

However, both Cu and Zn are essential metals necessary for the function of several 

metalloenzymes that act as antioxidants (Agency for Toxic Substances and Disease Registry, 

2013, 2004a). Furthermore, Zn concentrations in CaCl2-extracted and free metals were 

consistently higher than other metals (Table 4-2), supporting the finding that metals like Cu 

increase the ability to extract Zn due the strong binding affinity of Cu. Excessive Zn has been 

reported to stimulate generation of reactive oxygen species and subsequent cellular damage (Lee, 

2018). This is a possible reason why Zn was not observed to be a protective metal in this study. 

4.9 Conclusions 

In this study, we showed that the biogeochemical cycling of C and P in soils are both 

sensitive to metal mixtures, with P cycling being more sensitive than C cycling. Furthermore, the 

findings show that both RA and CA are inadequate in predicting metal mixture effects on both 

biogeochemical cycles, especially at lower concentrations of environmental concern. However, 

compared to the CA model, the RA model might be more conservative for both cycles and will 

be more appropriate for risk assessment schemes if the goal is to be protective of these cycles. 

Despite the accuracy of CA in predicting the effects of metal mixtures, the concentrations were 

high and will be unprotective of sensitive endpoints. The conservativeness of the RA model 
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despite its comparative inaccuracy and overprotectiveness might be a better approach to 

characterize risks associated with biogeochemical cycles. 
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5.1 Preface 

The following chapter has been submitted to Environmental Science and Technology 

journal with the following co-authors:  

Olukayode Jegede (University of Saskatchewan) – involved with experimental design and 

editorial;  

Beverley Hale (University of Guelph) – co-supervisor involved with all aspects of project 

oversight.  

Steven D Siciliano (University of Saskatchewan) – supervisor involved with all aspects of 

project oversight.  

 

As the lead author, Kobby Awuah, was involved in every aspect of the article. More specially, 

Kobby performed approximately 100% of soil preparation and dosing, 80% of the lab work 
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(enzyme assays, metal extractions and analysis), 90% of the data analysis and 95% of the 

manuscript writing.  

 

This chapter focuses on identifying relationships between soil properties and measured soil 

processes and functions in the presence and absence of metal mixture contamination. The 

objective of the chapter was to determine relationships between soils properties and processes 

and use the relationships as a tool to improve site specific risk assessment of metal mixtures. 
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5.2 Abstract 

 When properly functioning, soils provide people with numerous ecosystem services (i.e., 

benefits), such as food production and water purification. These ecosystem services result from 

soil organism interactions and activities, which are supported by the soil physicochemical 

properties. Risk assessment for this complex system requires understanding the relationships 

among its components, both in the presence and absence of stressors including potential toxic 

elements (PTE). To better understand the soil ecosystem and how exposure to PTE impacts 

ecosystem services, I developed a novel quantitative technique, the adverse ecosystem service 

pathway (AESP) model that uses soil properties to evaluate effects of contaminants on 

ecosystem services. I sampled 47 soils across the Canadian Prairies and analyzed them for soil 

properties that included pH, cation exchange capacity, organic carbon, and percent clay. I spiked 

the samples with a mixture containing Pb, Cu, Ni, Zn, and Co and then measured 15 soil 

processes representing five ecosystem services. Using a Pearson bivariate correlation matrix, I 

confirmed that ecosystem services are closely linked to soil properties, especially cation 

exchange capacity and organic carbon. Results from t-tests also showed that, except for the three 

soil enzyme activities measured (p < 0.05), the processes underlying ecosystem services are 

significantly reduced in metal-impacted soils. Using soil properties as the main predictors of 

ecosystem services, I built two AESP models: one for metal-impacted soils and another for 

control soils. These models showed adverse effects to ecosystem services in metal-impacted 

soils, depicted as changes in partial correlation coefficients. An AESP model, therefore, can be 

an important tool to better understand complex ecosystems and improve risk assessment and 

natural resource management. 
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Keywords: Ecosystem services, adverse ecosystem service pathways, structural equation 

models, metal mixtures, risk assessment. 

5.3  Introduction 

Human industrial and agricultural activities release chemical environmental stressors, 

including petroleum hydrocarbons, fluorinated chemicals, bisphenols and phthalates, and 

potentially toxic metals (PTE), that significantly impact regional and global ecosystems. These 

chemical stressors potentially affect organisms that influence key ecosystem processes and 

functions, particularly microbes, invertebrates, and plants (Defarge et al., 2018; Gainer et al., 

2019; Motta et al., 2018; Nys et al., 2017). Of all chemical stressors, PTE are of particular 

interest because they are not biodegradable, and although they can be toxic (Awuah et al., 2019; 

Jegede et al., 2019), some are essential for daily metabolic activities (Agency for Toxic 

Substances and Disease Registry, 2013, 2005, 2004a, 2004b). Although organisms are usually 

able to tolerate relatively high concentrations of essential potentially toxic metals (PTE) (e.g., 

Cu, Zn), they can only tolerate low concentrations (Haferburg and Kothe, 2007; Lenart-Boro and 

Boro, 2014) of non-essential PTE with no known biological roles (e.g., Cd, Pb). Toxic effects are 

inevitable with any metal when concentrations exceed toxicity thresholds and the detoxification 

and repair mechanisms of an organism are overwhelmed (Awuah et al., 2019; Jegede et al., 

2019). 

Many researchers have studied the toxicodynamics of PTEs at the lowest level of 

biological organization (i.e. molecular level) that adversely impact soil organisms (Buekers et al., 

2007; Van Gestel, 1997). The adverse outcome pathway (AOP) depicts the cascade of events 

after an organism is exposed to a stressor (e.g., metal contaminant), that leads to adverse changes 

at higher levels of biological organizations (i.e., population, community, and ecosystem) (Ankley 
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et al., 2010). These adverse changes to organisms impact their activities, processes, and roles in 

the ecosystem, which potentially reduce the benefits that people derive from the ecosystem.  

Humans derive many and diverse benefits from a well-functioning ecosystem. These 

benefits are collectively known as ecosystem services (ES) (Hanson et al., 2012), and they 

maintain conditions for life on earth. These benefits include, for example, the provision of food 

and water, nutrient recycling, purification of air and water, and waste decomposition and 

detoxification (Hanson et al., 2012). Furthermore, ES are produced from ecosystem functions, 

including biogeochemical processes resulting from microbial, invertebrate, and plant activities in 

ecosystems (Buggenhoudt, 2017). For instance, soil invertebrates feeding on detritus (an 

activity), release locked nutrients (a process) for plant and microbial use (an activity) and for 

livestock, wildlife, and human consumption (a benefit). Several studies have demonstrated that 

soil properties influence biological processes and functions that underlie ES, while others have 

confirmed that PTEs are toxic to soil biota and that soil properties alter its bioavailability and 

thus impact metal toxicity(Awuah et al., 2019; Bergamin et al., 2015; Insam and Domsch, 2013; 

Murphy et al., 2011; Princz et al., 2010; Saidi, 2012; Smolders et al., 2015; Tueche, 2014; Van 

Eekeren et al., 2010). Because of the strong links between ES and soil organism activities, 

several ES can be compromised when soil organisms are exposed to metal stressors (Ding et al., 

2018; Hayes et al., 2018).  

I wanted to explore the cascade of events that affect soil processes, functions, and 

provision of ES. Thus, I developed a conceptual model—called an adverse ecosystem service 

pathway (AESP)— representing the physical, chemical, and biological events that adversely 

impact ES in soil (Figure 5-1). Our AESP systematically assesses the impacts of chemical 

stressors. While both AOPs and AESPs investigate outcomes after an organism is exposed to a 
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stressor, an AOP identifies the mechanisms leading to impaired functions, whereas an AESP 

identifies how impaired functions impact ES (Figure 5-1). With an AESP, therefore, I examined 

how exposing soil organisms to PTE impacts soil ES. The AESP approach is beneficial because 

it assesses the function of the entire system rather than its individual components, and it can be 

used to evaluate and predict the effects of multiple stressors on a regional or global scale. This 

approach would significantly improve terrestrial risk assessment. 

 

Figure 5-1. Theoretical illustration of direct and indirect pathways leading to potential impacts 

on soil ecosystem services from metal mixtures; an Adverse Ecosystem Service Pathway. 

Complex biological, chemical, and physical interactions among soil components create 

various soil functions (Delgado and Gomez, 2016). For example, soil enzyme activity that 

support biogeochemical processes (e.g., acid phosphatases) positively correlates with percent soil 

organic carbon but negatively correlates with soil pH (Kumari et al., 2017; Wang et al., 2018). 

Also, organic matter decomposers E. fetida and E. cripticus show strong survival and 
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reproduction relationships with soil pH between 4 and 9 (Jänsch et al., 2005) but up to 100% 

mortality outside of this pH range. The mortality relationship between decomposers and pH, 

however, is complicated in soils with elevated concentrations of PTEs, as the bioavailability (and 

thus toxicity) of the PTEs to the organic decomposers can be pH-dependent, depending on which 

PTEs are present. Thus, an effective statistical approach to modeling adverse effects of soil 

contaminants is to partition how soil properties (such as pH) directly affect organism survival 

and reproduction and how the effects are modified both directly and indirectly in the presence of 

contaminants. Jegede et. al (2019) reported that, survival and reproduction of mites exposed to 

Zn is determined by the habitat quality of the soil, and not concentration of Zn. Due to the 

organizational complexity of the soil ecosystem, a structural multivariate analysis that can model 

more than one dependent variable is useful to risk assessment. Furthermore, an analysis that can 

handle more than one fixed or random independent variable will be advantageous for evaluating 

how stressors alter the links among soil properties and soil functions. 

Structural equation modeling (SEM) is a powerful multivariate tool that can analyze 

relationships among variables in complex systems (Stenegren et al., 2017), hence the interactions 

and underlying mechanisms that drive ES derived from soils were investigated with SEM. I 

selected SEM because unlike most multivariate methods that are generally descriptive and 

suitable for exploratory analyses, SEM is capable of quantifying networks of causal hypotheses, 

making it more suitable for studying systems (Grace et al., 2018; Mamet et al., 2017). It allows 

the testing of simultaneous interactions and effects, both directly and indirectly, instead of single 

causal effects (Lefcheck, 2016; Mamet et al., 2017). The building block of SEMs is determined 

from the researcher’s assumptions that are derived from reported studies, which are then tested 

with derived data (Grace et al., 2012). The hypothesized network is represented as series of 
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(non)linear equations that produce an expected covariance matrix which is compared with the 

observed covariance matrix derived from experimental data (Mamet et al., 2017). The chi-square 

statistic (or any other statistical measure of congruence) is then used to compare both covariance 

matrices for validation and acceptance.  

 

SEM has been successfully used to elucidate relationships between N2 fixation and 

greenhouse gas emissions in the Arctic; study links between N2 fixation and plant community 

structure; and examine the effects of seed size and seeding density on oat yields (Lamb et al., 

2011, 2014; Siciliano et al., 2014; Stewart et al., 2013). Furthermore, a SEM study conducted in 

the Arctic and Antarctic regions linked soil microbial community richness to soil fertility 

(defined as organic matter, nitrogen, and chloride content) and community composition to soil 

pH (Siciliano et al., 2014). Traditional SEM assumes that links between components are linear 

and that the data display multivariate normality (Lefcheck, 2016). Generalized SEM (gSEM) 

extends traditional SEM to include non-normal, non-linear links between structural components; 

therefore, probability density functions other than normal can be modelled (Lefcheck, 2016; 

Lombardi et al., 2017; Stenegren et al., 2017). Other multivariate methods have been proposed 

for investigating soil functions, ecosystem services and effects of contaminants in soils (Parelho 

et al., 2016; Piva et al., 2011). Those models are based on biological indicators, whereas AESP is 

built using soil properties as predictors of ES which allows AESP to leverage existing soil 

mapping resources in a predictive fashion. 

