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1. Introduction

Are the markets for high-quality goods more remote than those for low-quality goods?

The response of many studies appears to be in the affirmative (Bastos and Silva (2010), Baldwin

and Harrigan (2011), Manova and Zhang (2012), Martin (2012)). While this positive relationship

between the quality of goods and the distance to market results only from simple observation, it

does lead to a more primary concern when evaluating trade models and the specification of trade

costs. This is because such an empirical relationship is inconsistent with the prediction of standard

firm-heterogeneity models in the absence of a quality dimension and the specification of iceberg-

type trade costs. Therefore, to reconcile the available empirical and theoretical evidence, we need

to incorporate the form of quality sorting and the presence of specific trade costs into our modeling.

A quality-sorting mechanism implies the supply of high-quality goods to high trade cost

markets. Because high-quality products are also highly profitable, and normally highly priced,

they can overcome the significant trade costs associated with long distances to market. When

measuring quality based on the average free-on-board (FOB) price, the observed price is typically

high in remote markets. In contrast, in standard productivity–heterogeneity trade models, as

distance increases, only highly productive, and hence low-cost firms, can provide supply. Because

low-cost producers are able to set lower prices, the FOB price is lower in distant markets, which is

not what the pattern of observed data suggests. Hence, it is necessary to incorporate quality in a

firm-heterogeneity model to account for the supposed positive relationship between it and distance

(Baldwin and Harrigan, 2011).

The presence of specific costs also accounts for the positive relationship between good quality

and distance to market. The relative prices of high quality, and therefore higher-priced, goods are

lower in distant markets when there are specific costs in trade. Hence, the relative demand for

high-quality goods is also high in these markets. This enables firms producing high-quality goods

to ship to these more distant markets, a process referred to as the Alchian–Allen effect (Hummels

and Skiba, 2004). Importantly, this change in relative prices does not arise under iceberg-type

trade costs.

However, largely because of data limitations, to our knowledge the Alchian–Allen and

quality-sorting effects have not been jointly analyzed using individual pricing data. In the lit-

erature, the FOB price (the unit value) of export goods is regressed on the distance to market.

Problematically, the positive relationship typically identified is driven by either the presence of

specific costs or the situation where high-quality goods overcome the cost penalty associated with

long distances to markets. Thus, we require a trade cost specification that consists of ad valorem

and specific elements. In the absence of trade cost data and the proper specification of the trade

cost function, we would be unable to correctly attribute variations in quality to distance. With

the exception of Hummels (2001) and Hummels and Skiba (2004), such identification remains as

yet incomplete because trade cost information is invariably unavailable and specific cost is not
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included. The contribution of this study to the literature is then to analyze the quality-sorting and

Alchian–Allen effects jointly and to identify these effects separately.

In the recent literature, several studies incorporate specific cost components in trade costs

and assess their size and impact. For instance, Irarrazabal et al. (2015) show that the size of

specific costs is large and significant, while Khandelwal et al. (2013) use specific costs to model

quotas, which affect firm behavior differently to an ad valorem cost reduction. While our analysis

shares a common motivation concerning the impact of specific costs, our focus is slightly different

in being the identification of the impact of distance on ad valorem and specific costs. We argue

that if the effect of distance on specific costs is large, a framework excluding specific costs may be

severely misspecified.

In this paper, we first follow Anderson and van Wincoop’s (2004) suggestion for use of the

price of production (at the source or origin). The use of source and market price data enables us to

measure trade costs because there is actual delivery between these areas. As examples of the use

of origin information, Donaldson (2018) uses salt price data in India while Atkin and Donaldson

(2015) employ price data in Ethiopia, Nigeria, and the United States (for which source prices are

also available). Elsewhere, Kano et al. (2013) specify wholesale vegetable price data in Japan,

including a detailed description that allows for the identification of identical products in different

locations. Because price differentials reflect both ad valorem and specific costs, it remains necessary

to identify these costs separately. Then, our strategy is again using origin price. By utilizing the

optimal price formula, we are able to obtain information on production costs from the price data.

Moreover, while price differentials are linear in ad valorem trade cost terms, there is an interaction

term in the form of specific trade costs multiplied by production costs. Hence, the production costs

derived enable us to separate ad valorem costs from specific costs.

There is also an additional identification problem in that if shipping is too costly, producers

may not even supply high-quality goods to distant markets. This self-selection bias is absent in

most of the literature, with the exception of Helpman et al. (2008), Johnson (2012) and Kano et al.

(2013, 2014). To overcome this, we employ unique micro data on agricultural product (vegetable)

prices in Japan. As in Kano et al. (2013, 2014), this data set contains market and origin prices,

as well as information on the region where a product is produced. Thus, we can establish product

delivery patterns and consider the selection bias arising from delivery choices.

The analysis in this paper begins with reduced-form regressions as in the existing literature.

Our origin price is approximately equivalent to the FOB price in this literature used to measure

product quality. Therefore, we first simply regress origin prices on the distance to markets and find

that our vegetable qualities are, as in the literature, also positively associated with the distance to

market. We then estimate a structural model to obtain the ad valorem and specific cost components

separately. We use the origin price and markup formula to back out the cost of production and

utilize the derived production cost to identify the ad valorem and specific costs.

The empirical analysis shows that the technology parameter connecting production costs
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and quality is positive: high-cost producers produce high-quality goods as suggested by Baldwin

and Harrigan (2011). However, the empirical results are inconsistent with a model where only

quality sorting exists, but are consistent with one that also includes specific costs. That is, the

magnitude of the increase in quality associated with production costs is too low under an iceberg-

type specification to account for the positive link between quality and distance. This suggests that

while there is a quality-sorting mechanism, we need the model with specific costs to obtain consistent

empirical results. Our estimations also show that the specific cost component is more distance

elastic than the ad valorem component, which is qualitatively consistent with the specification in

Hummels and Skiba (2004). In addition, the size of the technology parameter with no specific costs

is higher than with specific costs. That is, without specific costs, we could overestimate the rate of

quality improvement by incurring cost. Thus, our contribution is not only to detect properly the

relationship between quality and distance, but also to correctly identify the technical relationship

between quality and production costs.

Existing studies such as Irarrazabal et al. (2015) have also identified the significance of

specific costs. The identification strategy in Irarrazabal et al. (2015) is to utilize the property

that the presence of specific costs changes the demand elasticity. To identify this, Irarrazabal et

al. (2015) estimate the size of the specific costs relative to the ad valorem costs using the data

variation in FOB (producer) prices and destinations (trade costs). Our study is notable in that we

estimate the ad valorem and specific components separately and then identify how these costs are

sensitive to distance. Additionally, we also estimate the elasticity of substitution parameters and

thus obtain the key parameters in the heterogeneous-quality model, including the quality elasticity

with respect to production costs, the elasticity of substitution, and the distance elasticity. As these

determine the behavior of the heterogeneity model, our estimates yield a benchmark for evaluating

the implications of existing theoretical models.

Of course, our results relate in part to the characteristics of the data employed. In particular,

we use price data for agricultural products. Thus, the reason for the rather weak effect of quality

sorting in our analysis is that vegetable production is constrained by geographic conditions. While

some farmers may produce high-quality goods using superior technology (e.g., greenhouses), farmer

productivity is generally associated with costs not quality. Thus, the demand side may matter more.

Specific costs make the price of high-quality goods relatively lower, thereby creating relatively high

demand in remote markets. Hence, the presence of specific costs in our model encourages farmers

able to produce high-quality goods to deliver their products to distant markets. In addition, because

of the use of domestic data, transport costs represent the major part of trade costs and these largely

depend on quantity, not the value of goods. This may contribute to a large distance-elastic specific

cost.

