
International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 6

-17-

Abtract — In the Persian language, an Ezafe construction is a

linking element which joins the head of a phrase to its modifiers.

The Ezafe in its simplest form is pronounced as –e, but generally

not indicated in writing. Determining the position of an Ezafe is

advantageous for disambiguating the boundary of the syntactic

phrases which is a fundamental task in most natural language

processing applications. This paper introduces a framework for

combining genetic algorithms with rule-based models that brings

the advantages of both approaches and overcomes their problems.

This framework was used for recognizing the position of Ezafe

constructions in Persian written texts. At the first stage, the rule-

based model was applied to tag some tokens of an input sentence.

Then, in the second stage, the search capabilities of the genetic

algorithm were used to assign the Ezafe tag to untagged tokens

using the previously captured training information. The proposed

framework was evaluated on Peykareh corpus and it achieved

95.26 percent accuracy. Test results show that this proposed

approach outperformed other approaches for recognizing the

position of Ezafe constructions.

Keywords — Ezafe construction, genetic algorithm, genitive

construction, rule-based model.

I. INTRODUCTION

HE “Ezafe”1 is a Persian language grammatical construct

which links two words together. Ezafe means “addition”

and is an unstressed vowel –e– which marks genitive cases.

The constructs linked by the Ezafe particle are known as

“Ezafe constructions”. Some common uses of the Persian

Ezafe are [1]:

 a noun before an adjective:

e.g. 2توپ قرمز (tu:p-Ezafe Germez) “red ball”

 a noun before a possessor:

e.g. کتاب علی (ketã:b-Ezafe Ali:) “Ali’s book”

 some prepositions before nouns:

e.g. زیر میز (zi:r-Ezafe mi:z) “under the table”

The Ezafe in its simplest form is pronounced as –e, but

1 It is also known as Kasreh.
2 For each Persian word or phrase we wrote its transliteration within

parenthesis and its English meaning within double quotes. International

Phonetic Alphabet (IPA) was used to represent Persian language

pronunciations.

generally not indicated in writing. In some cases the Ezafe has

an explicit sign in writing. For example, with nouns ending in

 at the end; with (j) ی the Ezafe appears as an ,(ou) و or (:ã) ا

nouns ending in a silent ه (h) (short e followed by a mute h),

the Ezafe may appear as a superscript ء (hamze) or a ی (j).

The Ezafe is also found in Urdo [2], Kurdish [3] and

Turkish [4]. The Persian Ezafe has been discussed extensively

[5]-[8]. This construction raises several issues in syntax and

morphology. There are three issues on the function of the

Ezafe in the literature: (1) the Ezafe is a case marker [9], (2)

the Ezafe is inserted at PF to identify constituenthood [10],

and (3) the Ezafe is a phrasal affix [11].

Determining the position of an Ezafe construct may

facilitate text processing activities in natural language

processing (NLP) applications, such as segmenting a phrase or

detecting the head word of a phrase [12]. Moreover,

recognizing words which need an Ezafe is advantageous for

tokenization [13], morphological analysis, and syntax parsing

[14], and it is essential for speech synthesis [15].

Some NLP tasks in Persian, such as machine translation

[16], construction of morphological lexicons [14], and

grammar construction [17], have benefited from the

availability of an Ezafe construction. However, they have

determined the position of the Ezafe manually, exploited cases

in which the Ezafe is visually represented, or extracted some

insertion rules which are not general; therefore, they could not

determine the Ezafe tags for all tokens in a text.

The Persian Ezafe has been discussed extensively in theory

[5], [18], but there are few works on the automatic detection of

this construction in Persian texts. The most completely

reported works on this subject are one work based on

probabilistic context free grammar (PCFG) [19] and another

based on classification and regression tree (CART) [20]. The

former uses a bank including trees of noun groups in Persian

for training PCFG. Then, a bottom-up parser extracts the most

probable noun groups of the input. Finally, using lexical

analysis, the system determines which words need an Ezafe.

The disadvantage of this method is that writing a PCFG

requires a large amount of linguistic knowledge. In addition, it

is not sensitive to lexical information. The latter uses morpho-

syntactic features of words to train and construct binary

classification trees to predict the presence or absence of an

A Hybrid Algorithm for Recognizing the

Position of Ezafe Constructions in Persian Texts

 Faculty of Electrical and Computer Engineering,

Shahid Beheshti University, Iran.

T

DOI: 10.9781/ijimai.2014.262

Samira Noferesti, Mehrnoush Shamsfard

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Re-UNIR

https://core.ac.uk/display/287123713?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

-18-

Ezafe between two adjacent words. In fact, there are two kinds

of rules: rules which predict Ezafe words, and rules which

predict non-Ezafe words. Although this method can predict the

absence of an Ezafe with high accuracy, it is not sufficient in

detecting words which need an Ezafe. In other words, the rules

which predict the non-Ezafe words act more precisely.

The main contributions of this paper were (1) introducing a

framework for combining genetic algorithms with rule-based

models, and (2) using the proposed framework to develop an

Ezafe tagger.