I sampled 47 soils from most of the agricultural regions across the Canadian Prairies and 

exposed these samples to metal mixtures. Using SEM, I evaluated direct and indirect theoretical 

causal relationships between 4 soil properties (i.e., pH, percent clay, organic carbon [OC], and 

cation exchange capacity [CEC]) and 5 ES (organic matter decomposition, nutrient cycling, 
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water protection, food production, and climate regulation). I also evaluated the response of the 

five ES to quinary metal mixtures. These four soil properties were chosen for their reported 

relationships with activity and survival of soil organisms and their role in modulating metal 

bioavailability and toxicity (Awuah et al., 2019; Jänsch et al., 2005; Kumari et al., 2017; Wang et 

al., 2018). The link between individual soil sample ecosystem services and aggregate ecosystem 

services was established in Bru et al. (2010) in which individual soil properties were linked to N 

cycling across a 31,500 km2 area in France. Like our samples, the samples in Bru covered a 

largely agricultural region with varying properties. Thus, I feel that linking soil properties to 

ecosystem service indicators on an individual soil sample basis, and then extrapolating those 

links to larger geographical areas, is a reasonable approach.   

I consecutively determined (1) the survival and reproduction of the following three soil 

invertebrates: Oppia nitens, Folsmia candida, and Enchytraeus crypticus (proxy for organic 

matter decomposition); (2) the activity of three soil enzymes: acid phosphatases (ACP), 

ammonia monooxygenases (AMO), and beta glucosidases (BGD) (proxy for nutrient cycling); 

(3) the degradation of glyphosate (proxy for water protection); (4) the biomass and percent 

protein of Elymus lanceolatus (proxy for food production); and (5) the fluxes of three greenhouse 

gases: CH4, CO2, and N2O (proxy for climate regulation). The endpoints were selected because 

1) they represent provisional, regulation and supportive services that are essential to human 

survival; and 2) there are existing standardized methods for their determination. Our objectives 

were to test hypothetical causal relationships between soil properties and the endpoints measured 

in control soils. The effects of sub-lethal metal mixture concentrations on these relationships 

(i.e., using the AESP model) were to be explored and the effects of metal mixtures on soil-

ecosystem service relationships (soil-ES) were to be established. Metal oxide mixtures were used 
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to reflect scenarios in which large areal extents are impacted, such as those typically found 

around metal extraction and processing facilities.  The mixture was selected to represent one 

such facility and a dose, known to cause effects, chosen. I hypothesized that metal mixtures 

would alter soil-ES relationships in the 47 test soils. 

5.4 Materials and methods 

The study was conducted in the major agricultural zones of three Canadian prairie 

provinces: Alberta, Saskatchewan, and Manitoba, which cover approximately 1,780,650 km2. A 

stratified random sampling method was used to sample a total of 47 soils from different soil 

zones (brown, dark-brown, black, dark gray, and gray) to include a diverse range of soil 

properties. Most of the soils were within the Prairie and Boreal Plain ecozones, with a few from 

the Boreal Shield ecozone (Figure 5-2). 
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Figure 5-2. Map of the study area in Canada showing major cities in the three provinces where 

soils were sampled. Black stars represent soil sampling sites. Map inset at the top right shows the 

map of Canada with the Prairie Provinces highlighted in gray with red boundaries to ease 

geographical visualization. 

5.4.1 Soil sampling and treatments 

Topsoil (~30cm depth) from all 47 sites was collected, air-dried, and sieved to 2 mm. 

About 250 kg of topsoil was collected from each sampling location and homogenized. 

Background concentrations of N, P, K, S, Cu, Mn, Zn, B, and Fe were determined at ALS 

Laboratory Group in Saskatoon. Available Ca, Mg, K, P, Fe, Mn, Cu, Zn, B, S, Pb, Al, Cd, NO3-

N, and NH4-N were determined using plant root simulator probes (Card, 2012). CEC was 

determined using the methylene blue method (Yukselen and Kaya, 2008); soil pH, by placing a 

pH meter in a 1:5 soil:0.01 M CaCl2 mixture (Environment Canada, 2005); the percentage of 
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clay in the soil (texture),  using the pipette method (Bouyoucos, 1962); soil OC, using the 

LECO-C632 carbon analyzer (Wang and Anderson, 1998); and water holding capacity (WHC), 

using open-ended test tubes (Jaabiri Kamoun et al., 2018). Soil pH ranged from 4.55 to 8.34; 

percent clay, 2.35 to 62.2; percent OC, 0.27 to 36; CEC, 9.9 to 34.8 meq 100g-1; and WHC, 0.15 

to 0.73 ml g-1. The soils were stored at room temperature in closed plastic containers in the dark 

until they were used for the experiment. The soils were re-wetted (to 65% of the WHC) two 

weeks prior to dosing with metal mixtures and for toxicity testing.  

5.4.2 Soil dosing 

All 47 soils were dosed (w/w) with a dry mixture of Pb, Cu, Ni, Zn, and Co that reflected 

the dominant ratios of heavy PTE in contaminated soils at Port Colborne, Ontario (Awuah et al., 

2019; Dan et al., 2008). PTE were added as commercial metal oxides (>99% purity) purchased 

from Sigma-Aldrich. Prior to dosing, the metal oxides were exposed to gaseous HNO3 in a 

desiccator for 48 hours to remove inorganic carbon. The PTE were then dried, ground, and 

weighed into the soils in their respective ratios. Using a toxic unit (TU) approach and assuming 

these PTEs were behaving under conditions of concentration addition, soils were dosed at 12 TU 

(Table C-2) (Awuah et al., 2019). They were dosed at a single total concentration of 6,250 mg of 

PTE per kg of soil, with Pb, Cu, Ni, Zn and Co in ratios of 0.026, 0.178, 0.707, 0.076, and 0.013 

respectively (Awuah et al., 2019). Moisture content of the soils was kept at 60% of their WHCs 

after dosing for all tests. Total metal concentration in spiked soils was determined using an X-ray 

fluorescence method (MarguÃ­ et al., 2009). Calcium chloride extractable PTE were measured 

with the Agilent 5110 ICP-OES instrument as described earlier in this thesis (Awuah et al., 2019; 

Quevauviller, 1998). Briefly, 2.5 g of dry soil was weighed into 50 ml test tubes, 25 mL of CaCl2 

solution was added and shaken on an end-over-end shaker for 180 minutes (Awuah et al., 2019). 
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Samples were centrifuged at 4704 g forces for 10 minutes, filtered with a Whatman 0.45m 

syringe filter and analyzed with the Agilent 5110 SVDV ICP-OES for dissolved metal 

concentrations. Standard metal mixture solutions (VWR Zn, Cu, Ni, Pb and Co standards) 

prepared from a serial dilution (1, 5, 15, 30, and 50 mg/ L) with 0.01 M calcium chloride were 

used as standards. The quality control included blanks, duplicates and calibration standards that 

were run every 21 samples. 

5.4.3 Measurement of ecosystem services (ES) 

5.4.3.1 Climate regulation  

Greenhouse gases were determined by measuring soil fluxes of CO2, CH4, and N2O. 

Briefly, 5 g of soil (i.e., control and spiked) was incubated in triplicates at room temperature in 

serum vials sealed with a rubber septum lid and a metal crimped-on seal. Gas samples were 

taken at 0, 6, and 72 hours with a syringe, and injected into vacuumed vacutainers. To maintain 

vial pressure, the air was replaced by pure N2 after sampling. Samples in the vacutainers were 

analyzed with a Scion 456-GC (a gas chromatographer) for concentration of greenhouse gases. 

See appendix C section 10.1 for information on how actual greenhouse gas effluxes were back 

calculated to account for N2 dilutions.  

5.4.3.2 Food production 

To analyze food production, I used Elymus lanceolatus, an approved test species 

commonly known as thickspike or northern wheatgrass. Prior to testing, a seed viability test was 

conducted with tetrazolium chloride(Bennett and Loomis, 1948; Porter et al., 1946). Seeds were 

then planted in pots (400g dry soil) with metal-spiked and control soils (no replication), 

following planting procedures described in Environmental Canada protocols (Environment 
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Canada, 2005). The test was performed in controlled chambers at 24 oC (± 2 oC), with full 

spectrum fluorescent lighting (18,750 ± 6250 lx) and a 16 h of light/8 h of darkness cycle. After 

35 days, the above-soil biomass was harvested, oven dried at 65oC for 5 hours, ground and 

weighed in grams for total N analysis (Thomas et al., 1967). The total N was then converted to 

crude protein using a factor of 5.7 (Mariotti et al., 2008). 

5.4.3.3 Nutrient cycling 

Colorimetric methods described in Awuah et. al (Awuah et al., 2019; Berg and Rosswall, 

1985; Eivazi and Tabatabai, 1988, 1977) were used for both spiked and control soils to 

determine the activity of three soil enzymes: ammonia monooxygenases (AMO), acid 

phosphatases (ACP), and beta glucosidases (BGD). These enzymes play significant roles in the 

biogeochemical cycling of nitrogen (AMO), phosphorus (ACP), and carbon (BGD). For AMO, 

2g of each soil was weighed into 15 mL test tubes (4 replicates), to which 10 mL of 1mM 

NH2SO4 and 0.5 mL of 1.5 M NaClO3 were added. This was shaken end-to-end for 6 hours at 

room temperature, and 2 mL of 2 M KCl was added and shaken again for about 2 minutes. The 

samples were then centrifuged with an Eppendorf miniSpin Plus at 3,011 g for 4 minutes and 

read colorimetrically at 545nm with the Biorad iMark 96-well-plate reader (Smolders et al., 

2001b). For ACP and BGD 0.1g of soil (4 replicates each including a negative control) was 

weighed into 1.5 mL test tubes, 20 µL of toluene was added, mixed and the tubes were left in the 

fume hood for an hour for ACP and 15 minutes for BGD (Eivazi and Tabatabai, 1988, 1977).  To 

ACP, 400 µL of 0.5 M acetate buffer (pH~5.8) and 100 µL of 10mM p-nitrophenyl phosphate 

were added to each sample, while 400 µL of modified universal buffer (MUB) (pH~6.0) and 100 

µL of 10mM p-nitrophenyl-B-D-glucopyranoside were added to the BGD test tubes. The 

samples were incubated in a water bath at 37o C for one hour (Eivazi and Tabatabai, 1977). The 
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ACP samples were then removed and placed on ice to stop the reaction. For BGD samples, 100 

µL of 0.5 M CaCl2 and 400 µL of 0.1 M Tris(hydroxymethyl)aminomethane (THAM) buffer 

were added to the samples and mixed thoroughly. Samples were centrifuged with an Eppendorf 

miniSpin Plus at 13148 g for 2 minutes and read colorimetrically at 410nm with the Biorad 

iMark 96-well-plate reader. 

5.4.3.4 Water protection  

The xenobiotic degradation potentials of spiked and control soils were determined by 

amending 5 g of soil with 0.01 µM of 13C-labelled glyphosate in 160 mL serum bottles. At 0, 1, 

3, and 5 days, a syringe was used to sample gas in the headspace and inject it into two sets of 

vacutainers. One set was analyzed with a Scion 456-GC for total CO2, while the second set was 

analyzed for the ratio of 13CO2 to 12CO2 with a Picarro G2201-I analyzer. The concentration of 

13CO2 from the degradation of glyphosate was calculated in nmol per g soil per day. 

5.4.3.5 Organic matter decomposition  

Soil organic matter decomposition was determined by exposing three soil invertebrates—

Oppia nitens (mites), Folsomia candida (collembola), and Enchytraeus crypticus 

(enchytraeids)—to control and metal-spiked soils (ISO, 2014; ISO Guideline 11267, 2001; 

Princz et al., 2010). These invertebrates were chosen because they decompose organic matter and 

are important nutrient recyclers. Specimens used for the study were taken from established 

cultures grown in the soil toxicology laboratory at the University of Saskatchewan. The 

instantaneous population growth rate (IPGR, or 𝑟𝑖), which integrates both survival and 

prolificacy in measuring population rate, was calculated using survival and reproduction results 

(Equation 5-1) (Herbert et al., 2004); 𝑛𝑓 is the number of animals at the end of the test, 𝑛𝑜 is the 
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number of animals exposed, and ∆𝑇 is the number of days of the exposure. Positive values 

represent growing populations, negative values represent declines in populations and possible 

extinction, while neutral values represent a stable population.  