The remainder of the paper is as follows. In Section 2, we discuss the reduced-form re-

gressions representing the relationship between quality and distance. In Section 3, we set up a

structural model for our estimations. For clarifying our argument on reduced-form analysis and
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building a structural model, we conduct Monte Carlo exercises to reveal the identification issues

and demonstrate the bias in the standard model in Section 4. Section 5 introduces our data set,

and Section 6 details the specification of our model. Section 7 reports the estimation results, and

Section 8 provides some robustness checks. In Section 9, we evaluate the welfare improvements

associated with the reduction in trade costs using general equilibrium model simulations. The final

section provides some concluding remarks.

2. Quality and Origin Price

It is often difficult to measure the quality of products. This is because quality measure

data are not readily available for most goods (and a certain level of aggregation suffers from

the composition of goods with different-level qualities) and it is not obvious what characteristics

of goods are valued most highly by consumers (e.g., high-powered or fuel-efficient cars). It is

rare that a particular measure of quality represents the quality of goods properly (Crozet et al.

(2012)). As discussed in detail later, our data set is price data from vegetable wholesale markets

and these data contain detailed information about several product characteristics, including size

and grade. However, because of the unobservable nature of product quality and seasonality, our

product characteristics are not sufficient to capture the quality of goods. This is important because

unobservable product quality may contribute to the price differences between goods sharing the

same product characteristics. For example, on May 2, 2007, two bulk lots of cabbages produced

in Aichi Prefecture with size “L” and grade “excellent” traded in the Aichi market. While these

product characteristics are identical, the average prices of the cabbages per kilogram (kg) were 124.6

and 138.3 yen, respectively. This ten percent price difference could be attributed to unobservable

factors.1 Therefore, we adopt an approach taken by the trade literature, which is that the price

in origin (often the FOB price) serves as a proxy for product quality. If the origin price is high, it

then reflects high-quality goods.

The importance of the origin price information for product quality can be also shown by the

link between market price and product characteristics, such as the size and grade of goods and the

origin price. If the origin price is a significant factor for the market price, even after incorporating

goods characteristics, it likely captures certain aspects of unobservable quality. Thus, we regress

market prices on the index of high quality, that of large size, and the origin price. In addition,

because the origin price for goods shipped locally is identical to the market price, we use only that

sample of goods shipped to different regions. We identify the product characteristics using the name

of the characteristics, such that a grade name including “syu” (excellent) indicates that the product

is high quality and a size category including the letter “L” designates a large size. We construct

1With respect to seasonality, cabbages produced in Aomori prefecture with size “L” and grade “A” traded in

the Aomori market from July 2007 to November 2007. Once again, the product characteristics were the same, but

the prices were 73.5, 105.0, 78.8, 63.0, and 57.8 on July 13, August 7, September 14, October 3, and November 5,

respectively.
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an index variable such that the high quality index takes a value of one if the grade characteristics

include the name ”excellent” and zero otherwise, and the large size index takes a value of one if

the size category is equal to or larger than size ”L” (such as “2L”) and zero otherwise. Table

1 reports that origin prices are significantly positive after controlling for product characteristics,

which implies that the origin price captures an important element of product quality. We turn to

Cabbage Cabbage C-cabbage C-cabbage Lettuce Lettuce

High Q 0.127 -0.034 0.12 0.101 0.052 0.204

(0.011) (0.013) (0.018) (0.026) (0.024) (0.036)

Size L 0.093 0.003 0.206 0.049 0.096 -0.019

(0.01) (0.016) (0.015) (0.027) (0.015) (0.017)

Origin P 0.592 0.575 0.508

(0.008) (0.011) (0.011)

Num. of obs. 15841 8009 10803 5676 11565 6484

R-squared 0.52 0.722 0.532 0.737 0.394 0.609

Region-specific effect Yes Yes Yes Yes Yes Yes

Table 1: The Relationship between Market Prices and Product Characteristics

the key relationship between the origin price and the distance to market. A positive relationship

between FOB prices and distance has been obtained in a number of previous studies, including

Bastos and Silva (2010), Baldwin and Harrigan (2011), Manova and Zhang (2012), and Martin

(2012). Now, we conduct similar exercises using regional price data, which contain the price set

in the origin market (the production site). The focus is on the relationship between the origin

price and the distance to markets. We plot these variables to observe the pattern of quality and

distance to market. We also employ regressions after controlling for region-specific effects, in which

the origin prices properly capture the quality of the product. Therefore, our empirical exercise is

comparable to that in the literature.

As mentioned, we use vegetable wholesale price data for Japan. In Japan, vegetables trade

in a wholesale market in each prefecture, so we can obtain the price in the production prefecture

(the origin price) and the price in the market (the market price). The origin price is used to

measure quality, and from the market price information, the distance to market from the origin can

be calculated. We depict the key observation in the relationship between quality and the distance

to market using Figure 1. We plot the log of distance on the horizontal axis and the log of the

origin price on the vertical axis. All figures illustrate a positive relationship between distance and

origin price. Thus, there is a positive relationship in our data set.

Next, we report the results of the reduced-form regressions. As in the extant literature, we

regress the price at the source on the distance to the destination:

ln pjj = const+ lnDnj + dumn + dumj + enj , (1)

where pjj is the price in region j, const is a constant term, Dnj is the distance between origin j and

the market n, dumn is a market-specific term, dumj is a source-specific term, and enj is the error
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Figure 1: Logs of Distance and Source Price Relationship

term. Because we use the source price, pjj , where there is an interregional supply in the source

prefecture j and a supply of the same product to market n from source j, pjj can act in a similar

fashion to the FOB price in the literature. Using OLS, we find that there is a positive relationship

between quality and distance, as reported in Table 2. Note that because Figure 1 illustrates the

fitted value for the regression not controlling for region-specific effects, the positive relationship

may result from regional shocks. However, we also estimate the regressions after including origin-

and market-specific effects. The estimates reflecting regional-specific effects also display a positive

relationship, as shown in Table 2.

Cabbage Cabbage C-cabbage C-cabbage Lettuce Lettuce

Distance 0.074 0.007 0.106 0.01 0.046 0.008

(0.002) (0.003) (0.03) (0.005) (0.003) 0.004

Num. of obs. 15841 15841 10803 10803 11565 11565

R-squared 0.065 0.494 0.105 0.504 0.019 0.364

Region-specific effect No Yes No Yes No Yes

Table 2: Origin Prices and the Distance Relationship

As discussed in the literature, several models can potentially explain this positive link. One

of the possible candidates is quality sorting; that is, high-quality producers are able to supply
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their goods to costly markets. Another is the presence of specific costs, which makes the relative

price of high-quality goods lower in costly markets. Unfortunately, the results of the reduced-

form regressions do not provide us with any information about the structural parameters, such

as distance elasticity. Hence, the precise mechanism underpinning this empirical observation is

unclear. The purpose of this analysis is then to identify the important structural parameters using

quality heterogeneity models.

3. Model

We adopt a standard monopolistic competition, producer heterogeneity, product quality model

following Baldwin and Harrigan (2011). An additional feature is the introduction of specific costs.

Assume there are N regions, and in each region, n, there is a continuum of producers whose mass

is expressed by Mn.

A Cobb–Douglas constant elasticity of substitution (CES) utility function expresses the

preferences of consumers in region n:

Un = (

∫
ω∈Jn

(cnjqn)(σ−1)/σdω)(σ/(σ−1))µZ1−µ, (2)

where Jn is the set of products delivered to region n, cnj is the consumption of region j’s goods in

region n, qn is the quality of these goods, and Z is the consumption of numeraire goods. Given the

budget constraint, µYn =
∫
pnj(ω)cnj(ω)dω, the demand function is:

cnj(ω) =
p−σnj

q1−σ
n

Ynµ

P 1−σ
n

, (3)

where Pn = (
∫

(pnj/qn)1−σ)1/(1−σ) and Yn is the income of the consumers in region n. This signifies

that as the quality of goods improves, consumer demand increases. Quality thus acts as a demand

shifter in this setting.