Combining genetic algorithms with rule-based models

brings the advantages of both approaches and overcomes their

problems. Genetic algorithms can detect general patterns in

text, but sometimes they cannot handle exceptions and special

cases. In such cases, rule-based models can provide significant

improvements by defining rules for handling special cases and

exceptions. In our proposed framework, for the rule-based

model, linguistic rules were extended by analyzing errors of

the genetic algorithm and defining new rules for handling these

errors (named as correction rules). In contrast, a rule-based

model needs a great deal of knowledge external to the corpus

that only linguistic experts can generate. In fact, acquiring

rules through interviews with experts is cumbersome and time-

consuming. Furthermore, certain application domains are very

complicated and may require a large number of rules.

Therefore, the acquired rules may be incomplete or even

partially correct. In order to overcome these problems, we can

handle general patterns by genetic algorithms and only define

correction rules to handle special cases, which means less time

handling by expert humans. We can also define a set of general

rules besides correction rules in order to reduce the run time of

the genetic algorithm.

There is a remarkable amount of ongoing research on

applying machine learning approaches to different tasks of

NLP in the English language. Most machine learning

approaches such as those methods based on hidden Markov

models, use information extracted from a tagged corpus to

assign a suitable tag to each word according to preceding tags.

Since these approaches are purely statistical, as such they are

most suitable for cases that have a corpus large enough to

contain all possible combinations of n-grams. In contrast,

evolutionary algorithms offer a more generalized method that

can be applied to any statistical model. For example, they can

be applied to perform tagging operations according to the

Markov model (tag prediction for a current word based on

preceding tags) or improve the Markov results by using more

contextual information (for example, using tags of preceding

words or those of following words). In other words, HMM or

other models can be used as part of the fitness function in a

genetic algorithm. Therefore, a genetic algorithm provides

more flexibility than any of the other classical approaches such

as HMM based methods. On the other hand, the effectiveness

of using hybrid approaches has been demonstrated in different

NLP tasks [21]. Thus a hybrid approach for determining the

position of Ezafe construction was chosen for this study.

Results of the tests in this study show that our proposed

algorithm outperformed other algorithms for Persian Ezafe

tagging as well as the classical MM based method.

The rest of the paper is organized as follows. Section 2

introduces the annotated corpus of Persian texts. Section 3

explains our proposed model. Experiment results are discussed

in section 4. Finally, section 5 concludes the paper.

II. THE CORPUS

An annotated corpus of Persian text is needed in order to

train and evaluate the Ezafe tagger. This corpus must be

annotated with POS and Ezafe tags. For the current work, a

subset of Persian POS tagged corpora known as Peykareh3

[21] was used. This collection was gathered from daily news

and common texts and contained about 2.6 million, manually

tagged tokens. The main corpus was tagged with a rich set of

POS tags consisting of 550 different tags from which 20 tags

were selected for the system. Those that could be detected by

the present Persian POS taggers were selected for use in the

system applied to this study.

The tagged corpus was divided into three sets: (1) a training

set including 423,721 tokens, (2) a held-out data set containing

1,010,375 tokens, and (3) a test set containing 39,850 tokens.

A big portion of the Peykareh corpus was set aside as a

held-out dataset. The held-out dataset was used to find

exceptions to general rules in the rule-based model. Since the

exceptions occur only rarely, much more data was needed to

determine the exceptions. Furthermore, to determine the

classes of conjunctions and prepositions which never take an

Ezafe or always require an Ezafe, the held-out data set was

searched. Thus, a sufficiently large data set was needed to find

as many words as possible.

III. THE PROPOSED ALGORITHM

This paper proposes a hybrid approach to determine the

position of Ezafe constructions in Persian texts. The Ezafe

tagger contained two phases. The first phase used the rule-

based model to tag as many words as possible. Then the

second phase ran the genetic algorithm to assign tags to the

tokens which had not been assigned an Ezafe tag in the

previous phase. Therefore, a faster genetic algorithm was

achieved by producing more tagged tokens that had been

generated from the rule-based model.

The Ezafe tagger assigned each word of an input sentence

with one of two tags: true or false. Tag true for a word meant

that it requires an Ezafe, and the tag false meant it does not

require one.

A. The rule-based model

Initially, some general rules such as “verbs do not take an

Ezafe” were defined using linguistic knowledge. Although the

genetic algorithm could detect these tags correctly by training

on annotated examples, we preferred to define such rules in

3 This corpus also is known by its author’s name, Bijankhan.

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 6

-19-

order to reduce the run time of the algorithm. The more tokens

detected by the rule-based model there were, the less

chromosome length and lower number of generations were

needed.

Next, the exceptions of each rule were explored on the held-

out data, and some new rules were defined to handle

exceptions. This process was repeated. In other words, if the

generated rules had exceptions, new rules were defined. In

some cases we could not find suitable rules to fix errors. In

these cases, probabilistic rules were used.

The genetic algorithm tagged tokens according to the

context; however, experiments showed that words which

appeared in an infrequent context usually took an incorrect tag

from the genetic algorithm. We tried to handle these cases

through hand-crafted rules. Thus, the initial rule-based model

and the genetic algorithm were run on the held-out data, and

errors were analyzed to introduce rules that would fix them.

