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Abstract. Knowledge of metabolic costs associated with maintenance, foraging, activity and growth under natural
conditions is important for understanding fish behaviours and the bioenergetic consequences of a changing environment.

Fish performance in the wild and within a complex environment can be investigated by analysing individual-level field
metabolic rate and, at present, the natural stable carbon isotope tracer in otoliths offers the possibility to reconstruct field
metabolic rate. The isotopic composition of carbon in fish otoliths is linked to oxygen consumption through metabolic
oxidation of dietary carbon. The proportion of metabolically derived carbon can be estimated with knowledge of d13C

values of diet and dissolved inorganic carbon in the water. Over the past 10 years, new techniques to study fish ecology
have been developed, and these can be used to strengthen the application of otolith d13C values as ametabolic proxy. Here,
we illustrate the great potential of the otolith d13C metabolic proxy in combination with other valuable and well-

established approaches. The novel approach of the otolith d13C metabolic proxy allows us to track the effects of
ontogenetic and environmental drivers on individual fish physiology, and removes a major obstacle to understanding and
predicting the performance of free-ranging wild fish.
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Introduction

Metabolic rate is a proxy of the energy used by individual ani-
mals and provides a physiological perspective to interpret

behavioural ecology. Laboratory-based measurement of fish
standard and maximum metabolic rate (SMR and MMR
respectively) is a common approach to investigating fish phys-
iology in response to environmental changes (Killen et al. 2007,

2010; Chabot et al. 2016; Metcalfe et al. 2016), but has limited
value for explaining fish behaviours in the field. The relevant
trait to measure is the field metabolic rate (FMR). Unfortu-

nately, FMR is challenging to measure with conventional
methods for estimating metabolic rates in free-living fish
(Treberg et al. 2016). A method of in situ oxygen consumption

measurement termed field-based respirometry has been tried to
investigate the metabolic rate and swimming activity of wild
fish in natural environment (Bailey et al. 2002; Farrell et al.
2003). However, the methods do not allow for monitoring

realistic energy demands of, for example, prey–predator inter-
actions or recording a time-integrated total metabolic rate in
a wild individual. The stable carbon isotope composition of

otolith aragonite (expressed as d13Coto values) may provide an

answer to this problem. d13Coto values have been studied for
decades and show potential as a metabolic proxy because the
carbon used to precipitate otolith aragonite is drawn from both

metabolic (dietary) and ambient water sources. Therefore, the
isotopic composition of carbon in otolith aragonite is a weighted
average between the isotope compositions of metabolic carbon
released from respiration and the dissolved inorganic carbon

from ambient water (Kalish 1991a, 1991b; Iacumin et al. 1992;
Gauldie et al. 1994; Gauldie 1996; Thorrold et al. 1997;Wurster
and Patterson 2003; Wurster et al. 2005; Solomon et al. 2006;

Dufour et al. 2007; Tohse and Mugiya 2008). However, despite
a clear theoretical basis backed up by consistent observational
data, relating variations in d13Coto values directly to alternative

measurements of metabolic rate have proven challenging, partly
due to the difficulty of estimating FMR in aquatic organisms.
Over the past 10 years, new knowledge and enhanced analytical
techniques have been developed, and the potential for using

d13Coto values as a metabolic proxy should be updated.
This short paper briefly overviews the use of d13Coto values in
relation to metabolism and illustrates a way forward to improve

the methodology, and thereby provide fish ecologists and
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physiologists with a strong tool to explore some of the current
challenges in fish and fisheries ecology. First, we outline the

mechanism underpinning carbon incorporation into otolith
aragonite and describe analytical approaches to quantify the
otolith metabolic proxy. Second, we summarise efforts to

describe the relationship between the otolith metabolic proxy
and oxygen consumption. Finally, we show the great potential of
using otolith metabolic proxy in combination with other otolith-

based analyses to answer physiological questions.

d13Coto metabolic proxy expressed as a two-component
mixing model

Previously, d13Coto values have often been used as natural tracers
for differences in water or diet source between or within indivi-

duals (Nonogaki et al. 2006; Ashford and Jones 2007; Schloesser
et al. 2009; Elsdon et al. 2010; von Biela et al. 2015; Fraile et al.
2016) to answer various fishery and ecological questions, such as

stock identification (Gao and Beamish 1999; Gao et al. 2001;
Bastow et al. 2002; Correia et al. 2011; Shen and Gao 2012) and
fish movements andmigration (Augley et al. 2007; Kimirei et al.
2013; Currey et al. 2014; Javor and Dorval 2014; Gerard et al.