𝑟𝑖 = 𝑙𝑛 (
𝑛𝑓

𝑛𝑜
) /∆𝑇                                                                                                                         Equation 5-1 

5.4.4 Statistical analysis 

 A total of 15 endpoints representing 5 ecosystem services were obtained from the 

experiment. The endpoints included three greenhouse gases, three enzyme activities, plant 

biomass, plant crude protein, concentration of degraded glyphosate, and survival and 

reproduction of three soil invertebrates. Bivariate scatter plots were examined to determine linear 

relationships between endpoints and soil properties. Comparisons between endpoints in control 

and metal-spiked soils were accomplished with a Welch two-sample t-test. I examined how the 

soil properties (pH, OC, percent clay, CEC) influenced ES by using an exploratory SEM that 

translates each path diagram into a linear equation. Specifically, an open source R package (i.e., 

piecewiseSEM) was used to build the structural models (Jon et al., 2018). A major advantage of 

piecewiseSEM is that it can use smaller data sets with different sampling and experimental 

designs (Lefcheck, 2016).  

I first used piecewiseSEM to establish the causal network and relationships between soil 

properties and the endpoints measured in control soils. The structure of the model was specified 

based on prior knowledge and theory about the soil ecosystem and its processes. For example, 

relationships have been reported to exist between OC and soil respiration, and CEC has been 

reported to be influenced by soil pH, clay and OC (Curtin and Rostad, 1997; Riches et al., 2013). 

Pearson correlations derived from preliminary analysis (Table 5-1 & Figure 5-3) were also 

utilized in the model development process. Please see Lamb (2011) and Grace (2018) for 
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detailed steps involved in the development of SEM models. The validity of the model was 

confirmed by testing the goodness of fit (GOF) between the covariance structures and the data 

set. The entire process was iterative. Prior to building the SEM models, identified outliers were 

removed (n5). Mite, collembola, and enchytraeid survival were rescaled to percentage, AMO 

was multiplied by a factor of 100, BGD was square rooted, and CO2 was rescaled to remove 

negative values and then divided by a factor of 100 in order to achieve a common scale (Stewart 

et al., 2013). For control soils, equation 5-2 was used to build the model used to examine the 

causal relationship between soil properties and ES (the control model was slightly modified for 

metal-spiked soils, see Appendix C Equation [C-1]): 

Control model (ES)=       [CECi= β0+ β1pH, i+ β2Clay, i + β3Organic, i +ƐCEC, 
Phosphatasei= β4+ β5Organic, i + ƐPhosphatase, 
AMOi= β6+ β7CEC, i + β8pH, i + ƐAMO, 
Glucosidasei=β9+β1CEC, i+β10Organic, i+β11AMO, i+β12Phosphatase, i+ ƐGlucosidase, 
Carbon dioxidei= β13+ β14Glucosidase, i + ƐCarbon dioxide, 
Methanei= β15+ β16CEC, i + ƐMethane, 
Nitrousi= β17+ β18pH, i + β19Phosphatase, i + β20Carbon dioxide, i + ƐNitrous oxide, 
Biomassi= β21+ β22CEC, i + β23Clay, i + β24pH, i + β25Glucosidase, i + ƐBiomass, 
Mite survivali= β26+ β27pH, i + ƐMite survival, 
Mite reproductioni= β28+ β29CEC, i + ƐMite reproduction, 
Collembola reproductioni= β30+ β31Collembola survival, i +ƐCollembola reproduction, 
Collembola survivali= β32+ β33Organic, i + ƐCollembola survival, 

Glyphosate degradationi=β34+β35Phosphatase, i +β36CO2, i +ƐGlyphosate degradation]                               Equation 5-2 

On the left side of each equation is the response variable, and on the right are the predictor 

variables. The β(s) are the standardized regression coefficients, and the Ɛ(s) are the error terms. 

Response variables in one equation could be a predictor in another equation, and endpoints that 

significantly reduced the model fit were removed from the entire model. In building the second 

model for metal-spiked soils (Appendix C Equation [C-1]), I substituted data from the spiked 

soils into the same model and tested the model fit. An additional equation with enchytraeid 

reproduction as a response variable was added to the model specification. All other response 

variables remained the same, with very few changes in predictor variables.  
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5.5 Results 

5.5.1 Relationships between soil properties and ecosystem services (ES) 

Using a Pearson product-moment bivariate correlation matrix, all ES showed strong 

relationships with soil properties. The quality of some ES increased as the values of the soil 

properties increased. For example, as CEC increased, mite survival, CO2 production, glyphosate 

degradation, wheat biomass, and potential nitrification rates also increased (Table 5-1).  

Table 5-1. Pearson correlation coefficients between soil properties and ecosystem services in 

control soils  

Ecosystem Services 

 Climate  Water  Food  Organic Matter  Nutrient 

  Regulation Protection Production Decomposition  Cycling 

Indicator Measurement for Ecosystem Service 

 

Soil   CO2   Glyphosate Wheat   Mite   AMO 

properties production degradation  biomass  survival   activity 

pH  0.30*           0.33*   0.28  0.68***        0.66*** 

Percent clay       0.57***  0.54***   0.24  0.33*        0.40** 

CEC  0.58***            0.58***   0.57***         0.41**       0.72*** 

Percent OC 0.96***  0.90***   0.39**         0.06       0.39** 

Significance codes: * < 0.05, ** < 0.01, *** < 0.001. AMO= ammonia monooxygenase 

 

As CEC increased, all five ES also showed significant increases, as shown in Figure 5-3 

(p<0.01). On average, CEC showed the highest correlation with these services (r = 0.57), 

followed by OC (r = 0.54). I observed increases in all five services with increases in soil pH, 

percent clay, and OC, but the correlation was significant for only four services (Table 5-1). 

Furthermore, CH4 consumption, ACP activity, and IPGR of enchytraeids and collembola, 

showed negative relationships with some soil properties, particularly with soil pH (Appendix C 

Table [C-1]). These correlations, however, were not significant. 
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Figure 5-3. A multi-panel scatterplot showing the relationship between ecosystem services and 

soil cation exchange capacity (CEC), soil pH, percentage clay, and percentage organic carbon for 

47 soils. A trend line was added to ease graphical interpretation. The first row shows links 

between CO2 production (parts per thousand per gram soil per 72 h) and soil properties, second 

row shows links with glyphosate degradation by a measure of 13CO2 (nmol per gram soil per 120 

h), third row shows links with wheat biomass (grams) after 35 days of seeding, fourth row shows 

links with the survival of an oribatid mite Oppia nitens (count), and the fifth row shows links 

with ammonia nitrification (NO2 per gram soil/ 6 h in ug). The right side of the y-axis shows the 

ecosystem service that each measured endpoint represented.  
 

5.5.2 Impacts of metal mixtures on ES quality 

  The quality of ES was significantly reduced in metal-spiked soils across the most 

critical endpoints (p < 0.05) (Figure 5-4), which were food production, water protection, and 

climate regulation. For instance, the mean CO2 production and CH4 consumption in control and 

metal-spiked soils was 0.44± 0.4 ppt (parts per thousand) and 0.28± 0.3 ppt, and -145.8± 47 ppb 

and -128.3± 33 ppb respectively. All three nutrient cycling endpoints (AMO, ACP, and BGD 

activities) showed no sensitivity to the metal-spiked soils (6250 mg kg-1) when compared to 

control soils (p > 0.05).  
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Figure 5-4. Boxplots showing the sensitivity of nine endpoints that represent five ecosystem 

services to metal mixtures in 47 Canadian soils. Black and gray plots represent services in 

control and metal spiked soils respectively. Middle line in the box represents median, while the 

lower and upper ends of the box represent the first and third quartiles respectively. Points beyond 

the lines are considered as statistical outliers. Alphabets a and b within plots represent significant 

differences (P<0.05) between treatments. Plots with same alphabetic insets indicate similarities 

while those with different letters represent differences. The first row shows CO2 production (left) 

in parts per thousand (ppt), CH4 consumption (middle) in parts per billion (ppb), and the crude 

protein content as percentage biomass in E. lanceolatus (right). Second row shows the 

concentration of glyphosate degraded by a measure of 13CO2 produced (left) (nmol), the activity 

of ammonia monooxygenases (middle) (µg), and the activity of beta glucosidases (right) (nmol). 

The last row shows the instantaneous population growth rates (𝑟𝑖) of mites (left), collembolans 

(middle), and enchytraeids (right). 

The instantaneous population growth rates (ri) for collembola, enchytraeids, and mites 

showed extinction values (ri < -0.05) in metal-spiked soils. The mean 𝑟𝑖 in metal-spiked soils 

was statistically different when mites were compared to collembola (Tukey HSD, p <0.01). The 
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mean 𝑟𝑖 for mites and collembolan in metal-spiked soils were 0.06±0.03 and 0.08±0.05 

respectively. 

5.5.3 Relationships between soil properties and ES using a piecewise SEM 

  An exploratory SEM model was used to develop a network of relationships 

between soil properties and the measured variables representing ES in control soils. It was 

established that the specified SEM model was a strong fit for the data (χ2 =143, df= 184, p=0.99) 

(Figure 5-5). The three exogenous variables, soil pH (0.32, p<0.001), OC (0.40, p<0.001), and 

clay (0.59, p<0.001), directly influenced soil CEC, accounting for 87% of the variability in CEC 

in the 47 soils. Furthermore, CEC had a strong positive influence on the production of plant 

biomass (0.70, p<0.05) and a moderate influence on the activities of AMO (0.38, p<0.01) and 

BGD (0.27, p<0.05). However, soil pH was found to have a positive influence on mite survival 

(0.56, p<0.001) and AMO activity (0.39, p<0.01), and a negative influence on nitrous oxide 

effluxes (-0.41, p<0.01). Percent clay had a strong negative influence on wheat biomass 

production (-0.55, p<0.05). Percent OC had weak to moderately strong positive relationships 

with BGD activity (0.28, p<0.01) and ACP activity (0.33, p<0.05), and a negative relationship 

with collembola survival (-0.30, p<0.05). No significant links were observed for mites and 

enchytraeids reproduction. 
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Figure 5-5. Fitted piecewise SEM using general linear models to examine the relationships 

between soil properties (pH, %Clay, %OC, CEC) and ecosystem services in 47 Canadian non-

metal impacted soils. All standardized path coefficients are significant at p < 0.05. Black and red 

lines represent positive and negative path coefficients respectively. Weight of the lines are 

proportional to the strengths of the path coefficients. Light yellow boxes represent soil 

properties, gray boxes are a measure of greenhouse gases that represent climate regulation, blue 

box is a measure of glyphosate degradation that represents water protection, green box is a 

biomass measurement of E. lanceolatus that represents food production, pink boxes are a 

measure of survival and reproduction of soil invertebrates that represent organic matter 

decomposition, and yellow boxes are a measure of soil enzymes that represent nutrient cycling. 

Inserted within the box of each response variable is the r2. The chi-square test of SEM model fit 

for the data was χ2 =143, df= 184, p=0.99. 

