
Regular Issue

-44-

Abstract — This paper shows the implementation of mutual

exclusion in PCBSD-FreeBSD operating systems on SMPng

environments, providing solutions to problems like investment

priority, priority propagation, interlock, CPU downtime,

deadlocks, between other. Mutex Control concept is introduced as

a solution to these problems through the integration of the

scheduling algorithm of multiple queues fed back and mutexes.

Keywords — Mutex, PcBSD, SMPng, FreeBSD, Operating

Systems.

I. INTRODUCTION

VER time operating systems have evolved to reach the

progress that can be seen today: starting batch

processing, which involved planning the next job to run

on a treadmill until multiprogramming systems in which many

users waited to be served. With the advent of personal

computers has been generally allowing one active process and

more resources to which access, then with the integration of

more than one processor on a machine, appeared

multiprocessing and therefore the concept of parallelism,

which involves making one or many processes running on

different processors at the same time, being assigned a process

per processor. Such evolution is generated from finding that a

perceived performance and user satisfaction is optimal.

One of the main functions of the operating system is making

decisions about allocating resources to the various processes

are in ready state and require access to the same resource;

process scheduler uses the scheduling algorithm to make such

decisions. Scheduling algorithms implemented in the kernel of

the system depending on the environment in which they are

seeking to improve the response time, proportionality,

predictability, fairness and prevent data loss. [1]

In environments such as real-time or interactive problems

may be found when concurrency occurs one or more

processors; where processes wish to share the same resource

difficulties are encountered when defining the time and the

conditions under which each process makes use of the

resource, looking in critical section only able to stay a process,

ie, that the final result depends on who is running and when it

does. This situation leads to problems usually involving shared

memory, files, and resources in general (a resource is a

hardware device or a piece of information) are generated,

which leads to data loss or downtime CPU.

II. MUTUAL EXCLUSION AND DEADLOCK

Mutual exclusion is born from the generation of the

problems listed above with concurrent programming, seeking

to ensure that if a process makes use of a shared resource

processes exclude others do the same. However, sometimes the

processes are performing internal calculations and other things

that do not involve access to the critical section, ie, the part of

the program that accesses the shared memory. What is desired

is that the processes can operate in parallel to data sharing is

optimized over time, as long as only one is in critical section.

There are some considerations when performing a mutual

exclusion algorithm using critical regions:

 There can only be a process critical section at a time.

 Must know the speeds or the number of CPU's.

 Only the process is in critical section may block other.

 There should be no downtime CPU, because no process

can wait infinitely to be executed.

Another mechanism that avoids mutual exclusion is partially

disabling interrupts on a CPU; however do user processes and

may not be re-enabled that would kill the system, or if the CPU

multiprocessing disabling performed cease to function. In the

same way the method operates lock variables, in which when

the lock is 0, the process can access critical section and when

no one is 1; however has problems as to the mechanism

mentioned above.

One of the latest implementations of mutual exclusion

algorithms are the mutex, which allow to manage a resource or

piece of code; is very helpful for thread sets that are

implemented in user space. The mutex variable is a padlock

that can be open or closed, which is represented by 0 if it is

open and any other value if it is closed. When a process

requires entering critical section checks whether the padlock is

open and if so hard to run if it is not blocked until the process

in that section is released, ie, the padlock opens. If several

blocked threads, then one is selected at random to be the next

to access critical section.

The mutex can be viewed from its behavior. As shown in

Figure 1, a mutex is a padlock variable that can be open or

closed and which may have one of the following behaviors:

Design of a Mutual Exclusion and Deadlock

Algorithm in PCBSD – FreeBSD

Libertad Caicedo Acosta, Camilo Andrés Ospina Acosta, Nancy Yaneth Gelvez García, Oswaldo

Alberto Romero Villalobos.

Universidad Distrital Francisco José de Caldas, Bogotá, Colombia

O

DOI: 10.9781/ijimai.2014.316

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Re-UNIR

https://core.ac.uk/display/287123744?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº 1

-45-

 Sppining: When you constantly look at the state of the

lock to see if the resource is already released. In this

case there are no interruptions, then time is wasted

waiting for lengthy processes that took control of the

resource.

 Blocking: When the resource is not changed to block and

awaits the call of the appeal process had, by the time it

releases.

 Sleeping: If the resource is not available, it puts the

process to sleep until the resource is enabled.

For exceptional cases, the programmer can create a few

extra conditions under which a process sends to sleep while

the presented problem is solved.

Fig. 1 - Representation of mutual exclusion.

In many cases computers have resources that can be used by

only one process in the same space of time; if they run more,

inconsistencies or errors occur in the information manipulated.

Operating systems temporarily attach to a process exclusive

access to certain resources; in cases in which a process one

needs more than one resource, first makes the request, but

when you need to access another and find that it is occupied by

a process 2 which requires use of the resource using process 1;

as both are waiting for the other release to free the resource

you are running a deadlock occurs. This phenomenon could

also occur between machines in the same network with shared

devices such as scanners, printers, external drives, etc. [2].