2015). Other applications have associated d13Coto values with
metabolic rate to reveal variation in fish physiological perfor-
mance and the factors affecting it (Wurster and Patterson 2003;

Wurster et al. 2005; Shephard et al. 2007; Hanson et al. 2013).
However, we need to carefully evaluate the drivers behind var-
iation in d13C values of dissolved inorganic carbon (DIC) in the

water (d13CDIC) and d
13C values of the diet (d13Cdiet) in order to

use d13Coto as an accurate estimate of fish FMR.
The d13Coto value is the weighted average of the isotopic

composition of carbon in two main carbon sources, DIC and
diet, which are typically very distinct (,1 and �16% respec-
tively; Sherwood and Rose 2005; Tagliabue and Bopp 2008).
Therefore, the d13Coto value can be described as the outcome of a

two-component mixing model (Schwarcz et al. 1998; Solomon
et al. 2006):

d13Coto ¼ Moto � d13Cdiet þ ð1�MotoÞ � d13CDIC þ etotal
ð1Þ

where Moto is the proportion of metabolically derived carbon

(from the diet) in otolith carbonate and etotal is the total net
isotopic fractionation during carbon exchange between DIC and
blood, as well as between the blood and endolymph in which the

otolith is formed. DIC uptake is primarily across the gut and gills
(Solomon et al. 2006). In contrast, metabolic carbon is released
into the blood through the respiration and oxidisation processes,

and the rate of oxidation of dietary carbon by definition reflects
metabolic rate. Therefore, the weighted average of the isotopic
values between DIC and diet is controlled by fish metabolism,

and Moto is viewed and named as a metabolic proxy in the
following discussion. Belowwe review sources of uncertainty in
evaluating Eqn 1 and therefore Moto values.

d13CDIC values

d13CDIC values vary between water masses, geographic locations
and time, influenced by the release of carbon from the litho-
sphere, carbon flux exchange within the atmosphere and

respiration and photosynthesis from the biosphere. Fresh waters
have awide range of d13CDIC values among rivers and lakes (for a

review, see Bade et al. 2004). For example, d13CDIC values range
from �16 to �8% in the Ottawa River basin (Canada; Telmer
andVeizer 1999) and from2.6 to�31% among 104 lakes on four

different continents (for details, see Bade et al. 2004). The vari-
ation of freshwater d13CDIC values is strongly dependent on
geological chemistry, water metabolism and biogeochemical

process. By contrast, d13CDIC values are relatively constant in
marine systems, with values that generally vary between 0 and
3% on the horizontal spatial scale, and ,1% in the vertical
gradient (Kroopnick 1985; Tagliabue andBopp 2008; Schmittner

et al. 2013; Becker et al. 2016). In addition to spatial variations,
temporal differences in the d13CDIC values, such as seasonal or
annual changes, have been noticed. In areas with strong phyto-

plankton booms, rates of removal of CO2 from DIC may exceed
diffusion rates of atmospheric CO2 into surface waters, and
preferential uptake of 12C into algal cells can cause a temporary

increase in d13CDIC values. Over the past 100 years, oceanic
d13CDIC values have declined continuously because anthropo-
genic carbon decreases the oceanic d13CDIC values by CO2

exchanges between the atmosphere and the ocean. This has been

termed the Suess effect and, interestingly, the Suess effect has
been recorded in otoliths from Atlantic bluefin tuna (Fraile et al.
2016). According to a recent biogeochemical model, the oceanic

d13CDIC value decreased 0.07% per decade from 1860 to 2000,
whereas in the recent period from 1970 to 2000 it decreased at a
rate of �0.18% per decade (Tagliabue and Bopp 2008). The

decreasing rate speeds up with time. If we want to use d13Coto

metabolic proxy to compare fish metabolism between decades
with an assumed d13CDIC value but without calibrating the Suess

effect, it will overestimate the metabolic rate of fish caught in a
recent year. Therefore, we suggest using a model calibration to
predict d13CDIC values or reconstructing d13CDIC values with
given oceanographic parameters for the specific year.