Apart from the survival and reproduction of invertebrates, the quality of all ES was 

dependent on soil enzyme activity (Table 5-2) in control soils. For example, greenhouse gas 

fluxes CO2 (0.85, p<0.001) and N2O (0.69, p<0.001) were positively influenced by the activity of 

BGD (r2= 0.81) and ACP (r2= 0.10), respectively. BGD activity also influenced the wheat 

biomass production (0.65, p<0.01), while degradation of the herbicide glyphosate was positively 

dependent on ACP activity (0.31, p<0.001). The low r2 values for mite reproduction (r2 = 0.08) 

and collembola survival (r2 = 0.09) were expected, since no significant links were found between 
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them and other ES variables in the control model. The variability around the means for 

glyphosate degradation (r2 = 0.81), CO2 production (r2 = 0.77), N2O fluxes (r2 = 0.60), BGD 

activity (r2 = 0.81), AMO activity (r2 = 0.59), and wheat biomass (r2 = 0.49) were at least 50% 

explained by the SEM model for control soils. 

 

Table 5-2. SES relationships and partial correlation coefficients as modified by metal mixtures  

Predictor variable  Response variable  Non-Impacted soils  Impacted soils Ecosystem service affected 

CEC  CH4 consumption            --------  -0.37**  Climate regulation 

CEC  Biomass production            0.70*  ---------  Food production 

CEC  CO2 production            --------  -0.48*  Climate regulation 

CEC  AMO activity            0.38**  0.73***  Nutrient cycling 
CEC  BGD activity                           0.27*  0.26*   Nutrient cycling  

pH   AMO activity                             0.39**  ------  Nutrient cycling 

pH  Mite survival            0.56***  0.47***  OM decomposition  
pH  Nitrous flux                              -0.41**  -0.33*  Climate regulation   

% clay  CO2 production            --------  0.56**  Climate regulation 
% clay  Biomass production           -0.55*  --------  Food production 

% OC  ACP activity            0.33*  0.38*  Nutrient cycling 

% OC  BGD activity            0.28**  0.30*  Nutrient cycling 
% OC   Collembola survival            -0.30*   -0.38*  OM decomposition 

% OC  CO2 production            -------  0.54***  Climate regulation 

% OC  Biomass production            -------  0.52***  Food production 
% OC   Enchytraeids reproduction           -------   0.32*  OM decomposition 

AMO activity BGD activity            0.33**  0.25**  Nutrient cycling 

AMO activity CO2 production            --------  0.33**  Climate regulation  
ACP activity BGD activity            0.20*  0.17*  Nutrient cycling 

BGD activity CO2 production            0.85***  --------  Climate regulation 

ACP activity Nitrous flux                              0.69***  --------  Climate regulation 

BGD activity Nitrous flux                              --------  0.36*  Climate regulation 

BGD activity Biomass production            0.65**  -------   Food production  

AMO activity Biomass production            --------  0.26*   Food production  
Mite survival Mite reproduction            --------  0.44***  OM decomposition 

Enchytraeids survival Enchytraeids reproduction           --------  0.65***  OM decomposition 

ACP activity Enchytraeids reproduction           --------  -0.38*  OM decomposition 
Collembola survival Collembola reproduction           0.54***  0.45*  OM decomposition 

ACP activity Glyphosate degradation           0.32***  0.16*  Water protection  

CO2 production Glyphosate degradation           0.62**  0.54***  Water protection   
BGD activity Glyphosate degradation           -------  0.16*  Water protection 

Significance codes: * < 0.05, ** < 0.01, *** < 0.001 

OM= Organic Matter 

 

5.5.4 Impacts of metal mixtures on soil ecosystem service (SES) relationships  

 Metal mixtures significantly altered soil-ES relationships. Novel relationships were 

established, which were otherwise not captured in the SEM model for control soils, while the 

strength of correlation coefficients for previously observed relationships were either weakened, 

negated, or eliminated (Table 5-2). The specified model for the data set was a moderate fit (χ2 

=231, df= 236, p=0.57)  (Figure 5-6). From the model, the influence of the trio (pH, OC, clay) on 
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CEC was not altered, but their effects on ES were significantly transformed when PTEs were 

present. For example, the effects of CEC on biomass production, pH on AMO activity, and clay 

on biomass production were eliminated in metal-spiked soils (Figure 5-6).  

 

Figure 5-6. Fitted piecewise SEM using general linear models to examine the relationships 

between ecosystem services (15 endpoints) and soil properties (pH, clay, OC, CEC) in metal 

mixture impacted soils. All standardized path coefficients are significant at p < 0.05. Black and 

red lines represent positive and negative path coefficients respectively. Weight of the lines are 

proportional to the strengths of the path coefficients. Blacklines that connect redlines and vice 

versa is a change in relationship for a variable and should be traced back to the predictors. Light 

yellow boxes represent soil properties, gray boxes are a measure of greenhouse gases that 

represent climate regulation, blue box is a measure of glyphosate degradation that represents 

water protection, green boxes are a biomass measurement of E. lanceolatus and its crude protein 

content that represents food production, pink boxes are a measure of survival and reproduction of 

three soil invertebrates that represent organic matter decomposition, and yellow boxes are a 

measure of soil enzymes that represent nutrient cycling. Inserted within the box of each response 

variable is the r2. The chi-square test of SEM model fit for the data was χ2 =231, df= 236, 

p=0.57. 

  However, the same soils showed moderate to strong positive effects of OC on 

CO2 production (0.54, p < 0.001), biomass production (0.52, p < 0.001), and enchytraeid 

reproduction (0.32, p < 0.05) (Table 5-2). Furthermore, a negative relationship was established 



 

124 
 

between CEC and CO2 production (-0.48, p < 0.05) and CH4 consumption (-0.37, p < 0.01). For 

clay, only a strong positive relationship on CO2 production (0.56, p < 0.01) was observed. 

 I also observed an increase in the interdependence of ecosystem functions in metal-spiked 

soils. For example, as expected, I observed mite survival (0.44, p < 0.01) positively affected mite 

reproduction, and enchytraeid survival (0.65, p < 0.001) positively affected enchytraeid 

reproduction. However, in control soils I observed a reduction in the magnitude of influence that 

collembola survival (0.54 to 0.45) had on collembola reproduction. 

Moreover, I observed similar changes in relationships between ES in the SEM model for 

metal-spiked soils. For instance, I observed new relationships between BGD activity and 

glyphosate degradation (0.35, p < 0.001), AMO activity and CO2 production (0.33, p < 0.01), 

and ACP activity and enchytraeids reproduction (-0.45, p < 0.01). The magnitude of beta 

coefficients was reduced for ACP activity on BGD activity (0.20 to 0.17), collembola survival on 

collembola reproduction (0.54 to 0.45), and CO2 production on glyphosate degradation (0.62 to 

0.55) (Table 5-2). Additionally, the influence of ACP activity on glyphosate degradation 

changed from (0.32, p < 0.001) to (0.16, p < 0.05). The variability around the means for 

glyphosate degradation (r2 = 0.83), BGD activity (r2 = 0.82), enchytraeids reproduction (r2 = 

0.70), CO2 production (r2 = 0.66), and wheat biomass (r2 = 0.58) were more than 50% explained 

by the SEM model for metal-spiked soils. 
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5.6 Discussion 

5.6.1 Soil ES intimacy confirmed. 

The role of soil properties in driving soil functions is explicitly known, and the impact of 

metal contamination on soil functions has been established in several studies (Hayes et al., 2018; 

Princz et al., 2010; Smolders et al., 2001b). However, no study has quantitatively established the 

changes in soil functions and ES caused by PTEs as a function of soil properties. I proposed a 

novel quantitative technique, Adverse Ecosystem Pathway (AESP), to address and predict the 

direct and indirect effects of PTEs on ES by using soil properties and functions.  

In this study, I confirmed defined relationships reported in literature and revealed some 

undefined associations between soil properties and ecosystem functions in both metal-spiked and 

control soils (Murphy et al., 2011; Van Eekeren et al., 2010). The results indicate that the three 

soil properties tested (i.e., pH, OC, and clay) directly influence CEC and can account for about 

90% of the variability as has been reported (Curtin and Rostad, 1997; Saidi, 2012). I observed 

strong correlations between CEC and nutrient cycling, crop productivity, C-mineralization, and 

xenobiotic degradation in control soils (Bergamin et al., 2015; Insam and Domsch, 2013; Murphy et 

al., 2011; Saidi, 2012; Tueche, 2014; Van Eekeren et al., 2010). Clay, OC, and pH positively 

influence CEC and define the WHC, nutrient supply and bioavailability of xenobiotics in soils 

(Curtin and Rostad, 1997; Saidi, 2012). As a result, high soil microbial activity and crop 

productivity are associated with increases in these soil properties through the provision of 

optimum conditions, i.e. soil structure, nutrients, carbon, and moisture availability (Curtin and 

Rostad, 1997; Saidi, 2012). Low pH soils usually have elevated bioavailable concentrations of 

PTEs that might reduce bacterial abundance, thus decreasing pesticide degradation and nutrient 

cycling (Bååth and Arnebrant, 1994; Bartram et al., 2014).  
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Riches et al. (2013) reported a direct relationship between OC and potential mineralizable 

nitrogen, soil respiration, and levels of biomass carbon. I similarly observed that increases in soil 

microbial energy (i.e., OC) resulted in a cascade of events that confirmed the supportive role of 

microbes in soils. Table 5-2 shows that the five ES included in this study all depend on the 

activity of soil microbes (i.e., enzymes). As a result, the strongest correlations between 

ecosystem functions were observed for OC. However, not all OC is created equal, and future 

work is needed to explore if OC quality modulates AESP results (Grigal and Vance, 2000).  

 

5.6.2 Direct and indirect impacts on ecosystems unraveled. 

 Metal mixtures decreased soil functions and altered its supportive and regulatory services 

(Figure 5-4). The impact of PTEs caused significant decreases in the population of soil 

invertebrates, degradation of glyphosate, consumption of CH4 and the production of CO2. 

Similar observations have been identified for several metal studies including Ding et. al (2018), 

Moreno et. al (2003) and others (Hayes et al., 2018; Li-Zhai et al., 2010; Versieren et al., 2017). 

The direct impact on soil enzymatic activity, however, was not captured by the traditional t-tests 

when functions in control soils were compared to metal-spiked soils (Figure 5-4 and Appendix C 

Figure [C-3]). This could either result from the low solubility and availability of oxides or from 

functional redundancy, where changes in microbial community composition prevents large 

changes in community functions and hence less sensitive (Awuah et al., 2019; Kuperman et al., 

2014). Instead, the impacts were captured in the AESP, portrayed as changes in the effects (i.e., 

beta coefficients) of soil properties and supportive functions on ES (Figure 5-6 and Table 5-2). I 

observed no significant relationships between the reproduction/survival of soil invertebrates and 

enzyme activity in control soils. I postulate that this occurred because soil invertebrates are not 

reliant on exoenzymatic processes for nutrient mineralization (Coleman et al., 2018). Soil pH had 
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a positive effect on the AMO activity (β=0.39) in control soils, supporting the finding that AMO 

activity increases with soil pH. The increase in AMO activity with soil pH is due to the increase 

in the abundance of ammonia oxidizing bacteria (AOB), which is a more effective ammonia 

oxidizer compared to ammonia oxidizing archaea (AOA) (Nicol et al., 2008; Prosser and Nicol, 

2012). Interestingly, the relationship between AMO activity with soil pH was not observed in the 

metal-spiked soils. This was because, despite the increase in AOB abundance, AOB is more 

sensitive compared to AOA, resulting in higher toxicity at higher soil pH despite the decrease in 

metal bioavailability (Nicol et al., 2008; Prosser and Nicol, 2012; Rieuwerts et al., 1998b). As 

expected, CEC, a proxy for soil fertility, strongly influenced wheat biomass (Saidi, 2012). 

Studies have shown that metal contamination reduces CEC in soils (Eurola et al., 2015). A 

combination of the direct effect of PTEs on wheat growth and reduction in CEC could be a 

plausible explanation for the zero relationship between CEC and plant biomass in impacted soils 

(Gopalapillai et al., 2018). 

