
Black Block Recorder: Immutable Black Box
Logging for Robots via Blockchain

Gianluca Caiazza and Agostino Cortesi
Ca’ Foscari University of Venice

Venezia VE, Italy

Ruffin White and Henrik I. Christensen
Contextual Robotics Institute

UC San Diego, California, USA

Abstract—Logging plays a crucial role in robotic research, pro-
viding prolonged insight into a robots encountered environmental
stimuli, internal behavioral state, and performance or outcome of
actions taken; all necessary for profiling and debugging robotic
application ex post facto. As robotic development matures into
production, logging assumes an additional role in equipping
auditors with the evidence necessary for investigating issues,
accidents or fraud. Given robotic sectors such as drone delivery
or autonomous transport must operate in the open world, ensur-
ing the integrity, authenticity and non-repudiation of generated
logs on these mobile cyberphical systems presents new threats
that extend beyond those in traditional IT computing: such as
physical system access or postmortem collusion between robot
and OEM resulting in the truncation or alteration of previous
records. In this work, we address the topic of immutabilized logs
using integrity proofs and distributed ledgers with the additional
consideration for mobile and public service robotic applications.

Index Terms—Cryptobotics, Networked Robots, Industrial
Robots, Robot Safety, Distributed Ledgers, ROS2

I. INTRODUCTION

The spread of autonomous robotic applications and the
ubiquity of Internet of Things (IoT) devices has narrowed
our interaction boundary with computerized interfaces and has
smooth the interplay with robotic system by defining the so
called seamless interaction. The possibility of executing oper-
ations autonomously, without observable delays in response
time and in the absence of human interaction, is inviting;
however, the rush in the uptake of deploying robotic solutions
in real world scenarios is not trivial.

As discussed by Morante et al. [?] the current cyber-security
state of robots is not keeping up with the computers and
smartphones counterpart. In fact, the developers of robotic
applications has always overlooked cyber safety features in
place of prioritizing the development of useful functions in
’secure’ environment in which there were no possibility of
external unsanitized inputs. Considering the change of scale
in deployment from closed environment to open word, it’s no
surprise the grown in the amount of vulnerabilities that has
has been recently reported.

Considering the spread of connected devices, ranging from
one-purpose specific to more complex one, the amount of
information that they process and the risk posed by their
operation is not something that could be overlooked. In regards
of debugging the information flow or an unexpected robot
behaviour, the usage of logging is a pivotal feature. However,

Robot
Enclave

Route
Planner
(Node)

3D
LIDAR
(Node)

Log
Storage

Recorder
(Node)

LogInfo

.

.

.

record t HMAC
Checkpoint
 Index: 1
 Proof: ...

Checkpoint
 Index: 1
 Proof: ...

Checkpoint
 Index: t
 Proof: ...

record 2 HMAC
Checkpoint
 Index: 1
 Proof: ...

Checkpoint
 Index: 1
 Proof: ...

Checkpoint
 Index: 2
 Proof: ...

record 1
Checkpoint
 Index: 1
 Proof: ...

Checkpoint
 Index: 1
 Proof: ...

Checkpoint
 Index: 1
 Proof: ...

HMAC

Nonce

Fig. 1: High level overview of immutabile logging. Right,
depicts an example deployment where an enclaved process
generates the logs by capturing message traffic directly from
each source. While streaming the log data out to arbitrary
storage, the data is made immutable by submitting integrity
proofs to the blockchain, comprising of linked HMAC digests
that are indexed as checkpoint transactions, shown left.

since we can’t always guarantee the security of the robot, the
correctness and completeness of the log is not certain. In the
one hand, as presented by Mineraud et al. [?], today’s IoT
middleware platforms presents several challenges either from
the security and privacy point of view. From their analysis
has emerged how cloud-based IoT platforms are prone to tra-
ditional security attacks such as Denial of Service (DoS), man-
in-the-middle (MIM), eavesdropping, spoofing, etc. Moreover,
general IoT platforms has, among the other, several implemen-
tation flaws as unsuitable device authentication mechanisms,
defective data storage protection, faulty trust managements,
etc. On the other hand, more structured robotic framework
as Robot Operating System (ROS) [?], as we will discuss
later, presents to a malicious user various attack surfaces. In
order to overcame some of this limitation and guarantee in a
multi-robot distributed system a secure logging mechanism,
we can use immutable logging. With the term immutable
logging we generally refer to log files that posses some degree
of protection from tampering and erroneous insertion. This
tamper-resistant log record in an indelible manner all the
operations that has occurred in the robot. The resulting content
integrity logs allows us to perform static formal analysis
verification [?] for security audit in multi-robot networks as
depicted in Fig. 2. Thanks to the integrity guarantees of the
immutable log, we can confidently store ’correct’ critical data
with a cryptography assurance of verification of the original.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università degli Studi di Venezia Ca' Foscari

https://core.ac.uk/display/287124113?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Interesting application of such technique, is the deployment
of historic archiving for medical information in bleeding edge
emerging applications such as mobile Health (mHealth) [?].
In this case, data security for remote medical devices on the
patient needs to be auditable for timely medical treatment.
Moreover, in more complex life-critical machinery as surgery
robot [?], been able to address accountability and ascertain
possible attacks [?] also in remote connections is crucial.