It is possible to acquire d13CDIC values from the direct
measurement of water samples, but it is not always feasible,
particularly where studies are based on historical otolith collec-

tions or from remote oceanic locations. Nevertheless, there are
several ways to acquire d13CDIC values through modelling
predictions. d13CDIC values can be predicted with a given value

of apparent oxygen utilisation (AOU) in the world’s ocean
(Kroopnick 1985), and Filipsson et al. (2017) presented a
regional relationship between d13CDIC values and AOU with
salinity revision in the Baltic–Skagerrak region at water depths

below the halocline:

d13CDIC ¼ 0:032� S � 0:01� AOU � 0:12 ð2Þ

where S is salinity and AOU is measured in micromoles per
kilogram. In addition, a regional multiple linear regression

model predicting d13CDIC values from salinity, temperature
and DIC concentrations was used by Becker et al. (2016) to
model d13CDIC values at a depth of more than 1500 m in the

North Atlantic Ocean:

d13CDIC ¼ �16:9þ 0:80� S � 0:080�Y� 0:0045� DIC

ð3Þ
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where Q is potential temperature (8C) and DIC is measured in
micromoles per kilogram. d13CDIC values can also be extracted

from interpolated spatial models (McMahon et al. 2013) or
biogeochemical models (Tagliabue and Bopp 2008; Schmittner
et al. 2013). Biogeochemical models take into account both the

spatial and temporal factors and yield a global pattern that is
necessary for studies on large-scale fish migration and
movement.

d13Cdiet values

Distinguishing and measuring the isotopic values of metaboli-
cally derived carbon from DIC in blood and endolymph is diffi-
cult. Hence, using the d13C values in various tissues, such as
muscle, liver and heart, is an alternative approach to estimating

the d13C values of metabolically derived carbon, d13Cdiet. Tissue
d13C values represent aweekly tomonthly average of diet signals,
depending on the tissue turnover rates among species, the types of

tissue and diet preferences (Ankjærø et al. 2012). Isotopic
enrichment from diets to tissues is also influenced by various
biological and environmental factors, such as growth rate,

metabolism and temperature, with typical isotopic offsets
between diet and muscle tissue ranging from �1.75 to 3.7%
(Sweeting et al. 2007). Post (2002) reported an average value of

0.4% in carbon isotope enrichment, but Sweeting et al. (2007)
suggested out that 1.5% is a more appropriate value. These
reported values are species averages, but in reality tissue–diet
isotopic spacing is a dynamic variable rather than a fixed trait,

varying within and among individuals and species depending on
physiological status, life history traits and feeding histories.
Despite the variation found between species and studies, muscle

d13C values provide a reasonable approximation of d13Cdiet in the
Moto estimation, because a 1% variation of d13Cdiet values only
contributes a maximum of,0.005 to the uncertainty in theMoto

term (see details in the following sections). A drawback of using
soft tissue is that individual trophic history cannot be recon-
structed from these tissues because their d13C values are contin-
uously changing due to variable diet and theirmetabolic turnover.

d13C values recorded in otolith organic matters have been
recently used to indicate diet signals and trophic information in
wild fish (Sirot et al. 2017). Compared with muscle tissue,

otolith organic materials have the advantage that their d13C
values appear close to those of the diet (i.e. show little trophic
enrichment; Grønkjær et al. 2013). Moreover, otoliths grow

continuously and record ontogenetic information and, in theory,
if we can extract the organic materials from otolith aragonite
formed at different periods or life stages of an individual, it

would be possible to reconstruct that individual’s trophic
history. This would allow estimates of FMR through the life
of a single individual. However, the proportion of organic
material in otoliths is extremely small (,10%), and analysis

of individual trophic history is at present only feasible with fish
species possessing large otoliths.