PTEs reduced soil habitat quality and extinction values (ri < 0) with all three organic 

matter decomposers (O. nitens, F. candida, E. crypticus) in impacted soils. Filzek et al. (2004) 

directly linked decreases in organic matter decomposition with reductions in invertebrate 

abundance and diversity (ri) caused by metal stressors. In this study, the reproduction of O. 

nitens, F. candida, and E. crypticus was dependent on adult survival, but the survival-

reproduction dependences for O. nitens and E. crypticus were not observed in control soils, 

which could be attributed to either differences in their sensitivity to heavy PTEs or growth 

reproduction strategies (Blakely et al., 2002). The less sensitive O. nitens is a k-strategist, while 

the more sensitive E. crypticus is an r-strategist, with reported increases in reproduction in the 

presence of a stressor (Blakely et al., 2002). Increased reproduction could also reduce the body 
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burden of PTEs in adults through maternal transfer, which might increase adult survival chances. 

The influence of OC on the reproduction of E. crypticus was only observed in impacted soils, 

while the role of pH on the survival of O. nitens was observed in both soils. This suggests that 

survival and fecundity of E. crypticus in contaminated soils is directly controlled by organic 

matter, while O. nitens is controlled by soil pH (Jänsch et al., 2005). The positive relationships 

suggest that pH and organic matter could be reducing metal availability to these decomposers 

and contributing to their coping mechanisms, either as a specified niche or as a food source 

(Blakely et al., 2002).  

Metal mixtures also reduced the ability of microbes to degrade glyphosate (GLP), 

increasing the half-life of the xenobiotic in soils (la Cecilia and Maggi, 2018). GLP and its 

formulations have endocrine-disrupting properties toxic to bacteria, plants, and human cell 

lines(Defarge et al., 2018). Motta et al. also reported that the chemical inhibits weight gain and 

increases pathogen susceptibility and mortality in honey bees by reducing gut bacteria in worker 

bees(Motta et al., 2018). Since symbiotic bacteria are predominantly found in the gut 

microbiome of soil arthropods, the same could be true for soil-dwelling arthropods and 

invertebrates, especially those with reduced degradation potential caused by metal exposure. In 

fact, Niemeyer et al. (2018) reported reduced feedings by soil invertebrates after exposure to four 

GLP formulations.  

 There are two major pathways of GLP degradation: the C-P lyase pathway, which 

releases sarcosine and PO4; and the oxidation pathway, which breaks the C-N bond to release 

aminomethylphosphonic acid (AMPA) and CO2 (la Cecilia and Maggi, 2018). Interestingly, our 

results showed that ACP (a lyase enzyme) and CO2 were good predictors of GLP degradation, 

even though I observed a reduced influence in impacted soils. Furthermore, GLP degradation in 
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impacted soils relied on the activity of BGD, which catalyzes the hydrolysis of glycosidic bonds 

in glucosides and oligosaccharides to release glucose (Eivazi and Tabatabai, 1988). Since BGD 

is comparatively less sensitive to PTEs, the glucose released from its activity was possibly being 

used by other microbes as an energy (C) source to degrade GLP, particularly in metal-

contaminated soils (Moreno et al., 2003).   

Some methanotrophs can potentially use NH4 as an energy source, making NH4 a 

competitive inhibitor of CH4 oxidation in soils (Bedard and Knowles, 1989). In the absence of 

metal contamination, soils with high CEC have increased cation fixation (NH4
+), which might 

reduce the competitive inhibition of CH4 oxidation by NH4 (Lehmann J, 2009). In this study, 

CEC negatively influenced both CH4 consumption and CO2 production in contaminated soils. 

Apart from the direct effect of PTEs on soil enzymes, competitive desorption of NH4 by heavy 

PTEs in contaminated soils possibly increased the inhibition CH4 oxidation. Hence, increases in 

CEC resulted in increases in NH4 displacement in metal-spiked soils, decreases in the 

consumption of CH4 and the production CO2, and increases in NH4 oxidation, as observed in the 

study (Table 5-2). Based on other reported studies (Fomsgaard and Kristensen, 1999; Mitra et al., 

2002), I expected to see a significant correlation between OC and clay percentages and CO2 

production and CH4 in the control soils. Instead, I found a positive pathway for OC and clay on 

CO2 production only in metal-spiked soils. Because OC is a source of energy and CEC 

determines nutrient availability, this positive pathway confirms that CEC and OC help to 

modulate metal bioavailability and toxicity, especially to soil microbes (Grigal and Vance, 

2000).  
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5.7  Role of AESP models in ecotoxicological studies and risk assessment 

 AESP models could play a major role in predictive risk assessment and management. The 

method outlines relevant endpoints and parameters needed to predict the ecological functions of 

a system in the presence and absence of stressors. AOPs focus on cellular and molecular 

interactions that lead to ecosystem changes (Ankley et al., 2010),  and AESPs can predict 

regional effects on ES. A fundamental strength of the AESP model is its ability to use the 

inherent characteristics and functions of the interactive parts of a system in predicting the overall 

status of an ecosystem. When a chemical disrupts an ecosystem, the AESP combines the effects 

of all chemically initiated molecular events (portrayed as reductions in activity, growth, growth 

rate, and mortality) with the indirect effects of the stressor (characterized by the changes in the 

chemical and physical attributes of the system); both are intrinsically encapsulated in the AESP. 

The complexity of AESP model could be expanded to include concentration-dependent variables 

as well as explicit spatially dependences (Lamb et al., 2014). 

The AESP model is one of the first models that explicitly integrates habitat quality 

indicators with ecosystem services in a holistic fashion.  Thus, site managers that wish to 

maintain ecosystem services can identify key habitat quality indicators that will support 

ecosystem services at an impacted site during restoration and remediation activities. The AESP 

model further establishes that, the actual risks associated with soil contaminants are not 

necessarily the direct effects on functions, but potentially the indirect effects that go unidentified. 

Thus, AESP can serve as a powerful tool to inform risk assessment and decision making through 

its comprehensive approach. 
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6 SYNTHESIS 

 Since exposures to metal contamination of soils occur as mixtures, there is a necessity for 

a shift in the process of evaluating metal mixture effects to inform the risk assessment process. 

Currently, the risk assessment of metal mixtures in Canada assumes similar modes of action and 

concentration addition (CA). Concentration addition is preferred because of two main reasons. 

Firstly, majority of the toxicity data exists for both single metals and simple mixtures (binary), 

and secondly, the addition of concentrations to derive TUs is much simpler and easier to 

extrapolate and evaluate compared to other mixture models. The cardinal issue with the CA 

approach is that interactions are likely to occur, causing deviations from the reference model that 

can lead to an over/underestimation of the toxic effects and the characterization of risks. An 

overestimation of metal mixture effects might result in the establishment of lower guideline 

concentrations and subsequently the setting up of unnecessarily high remediation goals. In 

contrast, an underestimation of mixture effects will result in the lack of protection and 

subsequently, high risks to humans and the environment. The primary goal of the thesis was to 

improve our current knowledge of metal-metal and metal-organism interactions and the 

prediction of the effects to organisms and ecosystem services of mixtures that contain common 

metals found in contaminated soils around smelting operated sites in Canada.   

I investigated experimental parameters that have been reported to possibly confound 

results derived from mixture toxicity tests for Cu, Pb, Ni, Zn and Co. I further characterized the 

mixture effects along several rays and doses and determined the in/direct effects on important 

benefits that humans derive from soils. The specific objectives of the thesis included: 
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• Assessing the differences in toxicity of metal mixtures spiked in the form of metal salts, 

metal oxides and spinel mineral oxides to soil enzymes, and the modifying role of soil 

properties in three Canadian soils; 

• Quantifying the effects of metal mixtures on the carbon and phosphorus cycles using 

soils enzymes as biomarkers and to determine the differences in sensitivity to the metals; 

• Investigating the effects of metal mixtures on the relationships among soil properties and 

processes that underlie ecosystem services (ES) in Canadian soils; 

Several important questions arose in addressing the above objectives, these questions included: 

• Are metal salts more toxic to ecological receptors  and services compared to other metal 

types? Does leaching metal salt spiked soils affect metal ratios and soil microbial 

activity? Does the dosing method used in mixture toxicity testing affect toxicity 

estimates? 

• Does the toxicity of metal mixtures to soil enzymes (ACP, BGD) that contribute to 

biogeochemical cycles follow CA? Are there any differences in the sensitivity of C and P 

cycles as represented by the BGD and ACP respectively? 

• Do metal mixtures affect soil ecosystem service relationships? 

6.1 Principal findings 

 The findings from Chapter 3 were very critical to the formation of the thesis because the 

entire experimental design of the subsequent chapters was dependent on the outcome of Chapter 

3. Pertinent information was obtained from comparing the metal mixture types and the 

experimental feasibility of using the three metal mixture types in Chapter 3. I found out that, the 

metal mixture types behaved differently across the different soils. I also confirmed that leaching 

soils with artificial rainwater affected soil enzyme activity and mixture ratios in soils spiked with 
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metal salts. Metal concentrations after leaching in salt spiked soils were below 50% of their pre-

leaching concentrations in acidic soils. The extent of leaching for metal components of the 

mixture were dependent on the hydrolysis constant and binding affinities to soil organic matter 

and hydroxides. Another factor that controlled the extent of metal loss from leaching was the 

differences in soil properties, particularly pH and CEC. More metals were lost from soils with 

low pH and CEC and vice versa. Interestingly, the sensitivity of the activity of both soil enzymes 

to leaching followed known paradigms, thus the less metal tolerant enzyme was more sensitive 

to leaching with artificial rainwater.  

An important determinant of metal toxicity to soil organisms including enzymes is how 

bioaccessible metals are in soils. I found out that metal salts were most bioaccessible, but the 

bioaccessibility of the metal salts were not as pH dependent as the oxides and spinel minerals. 

This was probably because metal salts were spiked in their free form but unlike the metal salts, 

the dissolution and solubility of the metal oxides depended on the pH of the soil. Hence 

increasing soil pH resulted in a decreased dissolution and bioaccessibility and lesser toxicity of 

the oxides. The spinel mineral oxides required huge laboratory efforts to anneal and were least 

toxic compared to metal oxides and salts. I concluded that metal oxides were more suitable for 

conducting metal mixture toxicity tests in soils if concentrations and ratios of metals are to be 

maintained. Overall, the results from Chapter 3 demonstrated that: 

• Metal salts were more mobile in soils and more toxic to soil enzymes compared to metal 

oxides and spinel minerals; 

• Leaching compromises soil enzyme activity and distorts desired metal concentrations 

and ratios in soils; 
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• The solubility and toxicity of metal oxides and spinel minerals were dependent on soil 

pH. 

 Once the discrepancies associated with experimental design had been resolved, I 

evaluated the accuracy of the currently used reference model (i.e., CA or the TU approach) in 

assessing risks associated with metal mixture contaminated sites in Canada, and the less used RA 

model. In Chapter 4, I tested the single and combined effects of five metals namely; Cu, Pb, Zn, 

Ni and Co in 10 fixed ratio rays and different dose levels to represent a more complex mixture 

treatment than what is usually reported in the literature using metal oxides. An important 

modification from the status quo in literature was the use of metal oxides as our preferred spiking 

method. By using metal oxides, I avoided compromising the status of soil enzymes, leaching of 

metals that alter metal concentrations and ratios, and more importantly reduced artefacts from 

salts that could modify toxicity in soils. Hence, I was confident that the observed effects of the 

mixtures on soil enzyme activity was only driven by metal concentrations in the soil. In fact, this 

was the first time metal toxicity had been evaluated as quinary mixtures and coupled with a fixed 

ratio ray design across a wide range of doses with soil enzymes as an endpoint or model process.  