Furthermore, as regards of the widespread interest for self-
driving cars and autonomous drones the possibility of deploy-
ing real-world ’honeypot’ is a serious concern [?]. Considering
the recent history in automotive exploiting [?] and the already
available attack surfaces, there can be no doubt that it represent
a real threat [?], [?], [?].

Overview

• II Related Work: Discussion and background of im-
mutable logs, distributed ledger technologies, and trusted
execution models, as well as the limits of the existing
approaches with respect to robotic requirements.

• III Approach: Formulates the integrity proof, smart
contract and permissioned blockchain architecture imple-
mented for the presented framework, including design
mechanisms and development choices.

• IV Implementation: Details an implementation for eval-
uating the capability of our proposed framework with
regards to integrity verification and runtime performance
under mobile robotic like scenarios.

• V Conclusion and Future Work: Includes a discussion
of the presented work and potential extensions with
respect to newer available conscientious methods, im-
proving the practicality and scalability for real world use.

II. RELATED WORK

The Bitcoin Blockchain [?] represents a valid alternative
solution to the usage of trusted third parties to process and
mediate transactions. The idea of substitute thrust with a
cryptographic proof in a peer-to-peer (p2p) network to allow
willing parties to transact without the need of a third party,
have opened novel research areas in several fields including
Computer Science. Prior to Blockchain, horizontally scalable
distributed databases were the leading techonolgy to store,
under a central authority, a potentially infinite amount of
information; still, being scattered across different devices, it’s
easy to see how this solution lacks the immutability and
scalability feature that the Blockchain protocol guarantee by
design. Starting from the original paper, several alternative
usage of Blockchain has been proposed in the wild. In regards
of those, we discuss below how we pose our approach. In order
to ease the reader throughout the related work, we split the
background in three sections.

A. Distributed Ledger

Blockchain is a peer-to-peer distributed ledger which lever-
age its security by means of public-key cryptography. Each
peer in the network have a public address, derived by the

hash of their self generated key, that identify the user among
all the other peers. When users wants to perform an operation,
they build a transaction by including as input their blockchain
addresses, the amount of the involved resources and specify the
hashes of the outputs of the previous Blockchain transactions.
By means of a digital signature of the transaction, they provide
the proof of ownership of the specified public address. The
resulting transactions are then broadcasted in the p2p network
and collected by miners that aggregates them in blocks. Once
a block is ready, the miners mine it in order to add it to the
chain of transactions. The mined blocks are then broadcasted
in the network and distributed among the peers. The security
of the approach is given by the fact that any peer can be a
miner and that all the transactions are verified by all the peers.
A malicious miner who tries to double-spend the transaction
or modify it, will be detected by all the other peers provided
that the malicious miner doesn’t have more than 50% of the
whole mining power

As discussed by BitFury and Garzik white papers [?] [?],
blockchain-based ledgers has gained much popularity among
banks and other financial institutions with the definition of
several algorithms that leverage on blockchain’s immutability
and consensus for the validity of the transactions. However,
nowadays Blockchain-based solutions are reaching physical
limitations in terms of slow transaction throughput and a lesser
degree of scalability in term of Proof-of-Work cost [?].

B. Immutable Logs

C. Trusted Execution

III. APPROACH

In our approach, the immutablizing of robotic logs using
distributed ledgers requires the development of two main
coupled components: the integrity proof and the smart contract
specification. In this section, we detail the design and justifica-
tion of both with respect to the constraints incurred by mobile
robotic application an notable open frameworks incorporated.

A. Integrity Proof

To preserve the integrity of the logs without compromising
system performance or publicly disclosing private log content,
a similar procedure to [?] is adopted by chaining the log
checkpoints together using Keyed-Hash Message Authentica-
tion Codes (HMACs). Borrowing terminology established in
[?] we define a log checkpoint (Chki) to be linked with the
previous one by using the prior digest (hi−1) as the key bytes
when computing the current HMAC digest (hi) from the log
content (LogInfoi) (see E.g. 1).