In this way, a set of 53 hand-crafted rules was developed.

Then, the most suitable sequence of rules was determined in

terms of avoiding bleeding and creeping; in fact, a tree was

constructed. The first level of the tree contained some general

rules. Level 2, consisted of some rules for handling exceptions

of the first level and so it continued. However, each node in

level i handled an exception of the rule of its parent node in

level i-1 (if that rule had exceptions).

At the first stage of the proposed algorithm, each rule was

taken individually from the rule-set one at a time and the

function was performed only if the rule was applicable to the

input word.

Rules were categorized according to various dimensions:

 Deterministic vs. probabilistic rules: Deterministic

rules are those which are always valid and correct;

probabilistic rules may have exceptions. In other words,

probabilistic rules are valid most of the time, but as they may

have exceptions we apply them with a probability of less than

100%. This probability is extracted from the corpus.

 Negative vs. positive rules: Negative rules find and tag

negative examples which are the structures which never take

an Ezafe, while the positive rules determine structures which

need an Ezafe.

 Syntactic, morphological and lexical rules: Syntactic

rules use part-of-speech to tag words (either as the target word

or a neighboring word) in a sequence to determine the Ezafe

tag, while morphological rules consider internal and

morphological structures of a word to do this task, and lexical

rules consider real words.

In the rest of this section these categories are discussed in

more detail some examples are given from each category.

1) Syntactic Rules

Some POS categories enforced a special tag on words or on

neighboring words. The accusative case marker را (rã:) and

verbs were among this set.

 Verbs

o In the Persian language the Ezafe is not used with verbs.

The following rule dictated that verbs, which were shown

in the corpus with the POS tag V, never take an Ezafe.

If POS(X) =V Then EZ-Tag(X) =false

o If a verb appears as a stand-alone, the word before it does

not take an Ezafe. We presented this by the following

rule:

If POS(X) =V Then EZ-Tag(X-1) =false

o If the verb is not a stand-alone and appears as an

attachment (enclitic) to another word, then the previous

word (before the combination) may take an Ezafe. This is

the case for some of the enclitics representing the copula

verb ‘to be’ such as ی (i:) “to be- single second person”

and َم (æm) “to be- single first person”. These enclitics

are ambiguous and, in addition to copula verbs, can be

interpreted as an indefinite marker or as a single first-

person possessive pronoun, respectively. For example, the

word شاعری (∫ã:?eri:) may mean شاعر هستی (∫ã:?er

hæsti:) “you are poet” or ک شاعری (jek ∫ã:?er) “a poet”.

In the first case, even though the whole word was tagged

as a verb in the corpus, it is actually a combination of a

noun and a verb. Even though its verb part and its

previous word do not take an Ezafe, the word before the

noun part of it may take one. As another example, in the

following sentence the word دولتم (dolætæm) “I’m

government” is an abbreviation of دولت هستم (dolæt

hæstæm) “I am government”. In Peykareh corpus, this

word was tagged as verb with POS tag V,AJCC.

However, the previous word takes an Ezafe.
 من در استخدام دولتم.

I am a government employee.

Thus, we used POS tag V, ACJJ for this kind of verbs to

prevent applying the previous rule for them.

 The accusative case marker را (rã:)

o The Persian language has an accusative case marker را

(rã:) that follows the direct object, adverb or

prepositional object. The following rule dictated that the

accusative case marker, which was shown in the corpus

with the POS tag POSTP, never takes an Ezafe.

If POS(X) =POSTP Then EZ-Tag(X)=false

o The word before را (rã:) does not take an Ezafe too.

If POS(X) =POSTP Then EZ-Tag(X-1)=false

o In some cases the accusative case marker is attached to

the previous noun or pronoun. For example the word

 in ,(:mæn rã) من را is an abbreviation of (:mærã) 4مرا

which را (rã:) is an object marker and من (mæn) “me” is

a pronoun. This rule was written as follows:

If postfix(X) = accusative-case-marker EZ_Tag(X) =false

2) Morphological rules

The following rules are examples of morphological rules

that determine structures that take an Ezafe.

 When a word ending in the plural suffix ها (hã:) needs the

4 Sometimes it means ‘my’ and other times it means ‘me’

-20-

Ezafe, the letter ی (j) must be attached to the end of the

word in writing. Thus, if a plural word ends in ها (hã:),

this word should not be followed by an Ezafe unless it is

followed by a ی (j) clitic.

If postfix(X)=ها Then EZ-Tag(X)=false

Consider the following example.

 نامه های علی را خواندم.

I read Ali’s letters.

The word نامه ها (nã:me hã:) “letters” is the plural

form of نامه (nã:me) “letter”. When this word requires

Ezafe, we add ی (j) at the end of it.

 If the last character of a word is ا (Tanvin)5, then it does

not take an Ezafe.

If LastChar(X) = ا Then EZ-Tag(X)=false

3) Lexical rules

Lexical rules consider real form of words as shown in the

following examples:

 Prepositions

Reference [23] showed that the class of prepositions in the

Persian language is not uniform with respect to the Ezafe.