We assume that producers produce a differentiated product, face local demand xnj(z), and

maximize their profits. There is also a numeraire goods sector, in which a unit of goods is produced

using a unit of labor. Thus, wage rates are set to one. On the cost side of the differentiated goods

sector, producers must pay production and trade costs. The trade costs consist of ad valorem and

specific costs. With regards to specific costs, we also assume that as in Irarrazabal et al. (2015),

there is a perfectly competitive transport service sector. This service is available in every region,

producers use t units of labor to supply goods of each unit, and thus producers have to incur

additive trade costs t per unit of supply. We express the profits from market n using:

πnj = (pnj − anjτnj − tnj)xnj − fnj , (4)

where τnj is the ad valorem component, tnj is the specific component in trade costs, and a is the

unit production cost.
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Producers facing the local demand function (2) maximize their profits by setting the optimal

price in market n:

pnj =
σ

σ − 1
(τnjaj + tnj). (5)

Because we assume each producer makes a single product, we can replace the product index ω with

the producer’s productivity. This is the price of the good produced by a production cost a producer

that consumers pay. We assume that there are no interregional trade costs for within-region trade

such that τjj = 0 and tjj = 1:

pjj =
σaj
σ − 1

. (6)

Thus, by inverting the above price formula, we can express the cost level of the producer. Using

this implied cost enables us to recover the quality level. In our data set, as we can observe the

market price and the place of production, we can use the above relationship to identify the specific

cost component separately from the ad valorem component.

We assume that product quality consists of two components: namely, observed and un-

observed characteristics. A certain characteristic is related to quality (e.g., Crozet et al 2012;

Hummels and Schaur 2013). Because we consider that the sizes and grades of goods are observed

and together capture some aspects of goods quality, the quality (qn) is a function of both observed

and unobserved characteristics, qn = ξnjqnj , where ξnj is an observed factor (e.g., grade and size

of goods) and qnj is unobserved. The latter quality factor, qnj , is assumed to be associated with

production costs. Quality sorting implies that high-cost producers produce high-quality goods, and

we thus assume a monotonic relationship between quality and production costs:

qnj = h(aj). (7)

This is required to estimate the quality-sorting model. If the relationship between costs and quality

is not monotonic—for example, a U-shaped relationship—then we cannot identify the parameter

that determines the quality-sorting pattern. We further assume a parametric form of h(.). As in

Baldwin and Harrigan (2011), we suppose that the quality of products is a function of that cost

level as follows:

h(aj) = a1+θ
j . (8)

Thus, if θ > −1, then high-cost producers produce high-quality goods. If θ > 0 and specific costs

are zero, then high-cost producers will deliver their products to more remote markets than low-cost

producers because the rate of quality improvement exceeds the increase in cost. This provides the

mechanism for quality sorting: high-cost producers produce high-quality goods, so they are more

profitable than the goods of low-quality producers and accordingly can reach more costly markets.

If there are specific costs, then even if θ < 0, high-cost goods can also be highly profitable. We

discuss this possibility in Sections 5.1 and 6.
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We do not model quality as an endogenous choice, whereas in Kugler and Verhoogen (2012)

and Lugovskyy and Skiba (2015), producers choose the quality level. Because our analysis employs

data on agricultural products, the environment, which is exogenous to producers, largely determines

the quality. Moreover, the resulting relationship from endogenous quality choice exhibits the same

relationship between quality and production costs. Hence, we focus on empirically detecting the

relationship between quality and cost.

With regard to trade costs, the key idea is that by using source and market prices, we can

measure trade costs using price data. We normalize interregional trade costs by local trade costs

incurred for local delivery. Thus, all trade costs are relative to the local cost of delivery. In addition,

because price is a monotonic function of production costs, we can replicate costs using price data.

However, we assume a monotonic relationship between quality and production costs leading to the

possibility of measuring quality using source price data. While quality can also be measured using

explicit product characteristics (Crozet et al. (2012)), we derive the implied quality level using the

source price information. As discussed in Section 2, this is mainly because there are unobservable

quality characteristics.

The price differentials between markets and sources are:

pnj
pjj

= τnj +
1

aj
tnj . (9)

Hence, in the price differential equation, while we include the ad valorem term in the equation

directly, the specific component is interacted with the cost term. This serves to identify the ad

valorem and specific terms separately.2

The preceding price differential equation is observed only when there is actual delivery from

j to n. Thus, we need to consider the producer’s delivery decision. The profit function is:

πnj =
( σ
σ−1)1−σ(τnjaj + tnj)

1−σ

q1−σ
n

Y µ

σP 1−σ
n
− f. (10)

If profit is positive, there will be delivery from source j to market n. We construct a delivery

decision variable, Vnj :

Vnj = [
( σ
σ−1)1−σ(τnjaj + tnj)

1−σ

q1−σ
n

Y µ

σP 1−σ
n

]/f. (11)

If V > 1, then there is delivery from j to n. As Irarrazabal et al. (2015) show, because of specific

costs, even the lowest-cost producer (a ≈ 0) earns finite profits. Thus, other than the above

condition, there is a further selection condition, i.e., whether producer costs are sufficiently low

2In the extant literature, FOB prices measure quality. The role there is the same as in this analysis. However,

there is a slight difference between the FOB and source price. By definition, the FOB price, pFOB , satisfies the

following equation: pmarket = τ × pFOB + t. Thus, pFOB = (σ/(σ− 1))(a+ t/στ). However, because the source price

is the price set for the source market without trade costs, psource = (σa/(σ− 1)). Hence, while the source price does

not depend on trade costs, it remains in the FOB price.
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to obtain profits to cover fixed costs. We assume that this condition holds to focus on the entry

condition.

To close the general equilibrium model, we assume that each consumer supplies one unit

of labor for production, that there is a transport service sector using one unit of labor to ship one

unit of goods, and that this service is freely used across regions as in Irarrazabal et al. (2015). This

ensures that the wage rate is equal to one and there is a trade balance. However, to focus on the

identification of trade costs, we simply analyze individual producer behavior. Regional fixed effects

in the estimations capture the general equilibrium effects. For explicit treatment of the general

equilibrium effects, we conduct Monte Carlo exercises to reveal how large trade cost reductions

increase welfare in a later section.

4. Data

We conduct our empirical research using product-level data. We employ a daily data set of the

wholesale prices of agricultural products in Japan known as the “Daily Wholesale Market Informa-

tion of Fresh Vegetables and Fruits.”3 This daily market survey reports the wholesale prices and

quantities sold of some 120 different fruits and vegetables. We use the 2007 report representing 274

market-open days.

The main advantage of this data set is that it includes information about individual product

characteristics and detailed categorizations, such that we can classify each vegetable by brand, size,

grade, and source region. For example, the cabbage category typically includes “cabbage,” “red

cabbage,” and “spring cabbage.” For cabbage, our data set reveals that cabbages of size “6” and

grade “syu” (excellent) were produced in Aichi Prefecture and traded in the Aichi and Tokyo

markets on July 1, 2007, and that the prices of this type of cabbage were 31.5 yen per kg in Aichi

and 36.8 yen per kg in Tokyo. Thus, we can calculate the price differential between these two

locations, which we believe reflects the trade costs between the two prefectures.