Chki = (i, hi) hi = HMAC(hi−1|LogInfoi)
where h0←${0, 1}m

(1)

For privacy, a random nonce is included as the genesis digest
(h0) to inject initial entropy into the linked integrity proofs,
ensuring separate log files with similar beginning contents do
no repeat the same telltale signature of consecutive proofs.

Swarm (Validator Network)

Robot 1
(Custodian)

Robot 2
(Custodian)

Robot 3
(Custodian)

Base
Station
(Owner)

Enclave
(Recorder)

Enclave
(Recorder)

Enclave
(Recorder)

Audit
Backend
(Server)

Log
Verifier
(Client)

Ledger
Sync

(Node)

Ledger
State

(Mirror)

Fig. 2: Network perspective of swarm deployment. Log in-
tegrity of each robot is preserved via consensus of it’s peers.
An authority may assign a recorder to each custodian prior
deployment, where the enclaved logger monitors it’s charge
on the auditor’s behalf. As wireless connection with deployed
swarm my be intermittent or constrained, a local mirror of the
distributed ledger may be cached for offline auditing.

This deviates significantly from previous works that seeks to
complicate the integrity proof to accommodate log authenticity
and non-repudiation when relying on token based blockchains
(designed primarily just for financial transactions) to achieve
immutable yet distributed checkpoint archiving. We achieve
these two properties differently through the use of Smart
Contracts (SC) and Public Key Infrastructure (PKI) discussed
in the next section. By keying with the previous unmodified
(and potentially prior published) checkpoint digest, we reduce
the validation of logs to the trivial task of checking a rudi-
mentary meta-blockchain: I.E. sequentially iterating through
the LogInfoi atomics in the log file and ensuring the order of
digests correspond to the time series of proofs published into
the global blockchain. Thus, any log checkpoint manipulation
or deletion is stilled detected during the verification process.

By also including the index (i) into the checkpoint, we can
ascertain a number of additional beneficial properties, such
as partial validation or verification resumption in the face of
missing or corrupted log elements. Additionally, provided log
content includes an embedded indexing, as is common with
sequential recordings, this affords parallelizable validation
over large log files, accelerating the verification process. This
perhaps comes at the cost of potentially leaking information
such as the frequency of log elements being generated, how-
ever a degree of this can already be inferred by observing
transaction activity in the public blockchain regardless.

Previous works such as [?], [?] make the distinction between
two different types of checkpoint entries; the first being an
incremental link in a chained proof, while the second being a
anchor point that must always be published to commit to new
secrets while revealing expired ones for later verification pur-
poses. Our approach to checkpoints make no such distinction,
thus any checkpoint or number of checkpoints generated may
be published immediately or simultaneously. This ensure that
checkpoints can always be submitted in short notice or without

necessary waiting for previous transactions to be finalized in
the global blockchain.

Given we do not require anonymity of recorder identity, we
dispense the need of rotating private HMAC keys. Although
key rotation does provide an element of forward security in the
face of private key exposure, we attempt to mitigate this threat
model in section ?? and by deliberately differing checkpoint
write permissions to the SC where control policies of owner-
ship and action access can be made far more expressive and
dynamic.

For robotic applications in particular, where mobile proces-
sors may be subject to brownouts without warning due to self
reliant energy supplies, integrity proofs that require stateful
cryptography [?] could leave a recorder without recourse for
resumption, as the previously published checkpoint would
have included a commitment to future key (a secret lost if
not written to persistent memory) that must be used and then
revealed upon the next checkpoint. Given a recorder should
wait for respective log IO completion before the publishing
that checkpoint, the recorder can quickly re-derive the latest
digest from the log data and head block to resume checkpoint-
ing wherever left off.

B. Smart Contract

In section III-A we detail our approach of indexed integrity
proofs to ensure log file immutability, however this simplified
method of verification does not alone offer the authenticity
and non-repudiation properties required for securely logging
distributed robotic applications. We instead utilize Smart Con-
tracts (SC) that encapsulate the logic for blockchain validators
to abide by when determining the validity of proposed check-
point transactions.

Instead of relying on colored coins or token metadata in
financial blockchains to encode checkpoints into the state of
the distributed ledger, a dedicated transaction family can be
defined to regulate ledger state, i.e. a SC enforcing governing
or arbitrary computation. A common criteria however is that
the validity of candidate transactions must be determiticly
computable; i.e. no context external to the current state of
the ledger and transaction payload in question should be used
in deliberation. This ensure that the validity of any block in
the chain can be independently verified regardless of time
transpired since its creation.

To ensure authenticity of checkpoint committed into the
blockchain, we consider transaction that must be signed using
Digital Signatures (DAs) via PKI, effectively notarizing the
identity of the signer. For our purposes, we also register the
identity into the blockchain by enrolling it’s public key into an
access control policy stored in the distributed ledger to be used
by SCs when inspecting candidate checkpoint transactions.
Thus, limiting recorders permissions to append checkpoints
on behalf of log files they are authorized for.