Some prepositions reject the Ezafe (These prepositions were

called Class P1.), while others either permit or require it. We

divided the latter group into two classes. The first class which

always requires an Ezafe was called Class P2. The other class

which permits an Ezafe but does not necessarily require one

was called Class P3. Table I shows some examples of each

class. We applied the following rules to handle prepositions:

If POS(X) =P and WORD(X)ClassP1 Then EZ-Tag(X)=false

If POS(X) =P and WORD(X)ClassP2 Then EZ-Tag(X)=true

TABLE I

EXAMPLES OF PREPOSITION CLASSES

Class name Examples

Class P1

 ”to“ (be) به

 ”from“ (æz) از

 ”with“ (:bã) با

 ”in, on “ (dær) در

Class P2

 ”in the middle“ (væsæt) وسط

 ”around“ (du:r) دور

 ”outside“ (bi:ru:n) بیرون

 ”inside“ (dã:xel) داخل

Class P3

 ”under“ (zi:r) زیر

 ”on“ (:ru) رو

 ”up“ (:bã:lã) بالا

 ”in front of“ (dʒoulou) جلو

 Conjunctions

Same as prepositions, we divided conjunctions into two

classes. Some conjunctions never take an Ezafe (These

conjunctions were called Class C1), while others always take

an Ezafe (These conjunctions were called Class C2). In order

to determine these classes we searched 300 files of Peykareh

corpus which were selected as held-out data. Some examples

of Class C1 and Class C2 are presented in Table II. The

following rules applied to conjunctions:

If POS(X) =CONJ and WORD(X)ClassC1 Then EZ-Tag(X)=false

If POS(X) =CONJ and WORD(X)ClassC2 Then EZ-Tag(X)=true

TABLE II

EXAMPLES OF CONJUNCTION CLASSES

Class name Examples

Class C1

 ”and“ (væ) و

 ”because“ (:zi:rã) زیرا

ای (jã:) “or”

 ”that“ (ke) که

 ”means“ (:jæni) یعنی

Class C2

ælã:ræɣ?) علی رغم me) “in spite

of”

 ”except“ (beestesnã:?e) باستثناء

 ”except“ (sævã:je) سوای

 ”in spite of“ (bærxælã:fe) برخلاف

 Adverbs

We also divided Persian adverbs into three classes. Class

A1 contained adverbs which never take an Ezafe; class A2

included adverbs with an obligatory Ezafe; class A3 contained

adverbs with an optional Ezafe. Examples of these classes are

shown in Table III. The following rules applied to adverbs:

If POS(X) =ADV and WORD(X)ClassA1 Then EZ-Tag(X)=false

If POS(X) =ADV and WORD(X) ClassA2 Then EZ-Tag(X)=true

TABLE III

EXAMPLES OF ADVERB CLASSES

Class name Examples

Class A1

 ”specially“ (bevi:ʒe) بویژه

 ”never“ (hi:t∫gã:h) هیچگاه

 ”maybe“ (ã:jæd∫) شاید

Class A2

 ”like“ (mesle) مثل

 ”like“ (mã:nænde) مانند

قبیل از (æz Gæbi:le) “such

as”

Class A3
 ”past“ (gozæ∫te) گذشته

 ”annual“ (sã:li:jã:neh) سالیانه

4) Probabilistic rules

We also defined 5 probabilistic rules which were correct

and valid in most cases but had some exceptions in a few

cases. Defining each rule, the probability of that rule was

calculated according to the corpus. The lowest probability

among these rules was 0.95. Here, we discuss some of the

probabilistic rules.

 Long vowels

There are three long vowels in Persian: ا (ã:), ی (i:) and و

(u:). Generally, when a word ending in ا (ã:) or و (u:) needs

an Ezafe, the letter ی (j) is added to the end of it. However,

this rule has some exceptions.

In the case of ا (ã:), these exceptions happen when we

replace أ (Alef Hamze) by ا (ã:) (single alef). Alef Hamze is a

single Arabic character that represents the two-character

5 This sign was taken from Arabic alphabet

http://en.wikipedia.org/wiki/Voiced_palato-alveolar_affricate
http://en.wikipedia.org/wiki/Voiced_velar_fricative
http://en.wikipedia.org/wiki/Voiced_palato-alveolar_sibilant

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 6

-21-

combination of Alef plus Hamze and in Persian writing is

sometimes replaced by the letter ا (ã:). Consider the following

example:
 آقای احمدی منشا فساد را فقر می داند.

“Mr. Ahamdi believes that the source of evil is poverty.”

The word آقا (ã:Gã:) “Mr.” takes a ی (j) at the end because

it requires the Ezafe; however, the word منشا (mæn∫æ)

“source” also ends in ا (ã:) and needs the Ezafe, but it does

not get ی (j). In fact, the last character of this word is أ (Alef

Hamze) which is written the same as ا (ã:).