The etotal term

Physiology controls carbon isotope incorporation into otoliths
and it directly affects the isotopic fractionation factor, etotal.
There are three different settings of etotal that have been used in
previous studies. Schwarcz et al. (1998) used a value of 2, which

was based on the findings of carbon isotope enrichment from
ambient fluids (HCO3

�) to biogenic aragonite carbonates at 58C
(Grossman and Ku 1986). Høie et al. (2003) and Wurster and
Patterson (2003) adopted a value of 2.7, which was derived from
the inorganic precipitation of aragonite carbonate where the

enrichment factor was temperature independent (Romanek et al.
1992). Solomon et al. (2006) used rainbow trout (Oncorhynchus
mykiss) and conducted a controlled laboratory experiment with
13C-enriched diets and a 13C bicarbonate spike in water, finding
that etotal was slightly negative (�1.8), but not significantly
different from zero. The determination of etotal is still unresolved
and remains a source of uncertainty in Moto measurements

(Dufour et al. 2007). Further research is needed to investigate
the specific etotal values among species and minimise the bias of
Moto estimations.

Moto estimations

Two notable studies have conducted controlled laboratory

experiments to estimate the proportion of metabolic carbon in
fish otoliths. Solomon et al. (2006) reared juvenile rainbow trout
(O. mykiss) in water with different d13CDIC values and fed them
food with different d13Cdiet values, and reported aMoto value of

0.17. Tohse and Mugiya (2008) used the isotope labelling
technique on goldfish (Carassius auratus) to estimate the pro-
portion of metabolically derived carbon, which they found to

account for 25% of overall otolith carbon composition (Moto

value of 0.25). The percentage of metabolically derived carbon
was higher (28%; Moto value of 0.28) during the day and lower

(13–20%; Moto value of 0.13–0.20) during the night. In most
other previous studies, Moto values estimated from the two-
component mixing model fell in the range 0–0.5 (Table 1). High

values over 0.5 suggested by Wurster and Patterson (2003) and
Hanson et al. (2013) reflect consideration of a range of possible
d13CDIC and d13Cdiet values and associated the uncertainty in
Moto estimations.

Uncertainty in the d13CDIC and d13Cdiet values determine the
precision of Moto estimations. As an example, we performed a
sensitivity test considering the effect on estimates ofMoto rising

from the sources of variation in Eqn 1.
We calculatedMoto values corresponding to simulated values

of d13Coto ranging between 0 and �6%. We allowed d13CDIC

values to vary by 1%, capturing the likely uncertainty in most
marine applications (Kroopnick 1985; Tagliabue and Bopp 2008;
Schmittner et al. 2013; Becker et al. 2016). We varied d13Cdiet

values in a range from �16 to �22%, reflecting typical isotope

values of dietary items for benthic to pelagic fish species in
temperate latitudes. The etotal term was assumed to be 0 based on
the observations by Solomon et al. (2006). Varying the d13CDIC

term across a range of 1% resulted in Moto values ranging
between ,0.05 and 0.35, depending on the d13Cdiet and d13Coto

values used in the calculation (Fig. 1a). The s.d. of theMoto term

varied between 0.01 and 0.02, and systematically changed with
d13Coto and d13Cdiet values. This suggests variation in the preci-
sion of Moto within the fish functional groups. Fish with more

positive d13Cdiet values, such as benthic fishes, usually also have
higher d13Coto values (Sherwood and Rose 2003). Higher d

13Coto

values mean that the difference between d13Coto and d13CDIC

values is smaller, and therefore the uncertainty associated with

the Moto term will increase. This is seen in our sensitivity tests,
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because benthic fish have a systematically higher uncertainty (s.d.)
in the Moto estimations than pelagic fish (with more negative

d13Cdiet and d13Coto values; Fig. 1b). Therefore, uncertainty in
d13CDIC values contributes more to estimated Moto values of
benthic or low metabolic rate fishes than to pelagic or higher
metabolic rate fishes.