 I discovered that, enzymes in the low pH soil were more sensitive to single metals than 

enzymes in the higher pH soil. I also found that, P cycling as measured by enzyme activity was 

generally more sensitive to single metals compared to C cycling. I compared the predictions 

from both reference models to the observed enzymatic responses and found that there were both 

differences and similarities between the models. I observed antagonistic deviations at all levels 

of spiked metal mixture concentrations, but the synergistic deviations were only observed at 

lower concentrations from both models. An interesting finding was that more synergism was 

found for the sensitive P cycle compared to the C cycle. I also found that, the ability of CA to 
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accurately predict mixture effects depends on the resisitance of the endpoint being measured, 

hence CA accurately predicted mixture effects to C cycling especially at the median 

concentration. Predictions from the RA model were more conservative compared to the CA 

model, suggesting that the former will be protective of biogeochemical cycles. Overall, the 

results from Chapter 4 demonstrated that: 

• Phosphorus cycling is more sensitive to single and metal mixture compared to Carbon 

cycling; 

• The interaction of metal mixtures can produce synergistic effects to both cycles 

especially at lower concentrations; 

• Copper in the mixture provides a protective effect to both enzymes. 

• Response addition is conservative and protective of C and P cycling. 

 Chapters 3 and 4 demonstrated that metal mixtures inhibit soil enzyme activities in soils, 

but the effects of metal mixtures have far reaching effects. In Chapter 5 I expanded the scope of 

biological endpoints and linked the endpoints to benefits that humans derive from soil. The 

chapter demonstrated that, metal mixtures affect all soil biological processes that form the basis 

of the benefits that are ultimately enjoyed by humans. A major finding from Chapter 5 was the 

identification of relationships that existed between soil properties, particularly CEC and OC, and 

the processes that underlie ecosystem services in soils. Using an SEM, I also found out that soil 

ecosystem service relationships were altered in the presence of metal mixture contamination. 

Results from the AESP model serve as a major addition of knowledge that was formerly derived 

from SSDs. Even though both approaches report effects of toxicants from a community or 

ecosystem prespective, AESP reports the effects on interactions that directly impact the status of 

individual organisms. This makes AESP a more powerful tool for ecological risk assessment.  
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A major finding was that, the indirect effects of metals that were not captured by the 

traditional t-tests were revealed using the SEM approach. I also found that certain SES 

relationships are only established during contamination, while others are eliminated as a result of 

stressors. These results interestingly showed that, soil properties can be used as predictors of 

metal impacts on ecosystem services and can be used as a tool in site specific risk assessment. 

Overall, the results from Chapter 5 demonstrated that: 

• Intimate links exist between soil properties and soil processes that underlie ecosystem 

services; 

• These soil processes are directly and indirectly affected by metal contamination; 

• The indirect effects can only be identified with the use of SEM’s; 

• We can use soil properties to predict the local or regional impacts of metal contamination 

on ecosystem services. 

6.2 Future directions 

 The results generated from Chapter 3 indicate that the toxicity of metals is influenced by 

the dosing form or method. Currently, concentrations used as guidelines are based on laboratory 

research that was conducted using metal salts, which indicates that guideline concentrations may 

probably be overestimating risks associated with single metals, thus being overly conservative. 

This is because the more dominant and environmentally relevant metal forms (i.e., oxides and 

spinels) proved to be less toxic to soil enzymes compared to salts. For example, the guideline for 

residential Ni, Cu, Pb and Zn are 45, 63, 70, and 200 mg kg-1 respectively, but the EC25’s of the 

same metals dosed as oxides were 6210, 456, 2430 and 1485 mg kg-1 accordingly. Further 

research must be conducted to derive specific metal factors that can correct for the differences in 

spiking method to improve the environmental relevance of guideline concentrations.  
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 An aspect that can be improved in Chapter 1 will be ageing and modeling the free ion 

activity of the three metal types to explore the effects of speciation and weathering on their 

toxicities. The influence of ageing on speciation will ultimately modify metal exposure in soils 

and might result in more interesting findings. Also, with respect to differences in enzyme 

sensitivity to leaching and metals, additional molecular research is recommended as our study 

was only limited to the measurement of activity. As an example, it may be interesting to explore 

the differences in expression of antioxidant genes and osmotic stress induced genes between the 

microorganisms that express genes that code for acid phosphatases (ACP) and ammonia 

monooxygenases (AMO). The same may be done for Chapter 2 for ACP and beta glucosidases 

(BGD). Results from chapter 2 also raised several concerns about the current method used in 

assessing risks associated with metal mixture contaminated sites and the need for more research. 

The fact that synergism was only observed at lower concentrations requires probing to better 

quantify risks at such concentrations.  

 We need to improve our understanding on soil-metal, metal-metal, and metal-organism 

interactions to identify specific interactions between metals that cause toxicity and metals that 

alleviate toxicity. In addition, since the mixtures contained the same number of metals but 

behaved differently in different ratios, there is a possibility that the interactions are dependent on 

the ratios of specific metals in the mixture. Does toxicity increase with increasing concentrations 

of highly bioavailable metals (i.e., Zn) or metals that have high affinity (i.e. Pb and Cu) for clays 

and SOM? The number of ratios I had did not allow in-depth analysis to identify conclusive 

trends. Also, it will be interesting to know how the metal cations tested in the mixture will 

interact with oxyanions like selenium, arsenic, chromium in a mixture since they are metals of 

potential concern commonly found in contaminated sites. Will the differences in solubility with 
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respect to soil pH and mode of toxic action result in a reduction or potentiation of toxic effects, 

especially if spiked as metal oxides? Will the combination result in stronger deviations from both 

additivity models compared to what was observed in this study? All these questions raise 

important ideas about mixture toxicity that need to be addressed through further research. 

 The discovery from chapter 5 used four soil properties to predict 15 biological endpoints 

necessary for human survival on earth. The research or AESP model could benefit from several 

improvements to increase the precision of the method. First, the AESP model could benefit from 

an increase in the number of soils from 47 to about 200 soils to cover a wider range of soils 

properties than what was observed in this study. Secondly, soil properties in the current study 

were only limited to pH, CEC, OC and clay. Soil properties in the model could be expanded to 

include concentration of base cations, anions and electrical conductivity that can possibly 

improve on the robustness and precision of the model. Thirdly, only one mixture concentration 

was tested in the study, but the concentrations of metals found in the environment may vary. To 

increase the applicability and environmental relevance with respect to concentration, a 

modification parameter that can control for the effect at different concentration can be added to 

the model. This could be done by conducting a full dose response experiment for the least, 

medium and most sensitive endpoints in the AESP model, scoring the endpoints and using the 

information to adjust predictions for different concentrations or effect levels. Furthermore, a 

confirmation of the sensitivity predictions from the model by using real life data could help in 

improving the model. 

Overall, the future directions for improvements in the area of mixture toxicity will include a 

deeper understanding of interactions among the physical, chemical and biological components in 

soils. Despite our deeper understanding of the role and influence of soil properties, we need more 
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research to improve AESP models because they represent the indirect and actual effects of 

metals on benefits that humans derive from ecosystems.  
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8 APPENDIX A: CHAPTER 3 SUPPLEMENTARY MATERIAL  

Table A-1. Electrical conductivity of soils after metal spiking before leaching (µS/cm). Dosed 

soils were leached with artificial rainwater till electrical conductivity in control soils were 

reached. 

Rays      Control CSQG  Flin-Flon Sudbury `Peaty  PC  

Soil    

S1                601 5674  5380  4456  4784  5170 

S2         483      3264  2547  3440  4031            4084  

S3         544     2396  2801  2356  3532            3304 
CSQG=Canadian soil quality guideline.  

PC=Port Colborne. 

 

 

Table A-2. Measured and nominal metal concentrations (excluding background concentrations) 

in dosed soils and CaCl2 extracted metal concentrations (mg/kg of soil). 

Soil 

Name 

Metal 

Type 
Ray Nominal Actual CaCl2 

Percentage 

nominal 
DTPA 

S1 Salt CSQG 3141.6 654.0 187.4 20.8 0.0 

S1 Salt FF 2914.2 514.0 135.7 17.6 0.0 

S1 Salt SUD 3977.1 2185.6 457.2 55.0 0.0 

S1 Salt PC 2066.9 450.7 214.8 21.8 0.0 

S1 Salt PEAT 3034.8 921.9 307.5 30.4 0.0 

S3 Salt CSQG 3141.6 3173.2 325.8 101.0 0.0 

S3 Salt FF 2914.2 2274.6 288.1 78.1 0.0 

S3 Salt SUD 3977.1 4302.3 188.8 108.2 0.0 

S3 Salt PC 2066.9 3309.5 123.7 160.1 0.0 

S3 Salt PEAT 3034.8 2500.6 228.7 82.4 0.0 

S2 Salt CSQG 3141.6 1920.8 693.5 61.1 0.0 

S2 Salt FF 2914.2 1785.4 622.9 61.3 0.0 

S2 Salt SUD 3977.1 2664.8 520.4 67.0 0.0 

S2 Salt PC 2066.9 1071.9 574.0 51.9 0.0 

S2 Salt PEAT 3034.8 1468.4 545.8 48.4 0.0 

S1 Spinel CSQG 3141.6 1219.6 316.6 38.8 0.0 

S1 Spinel FF 2914.2 1242.3 406.6 42.6 0.0 

S1 Spinel SUD 3977.1 2401.1 416.8 60.4 0.0 

S1 Spinel PC 2066.9 344.8 46.5 16.7 0.0 

S1 Spinel PEAT 3034.8 1113.7 157.5 36.7 0.0 

S3 Spinel CSQG 3141.6 2028.9 0.6 64.6 0.0 

S3 Spinel FF 2914.2 1182.9 4.0 40.6 0.0 

S3 Spinel SUD 3977.1 2114.8 0.7 53.2 0.0 
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S3 Spinel PC 2066.9 626.8 0.0 30.3 0.0 

S3 Spinel PEAT 3034.8 1309.1 1.1 43.1 0.0 

S2 Spinel CSQG 3141.6 608.6 274.4 19.4 0.0 

S2 Spinel FF 2914.2 1365.4 350.9 46.9 0.0 

S2 Spinel SUD 3977.1 2330.6 228.0 58.6 0.0 

S2 Spinel PC 2066.9 268.9 208.2 13.0 0.0 

S2 Spinel PEAT 3034.8 1542.8 218.7 50.8 0.0 

S1 Oxides CSQG 3141.6 2468.0 831.1 78.6 508.6 

S1 Oxides FF 2914.2 2508.3 977.2 86.1 793.1 

S1 Oxides SUD 3977.1 1916.3 677.7 48.2 587.3 

S1 Oxides PC 2066.9 1558.5 236.7 75.4 282.0 

S1 Oxides PEAT 3034.8 2535.7 801.2 83.6 502.3 

S3 Oxides CSQG 3141.6 2812.3 12.3 89.5 623.8 

S3 Oxides FF 2914.2 3401.8 16.9 116.7 601.9 

S3 Oxides SUD 3977.1 3985.8 11.3 100.2 539.6 

S3 Oxides PC 2066.9 2757.9 1.8 133.4 198.0 

S3 Oxides PEAT 3034.8 2925.5 14.4 96.4 554.3 

S2 Oxides CSQG 3141.6 2073.4 540.8 66.0 812.1 

S2 Oxides FF 2914.2 2666.9 596.8 91.5 686.6 

S2 Oxides SUD 3977.1 1895.0 398.9 47.6 830.1 

S2 Oxides PC 2066.9 2178.7 259.7 105.4 427.8 

S2 Oxides PEAT 3034.8 1947.8 439.9 64.2 573.6 
PC=Port Colborne ray. 

PEAT=peaty ray. 
SUD=Sudbury ray. 

FF=Flin Flon ray. 