Figure 2 shows more clearly the deadlock problem, with both

processes P1 and P2, and two R1 and R2 resources that are left

in a standby cycle, and retention of the release of resources.

Deadlocks are usually not preemptive resource linked, ie

they may leave without being run over. In some cases there is a

quantum that allows equality between processes and subtract

the lifetime of the running process and then leave critical

section; if it has been completed is deleted, if not, back to the

tail of "ready" to run below the remaining time. Such resources

may also have an associated priority, which means that in case

a higher priority process needs the resource that is being used,

use it and send the running process to a suspended list.

Fig. 2 - Representation of deadlock.

Currently the FreeBSD kernel supports symmetric

multiprocessing (SMP), in which all Central Processing Units

(CPU’s) have a single connection to a non-uniform memory,

implementing the Mutex Synchronization strategy as the

primary method to manage short-term threads synchronization

[3]. One of the desired characteristics for the mutexes design is

that acquiring and releasing uncontested mutexes should be as

fast as possible, which is one of the reasons for designing an

algorithm that works in junction with the FreeBSD-PCBSD

mutexes.

III. DESIGN

On operating systems such as FreeBSD PcBSD have been

implementing mutual exclusion algorithms increasingly trying

to minimize the problems that arise concerning the allocation

of resources to processes.

PcBSD is a desktop operating system based on FreeBSD,

which provides stability and security in server environments;

makes use of window managers and open source application

installers of the same type. It is currently in version 10 call

PcBSD Joule, which is used in the following analysis and

implementation to be discussed later. [4]

A. Mutual Exclusion Algorithm in PcBSD

The implementation of the scheduling algorithms in pcbsd

involves evolution in terms of versioning, as currently

implemented in some types of which a mutex some extra

functionality integrated avoid problems such as investment

priority, priority propagation and interlock.

The current implementation emerges from the problems

presented with KSE (Kernel Scheduling Entity) in

multiprocessing environments that generated downtime CPU

and deadlocks [5]; therefore, from version 5.0 of FreeBSD

kernel restructuring is done in the way of working threads in

such environments, implementing mutexes that lead to a kernel

SMPng according to [6].

As mentioned in section 2, there are three types of behaviors

associated with mutexes which are kept in the model proposed

by the creators of FreeBSD development, ie that there are

shared mutex as Spinning, Blocking or Sleeping. Additionally

mutexes define four types of [7], which are defined below:

Regular Issue

-46-

 Mutex: When access to data is located on 1 CPU and

accessed by a single thread.

 RW Lock: When access to data is made with several

threads on several CPU's, in which reading and writing

is permitted, however, only one process can be in write

mode, while many in read mode.

 Lock RM: is equal to the RW Lock, only varies in the

fact that the reading time is optimized.

 Waitchannel: When a thread requires the use of another

thread is assigned a stop expected to sleeping.

It is preferable to use a mutex Blocking that a mutex

Spinning in most cases, there are only a few exceptions where

the other is better.

Below in Figures 3, 4 and 5 shows the implementation of

mutexes, which are encoded in the kernel of PCBSD.

Figure 3 - Defining the mutex structure.

The above structure is the /usr/include/sys/_mutex.h system

directory.

Fig. 4 - Definition of a mutex lock.

The lock and unlock functions are in the C++ library

mutex.h, which are located in the /usr/include/sys filesystem.

Fig. 5 - Defining unlock a mutex.

B. Design of mutexes in multiple queues fedback to an

environment PCBSD-FreeBSD

In conjunction with the scheduling algorithm of multiple

queues fed back [8], we propose an extra control for handling

mutual exclusion and deadlock through mutexes which we call

Mutex Control. For the specific case of pcbsd-FreeBSD, this

control within each scheduling algorithm was implemented as

shown in Figure 6, allowing at the time of assessment step in a

process for critical section, a mutex is assigned to it. All this

for the purpose to have a better management and resource

allocation to avoid problems CPU timeouts, deadlocks,

interlocking, among others.

Fig. 6 - Environment and location Mutex Control

Design of Control made Mutex involves a simulated

environment algorithm fed back tails, specifically built to

allow the integration of mutexes proposed PCBSD-FreeBSD.

In Figure 7, was able to visualize the proposed multiple queues

fed back flowchart Mutex Control behavior.

 Fig.7 - Mutex Control Operation

The structure mutex proposal to integrate itself to queues

fed back algorithm, is given as an adaptation of the libraries

implemented in C++ Kernel PCBSD-FreeBSD, reflecting the

main behavior that they exhibit a SMPng environment.

Representation is in terms of Objects Oriented Programming

and structural, in which a Mtx class, mtx_lock function and

mtx_unlock function similar to structures in C++, mtx,

__mtx_lock and __mtx_unlock respectively is created and

seen previously in Figures 3, 4 and 5.

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº 1

-47-

Fig. 8 - Mtx code implementation.

Integrating mutex controls the scheduling algorithms is

performed just after receiving the next process in the ready

queue and is given by an assessment of the resources needed

by each process, allocation and release locks as can be seen in

Figure 8.