Similarly, we conducted sensitivity tests on the effect of
d13Cdiet uncertainty, which was set as a 1% variation between
�18 and�19%. d13CDIC values were set to range between 0 and

3%, which basically covers d13CDIC values in the surface ocean
around the world (Tagliabue and Bopp 2008). d13Coto values
ranged from 0 to �6%. As expected, higher Moto values were

accompanied by a higher uncertainty (Fig. 1c, d ). However,
compared with DIC, a smaller s.d. was observed from the diet
sensitivity test even with the same setting of 1% variation. The
range of d13Cdiet values is comparable to those commonly seen

in temperate and subtropical marine environments, but in
coastal or freshwater ecosystems the uncertainty will be ampli-
fied according to a wider range of d13C baseline changes.

Moreover, higher uncertainty is expected in the migratory
species with habitat changes (d13CDIC variation), especially if

these habitat changes infer diet shifts (d13Cdiet variation).
To deal with the variation in both d13CDIC and d13Cdiet

values, as well as uncertainty in etotal, a Bayesian framework
for isotopic mixing models offers an attractive statistical solu-

tion. This method provides the likelihood of a given Moto term
determined using Bayesian methods and considering the uncer-
tainty of the two sources in terms of d13CDIC and d13Cdiet

variations. It also facilitates comparing metabolic performance
(Moto term) between fish populations, and is easy to conduct
within the well-established R software package MixSIAR (see

https://github.com/brianstock/MixSIAR, accessed 21 March
2019; Stock et al. 2018).

Relationship between Moto and oxygen consumption

Although a d13Cotometabolic proxy corresponding to fish mass-
specific metabolism has been described (Dufour et al. 2007;
Trueman et al. 2013, 2016; Chung 2015), there are limited

Table 1. Estimations of the proportion of metabolically derived carbon (Moto) in the literature

Information before 2006 is extracted from table 2 in Solomon et al. (2006)

Source Species Type System Moto value

Radtke (1984) Mugil cephalus Experimental Marine .0

Kalish (1991a) Various species Observational Marine .0

Kalish (1991b) Arripis trutta Experimental Marine 0.317–0.349

Thorrold et al. (1997) Micropogonias undulatus Experimental Marine .0

Schwarcz et al. (1998) Gadus morhua Observational Marine 0.07–0.43

Weidman and Millner (2000) Gadus morhua Observational Marine 0.2

Guiguer et al. (2003) Salvelinus alpinus Experimental Freshwater 0.067

Oncorhynchus mykiss 0.014

Høie et al. (2003) Gadus morhua Experimental Marine 0.28, 0.32

Wurster and Patterson (2003) Aplodinotus grunniens Observational Freshwater ,0.95A

Wurster et al. (2005) Oncorhynchus tshawytscha Observational Freshwater 0.24–0.44

Solomon et al. (2006) Oncorhynchus mykiss Experimental Freshwater 0.17

Dufour et al. (2007) Coregonus lavaretus Observational Freshwater ,0.56B

Weidel et al. (2007) Lepomis macrochirus Observational Freshwater 0.35, 0.45

Tohse and Mugiya (2008) Carassius auratus Experimental Freshwater 0.25

Elsdon et al. (2010) Fundulus heteroclitus Experimental Coastal area 0.297–0.369

Nelson et al. (2011) Sciaenops ocellatus Experimental Marine 0.08, 0.15

Hanson et al. (2013) Salmo salar Observational Anadromous species 0.04–0.81C

Trueman et al. (2013) Hoplostethus atlanticus Observational Deep sea 0.06–0.19

Chung (2015) Alepocephalus bairdii Observational Deep sea 0.125–0.349

Antimora rostrata

Coryphaenoides rupestris

Spectrunculus grandis

Gerdeaux and Dufour (2015) Coregonus lavaretus Observational Freshwater 0.1–0.35

Salvelinus alpinus

Esox lucius

Perca fluviatilis

Rutilus rutilus

Tinca tinca

Trueman et al. (2016) 30 deep-sea fish species Observational Deep sea ,,0.3

Martino et al. (2019) Chrysophrys auratus Experimental Marine 0.21–0.28

AFossil otoliths; the variation inMoto values was evaluated by possible changes in d
13C values of dissolved inorganic carbon (DIC) in the water (d13CDIC) and

d13C values of the diet (d13Cdiet).
BThe variation in Moto values was evaluated by different fractionation factors.
CThe variation inMoto valueswas evaluated by possible changes in d