Comparing the prices in different locations to infer trade costs is meaningful if the goods are

identical and if the prices of these goods are comparable. As discussed, our data have a high degree

of categorization, which is useful for the purpose of measuring trade costs. Furthermore, because

our data represent information on agricultural products, goods can differ depending on the date of

production. However, we do not have exact information on the production date, so we assume that

these goods differ when trading dates differ. Because consumers may consider vegetables available

on different dates differently, the information in our data set provides us with the identification of

an identical product in terms of many product characteristics.

The price differential, pnj/pjj , that reflects trade costs is obtained by the difference between

the wholesale price in the source prefecture j, pjj , and that in the consuming prefecture n, pnj .
4

3Our data set is identical to that employed in Kano et al. (2013, 2014).
4All of the products are sold in markets, but not necessarily in their markets of origin. In this case, when we

10



The source price, pjj , is the price we observe for product ω being delivered from the producer to the

wholesale market in the source prefecture, j. If this product is also shipped to market n, then pnj

is also observed. Thus, we set Tnj = 1 for the pair (n, j) if we can calculate the price differentials,

pnj/pjj .

Cabbage C-cabbage Lettuce

Average market price 77.833 61.628 183.909

Average local price 67.431 50.671 168.855

Product entry

No. of varieties 3 4 7

No. of size categories 63 50 71

No. of grade categories 34 50 46

No. of producing prefectures 47 46 43

No. of distinct product entries 1207 1001 903

Data truncation

No. of Tnj(l) = 1 or 0 369343 241871 239703

No. of Tnj(l) = 1 15841 10803 11565

Table 3: Summary Statistics

We focus our exercise on three vegetables; namely, cabbage, Chinese cabbage (c-cabbage,

hereafter), and lettuce. As discussed in Section 2, these are vegetables priced higher in the source

region and shipped to more distant markets. Table 2 summarizes several descriptive statistics for

these products, indicating that each product is highly categorized by product variety, size, and

grade. There are various kinds of measures of the grades and sizes; for grades, we have not only

“syu” (excellent) or “yu” (good), but also “A,” “B,” or “maru-syu” (good–excellent); for sizes, we

have not only “L” or “M,” but also numeric “4,” “5,” or “2L”. The number of distinct product

entries is thus quite large: 1,207 for cabbage, 1,001 for c-cabbage, and 903 for lettuce. Because

the prices of vegetables with dissimilar characteristics are in fact different, even though vegetables

might often be considered as a homogeneous good, in our case there is highly detailed product

differentiation. This is consistent with the theoretical prediction by Antoniades (2015), in which

there is a positive relationship between quality and price for heterogeneous products, but a negative

correlation for homogeneous products. We also assume that these products differ when the trading

date changes, so to a certain degree, our price differential data are the price differentials of identical

products.

The average prices are 77.833 yen for cabbage, 61.628 for c-cabbage, and 183.909 for lettuce.

There are also market prices in the data. Because we use origin prices to measure quality, Table

2 also reports the prices at the origin. The average origin prices are 67.431, 50.671, and 168.855

yen for cabbage, c-cabbage, and lettuce, respectively. Thus, market prices outside the origin region

cannot observe both the market and source prices, we eliminate the product entry. If high-quality goods go to distant

markets (i.e., prices increase by more in more distant markets than the increase in trade costs because of higher

quality), then eliminating these observations may result in the under bias of the distance effect. Hence, our estimates

serve as the lower bound of the distance effect.
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are higher than those in the region. This is primarily because it is costly to ship goods to distant

markets. Because trucks normally transport vegetables, and the truck transportation market in

Japan is competitive, unlike Hummels et al. (2009), we do not need to consider markups in the

transport sector. Our purpose is to address how much these price differentials reflect the shipping

of high-quality goods to distant markets. Estimating a trade model to identify the key parameters

should provide us with an answer to this question.

To understand the behavior of product shipment, we count the number of delivery Tnj(ω) =

1 and nondelivery Tnj(ω) = 0 cases. We identify product delivery Tnj(ω) = 1 if the data report

that the source prefecture of product entry ω sold in consuming region n is region j. If we observe

no market price and only origin prices, then we set Tnj(ω) = 0. As shown in Table 1, there

are some 230,000 delivery and nondelivery cases for each vegetable. This provides the number

of observations for our full-information maximum likelihood (FIML) estimation. Out of the total

number of delivery and nondelivery cases, the number of delivery cases (15,841, 10,803, and 11,565

for cabbage, c-cabbage, and lettuce, respectively) is relatively small. Our data set thus suggests

that product delivery is limited. It is therefore clear that product delivery is local to the source

prefecture. This raises some concerns with sample selection, and an additional concern about

delivery patterns. If products do not ship to markets directly, then the actual delivery distance

will be much longer than that between the final market and origin. This will cause over bias in the

distance effects. However, the share of transferred vegetables is low, normally less than 7 percent

according to the Ministry of Agriculture, Forestry and Fisheries.5 Thus, the influence of transit

goods in our data is not significant.

As briefly mentioned in Section 2, we use the characteristic names to identify quality. A

grade name including “syu” (excellent) means that the product is high quality. For example, the

grade name, ‘maru-syu”, means ”good–excellent”, thus this is considered as high quality. Hence, if

the grade characteristic name includes ”excellent”, then the high quality index takes a value of one

and zero otherwise. Similarly, with regard to size, a size category including the letter “L” implies

a large size. There are also other size categories such as ”S” (small), ”M” (medium), ”LL”, and

”L6”. We create an index variable such that the large size index takes a value of one if the size

category name includes size ”L” and zero otherwise. The categorized shares of high-quality and

large-size goods are substantial. For instance, for cabbage, 33.5 percent of goods are high quality

and 49.5 percent are large size.

We also measure product quality with the origin price (the price in the source region). The

reason is that even if the products share the same characteristics, consumers’ perceptions of quality

may differ depending on unobservable factors or also on whether the product is available in the

high or low season. For example, in the Tokyo market, the average price of cabbages of size “6”

and grade “syu” (excellent) produced in Aichi Prefecture is only 42.842 yen in January, but 86.638

yen in April. Thus, the source price, not the product characteristics, can capture the variation

5 http://www.maff.go.jp/j/tokei/kouhyou/seika orosi/ (in Japanese).
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in quality associated with the season in which traded. Because local shocks affect local market

prices, we need to control for such specific effects. If demand shocks occur locally, the price will be

higher without any improvement of quality. We consider this by including market-specific effects

and monthly dummies in our estimations. When supply shocks take place (i.e., through an increase

in production costs), the price will also be higher. If the cost associated with quality improvement

increases, the Baldwin and Harrigan (2011) framework that we employ will capture it. Conversely,

source-region-specific effects reflect cost shocks unrelated to quality.

With regard to the distance between regions, we define the inter-prefectural distance as the

direct distance between prefectural head offices in the prefectural capital cities.6 We set the internal

distance to 10 kilometers (km), which is shorter than the minimum inter-prefectural distance of

10.4 km (Kyoto–Shiga). We later use the Head and Mayer (2000) internal distance formula as a

robustness check. Importantly, natural conditions, not just market conditions, may affect regional

prices. For example, preferences and the production of vegetables may change according to the air

temperature. We use daily temperature data for the market and the origin to control for these

daily variations. As these are exogenous variables, they will also be helpful for identification of our

selection models.