Fig. 9 - Code implementing the Mutex Control

IV. MUTEX SIMULATION

In order to simulate the coupled behavior of the mutex

controller proposed, it was necessary to create an application

by multiple queues fed back to incorporate into their calling

from the processes queue on each core to mutex control in

order to make the decision to change the context of each

process (blocked, suspended and critical section).

Then several screens showing action working together

mutex control through multiple queues fed back

(multiprocessor) can be observed. It should be noted that

although the simulation was designed thinking of ways to

perform mutual exclusion in PcBSD-FreeBSD, an

implementation of a mutex control style could be proposed in

other operating systems (improving the effectiveness of the

algorithms for SMPng environments).

Fig. 10 - Assigning each core processes

Fig. 11 - Core 1 running

Fig. 12 - Core 2 running

Fig.13 - Gantt execution of algorithms

Regular Issue

-48-

V. CONCLUSIONS

As previously mentioned, FreeBSD-PCBSD implements the

Mutex Synchronization strategy as the primary method to

manage short-term threads synchronization which in junction

with the proposed algorithm improves the OS desired

characteristics for the mutexes.

For each operating system there is a way to implement

mutual exclusion that is best suited to your operation. Not

always the most complex has better benefits.

Scheduling algorithms and mutual exclusion, require

adaptations to environments smpng because it worked very

well on a single processor environment, tends to have

problems or inefficiencies in the management of resources and

response times Multiprocessor.

 The mutex control minimizes the problems that are

presented to the planning algorithms in environments SMPng

such as investment priority, priority propagation, interlock,

CPU timeouts, and deadlocks, among others.

Integrating mutexes to implement multiple exclusion in

PcBSD-FreeBSD operating systems for SMPng environments,

represents major advantages implementation over other mutual

exclusion algorithms.

REFERENCES

[1] A. S. Tanenbaum, “Sistemas Operativos Modernos”, Pearson

Educación, 3ra edición. pp. 146-160. México 2009.

[2] Zobel, “Operating Systems Review”, Automatica. Vol. 6. Number 1/2,

June, 1972.

[3] Marshall Kirk McKusick, George V. Neville-Neil, Robert N.M, Watson,

“The Design and Implementation of the FreeBSD Operating System”.

[4] PcBSD. (2014, Julio 13). iXsystems, Inc. [En línea]. Disponible en:

http://www.pcbsd.org/es/.

[5] FreeBSD. (2014, Julio 13).” KSE”. [En línea]. Disponible en:

http://www.freebsd.org/cgi/man.cgi?query=kse&sektion=2&manpath=F

reeBSD+5.0-RELEASE.

[6] Baldwin John. (2014, Julio 13).” How SMPng Works and Why It

Doesn't Work The Way You Think ”. [En línea]. Disponible en:

http://people.freebsd.org/~jhb/papers/smp/slides.pdf.

[7] Rao, Attilio. “FreeBSD src/ committer since 2007.” AsiaBSDCon 2009

Paper Session. The first part of the two. [En línea] Disponible en:

https://www.youtube.com/watch?v=a3XLROUjXic

[8] JRA, “Planificación de Procesos”, Departamento de Informática,

Facultad de Ingeniería.Universidad Nacional de la Patagonia “San Juan

Bosco” 2010.

Libertad Caicedo Acosta is a final year student from

Computers and Science Engineering at The District

University Francisco José de Caldas of Bogotá,

Colombia. She is one of the founders of the Python

programming group created in 2011 at the same

University, was an academic assistant for the

Computers and Science program in 2013 and for the

Complexity Group since 2011. She is currently working

to get his B.Sc. It belongs to the research group GIIRA.

lcaicedoa@correo.udistrital.edu.co

Camilo Andrés Ospina Acosta is a final year student

from Computers and Science Engineering at The District

University Francisco José de Caldas of Bogotá,

Colombia. He is one of the founders of the Python

programming group created in 2011 at the same

University, and was an academic assistant for the

Computers and Science program in 2013, He is currently

working to get his B.Sc. It belongs to the research group

GIIRA. caospinaa@correo.udistrital.edu.co

Nancy Yaneth Gelvez García was born in Pamplona,

Colombia. She received the B.S. Systems Engineer in

Colombian School of Industrial Careers ECCI and M.S.

Science in information and communications degrees;

Professor and member of the Curriculum Project in

Systems Engineering from the University District and

GIIRA research group. nygelvezg@udistrital.edu.co

Oswaldo Alberto Romero Villalobos was born in

Bogotá, Colombia. He received the B.S. Systems

Engineer also S.P. Software Engineer, S.P. Roads

Design, Traffic and Transportation and M.S. Industrial

Engineering degrees; Professor and member of the

Curriculum Project in Systems Engineering from the

University District and GIIRA research group. Mr.

Romero has been Technical Director well as consultant

and advisor to various agreements between the District Department of

Transportation in Bogotá and the University District and municipalities in

Colombia, also has been a consultant and architect for various software

development companies.

oromerov@udistrital.edu.co