To ensure non-repudiation of transactions, our SC considers
the index of the checkpoint, mandating it remain monotoni-
cally increasing. Skipping of indexes is permitted to enable
recorders control in the rate at which they publish integrity

S
w

ar
m

N
et

w
or

k

Robot (Semi-Secure)
Enclave
(Secure)

Log Storage

LogInfo: /foo
...
<record t>

LogInfo: /bar
...
<record n>

Message:
 Topic: /bar
 (Index: n+1)

Message:
 Topic: /foo
 (Index: t+1)

Subject name:
 Recorder
…

X.509
CA

Checkpoint:
 Index: n+1
 Proof: ...

Checkpoint:
 Index: t+1
 Proof: ...

Transaction:
 URI: /foo
 Payload: ...

S

Transaction:
 URI: /bar
 Payload: ...

S

Subject name:
 Robot
…

X.509
CA

Recorder
(Node)

Batch:
 Transactions:
 URI: /foo
 Payload
 URI: /bar
 Payload

S R
ob

ot
R

ob
ot

Fig. 3: Flow chart visualization of the immutable logging pipeline. While every robot platform is held suspect, a secure enclave
(e.g. Trusted Execution Environment) is reserved for the recorder process. Logged input is securely received within the enclave
and used to cryptographically derive a linked integrity proof specific for each input asset being tracked. As the log data may
be streamed to external storage, respective checkpoint transactions are bound to the robot’s public identity for batching and
then signed by the recorder’s private key sealed within the enclave. Thus only the robot’s private key may be used to sign and
relay batched transactions for validation: necessitating the collusion of both custodian matching recorder for append forgery.

proofs (while locally checkpointing log data the rate gen-
erated) to conserve energy or wireless network bandwidth
and minimize the growth of the distributed ledger’s state.
To additionally curtail the memory growth of the ledger,
effectively a database each validator must locally maintain to
participate, a ring buffer is used here to keep track of the n
latest checkpoints.

More advanced down-sampling and data retention methods
could be applied; i.e. keeping a high precision of recent
checkpoints while retaining an ever lower resolution of them as
they age out, summarizing log integrity over increasing wider
spans of time past. A SC could formulate a clock like gear
reduction of nested ring buffers used as proxy for log rotations;
e.g. a week-buffer overflows into the month-buffer only once
every 7 days, and into a year-buffer once a month, etc.

Another means of non-repudiation such as timespamping
could be used to subsume the role of indexing in providing
an unique counter underneath transaction signatures. However,
any reliance on time may be misplaced given that by design
blockchains in general preserve only the order of events
(i.e., weak freshness), while accurate timing of events (i.e.,
strong freshness) is questionable due to fundamental issues
in resolving multiple time sources and relative timespaming.
The work of [?] prescribes a workaround using a centralized
third party, however this perhaps plays agents our objectives
of distributed trust and scalability. Mobile swarm robots may
roam autonomously beyond the network range of base stations
or any one particular member, thus any agreed reference of

time must arise from a distributed consensus in the swarm.

IV. IMPLEMENTATION

V. CONCLUSION

A. Future Work

ACKNOWLEDGMENT

We’d would like to thank the Hyperledger project for their
open source contributions and documentation: both instrumen-
tal in developing this work and exploring its application.

No

Yes

Finalized

No

Yes

Allow

Deny

No

Yes
Ongoing

S

Error

Get
Transaction

S

Valid Valid Get
Checkpoint

Error

Checkpoint:
 Index: t+1
 Proof: ...

Valid

S

Recorder

Check URI
Chain StateStatusCheck

CheckpointValidAppend
Checkpoint

Check
Custodian

Check
Recorder

Check URI
Access

Error ErrorError

Transaction:
 URI: /foo
 Payload: ...

Batch:
 Transactions:
 URI: /foo
 Payload
 URI: /bar
 Payload

S

S

Fig. 4: Flow chart visualization of validating smart contracts for checkpoint transactions. Upon receiving a candidate block,
the validator will check the corresponding batch’s signature matches the custodian identity declared in each transaction. Each
transaction signature is also check to validate the public identity of the recorder. The recorder identity is used when determining
the authorization in appending new checkpoints for a specified asset to the ledger. If the status of the asset has already been
finalized, any following append actions are rejected. Otherwise valid checkpoints may appended to logged asset’s record.

	Introduction
	Related Work
	Distributed Ledger
	Immutable Logs
	Trusted Execution

	Approach
	Integrity Proof
	Smart Contract

	Implementation
	Conclusion
	Future Work