5. Empirical Specification

In this section, we specify the functional form of the transport cost functions and other elements

for estimation. We assume that the ad valorem and specific components are a function of distance

and other factors:

τnj = Dγ1
nj exp(const1 + εnj), (12)

tnj = Dγ2
nj exp(const2 + εnj), (13)

where consti is the constant term and εnj is the random component in trade costs.7

As we specify a monotonic relationship between price and production costs, we can invert

this relationship in terms of price and insert it into the trade cost function. For simplicity, we

assume that the remaining elements are common to the ad valorem and specific cost terms. Then,

the log of the price differential equation is:

ln(pnj/pjj) = ln(Dγ1
nj exp(const1) +

1

a
Dγ2
nj exp(const2)) + εnj

= ln(Dγ1
nj exp(const1) +

σ − 1

pjjσ
Dγ2
nj exp(const2)) + εnj . (14)

Thus, using the variations in a (therefore pjj), we separately estimate γ1 and γ2.

6Available at http://www.gsi.go.jp/KOKUJYOHO/kenchokan.html
7As the minimum iceberg cost is one and the minimum specific cost is zero, the constant and unobservable terms

are zero for iceberg costs and minus infinity for specific costs.
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Because we do not observe factory (farmer) gate price in the data, we assume that the

price differentials between the local price, pjj , and the unobservable farmer gate price, p′jj , are

expressed in a similar way using local delivery costs, τ0j and t0j : pjj/p
′
jj = τ0j + (1/a)t0j . We

additionally assume that the farmer gate price depends on a local price and random component,

ε0j : p′jj = pjj exp(ε0j). This enables us to investigate local delivery in an integrated fashion as

the inter-prefectural trade case: pjj/p
′
jj = pjj/pjj exp(ε0j) = τ0j + (1/a)t0j ⇐⇒ ln(pjj/pjj) =

0 = ln(τ0j + (1/a)t0j) + ε0j . This treatment of intra-regional price differentials may cause a bias

in the distance effect. While the true intra-regional price differentials are positive, treating these

as zeros leads to overestimates. This is because the value of the dependent variable in the price

differential equation is lower than its true value for small distance deliveries. Because ignoring local

deliveries does not provide us an indication of the direction of biases, we deal with intra-regional

price differentials in this form.

We estimate the parameter, θ, with the self-selection condition because qnj = a1+θ =

(pjj(σ − 1)/σ)1+θ:

lnV = ln(
σ

σ − 1
)1−σ + (1− σ) ln((pjj(σ − 1)/σ)Dγ1

nj exp(const1) +Dγ2
nj exp(const2)) + (1− σ)εnj

+ ln(Ynµ) + (σ − 1) ln ξnj + (σ − 1)((1 + θ)(ln pjj + ln(σ − 1)/σ)− lnσ − (1− σ) lnPn − fj ,
(15)

where the fixed costs are assumed to consist of market and source fixed effects and a random com-

ponent: fj = exp(λn+λj−fnj), as in Helpman et al. (2008). The observed product characteristics,

including the indexes of high quality and large size, are incorporated in ln ξnj . We estimate the

system of these nonlinear equations (equation (14) and (15)) using FIML. The variables specific

to each region, such as Yn or Pn, are controlled by prefecture-specific effects, and the fixed cost is

decomposed into these regional-specific terms and a random component.

The source of selection bias is the fact that the error in the selection equation consists

of the error from the price differential equation and other disturbances in the selection equa-

tion. The conditional expectation of price differentials is expressed by: E[ln(pnj/pjj)| lnV ≥ 0] =

E[ln(Dγ1
nj exp(const1) + σ−1

pjjσ
Dγ2
nj exp(const2))| lnV ≥ 0] + E[εnj | lnV ≥ 0]. Because E[εnj | lnV ≥

0] = corr(ε, η) σεσηE[ηij | lnV ≥ 0] and ηnj = (1− σ)εnj + fnj , the error term in the price differential

equation is correlated with that in the selection equation. Supposing that the delivery probability

is expressed by Pr = Pr(lnV ≥ 0) and the predicted probability is P̂ r, then ˆlnV = Φ(P̂ r)−1,

where Φ is a standard normal distribution. We can express the bias term as an inverse Mills ratio:

E[ηnj | lnV ≥ 0] = E[ηnj |ηnj ≥ − ˆlnV ] = φ( ˆlnV )/Φ( ˆlnV ), where φ is the standard normal density

(Helpman et al. (2008), Johnson (2012), Kano et al. (2013)). By construction and as a result of

sample selection, these error terms are correlated, so we can capture the correlation by estimating

the correlation parameter ρ = corr(ε, η).

5.1. Distance elasticity of quality for the threshold producer

14



In the rest of this section, we discuss the interpretation of the estimating elasticity param-

eters. As discussed earlier, empirical studies generally show that there is a positive relationship

between the distance to market and the quality of goods, such that the model provides us with

the signs of the elasticity of quality with respect to the distance to markets. For the purpose of

discussion, let us begin by deriving the elasticity in the case of no specific costs for the threshold

producer. From the zero-profit condition, the threshold value of cost, a∗, is expressed by:

( σ
σ−1)1−σ(τnja

∗)1−σ

q1−σ
n

Y µ

σP 1−σ
n
− f = 0. (16)

By the implicit function theorem, we obtain the elasticity of costs with respect to distance from:

da∗Dnj

dDnja∗
=
γ1

θ
. (17)

Thus, the elasticity of threshold quality (q∗) with respect to distance is:

dq∗Dnj

dDnjq∗
=

(1 + θ)γ1

θ
. (18)

If trade cost is an increasing function of distance (γ1 > 0) and the speed of quality improvement is

relatively high (θ > 0), then this elasticity is positive.

In the presence of a specific type cost, the zero-profit condition is:

( σ
σ−1)1−σ(τnja

∗ + tnj)
1−σ

q1−σ
n

Ynµ

σP 1−σ
n
− f = 0. (19)

Similarly, by the implicit function theorem, the elasticity is:

da∗Dnj

dDnja∗
=

γ1D
γ1eε1 + γ2D

γ2eε2a∗−1

θDγ1eε1 + (1 + θ)Dγ2eε2a∗−1 . (20)

The sign of the above elasticity depends on not only γ1 and θ, but also γ2 and 1 + θ. As long as

γ2 > 0 and θ > −1, the elasticity will be positive, even if θ < 0. Thus, observations of a positive

link between quality and distance do not necessarily imply a high degree of quality improvement.

Indeed, even if the quality improvement rate is low, the demand force captured by the presence

of specific costs may account for the positive relationship. The presence of specific costs relaxes

the condition that quality improvements create a positive link between quality and the distance to

market.

We can illustrate this quality-sorting mechanism using the thresholds for distance, not

productivity. Let us define the zero-profit distance, D∗, given the productivity, a:

(D∗γ1a+D∗γ2)a−(1+θ) = (σ/(σ − 1))−1(σP 1−σf/µY )1/(1−σ).

If t = 0, the above condition turns out to be: D∗ = aθ/γ1(σ/(σ − 1))−1/γ1(σP 1−σf/µY )1/(1−σ)γ1 .

Hence, if θ > 0 and γ1 > 0, then the higher the cost (a large a) is, and the longer the zero-profit

distance (large D∗) is. If t 6= 0, then we obtain:

dD∗/da = −a−θ−1((−θ)D∗γ1 − (1 + θ)D∗γ2a−1)/(γ1D
∗γ1−1a1−θ + γ2D

∗γ2−1a−(1+θ).
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The denominator of this expression is positive. So, if the numerator is positive, then the higher a is,

the higher D∗ is. This is true even if θ < 0 as long as the second term in the numerator dominates

the first term. Therefore, it is profitable to supply high-quality products to distant markets, even

if the quality improvement rate is low.

6 Illustration of Bias

Before conducting the empirical analysis using actual data, we illustrate how trade cost data

appear depending on the data-generating processes. We create a linear economy geographically

sequentially separated into 47 regions on the integer line between 1 and 47. This linear economy

implies that the distance between regions i and j, dij , is equal to |j − i| with a minimum distance

of 1 and a maximum distance of 46.