To compute the probability of the rule, the algorithm

searched the held-out data set and computed the percentage of

words ending with ا (ã:) and the Ezafe which had the letter ی

(j) added. In other words, this probability was computed by the

following formula:

 (1)

Thus, the following rule was defined with a 95%

probability:

If LastChars(X) =ای Then with a 0.95 probability EZ-Tag(X) =true

In the same way, the following rules were defined:

If LastChars(X) =ا Then with a 0.9978 probability EZ-Tag(X) =false

If LastChars(X) =وی Then with a 0.96 probability EZ-Tag(X) =true

 Tanvin

Tanvin is a sign which is derived from Arabic. The

following rule says that with a probability of 96.24% the word

preceding a word that has ا (Tanvin) as the final character

does not take an Ezafe:

If LastChars(X) = ا Then with a 0.9624 probability EZ-Tag(X-1)

=false

Frequency counts for the rule-categories are shown in

Table IV.

TABLE IV

NUMBER OF EXTRACTED RULES IN EACH CATEGORY

Syntactic Morphological Lexical Probabilistic

25 4 19 5

After running the rule-based model, some of the tokens

remained untagged. Thus, a genetic based algorithm was used

to tag the remaining words.

B. Genetic tagging algorithm

The proposed genetic algorithm receives a natural language

sentence and assigns a corresponding tag according to

previously computed training information from the annotated

corpus. Formally, given a sequence of n words and

corresponding POS tags, the aim is to find the most probable

Ezafe tag sequence.

In our implementation, each gene can take values: true or

false. Individuals of the first generation were produced

randomly. After producing an individual, all tokens of a given

sentence were assigned Ezafe tags (some of tokens get Ezafe

tag by the rule-based model and others get Ezafe tag by the

genetic algorithm).

An initial population was created randomly by assigning a

random value to each untagged gene (some genes were

assigned Ezafe tags from the rule-based model). These

individuals were sorted according to fitness value of

individuals from high to low.

Three genetic operations were used for producing the next

generation.

 Selection: All individuals in the population are sorted

according to fitness, so the first individual was the best fit

in the generation. To perform crossover, the ith and

(i+1)th individuals of the current generation were

selected, where i=1,2,...,[(p+1)/2] and p was the

population size. The aim of selection was to choose the

fitter individuals.

 Crossover: Selected two chromosomes, crossover

exchanges portioned of a pair of chromosomes at a

randomly chosen point called the crossover point.

 Mutation: Selected an untagged gene randomly and

toggled its value, for example if its value was true, it was

reset to false and vice versa.

1) Fitness Functions

To evaluate the quality of Ezafe tags generated for an

individual, four functions were used; F1, F2, F3 and F4. These

functions considered the context in which a word appeared.

Context consisted of a current word, one tag to the left and

another to the right and the previous and next word.

F1 considered the sequence of POS tags of a sentence. The

probability of the sequence of POS tags of a sequence of n

words was as follows:

 (2)

Where, represents the probability

that the current word with POSi tag gets the Ezafe when the

next word has the POSi+1 tag. The probability of assigning the

Ezafe to a word given the next POS tag was computed as:

 (3)

Where, count was the number of occurrences

of the sequence within the training corpus, and

 was the number of

occurrences when the first token has an Ezafe within the same

corpus. In order to compute F1 function, the HMM model can

be used with the Viterbi algorithm [24].

For computing F2 function, a data driven approach was

applied to calculate the probability that a specific word has the

Ezafe.

 (4)

-22-

F2 was defined because some words in Persian are mostly

assigned a special tag. For example, the word تقریبا

(tæGri:bæn) “approximately” never take an Ezafe.

F3 function was the probability that a token gets an Ezafe

when it occurs before a specific word in the training corpus.

 (5)

This function was defined to handle compound words such

as اختلاف نظر (extelã:f-Ezafe næzær) “difference in

opinion”.

In Persian, some words such as سایر (sã:jer) “other” get

the Ezafe most of the time. Therefore, we defined the F4

function to consider these words. The F4 function was the

probability that a specific word occurs after a word with the

Ezafe in the training corpus.

 (6)

The following fitness function was used to evaluate the

genetic algorithm:

 (7)

Where are constant parameters chosen from [0,1) and

show relative importance of syntactic and lexical information.

It was assumed that 0 is a legal value to show the effect of

removing one or more functions from the formula. To adjust

 parameters in the fitness function formula, variable

structure learning automata were applied on chunked held-out

data. For more information you can see [25]. Finally, the

values of w1, w2, w3 and w4 were set to 0.8, 0.5, 0.1 and 0.1

respectively.

IV. EXPERIMENTS

The proposed algorithm was implemented using java

language and was run on a Pentium IV processor. First, the

rule-based model was run followed by the genetic algorithm,

and the best solution was selected. Approximately 78% of the

tokens were tagged with the rule-based model, because about

80% of the tokens selected as test data did not require an

Ezafe, and most of them were tagged by the rule-based system.

To evaluate the performance of our proposed algorithm,

three measures were taken: accuracy (the percentage of

correctly tagged tokens), precision (the percentage of

predicted tags that were correct) and recall (the percentage of

predictable tags that were found).

Since performance was related to both precision and recall,

the F-measure was given as the final evaluation.

 (8)

A. Tuning Parameters of the Genetic Algorithm

The efficiency of a genetic algorithm greatly depends on

how its parameters are tuned. To adjust the genetic parameters,

a subset of 34,832 tokens from held-out data set was selected.