13CDIC and d
13Cdiet values; theMoto value of themarine life stage in S. salar is 0.033–0.048.
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studies describing the scaling ofMoto values with mass-specific

oxygen consumption. Here, we introduce a standard bioener-
getics model to evaluate the likely relationship between Moto

values and oxygen consumption. The model allocates energy

intake into three compartments: metabolism, growth and waste
(Treberg et al. 2016; Deslauriers et al. 2017):

Consumption ¼ Metabolismþ GrowthþWaste ð4Þ

Metabolism ¼ SMRþ Activityþ SDA ð5Þ

where SDA is specific dynamic action. SMR can be predicted by

measuring experienced temperature and body mass of the fish
according to the metabolic theory of ecology (MTE; Brown
et al. 2004):

SMR ¼ B0 � BMa � e
� 0:65

8:62�10�5ð Þ�T ð6Þ

where the B0 is the normalised constant, BM is the body mass
and T is temperature in kelvin; a is the allometric scaling
exponent of body mass, which follows the three-quarters power

law in MTE (as �0.25 for mass-specific metabolism; Brown
et al. 2004) but was found to be 0.79 for teleost fishes (Clarke
and Johnston 1999; Clarke 2006).

For wild-caught fishes, experienced temperature can be

estimated from otolith d18O values (e.g. Shirai et al. 2018 and
references therein). Second, otolith increment analysis provides
a chronological record of body mass. A lifelong history of body

mass can be reconstructed from von Bertalanffy growth curves
with given age inferred by the otolith increment numbers.
Otherwise, it is possible to back-calculate fish body mass from
fish length, obtained from otolith back-calculations (Campana

1990). Using these methods, several previous studies present
expected relationships between d13Coto or Moto values and
temperature (Kalish 1991a; Høie et al. 2004a; Gao et al.

2010) and body mass (Trueman et al. 2013; Chung 2015).
TheMoto value is regarded as a proxy of FMR, corresponding

to the sum of SMR, activity and SDA. To examine the relation-

ship, we obtainedMoto values as well as fish length data and the
otolith d18O values of Atlantic cod (Gadus morhua) extracted
from Jamieson (2001) and Jamieson et al. (2004). Fish lengths

and otolith d18O values were used to reconstruct body mass and
experienced temperature of fish, which are critical for metabolic
rate estimations (Table 2). The three metabolic compartments
(i.e. SMR, activity and SDA) are estimated theoretically with the

body mass and temperature by Fish Bioenergetics (ver. 4.0, see
http://fishbioenergetics.org, accessed 21March 2019), a package
in R programming software (Deslauriers et al. 2017). The

metabolic rate of the sum of the three metabolic compartments
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Fig. 1. Sensitivity tests on the proportion ofmetabolically derived carbon (Moto) estimations by1% variations in

(a, b) d13C values of dissolved inorganic carbon (DIC) in the water (d13CDIC) and (c, d) d13C values of the diet

(d13Cdiet). Themean (a, c) and s.d. (b, d) of theMoto termwere estimated using 1000MonteCarlo simulations. The

1% variation of d13CDIC is set from 0 to,1% and, each run, a d13CDIC value is randomly chosen from a uniform

distribution U[0,1]. One thousand d13CDIC vectors were produced, and each d
13CDIC vector was used to estimate

Moto with a given value of d13Cdiet and d13Coto (d
13C values of otoliths). As a result, 1000 values of Moto were

generated and calculated as a mean and s.d. (a, b) Across a range from 0 to �6% for d13Coto and from �16 to

�22% for d13Cdiet, we produced a contour plot with a resolution of 100� 100 grids forMotomean (a) and s.d. (b).