To understand the idea behind the positive and negative relationships between the quality

of goods and the distance to markets, we generate the data using the model of both quality and

specific costs from the previous section and an only-quality model for a positive or negative quality

cost parameter (θ). We draw 4,700 (= 100× 47 prefectures) sets of Gaussian random variables for

the fixed and trade cost components, fij and εij , respectively, independently of their distributions.

The elasticities of trade costs with respect to distance are set to 0.5 for the ad valorem and specific

costs. The top panel of Figure 2 depicts the relationship between quality and distance when theta

is positive (θ = 0.5). As shown, both models create a positive relationship: the slope of the only-

quality model is 0.236, and that of the model with quality and specific costs is 0.315. The middle

panel plots the relationship between distance and quality for a large negative theta (θ = −0.5).

Both figures reveal a negative correlation: the slope of the only-quality model is -0.073, and that

of the quality and specific costs model is -0.008. Thus, low-quality (low-cost) products ship to

long-distance markets.

The most notable relationship is revealed in the bottom panel of Figure 2, which is generated

under a moderately negative theta (θ = −0.15). The left-hand-side figure is the model with

quality and specific costs and reveals a positive relationship (the slope is 0.216). In contrast, the

right-hand-side figure is the only-quality model and depicts a negative relationship (the slope is -

0.045). Hence, we observe a positive relationship between quality and distance when the underlining

data-generating process is from the model of quality and specific costs, even though the quality

improvement rate is not high. In this sense, the positive relationship between quality and distance

may result from either a strong (θ > 0) or moderate (θ = −0.15) quality improvement and the

presence of specific costs.

To explicitly demonstrate the estimation biases when there is a moderate quality improve-

ment (θ = −0.15) and specific trade costs, we conduct Monte Carlo experiments using the model

from the previous section to show that the estimates using a model without specific costs account

for the bias. We first generate artificial data using the model with both quality and specific costs.
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Figure 2: Quality and Distance to Market Relationship under Different θs

We then estimate the model without specific costs, followed by an estimation using the true model

with quality and specific costs. We assume that the shape of the demand function is common

across the regions and characterized by an elasticity of substitution parameter of 3.75. Because

we focus on estimates using a model with regional fixed effects, we characterize each region with

aggregate price and aggregate real expenditure, both of which we set to 20.00. For simplicity, we

ignore the cross-regional variations in productivity. We assume that in each region, a product is

produced with a productivity level equal to 0.99 and a factor cost set to one. Gaussian random

components appear in both the fixed and trade costs. In the fixed costs, the random term has

a standard deviation of 0.65. Idiosyncratic random variations in trade costs are captured by a

standard deviation of 0.25.

To validate the Monte Carlo experiment, we again draw 4,700 sets of fij and εij and then

calculate the price differentials and the selection equation under the hypothesized value of the

distance elasticity of trade costs, being 0.3 for the ad valorem trade cost and 0.5 for the specific

trade cost. In each Monte Carlo draw of the true value of the distance elasticity, we implement

our estimations of the distance elasticity. The first is the FIML estimation without specific costs

(an iceberg-type specification), and the second is the FIML with specific costs. By construction,

the FIML estimation without specific costs suffers misspecification bias. Because the ad valorem

component captures the trade cost associated with the specific component, there will be over
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bias in the distance elasticity of the ad valorem trade costs. Similarly, because the presence of

specific costs delivers high-quality goods to distant markets, the elasticity of quality with respect

to costs also captures this effect. If this quality elasticity is high, high-quality products are highly

profitable, and thus shipped to distant markets. With specific costs, the distance elasticity of

specific costs correctly estimates this Alchian–Allen effect. However, without specific costs, the

positive relationship between quality and the distance to market will be included in the quality

elasticity estimates.

Figure 3 depicts the non-parametrically smoothed densities of the distance and quality

elasticity estimates with the Gaussian kernel. The top panel corresponds to the model with specific

costs and the bottom panel to that without. The figures in the top panel show that the estimates

using the true model are consistent and distributed around the underlying true value: the median

value of γ1 is 0.277 and that of θ is -0.171. However, the figures in the bottom panel reveal that

the estimates using the model without specific costs are subject to severe over bias. As we have

argued, while the true ad valorem distance elasticity is 0.3, the median value of the estimates is

0.536. Similarly, while the true quality elasticity is -0.15, the median is 0.591. We calculate the

Bayesian Information Criterion (BIC) to evaluate the performance of the models. All BIC values

under the true model estimations are lower than the values under the model with quality only,

which suggests that the true model fits the data better than the quality-only model. Hence, the

Monte Carlo exercise confirms the necessity of incorporating a specific cost component for drawing

correct inferences on the distance and quality elasticities.

To allow for the situation where the quality-only model—and not the quality-specific cost

model—generates the real data, we now consider the case where the quality-only model is the true

model. Accordingly, we conduct a simulation where the data are generated by the model with

only quality and then estimate it using the quality-only and quality-specific cost models. If the

true data-generating process is from the quality-only model, there will be misspecification in the

model with quality and specific costs, and we would wrongly attribute the distance relationship

to the specific cost factor. To address this, we again calculate BIC under the quality-only model

estimations (in our exercise, this is the true model) and under the model with quality and specific

costs. We find that BIC under the quality-only model is lower than under the quality-specific cost

model for 89 percent of the Monte Carlo trials. Moreover, the distance elasticity of specific cost has

the wrong sign (it is negative). Accordingly, we are able to reveal if a model generates quality-only

real data using BIC calculations and by checking the signs of the estimated parameters.

7. Results: Relationship between Quality and Distance

In this section, we report our estimation results. To demonstrate the importance of incor-

porating both goods quality and specific costs, we conduct our estimations using several different

specifications: 1) structural estimation of a simple Melitz (2003) model, 2) structural estimation
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Figure 3: Kernel Densities of Estimators of Distance and Quality Elasticities

with a quality model (as in Baldwin and Harrigan (2011)), and 3) structural estimation of a firm-

heterogeneity model with quality and specific costs. To compare the results with those in the extant

literature, we begin by specifying no quality dimension and no specific costs.

Columns 1, 4, and 7 in Table 3 provide the results of a model without a quality dimension

for cabbage, c-cabbage, and lettuce, respectively. The important parameters are the elasticity

of substitution and the elasticity of transport cost with respect to distance. The substitution

parameters are 4.957, 4.138, and 3.355 for cabbage, c-cabbage, and lettuce, respectively. These

values are reasonable in the context of studies of individual product data. The distance elasticity

parameters are 0.227, 0.325, and 0.343 for cabbage, c-cabbage, and lettuce, respectively. These are

similar to the results in Kano et al. (2013). Thus, the distance effect is larger than that in the

literature using price data (Engel and Rogers (1996), Parsley and Wei (1996, 2001), Crucini et al.

(2010, 2015), and Atkin and Donaldson (2015)), and this may be because, unlike here, there is no

controlling of the sample selection problem.