CSQG=Canadian soil quality guideline ray. 
DTPA=diethylenetriaminepentaacetic acid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

178 
 

Table A-3. Two-way ANOVA table for AMO and ACP enzyme activity 

Activity Predictors SS  Df  MS  F p-value  

AMO  Metal type 0.00025 2 0.00012 41.5   0    

  Soil Type 0.00112 2 0.00056 188  0 

     Metal Type: Soil Type 0.00024 4 0.00006 20.0  0 

  Residuals 0.00046 153 0.000003   

ACP  Metal type 964  2 482.1  1.408   0.25    

  Soil Type 29650   2 14825  43.28  0 

     Metal Type: Soil Type 2644          4 661.1  1.930  0.108 

  Residuals 52403  153 342.5   
SS=sum of squares. 
Df=degrees of freedom. 

MS=mean square. 

AMO=ammonia monooxygenases.  

ACP=acid phosphatases. 

 

 

Table A-4. Pearson correlations between metal type, enzyme activity, soil pH, DTPA extracts, 

CaCl2 extracts, and soils. 

Metal Type  CaCl2 metal concentrations vs Soil pH 

Salts    -0.05               

Oxides    -0.76***          

Spinel minerals  -0.73***   

   DTPA Extracts  CaCl2 Extracts 

Soil pH  0.14    -0.59*** 

Enzyme  DTPA Extracts  CaCl2 Extracts 

 S1 

AMO   -0.06    -0.13 

ACP   -0.53***   -0.63*** 

 S2 

AMO   -0.27    -0.28 

ACP   0.44**    0.48** 

S3 

AMO                           -0.38*   -0.34*  

ACP                             0.03   0.17 
Significance codes: * < 0.05, ** < 0.01, *** < 0.001.  
DTPA=diethylenetriaminepentaacetic acid. 

AMO=ammonia monooxygenases.  

ACP=acid phosphatases. 
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Figure A-1. Leaching did not reduce acid phosphatases (ACP) activity in all three Canadian 

soils. Control soils were leached once to determine an electrical conductivity baseline for metal 

salt spike soils. The activity of ACP was measured 7 days after leaching 210 mg of soil with 

200ml of artificial rainwater. SI, S2 and S3 represent the names of the three Canadian soils used. 

Horizontal broken line indicates percentage activity in non-leached soils. Gray vertical bars 

represent average ACP activity of 9 replicates (3 per soil) in the three soils. The standard error 

(SE) of the mean are represented by error bars. Asterisks indicate significant differences from 

non-leached soils (controls). 
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Figure A-2. Stacked bar plots showing ratios of metals in five fixed ratio rays. The vertical bars 

represent the ratios of each metal, each texture pattern within a bar represents a metal in the 

mixture. For example, vertical patterns represent Zn, horizontal pattern represent Cu, no pattern 

represent Pb etc. as shown by the legend above.   
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9 APPENDIX B: CHAPTER 4 SUPPLEMENTARY MATERIAL  

 
Figure B-1. Concentration addition (CA) predicts mixture toxicity to BGD at sum toxic units at EC25but not EC10. The figure shows 

the concentration response relationships between beta glucosidases (BGD) and 10 mixture rays in S1 fitted by a log-logistic model. Y-

axis represents the percentage activity of enzyme in soil, and the X-axis represents the toxic units (TU) of the metals calculated from 

effective concentrations. Grid (a) TUs were calculated from EC10; Grid (b) TUs were calculated from EC25. The intersection between 

the two blue dashed lines represent the point where CA occurs for the specified effective concentration, while the red shaded area 

represents the 95% confidence interval. The green-shaded quadrant represents underestimation by the CA model, and the grey-shaded 

quadrant represents overestimation by the CA model.  The non-shaded areas cannot be predicted by CA. The root mean squared error 

(RMSE) for each TU is reported. 

 

(a) (b) 
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Figure B-2. Concentration addition (CA) predicts mixture toxicity to ACP at sum of toxic units at EC50, sparingly at EC25. The figure 

shows the concentration response relationships between acid phosphatases (ACP) and 10 mixture rays in S2 fitted by a log-logistic 

model. Y-axis represents the percentage activity of enzyme in soil, and X-axis represents the toxic units (TU) of the metals calculated 

from effective concentrations. Grid (a) TUs calculated from EC25. Grid (b) TUs calculated from EC50. The intersection between the 

two blue dashed lines represent the point where CA occurs for the specified effective concentration, while the red shaded area 

represents the 95% confidence interval. The green-shaded quadrant represents underestimation by the CA model, and the grey-shaded 

quadrant represents overestimation by the CA model.  The non-shaded areas cannot be predicted by CA. The root mean squared error 

(RMSE) for each TU is reported.

(a) (b) 
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Figure B-3. Concentration addition (CA) either predicts or overestimates mixture toxicity to 

BGD at EC50. The figure shows the concentration response relationships between beta 

glucosidases (BGD) and 10 mixture rays in S2 fitted by a log-logistic model. Y-axis represents 

the percentage activity of enzyme in soil, and X-axis represents the toxic units (TU) of the metals 

calculated from effective concentrations. The intersection between the two blue dashed lines 

represent the point where CA occurs for the specified effective concentration, and the red shaded 

area represents the 95% confidence interval. The green-shaded quadrant represents 

underestimation by the CA model, and the grey-shaded quadrant represents overestimation by 

the CA model.  The non-shaded areas cannot be predicted by CA. The root mean squared error 

(RMSE) for each TU is reported.
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Table B-1. Tukey HSD comparison between rays for beta glucosidases in S1 and S2 

S1 
    

Rays                  Difference       Lower        Upper      p-value 

Ray 10-Ray 1    8.2 -13.8 30.3 1.0 

Ray 2-Ray 1    12.5 -9.0 34.0 0.7 

Ray 3-Ray 1    11.2 -10.4 32.7 0.8 

Ray 4-Ray 1    -1.2 -22.8 20.3 1.0 

Ray 5-Ray 1     8.0 -13.5 29.6 1.0 

Ray 6-Ray 1    14.3 -7.2 35.8 0.5 

Ray 7-Ray 1     4.1 -17.4 25.7 1.0 

Ray 8-Ray 1     4.2 -17.3 25.8 1.0 

Ray 9-Ray 1    22.5 0.9 44.0 0.03* 

Ray 2-Ray 10    4.3 -17.8 26.3 1.0 

Ray 3-Ray 10    2.9 -19.1 25.0 1.0 

Ray 4-Ray 10   -9.5 -31.5 12.6 0.9 

Ray 5-Ray 10   -0.2 -22.2 21.8 1.0 

Ray 6-Ray 10    6.1 -15.9 28.1 1.0 

Ray 7-Ray 10   -4.1 -26.1 17.9 1.0 

Ray 8-Ray 10   -4.0 -26.0 18.0 1.0 

Ray 9-Ray 10   14.2 -7.8 36.3 0.5 

Ray 3-Ray 2    -1.3 -22.9 20.2 1.0 

Ray 4-Ray 2   -13.7 -35.3 7.8 0.6 

Ray 5-Ray 2    -4.5 -26.0 17.1 1.0 

Ray 6-Ray 2     1.8 -19.7 23.3 1.0 

Ray 7-Ray 2    -8.4 -29.9 13.2 1.0 

Ray 8-Ray 2    -8.3 -29.8 13.3 1.0 

Ray 9-Ray 2     10.0 -11.6 31.5 0.9 

Ray 4-Ray 3   -12.4 -34.0 9.1 0.7 

Ray 5-Ray 3    -3.2 -24.7 18.4 1.0 

Ray 6-Ray 3     3.1 -18.4 24.7 1.0 

Ray 7-Ray 3    -7.0 -28.6 14.5 1.0 

Ray 8-Ray 3    -7.0 -28.5 14.6 1.0 

Ray 9-Ray 3    11.3 -10.3 32.8 0.8 

Ray 5-Ray 4     9.3 -12.3 30.8 0.9 

Ray 6-Ray 4    15.5 -6.0 37.1 0.4 

Ray 7-Ray 4     5.4 -16.2 26.9 1.0 

Ray 8-Ray 4     5.5 -16.1 27.0 1.0 

Ray 9-Ray 4    23.7 2.2 45.2 0.02* 

Ray 6-Ray 5     6.3 -15.3 27.8 1.0 

Ray 7-Ray 5    -3.9 -25.4 17.7 1.0 

Ray 8-Ray 5    -3.8 -25.3 17.7 1.0 

Ray 9-Ray 5    14.4 -7.1 36.0 0.5 
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Ray 7-Ray 6   -10.2 -31.7 11.4 0.9 

Ray 8-Ray 6   -10.1 -31.6 11.5 0.9 

Ray 9-Ray 6     8.2 -13.4 29.7 1.0 

Ray 8-Ray 7     0.1 -21.5 21.6 1.0 

Ray 9-Ray 7    18.3 -3.2 39.9 0.2 

Ray 9-Ray 8    18.2 -3.3 39.8 0.2 

 

S2 
    

Rays                      Difference         Lower         Upper      p-value 

Ray 10-Ray 1  -16.5 -34.0 0.9 0.1 

Ray 2-Ray 1    -6.3 -23.8 11.1 1.0 

Ray 3-Ray 1   -14.2 -31.6 3.3 0.2 

Ray 4-Ray 1    -4.1 -21.5 13.4 1.0 

Ray 5-Ray 1    -8.0 -25.4 9.5 0.9 

Ray 6-Ray 1    -5.4 -22.9 12.1 1.0 

Ray 7-Ray 1    -8.7 -26.2 8.8 0.8 

Ray 8-Ray 1    -8.8 -26.2 8.7 0.8 

Ray 9-Ray 1     7.0 -10.5 24.5 1.0 

Ray 2-Ray 10   10.2 -6.9 27.3 0.6 

Ray 3-Ray 10    2.4 -14.7 19.4 1.0 

Ray 4-Ray 10   12.5 -4.6 29.5 0.4 

Ray 5-Ray 10    8.6 -8.5 25.7 0.8 

Ray 6-Ray 10   11.1 -6.0 28.2 0.5 

Ray 7-Ray 10    7.8 -9.2 24.9 0.9 

Ray 8-Ray 10    7.8 -9.3 24.8 0.9 

Ray 9-Ray 10   23.5 6.5 40.6 0.00* 

Ray 3-Ray 2    -7.8 -24.9 9.2 0.9 

Ray 4-Ray 2     2.3 -14.8 19.3 1.0 

Ray 5-Ray 2    -1.6 -18.7 15.5 1.0 

Ray 6-Ray 2     0.9 -16.2 18.0 1.0 

Ray 7-Ray 2    -2.4 -19.5 14.7 1.0 

Ray 8-Ray 2    -2.4 -19.5 14.6 1.0 

Ray 9-Ray 2    13.3 -3.7 30.4 0.3 

Ray 4-Ray 3    10.1 -7.0 27.2 0.7 

Ray 5-Ray 3     6.2 -10.9 23.3 1.0 

Ray 6-Ray 3     8.8 -8.3 25.8 0.8 

Ray 7-Ray 3     5.5 -11.6 22.6 1.0 

Ray 8-Ray 3     5.4 -11.7 22.5 1.0 

Ray 9-Ray 3    21.2 4.1 38.3 0.00* 

Ray 5-Ray 4    -3.9 -21.0 13.2 1.0 
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Ray 6-Ray 4    -1.3 -18.4 15.8 1.0 

Ray 7-Ray 4    -4.6 -21.7 12.5 1.0 

Ray 8-Ray 4    -4.7 -21.8 12.4 1.0 

Ray 9-Ray 4    11.1 -6.0 28.2 0.5 

Ray 6-Ray 5     2.6 -14.5 19.6 1.0 

Ray 7-Ray 5    -0.7 -17.8 16.3 1.0 

Ray 8-Ray 5    -0.8 -17.9 16.3 1.0 

Ray 9-Ray 5    15.0 -2.1 32.0 0.1 

Ray 7-Ray 6    -3.3 -20.4 13.8 1.0 

Ray 8-Ray 6    -3.4 -20.4 13.7 1.0 

Ray 9-Ray 6    12.4 -4.7 29.5 0.4 

Ray 8-Ray 7    -0.1 -17.1 17.0 1.0 

Ray 9-Ray 7    15.7 -1.4 32.8 0.1 

Ray 9-Ray 8    15.8 -1.3 32.8 0.1 

Significance codes: *< 0.05  

 
Table B-2. Ratio of metal mixture rays and nominal concentrations calculated at 1 Toxic Unit 