Similarly, d13Cdiet was set from �18 to �19% for uniform distribution U[�18,�19]. We followed the same

procedure of simulation to estimateMoto values and make contour plots showing the mean (c) and s.d. (d) with a

resolution of 100 � 100 grids across a range from 0 to �6% for d13Coto and from 0 to 3% for d13CDIC.
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is expressed as the mass-specific oxygen consumption rate. The
Moto term increased significantly with mass-specific oxygen

consumption (Fig. 2). Our regression trend indicated a positive
and linear relationship between the Moto term and oxygen
consumption, but gave an unrealistic Moto value (0.20) when
the oxygen consumption was close to zero (Fig. 2). Considering

that the Moto term is constrained by both upper (,0.5) (Table 1)
and lower boundaries (0), this may imply that the relationship is
not a simple linear regression (Kalish 1991a), but an exponential

decay model in increasing form (Chung et al. 2019). It is critical
that the relationship between Moto values and oxygen consump-
tion should be widely investigated, especially across species. The

functional form, including the upper limit of Moto values, may

vary between species according to their life history traits and
physiological regulations. Nevertheless, it is believed that the

relationship between Moto and oxygen consumption rate among
species will provide valuable information that will enhance
progress in the research field of fish physiological ecology.

Further development based on the d13Coto metabolic proxy

Knowledge of fish energy allocation between metabolic com-
partments (SMR, SDA and activity) may increase our under-

standing of their behavioural adaptation to environmental
changes. The use of the otolith metabolic proxy could be
instrumental in gaining this knowledge. For example, Sherwood

and Rose (2003) found that d13Coto values relate to the aspect

Table 2. Individual information used to construct Fig. 2

Fish length, d13Coto (d
13C values of otoliths), d18Ooto (d

18O values of otoliths) and the proportion of metabolically derived carbon (Moto) values are extracted

from Jamieson (2001). Fish weight is derived from the length–weight relationship from FishBase (R. Froese and D. Pauly, see www.fishbase.org):

Weight ¼ 0.0071 � Length3.08. Temperature is reconstructed following the d18Ooto–temperature equation given by Høie et al. (2004b) and seawater d18O

is set as �2%. Oxygen consumption is estimated with body mass and temperature according to Deslauriers et al. (2017)

Length (cm) Weight (g) d13Coto (%) d18Ooto (%) Moto Temperature (8C) Oxygen consumption

(mg O2 kg
�1 h�1)