We now introduce quality, as in Baldwin and Harrigan (2011). The results are in Columns

2, 5, and 8 in Table 3. As shown, the estimates of the distance effect (0.228, 0.325, and 0.345

for cabbage, c-cabbage, and lettuce, respectively) and the elasticity of substitution (4.966, 4.149,

and 3.363 for cabbage, c-cabbage, and lettuce, respectively) are almost identical to those without

quality. The quality parameters turn out to be marginally negative, which suggests that high-cost
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Cabbage Cabbage Cabbage C-cab C-cab C-cab Lettuce Lettuce Lettuce

Parameter No Q, No S Q, No S Q, S No Q, N S Q, N S Q, S N Q, N Ss Q, N S Q, S

γ1 0.227 0.228 0.162 0.325 0.325 0.255 0.343 0.345 0.273

(0.016) (0.002) (0.002) (0.003) (0.002) (0.003) (0.003) (0.003) (0.003)

γ2 0.516 0.629 0.556

(0.006) (0.007) (0.007)

θ -0.041 -0.192 -0.038 -0.213 -0.089 -0.249

(0.003) (0.005) (0.003) (0.004) (0.005) (0.006)

σ 4.957 4.966 5.226 4.138 4.149 4.377 3.355 3.363 3.526

(0.021) (0.023) (0.006) (0.02) (0.014) (0.016) (0.016) (0.016) (0.014)

ρ -0.84 -0.847 -0.85 -0.82 -0.826 -0.83 -0.859 -0.872 -0.875

(0.0023) (0.003) (0.003) (0.003) (0.001) (0.001) (0.003) (0.003) (0.003)

Num. of obs. 369343 369343 369343 241871 241871 241871 239703 239703 239703

Log-likelihood -21404.133 -21344.762 -20007.544 -21404.133 -21344.762 -13530.674 -22296.627 -22151.746 –21311.64

BIC 45538.815 45432.893 42809.734 31798.923 31740.91 29783.919 47132.622 46855.246 45224.584

“No Q, No S” is the model without quality and specific costs, “Q, No S” is the model with quality costs but without specific

costs, and “Q, S” is the model with quality and specific costs. The figures in parentheses are standard errors.

Table 4: Estimation Results

producers produce high-quality goods. However, the rate of increase of quality is slower than that

where high-cost producers deliver their products to distant markets. While the earlier reduced-form

regressions demonstrate a positive link between quality and distance, the results here imply that

this is not solely the result of quality sorting.

Finally, we estimate the model incorporating quality and specific costs. Columns 3, 6, and

9 detail the results. The distance effects for the ad valorem term are 0.162, 0.255, and 0.273 for

cabbage, c-cabbage, and lettuce, respectively, whereas those for the specific cost term are 0.516,

0.629, and 0.556, respectively. Hummels and Skiba (2004) use a specification that ad valorem trade

costs are only tariffs and that specific costs are distance-elastic trade costs. Our results are at

least qualitatively consistent with their specification. The reason why specific costs are larger than

those for ad valorem costs is partly that the major portion of regional trade costs in fact depend

on quantity, not the value of the product. Unlike international trade costs, there are no tariffs and

the amount (weight) and distance mainly determine the transport costs for vegetables.

The magnitude of the estimates of the quality parameter are also larger than before, being

−0.192, −0.213, and −0.249 for cabbage, c-cabbage, and lettuce, respectively. As mentioned, if

θ > 0, the model exhibits quality sorting. If −1 < θ < 0, then high-quality goods are produced by

high-cost firms, although the increase in quality is not as rapid as the increase in costs. Thus, a

positive θ is needed for quality selection without specific costs. However, as shown in Sections 5.1

and 6, the positive relationship between quality and distance may arise with specific costs, even

if θ < 0. Hence, when we combine the results for the distance effects with the negative values of

θ, we conclude that the presence of specific costs relaxes the quality-sorting condition: even if θ is

negative, high-quality goods can be shipped to high trade cost markets.

As we have seen, without taking specific costs into account, the technology parameter is

20



marginally negative. However, this is because the estimation of this parameter is biased without

specific costs. If θ is large, high-cost firms produce quite high-quality goods; thus, they ship

their products to costly distant markets. However, the reason why high-quality goods are shipped

to distant markets may be that consumers have relatively high demands for these goods in costly

transport cost markets. Thus, the omitted variable (the specific cost term) will cause the technology

parameter to capture the positive link between distance and quality. Once we control for specific

costs, we can identify the true technology parameter. In fact, high costs produce high-quality

goods. However, this effect is not strong enough on its own account to counter the quality-sorting

mechanism in our sample.

Two important parameters other than distance elasticity and technical parameters are the

elasticity of substitution and the correlation parameter of the error terms. The elasticity parameters

have values of 5.226, 4.377, and 3.526, for cabbage, c-cabbage, and lettuce, respectively, which are

reasonable enough when using micro data. The absolute values of the correlation parameters are all

more than 0.8, suggesting strong correlations. Thus, sample selection may invoke a serious problem

for biased estimates.

With regard to the model fit, we calculate the BIC for each model. As shown at the bottom

of Table 3, the BIC in the model with quality and specific costs is always lowest. As shown in Section

4, it is then unlikely that the data-generating process is a quality-only model. Hence, we conclude

that the quality-specific cost models reveal the true mechanism underlining the interregional trade

behavior.

8. Robustness Checks

The relationship between quality and distance may also depend on the choice of distance

measure. If the quality and distance relationship is sensitive to the measure of distance, our results

may not be considered robust. Thus, we specify a different measure of the distance between regions

as a robustness check.

In the main analysis, our measure is direct distance. This may differ from actual road

distance, which could be a better proxy for transport costs. For example, Ehime Prefecture (the

author’s home prefecture) is 666.1 km from Tokyo by direct distance. However, because prefectures

are located on different islands, the actual shipping distance is much longer. In fact, the road

distance between Ehime and Tokyo is 853.1 km. Thus, direct distance may cause an over bias

in the distance effect. The fact that the distance effect is large may be simply because the actual

distance is in fact longer, so each kilometer does not impose a significant burden on suppliers. While

other transport modes are available (e.g., air), the most relevant type of transport in our analysis

is by truck. Thus, we use the road distance data between major stations in the cities of prefectural

head offices calculated in Tsukui and Nakamura (2009). Primarily, the distance for the route uses

only regular roads. However, where this is not possible, highways are included. In addition, if there
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is no bridge between the two prefectures, the ferry distance is included. We retrieved the data in

2009, so they fairly reflect the transportation environment in 2007.

Columns 2, 5, and 8 in Table 4 report the estimation results using this alternative distance

measure. For the most part, and as expected, the effect of distance here is smaller than that

previously found. However, the sizes of the estimates are similar to those using direct distance.

Thus, the choice of direct or road distance does not represent a serious source of bias in our

estimations.

Cab Cab Cab C-cab C-cab C-cab Lettuce Lettuce Lettuce

Parameter Road dist HM dist HS spec Road dist HM dist HS spec Road dist HM dist HS spec

γ1 0.143 0.224 0.147 0.229 0.358 0.253 0.253 0.346 0.254

(0.002) (0.003) (0.002) (0.003) (0.004) (0.004) (0.003) (0.004) (0.004)

γ2 0.511 0.623 0.463 0.602 0.746 0.638 0.539 0.64 0.561

(0.006) (0.008) (0.009) (0.006) (0.008) (0.014) (0.008) (0.011) (0.01)

θ -0.204 -0.153 -0.174 -0.225 -0.169 -0.21 -0.26 -0.212 -0.201

(0.005) (0.004) (0.004) (0.005) (0.004) (0.005) (0.006) (0.005) (0.005)

σ 5.23 5.093 5.249 4.406 4.262 4.38 3.543 3.466 3.506

(0.023) (0.021) (0.021) (0.016) (0.017) (0.021) (0.015) (0.016) (0.015)

β 0.318 0.002 0.423

(0.02) (0.003) (0.018)

ρ -0.849 -0.84 -0.846 -0.831 -0.823 -0.829 -0.876 -0.87 -0.871

(0.003) (0.003) (0.002) (0.002) (0.002) (0.003) (0.003) (0.003) (0.003)

Num. of obs. 369343 369343 369343 241871 241871 241871 239703 239703 239703

Log-likelihood -19137.024 -23108.713 -20015.983 -13068.583 -15862.707 -13532.449 -20723.304 -23451.615 -21483.46

“Road dist” uses road distance instead of the great circle distance, “HM dist” uses the Head–Mayer measure of internal

distance, and “HS spec” is the model employing the Hummels–Skiba specification. The figures in parentheses are standard

errors.