Then, the proposed algorithm was run on this set.

Beginning with a baseline configuration, such as Dejong’s

setting [26] with 1000 generations, 50 chromosomes in each

generation and 0.6 for crossover probability, the algorithm was

run for different mutation probabilities (Pm) from 0.01 to 0.3.

Fig. 1 shows that the best results were obtained using the

mutation probability 0.05.

Fig. 1. Average fitness values of executing of the GA using different mutation

probabilities

In the same way, crossover probability was set to 0.6. In

Fig. 2 the results of running the genetic algorithm using

mutation probability 0.05, crossover probability 0.6,

population size 50 and different number of generations are

shown.

Fig. 2. Average fitness values of executions of the GA using different number

of generations

Table V shows the optimum values of genetic algorithm

parameters.

TABLE V

SELECTED VALUES FOR GENETIC ALGORITHM PARAMETERS

Pm Pc population size generations

0.05 0.6 50 150

B. Effectiveness of the Proposed Algorithm

The experiment applied 423,721 annotated tokens as the

training set and 39,850 tokens as the test set. Parameter

settings shown in Table V were used for the genetic algorithm.

Table VI compares our approach with a baseline method

and other available methods based on PCFG [19] and CART

[20]. We also implemented the binary Markov model with

Viterbi decoding (a typical algorithm widely used for

stochastic tagging). As can be seen, our proposed algorithm

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 6

-23-

outperformed these algorithms in terms of F-measure. The

baseline assumed all words have an Ezafe, resulting in 100%

recall but very low precision (15.79%). We could define

another baseline where no word has the Ezafe tag. In this case,

we would achieve 84.21% precision, but the recall would be 0.

TABLE VI

EVALUATING OUR PROPOSED ALGORITHM IN TERMS OF F-MEASURE

 recall precision F-measure

Our proposed algorithm 88.81 87.85 88.33

Baseline 100 15.79 27.27

PCFG method [19] 86.74 87.54 87.14

CART method [20] 88.85 84.13 86.43

Viterbi method 95.51 78.63 86.25

Since we had no access to the corpus that was used for

training in the CART method [20] or a description of the exact

features used, we could not regenerate the exact results. For

this reason, we used two approaches for comparison. In the

first approach, we compared results of our proposed method

with the best results reported in [20], and in the second one,

we implemented the CART method using the same features as

our proposed method and tested it on our test corpus. Since the

performance of the second approach was much lower than

what was reported in [20], we only presented the results of the

first approach in Table VI.

In the above-mentioned experiments, correct POS tags were

used, because results from the proposed algorithm were

compared to those from other available Ezafe taggers. Since

these taggers had used correct tags, we also used the correct

tags to enable the comparison. By using a Tnt tagger, the

proposed algorithm achieved a 95.08% accuracy, while with

correct tags it achieved an accuracy of 95.49%. This indicates

that the tagging error decreased the Ezafe detection accuracy

by only about 0.41%. The reason for this is that both the rule-

based model and the genetic algorithm consider other features

besides POS tags, and these features can, to some extent, cover

the errors of the POS tagger.

Considering accuracy as the percentage of correctly

assigned tags, we evaluated the performance of the proposed

algorithm from two different aspects: (1) the overall accuracy

by taking all tokens in the test corpus into account, and (2) the

accuracy for words with an Ezafe and without an Ezafe,

respectively. Table VII shows that the overall accuracy of the

proposed algorithm was around 95.26%. Additionally, the

accuracy for detecting words without an Ezafe was

significantly higher than that for words with an Ezafe (96.89%

versus 88.81%).

TABLE VII

EVALUATING OUR PROPOSED ALGORITHM IN TERMS OF ACCURACY

Number of correctly tagged tokens

 with Ezafe without Ezafe Total

Corpus 8054 31796 39850

Our proposed

Algorithm

7153 30807 37960

Accuracy 88.81 96.89 95.26

Table VIII compares overall accuracy from the combination

of the rule-based model and the genetic algorithm.

Approximately 78% of tokens were tagged by the rule-based

model with 99.21% accuracy. In fact, from tokens in the test

set, 30,972 tokens were tagged by the rule-based model and

among them 30,728 tokens were assigned correct tags. In

contrast, the genetic algorithm assigned correct tags to 7,232

tokens from 8,878 tokens and achieved 81.46% accuracy.

TABLE VIII

COMPARING THE ACCURACY OF THE RULE-BASED MODEL VERSUS GENETIC

ALGORITHM

 Number of

tagged

tokens

Number of

correctly tagged

tokens

Accuracy

Rule-based model 30972 30728 99.21

Genetic algorithm 8878 7232 81.46

Table IX compares the accuracy of the rule-based model

versus the genetic algorithm. In RBM1, we ran the rule-based

model and assigned the false tag to tokens which did not get

the Ezafe tag after applying the rules. In contrast, the untagged

tokens got true tags in RBM2. We also ran the genetic

algorithm alone (without the rule-based model). Results show

that the combination of the rule-based model and the genetic

algorithm outperformed both individual algorithms. As might

be expected, the main problem of the RBM models was

missing rules, which caused some tokens remained untagged,

and the main problem of the genetic algorithm was special

cases that could not be handled by general patterns.