(TU) in mg per kg soil. Metal mixture rays are in the first column with their corresponding 

nominal metal doses and ratios in brackets. The TU was calculated from EC50 values of 

individual metals (Cu, Co, Pb, Ni, Zn) derived from literature in mg/kg of soil. Lower and higher 

TU’s were determined from dividing or multiplying concentrations in a ray by a desired factor or 

dose level (0 and 16) 
Metal/ Ray 

EC50 

 

Lead  

1600 

(mg/kg) 

Copper  

  700 

(mg/kg) 

Nickel  

475 

(mg/kg) 

 

Zinc  

750 

(mg/kg) 

Cobalt  

1480 

(mg/kg) 

Total  

(Ratio) 

(mg/kg) 

1  139.9 (0.469) 147.3 (0.157) 94.2 (0.109) 337.5 (0.260) 79.7 (0.050) 968 (1) 

2   453.8 (0.175) 152.2 (0.184) 62.1 (0.118) 251.7 (0.423) 48.3 (0.1) 799 (1) 

3  153.0 (0.190) 165.6 (0.206) 98.9 (0.123) 299.8 (0.372) 88.4 (0.110) 806 (1) 

4   134.1 (0.167) 120.6 (0.151) 86.2 (0.108) 383.0 (0.478) 76.6 (0.096) 801 (1) 

5  326.5 (0.324) 148.1 (0.147) 88.7 (0.088) 148.1 (0.147) 296.2 (0.294) 1008 (1) 

6  162.1 (0.2) 162.1 (0.2) 162.1 (0.2) 162.1 (0.2) 162.1 (0.2) 811 (1) 

7  50.5 (0.066) 154.7 (0.202) 2.3 (0.003) 555.8 (0.726) 2.3 (0.003) 766 (1) 

8  181.2 (0.218) 128.6 (0.155) 90.1 (0.109) 349.6 (0.421) 80.4 (0.097) 830 (1) 

9  13.9 (0.026) 95.2 (0.178) 378.3 (0.707) 40.7 (0.076) 7.0 (0.013) 535 (1) 

10  578.6 (0.561) 40.2 (0.039) 74.3 (0.072) 299.1 (0.29) 38.2 (0.037) 1030 (1) 
 (Lock and Janssen, 2003, 2002a, 2002b; Sandifer and Hopkin, 1997a, 1997b).           
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10 APPENDIX C: CHAPTER 5 SUPPLEMENTARY MATERIAL  

 
Figure C-1. A multi-panel scatterplot showing the relationship between ecosystem services and 

soil cation exchange capacity (CEC), soil pH, percentage clay, and percentage organic carbon for 

47 soils. A trend line was added to ease graphical interpretation. The first row shows links 

between CH4 production (parts per billion per gram soil per 72 h) and soil properties, second row 

shows links with N2O fluxes (parts per billion per gram soil per 72 h), third row shows links with 

wheat crude protein (percent per gram) after 35 days of seeding, fourth row shows links with the 

activity of Acid phosphatases (nmol p-nitrophenol/hr/g soil), and the fifth row shows links with 

activity of beta glucosidases (µmol p-nitrophenol/hr/ g soil). The right side of the y-axis shows 

the ecosystem service that each measured endpoint represented.  
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Figure C-2. A multi-panel scatterplot showing the relationship between ecosystem services and 

soil cation exchange capacity (CEC), soil pH, percentage clay, and percentage organic carbon for 

47 soils. A trend line was added to ease graphical interpretation. The first row shows links 

between the instantaneous population growth rates (IPGR) of Oppia nitens and soil properties, 

second row shows links with IPGR of Enchytraeus cripticus, third row shows links with IPGR of 

Folsomia candida. The right side of the y-axis shows the ecosystem service that each measured 

endpoint represented.  
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Table C-1. Pearson correlation coefficients between soil properties and ecosystem services in 

control soils  

Ecosystem Climate  Nutrient Food  Organic Matter  Organic Matter 

Services  Regulation Cycling  Production Decomposition  Decomposition 

Soil   CH4   ACP  Percent  IPGR   IPGR of 

properties consumption activity   protein  of collembola  enchytraeids 

pH  -0.27           -0.01   -0.14  0.11                     -0.10 

Percent clay       -0.11  0.26   -0.01  0.21        0.04 

CEC  -0.28*            0.19   -0.02         0.11       -0.04 

Percent OC 0.22  0.46***   0.02         -0.02       -0.06 
Significance codes: * < 0.05, ** < 0.01, *** < 0.001.  
AMO= ammonia monooxygenase 

 

 

 

 

 

 

 

 

 

 
Figure C-3. Boxplots showing the sensitivity of two endpoints that represent two ecosystem 

services to metal mixtures in 47 Canadian soils. Black and gray plots represent services in 

control and metal spiked soils respectively. Middle line in the box represents median, while the 

lower and upper ends of the box represent the first and third quartiles respectively. Points beyond 

the lines are may be considered outliers. Alphabets a and b within plots represent significant 

differences (P<0.05) between treatments. Plots with same alphabetic insets indicate similarities 

while those with different letters represent differences. On the left is the activity of ACP in nmol 

per hour and to the right is dry wheat biomass in grams. 
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10.1 Derivation of greenhouse gas concentrations 

The actual concentrations of greenhouse gas emission or consumption had to be back 

calculated to account for N2 dilutions. At time 0, the concentrations of greenhouse gases (CO2, 

CH4 and N2O) was assumed to be 0 ppm. Calculations for hours (time) 6 and 72 were determined 

as follows; 

For Time 6; 

Volume of serum vial = 125 mL 

Volume of N2 added = 15 mL 

Percentage volume of N2 in serum vial = 
15 𝑚𝐿

125 𝑚𝐿
× 100% = 12% 

Volume of GHG taken with syringe= 15 mL 

Volume of N2 in syringe = 12% × 15 𝑚𝐿 = 1.8 mL 

Hence, for Time 6, 1.8 mL of each sample taken was nitrogen (N2). 

Actual [x] for Time 6= 
15𝑥

13.2
 

 

For Time 72; 

Volume of serum vial = 125 mL 

Volume of N2 from Time 6 = 13.2 mL 

Volume of N2 added = 15 mL 

Total volume of N2 = 15 mL+13.2 mL = 28.2 mL 

Percentage volume of N2 in serum vial = 
28.2 𝑚𝐿

125 𝑚𝐿
× 100% = 22.6% 

Volume of N2 in syringe = 22.6% × 15 𝑚𝐿 = 3.39 mL 

Hence, for Time 72, 3.39 mL of each sample taken was nitrogen (N2). 

Actual [x] for Time 72= 
15𝑥

11.61
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Dosed model (ES)=       [CECi= β0+ β1pH, i+ β2Clay, i + β3Organic, i +ƐCEC, 
Phosphatasei= β4+ β5Organic, i + ƐPhosphatase, 
AMOi= β6+ β7CEC, i + β8pH, i + ƐAMO, 
Glucosidasei=β9+β1CEC, i+β10Organic, i+β11AMO, i+β12Phosphatase, i+ ƐGlucosidase, 
Carbon dioxidei= β13+ β14Glucosidase, i + ƐCarbon dioxide, 
Methanei= β15+ β16CEC, i + ƐMethane, 
Nitrousi= β17+ β18pH, i + β19Phosphatase, i + β20Carbon dioxide, i + ƐNitrous oxide, 
Biomassi= β21+ β22CEC, i + β23Clay, i + β24pH, i + β25Glucosidase, i + ƐBiomass, 
Mite survivali= β26+ β27pH, i + ƐMite survival, 
Mite reproductioni= β28+ β29CEC, i + ƐMite reproduction, 
Collembola reproductioni= β30+ β31Collembola survival, i +ƐCollembola reproduction, 
Collembola survivali= β32+ β33Organic, i + ƐCollembola survival, 
Glyphosate degradationi=β34+β35Phosphatase, i +β36CO2, i +ƐGlyphosate degradation] Eq.  
C-1 
 

On the left side of each equation is the response variable and on the right are the predictor 

variables, the β’s are the standardized regression coefficients, and the Ɛ’s are the error terms. 

Response variables in one equation could be a predictor in another equation. 

 

 

 

 

 

 

 

 

 
Figure C-4. Barplots textural classes of 47 Canadian soils. 
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Table C-2. Nominal and actual (average) doses of metals in 47 soils (mg/kg of soil) 

Metal Lead Copper Nickel Zinc  Cobalt 

Nominal dose 167 1143 4539 488 84 

Actual dose 17 866 4718 581 10 

 
 
 
Table C-3. CaCl2 extractable metals in 47 metal spiked soils (mg/kg of soil) 

  Soil    Cobalt 

 

Copper Nickel Lead Zinc Total 

  S1    0 0 0 0 19.183673 19.183673 

  S2    0 0 0 0 7.5510204 7.5510204 

  S3      0     0   0   0 30.510204 30.510204 

  S4    0 0 0 0 1.4285714 1.4285714 

  S5    0 0 0 0 1.2244898 1.2244898 

  S6    0 0 0 0 1.8367346 1.8367346 

  S7    0 0 0 0 0 0 

  S8    0 0 0 0 10.714285 10.714285 

  S9    0 0 0 0 0 0 

  S10    0 0 0 0 2.0408163 2.0408163 

  S11    0 1.7346938 4.2857142 0 115 121.02040 

  S12    0 0 0 0 9.8979591 9.8979591 

  S13    0 0 0 0 8.7755102 8.7755102 

  S14    0 0.9183673 2.7551020 0 94.897959 98.571428 

  S15    0 0 0 0 0 0 

  S16    0 0 0.7142857 0 11.428571 12.142857 

  S17    0 0 0 0 0 0 

  S18    0 1.9387755 2.7551020 0 101.02040 105.71428 

  S19    0 0.8163265 0 0 9.2857142 10.102040 

  S20    0 0 0 0 4.8979591 4.8979591 

  S21    0 0 0 0 7.5510204 7.5510204 

  S22    0 4.1836734 4.1836734 0 111.22449 119.59183 

  S23    0 2.3469387 4.0816326 0 110 116.42857 

  S24    0 0 0 0 1.8367346 1.8367346 

  S25    0 0 0 0 12.959183 12.959183 

  S26    0 17.959183 6.7346938 0 167.55102 192.24489 

  S27    0 0 0 0 1.8367346 1.8367346 

  S28    0 0 0 0 2.6530612 2.6530612 

  S29    0 0 0.9183673 0 29.081632 30 

  S30    0 0 0 0 4.7959183 4.7959183 

  S31    0 0 0 0 0 0 



 

193 
 

  S32    0 0.9183673 2.4489795 0 62.653061 66.020408 

  S33    0 0.7142857 1.9387755 0 100.20408 102.85714 

  S34    0 0 1.3265306 0 25.918367 27.244898 

  S35    0 0 2.4489795 0 52.959183 55.408163 

  S36    0 0 0 0 0 0 

  S37    0 0 0 0 1.0204081 1.0204081 

  S38    0 0 0 0 1.2244898 1.2244898 

  S39    0 0 0 0 0 0 

  S40    0 0 0 0 3.4693877 3.4693877 

  S41    1.1224489 7.8571428 6.1224489 0 135.10204 150.20408 

  S42    0 0 0 0 14.591836 14.591836 

  S43    0 2.0408163 2.2448979 0 79.387755 83.673469 

  S44    0 1.0204081 3.2653061 0 106.53061 110.81632 

  S45    0 0 0 0 0 0 

  S46    1.4285714 8.2653061 10.204081 0 291.53061 311.42857 

  S47    0 0 0 0 2.5510204 2.5510204 

 
 
 