Table 5: Estimation Results

With regard to the distance measure, as discussed in the literature, the choice of internal

distance may also be important. We now employ the Head–Mayer measure of internal distance:

Djj = 0.376×
√
area, in which area is the geographic area of the prefecture. Figure 3 depicts the

same relationship as Figure 1, which is the correlation between the origin price and the distance

to market. The results show that the parameter estimates are qualitatively similar to our simple

measure of internal distance used previously. Again, there is a positive relationship, as depicted by

the solid line in Figure 1. Hence, our results are robust to the choice of internal distance measure.

Finally, we adopt a similar specification for the trade cost function as in Hummels and

Skiba (2004), in which specific costs increase according to product value (tnj = pβjjD
γ2
nj). Because

transport costs can be high for high-value goods, the log of the trade cost expression will be:

ln(pnj/pjj) = ln(τnj + tij/a) = ln(Dγ1
nj + pβjjD

γ2
nj/a) + const+ εnj . (21)

If β < 1, then the specific transport cost increases as the value of the goods increases, but at

a slower rate. This again confirms the Alchian–Allen effect. Columns 4, 7, and 10 in Table 4

report the results of the Hummels and Skiba (2004) specification. The parameter values for the
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Figure 4: Logs of Distance and Source Price Relationship (Head–Mayer Internal Distance Measure)
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distance elasticity and the elasticity of substitution are similar to those for the earlier estimations.

The Hummels–Skiba parameters, β, are 0.318 and 0.423 for cabbage and lettuce, respectively.

Hence, our results are also consistent with those of the Alchian–Allen effect. For c-cabbage, the

Hummels–Skiba parameter is 0.002 and is not significant. Hence, our original specification may

be the appropriate representation of the specific cost term. One remark is worth mentioning.

While our estimates reveal large distance effects, these may in fact be the lower bounds of the

distance elasticity. This is because we exclude price data, as there is no information available for

local delivery. Because of this, we cannot calculate the price differentials between the origin and

destination. This means that price differential data associated with long distances to market are

not included in our analysis, which under biases the distance effect. Consequently, the direction of

bias may not actually weaken our estimation results.

9. Policy Evaluation

How significant is the impact of policies reducing trade costs? To investigate quantitatively

the gains from a trade cost reduction, we conduct Monte Carlo exercises using a three-region version

of the model. To evaluate the welfare gains, we need to calculate the price indexes numerically.

However, this involves some difficulty in the convergence of a model including all 47 regions. For-

tunately, as our focus is an illustration of the magnitude of welfare gains, not the replication of

the overall Japanese regional gains, we create a single core region located in the middle and two

peripheral regions.

We set up Monte Carlo exercises using the program developed by Irarrazabal et al. (2015)

and available via the website for Khandelwal et al. (2013). We assume that the numeraire sector

produces one unit of goods from each unit of labor input and it is freely traded interregionally. The

threshold value of production costs is given by equation (19). In the presence of specific costs, there

is no closed-form expression for the price index, as in Irarrazabal et al. (2015), so we approximate

it numerically in the following manner:

P 1−σ =
∑
i

∫ ∞
z∗

(p/q)1−σh(z), (22)

where z = 1/a and
∫∞
z∗ (p/q)1−σh(z) = mean(p1−σ|z∗ < z)×#(z∗ < z)/R. Under restricted entry,

firms earn positive profits. We assume as in Chaney (2008) and Irarrazabal et al. (2015) that

profit is distributed through a global (national in our framework) fund to consumers. Dividends

per share are assumed to be π = Π/
∑
Li, where Π is national profits. Because the number of

entrants depends on the threshold value z∗, π is also a function of z∗. Hence, we approximate P

and π using the definition of the threshold value, z∗, and solving the system of equation (22) and

the π equation.

In our model, the unit distance is set to 1.5, so the closest region is 3 and the furthest is 4.5.

From our estimation, we use the elasticity for the ad valorem cost, which is 0.2, and that for the
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specific cost, which is 0.6. Then, the ad valorem cost for shipping is 24.6 percent to the next region

and 35.1 percent to the farthest region. Because the specific trade cost t is 1.933 and 2.466 and the

average price is 2.775 and 3.1 for nearby and distant market delivery, respectively, the ad valorem

equivalent rate (t/p) is 69.7 percent for the closest region and 79.6 percent for delivery from one

peripheral region to the other. We conduct 250 exercises and calculate the average welfare gains by

comparing real income across three transition scenarios: 1) the friction to the no-ad valorem cost

case, 2) the friction to the no-specific cost case, and 3) the friction to the zero friction case.

Table 5 details the average welfare gains as denoted by the percentage increase in each

scenario. The first row reveals that the removal of ad valorem costs increases welfare, but only

slightly. By contrast, and as shown in the second row, the reduction in specific costs, which

includes a large proportion of trade costs, has a large impact, being 23 percent for the core region

and 20 percent for the peripheral regions. Finally, the third row shows that the removal of all trade

costs increases welfare by approximately 30 percent in this economy. As expected, when the impact

of specific cost removal is large, the magnitude is substantial. Our Monte Carlo experiment thus

suggests that specific trade costs are a more severe obstacle to trade than are ad valorem costs, as

also shown in Irarrazabal et al. (2015).

Welfare gains (% increase) Core Periphery

Friction to no-ad valorem costs 0.12% 0.13%

Friction to no-specific costs 23.289% 19.927%

Friction to no-friction 29.746% 30.522%

Size of the trade costs

τ 1.246 1.351

t/p(ad valorem equivalent) 0.697 0.796

Table 6: Average Welfare Gains

We should treat the results obtained with caution for two reasons. The first is that this

counterfactual exercise draws on estimated parameters using agricultural product data. The dis-

tance elasticities for vegetables used here may be larger than are those for manufactured products.

Large welfare gains depend on large distance elasticity, so our results can be maximum gains from

reducing trade costs. The second reason is that we use a simple three-region model, where the

geographical nature is also simplified. Thus, the results are more illustrative than quantitatively

rigorous.

10. Concluding Remarks

The trade literature uses the iceberg-type trade (or transport) cost function. Under this

specification, quality sorting is a mechanism thought to represent quality and the distance to

markets. However, it is important to incorporate specific costs in this specification because of the
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presence of the well-known Alchian–Allen effect. Our study thus attempts to identify the structural

parameters of the quality heterogeneity model with these characteristics.

The main empirical test in the literature is the regression of FOB prices (unit values) on

distance. Our study extends this analysis using a structural model to reveal whether it is the

quality-sorting effect or the Alchian–Allen effect (or both) that drives the relationship between

quality and distance. We also estimate the technical parameter that connects cost and quality

and take into account selection bias associated with the choice of product delivery. The main

findings indicate that specific costs are more distance elastic than are ad valorem costs, and that

the presence of specific costs is the key element in the typical empirical observation of a positive

link between quality and distance.

While our study reveals the importance of specific costs, further work is required. For exam-

ple, we adopt a CES preference. However, pricing behavior also depends on market competitiveness

and the levels of market income (e.g., Lugovskyy and Skiba (2015)). In addition, because firms

may not pass the increase in production costs on to market prices, the estimation of the distance

effect may be biased. Thus, to fully appreciate the effect of distance, we need to incorporate more

general preferences (or demand structures), such as those considered in Arkolakis et al. (2015).

Further research in this area is therefore required.
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