TABLE IX

COMPARING THE ACCURACY OF THE RULE-BASED MODEL VERSUS GENETIC

ALGORITHM

 Accuracy

RBM1 85.29

RBM2 91.21

GA 89.21

Combination of rule-based and GA 95.26

Since the ratio of words with an Ezafe to words without an

Ezafe was low, the Kappa coefficient was used to evaluate the

proposed algorithm. This measure was first suggested for

linguistic classification tasks [27] and has since been used to

avoid dependency of the score on the proportion of non-breaks

in the text. The Kappa coefficient (K) was calculated as:

 (9)

Where, Pr(A) was accuracy, and Pr(E) was the ratio of

words without an Ezafe to total words. Table X shows how to

evaluate an algorithm in terms of Kappa value. Using (9) the

Kappa coefficient became 0.77. According to Table X, our

proposed algorithm is assessed as good.

TABLE X

DECISION MAKING BY USING KAPPA [19]

Kappa values Strength of agreement

K<0.2 bad

0.2<K0.4 average

0.4<K0.6 relatively good

-24-

0.6<K0.8 good

0.8<K1 very good

Table XI shows that our proposed algorithm outperformed

previously reported algorithms in terms of Kappa value.

TABLE XI

COMPARING THE PERFORMANCE OF THE PROPOSED ALGORITHM WITH OTHER

METHODS

Kappa value

Our proposed algorithm PCFG method CART method

0.77 0.74 0.72

In the final experiment, we assessed the impact of training

corpus size on the performance of the proposed algorithm. The

corpus size was reduced slightly until it reached 32% of the

initial training corpus size. The results are presented in Fig. 3.

As can be seen, the proposed algorithm’s accuracy did not

show a significant drop when reducing the training corpus size

from 100% to 60%.

Fig. 3. The impact of training corpus size on performance

V. CONCLUSION AND FUTURE WORK

This paper proposes a framework for recognizing the

position of Ezafe constructions in Persian written texts that

combines genetic algorithms with rule-based models. Genetic

algorithms provide a search strategy to learn general Ezafe

patterns in text optimizing a measure of probability that is

effective globally. However, the rule-based model handles

special cases and exceptions to general patterns. Results of the

tests reported in this study show that the proposed algorithm

outperformed other algorithms for Persian text Ezafe tagging

and classical HMM based methods.

Although this paper presents an algorithm for Persian Ezafe

tagging, the principles can be applied to other NLP tasks such

as POS tagging or chunking in any language. A genetic

algorithm can be used for any language to find common

statistical patterns for tagging. Obviously, there may be

exceptions to these patterns, so some rules are defined to

handle exceptions in the rule-based model that serve to

improve performance of the genetic algorithm. In fact,

combining a genetic algorithm with the rule-based model

improves performance of the tagging process.

In addition, we showed that the accuracy of the proposed

algorithm does not depend highly on the training corpus size.

This feature is advantageous for practical applications,

because annotating training corpora for text analysis purposes

is an extremely demanding task.

In future work, linguistic rules may be extended by

analyzing errors of test data. It is also observed that input of

the Ezafe-tag set has a major influence on accuracy. Errors in

the training data have caused some problems, and these can be

reduced by correcting the training data.

In addition, it is intended that new attributes be added to the

fitness function of the genetic algorithm. One advantage of the

genetic algorithm compared to other classical approaches such

as HMM based methods is that new attributes can be added to

the system and this facilitates examination of the effect of

different attributes on tagging without altering the system’s

basic structure. Thus, tests will be done on new attributes

applied to the fitness function of the genetic algorithm and to

evaluate effects on tagging accuracy.

It was also observed that high accuracy is extremely

influenced by input tag set. A richer tag set with POS

information produces more accurate results. For example, we

can consider additional information with a POS noun, such as

time, location, and so on. In addition, in [5] there is a class of

lexical words called eventive adjectives, and they cannot co-

occur with an Ezafe in contrast with other lexical words.

Consider the following examples. Predicative adjectives may

only appear in Light Verb Constructions (a) and not in Ezafe

Constructions (b).

(a) علی کتاب را فراموش کرد “Ali forgot the

book.”

(b) * فراموش کتاب توسط علی “forgetting the

book by Ali”

We are going to enrich the tagset with more POS tags such

as eventive adjectives to define more accurate rules.

REFERENCES

[1] A. Kahnemuyipour, "Persian Ezafe construction: case, agreement or

something else," in Proceedings of the 2nd Workshop on Persian

Language and Computer, Tehran University, Tehran, Iran, 2006.

[2] T. Bögel, M. Butt, and S. Sulger, "Urdu ezafe and the morphology-

syntax interface," Proceedings of LFG08, 2008.

[3] A. Holmberg and D. Odden, "The Izafe and NP structure in Hawrami,"

Durham Working Papers in Linguistics, 2004.

[4] G. Van Schaaik, The noun in Turkish: Its argument structure and the

compounding straitjacket: Otto Harrassowitz Verlag, 2002.

[5] G. Karimi-Doostan, "Lexical categories in Persian," Lingua, vol. 121,

pp. 207-220, 2011.