4.9 0.9 �4.7 �0.44 0.35 11.7 499

5.6 1.4 �4.7 �0.44 0.35 11.7 463

6 1.8 �3.5 �0.44 0.3 11.7 446

5.9 1.7 �4.9 �0.44 0.36 11.7 450

6.6 2.4 �3.5 �0.44 0.3 11.7 423

6.3 2.1 �3.8 �0.44 0.31 11.7 434

7.3 3.2 �4 �0.44 0.32 11.7 400

7.3 3.2 �4.1 �0.44 0.33 11.7 400

8.2 4.6 �3.2 �0.44 0.29 11.7 375

8.4 5.0 �3.8 �0.44 0.31 11.7 370

8.8 5.8 �3.6 �0.44 0.31 11.7 360

8.7 5.6 �4 �0.44 0.32 11.7 362

9.1 6.4 �3.6 �0.44 0.3 11.7 353

9.1 6.4 �4.1 �0.44 0.32 11.7 353

9.8 8.0 �3.2 �0.44 0.28 11.7 339

14.3 25.7 �2.3 0.43 0.26 7.35 217

14.5 26.8 �3.5 0.43 0.31 7.35 215

14.6 27.4 �2.5 0.43 0.27 7.35 214

14.7 28.0 �2.9 0.43 0.29 7.35 213

14.6 27.4 �2.8 0.43 0.29 7.35 214

15 29.8 �2.2 0.43 0.26 7.35 210

14.7 28.0 �2.6 0.43 0.28 7.35 213

14.5 26.8 �2.3 0.43 0.27 7.35 215

14.8 28.6 �1.9 0.43 0.25 7.35 212

16.2 37.7 �2.3 0.43 0.28 7.35 202

16.6 40.7 �1.8 0.43 0.27 7.35 199

16.1 37.0 �1.5 0.43 0.24 7.35 203

16.9 43.0 �1.8 0.43 0.27 7.35 197

17.4 47.0 �2.2 0.43 0.27 7.35 194

18 52.2 �2.9 0.31 0.26 7.95 198

67 2989 �0.8 1.54 0.2 1.80 63

26 162 �1 1.54 0.2 1.80 107

75 4231 �0.1 1.54 0.16 1.80 59

35 405 �1.9 1.54 0.25 1.80 90

34 370 �2.3 1.54 0.26 1.80 92

40 610 �0.8 1.54 0.2 1.80 84

18 52.2 �2.2 0.31 0.25 7.95 198

55 1628 �1.7 1.54 0.24 1.80 70

53 1452 �0.9 1.54 0.2 1.80 72
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ratios of the caudal fin of fish, which is associated with swim-
ming form and activity. Solomon et al. (2006) further analysed
these data to provide a regressed trend of Moto values with the

aspect ratios of the caudal fin of fish:

Moto ¼ 0:025þ 0:066� Kcaud ð7Þ

whereKcaud is the aspect ratio of the caudal fin. The relationship
revealed the potential of using Moto values to evaluate activity
but without a link to fish swimming speeds and oxygen con-

sumption rate. Thus, an experimental design in which the
activity level of fish is manipulated (e.g. by enforcing different
swimming speeds) may give direct evidence of the effect of

activity metabolism on Moto variations.
Otolith accretion and opacity are regulated by metabolic

processes. The otolith annual pattern with alternating opaque
and translucent bands is likely synchronised with energy acqui-

sition and usage (Grønkjær 2016). At the microstructural level,
increment widths have been found to relate linearly to SDA
(Armstrong et al. 2004). As a general assumption, SDA is

proportional to energy intake, and corresponds to 0.1- to 0.4-
fold the total assimilated energy (Jobling 1981; Soofiani and
Hawkins 1982; Kiørboe et al. 1987; Wieser and Medgyesy

1990). However, in wild fishes, it is difficult to determine SDA
owing to uncertainties in meal size, feeding frequencies and
postprandial durations. As an alternative, otolith increment
analysis combined with the otolith metabolic proxy may make

SDA determination possible. Furthermore, a modelling frame-
work based on Dynamic Energy Budget (DEB) theory can be
used to try to reconstruct individual and otolith growth history

with known temperature and otolith opacity patterns (Fablet
et al. 2011; Pecquerie et al. 2012). In this modelling framework,
otolith growth and opacity are defined by two energy fluxes in

the metabolism (i.e. maintenance and fish growth; Fablet et al.
2011). This means that the metabolic information of SMR and

SDA, which is associated with maintenance and growth energy
fluxes in the DEB model, can be acquired by analysing the
optical properties of the otolith microstructure. Multiple

approaches combining the d13Coto metabolic proxy, otolith
d18O analyses, microstructure analyses and the DEBmodel hold
great potential when it comes to investigating and reconstructing

individual life history in response to environmental changes.

Conclusion

In this paper we have illustrated three perspectives on otolith
d13C metabolic proxy: (1) how to obtain the parameters used
to estimate Moto values according to a two-component mixing

model; (2) the several unanswered questions that should be
considered when using the otolith metabolic proxy; and (3) the
great potential of using the otolith d13C metabolic proxy to

study fish physiological ecology in combination with other
valuable and well-established approaches. Despite the con-
siderable efforts needed to acquire the necessary parameter
values across species, the novel approach of the d13Coto

metabolic proxy shows great promise with regard to allowing
us to track the ontogenetic and environmental effects on
individual fish physiology, and thereby removes a major

obstacle to understanding and predicting the performance of
free-ranging wild fish.
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