[6] A. K. Ahranjani, "The head noun in possessive construction in English

and Persian languages," International Journal of Academic Research,

vol. 2, 2010.

[7] A. K. Ahranjani and R. Tohidian, "Ezafe construction in complex noun

phrases in Persian medieval poems," International Journal of Academic

Research, vol. 3, 2011.

[8] A. Moinzadeh, "The Ezafe phrase in Persian: How complements are

added to Ns and As," Journal of Social Sciences & Humanities of

Shiraz University, vol. 23, pp. 45-57, 2006.

[9] R. Larson and H. Yamakido, "Ezafe and the deep position of nominal

modifiers," in Barcelona Workshop on Adjectives and Adverbs,

Barcelona, 2005.

[10] J. Ghomeshi, "Non-projecting nouns and the ezafe: construction in

Persian," Natural Language & Linguistic Theory, vol. 15, pp. 729-788,

1997.

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 6

-25-

[11] P. Samvelian, A (phrasal) affix analysis of the Persian Ezafe:

Cambridge Univ Press, 2007.

[12] P. Samvelian, "The Ezafe as a head-marking inflectional affix: Evidence

from Persian and Kurmanji Kurdish," Aspects of Iranian Linguistics:

Papers in Honor of Mohammad Reza Bateni, pp. 339-361, 2007.

[13] M. Ghayoomi and S. Momtazi, "Challenges in developing Persian

corpora from online resources," in Asian Language Processing, 2009.

IALP'09. International Conference on, 2009, pp. 108-113.

[14] B. Sagot and G. Walther, "A morphological lexicon for the Persian

language," in Proceedings of the 7th Language Resources and

Evaluation Conference (LREC'10), 2010.

[15] M. Sheikhan, M. Tebyani, and M. Lotfizad, "Continuous speech

recognition and syntactic processing in Iranian Farsi language,"

International Journal of Speech Technology, vol. 1, pp. 135-141, 1997.

[16] J. W. Amtrup, H. M. Rad, K. Megerdoomian, and R. Zajac, Persian-

English machine translation: An overview of the Shiraz project:

Citeseer, 2000.

[17] S. Muller and M. Ghayoomi, "PerGram: A TRALE implementation of

an HPSG fragment of Persian," in Computer Science and Information

Technology (IMCSIT), Proceedings of the 2010 International

Multiconference on, 2010, pp. 461-467.

[18] M. Bijankhan, J. Sheykhzadegan, M. Bahrani, and M. Ghayoomi,

"Lessons from building a Persian written corpus: Peykare," Language

resources and evaluation, vol. 45, pp. 143-164, 2011.

[19] S. Isapour, M. Homayounpour, and M. Bijabkhan, "The Prediction of

Ezafe Construction in Persian by Using Probabilistic Context Free

grammar," in In Proceedings of 13th Annual Conference of Computer

Society of Iran, Kish Island, 2008.

[20] A. Koochari, B. Qasemzade, M. Kasaeiyan, and M. Namnabat, "Ezafe

Prediction in Phrases of Farsi Using CART," in Proceedings of the I

International Conference on Multidisciplinary Information Sciences

and Technologies, 2006, pp. 329-332.

[21] R. Dehkharghani and M. Shamsfard, "Mapping Persian Words to

WordNet Synsets," International Journal of Interactive Multimedia and

Artificial Intelligence, vol. 1, 2009.

[22] M. Bijankhan, "The role of the corpus in writing a grammar: An

introduction to a software," Iranian Journal of Linguistics, vol. 19,

2004.

[23] V. Samiian, "The Ezafe construction: some implications for the theory

of X-bar syntax," Persian Studies in North America, pp. 17-41, 1994.

[24] G. D. Forney Jr, "The viterbi algorithm," Proceedings of the IEEE, vol.

61, pp. 268-278, 1973.

[25] S. Noferesti and M. Rajaei, "A Hybrid Algorithm Based on Ant Colony

System and Learning Automata for Solving Steiner Tree Problem,"

International Journal of Applied Mathematics and Statistics, vol. 22,

pp. 79-88, 2011.

[26] K. A. De Jong and W. M. Spears, "An analysis of the interacting roles of

population size and crossover in genetic algorithms," in Parallel

problem solving from nature, ed: Springer, 1991, pp. 38-47.

[27] J. Carletta, "Assessing agreement on classification tasks: the kappa

statistic," Computational linguistics, vol. 22, pp. 249-254, 1996.

Samira Noferesti is a Ph.D student at Shahid Beheshti

University. Her interests include artificial intelligence,

natural language processing and opinion mining.

Dr. Mehrnoush Shamsfard has received her BS and

MS both on computer software engineering from Sharif

University of Technology, Tehran, Iran. She received her

PhD in Computer Engineering- Artificial Intelligence

from AmirKabir University of Technology in 2003. Dr.

Shamsfard has been an assistant professor at Shahid

Beheshti University from 2004. She is the head of NLP

research Laboratory of Electrical and Computer

Engineering faculty. Her main fields of interest are natural language

processing, ontology engineering, text mining and semantic web.

