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Abtract — In the Persian language, an Ezafe construction is a 

linking element which joins the head of a phrase to its modifiers. 

The Ezafe in its simplest form is pronounced as –e, but generally 

not indicated in writing. Determining the position of an Ezafe is 

advantageous for disambiguating the boundary of the syntactic 

phrases which is a fundamental task in most natural language 

processing applications. This paper introduces a framework for 

combining  genetic algorithms with rule-based models that brings 

the advantages of both approaches and overcomes their problems. 

This framework was used for recognizing the position of Ezafe 

constructions in Persian written texts. At the first stage, the rule-

based model was applied to tag some tokens of an input sentence. 

Then, in the second stage, the search capabilities of the genetic 

algorithm were used to assign the Ezafe tag to untagged tokens 

using the previously captured training information. The proposed 

framework was evaluated on Peykareh corpus and it achieved 

95.26 percent accuracy. Test results show that this proposed 

approach outperformed other approaches for recognizing the 

position of Ezafe constructions. 

 
Keywords — Ezafe construction, genetic algorithm, genitive 

construction, rule-based model. 

 

I. INTRODUCTION 

HE “Ezafe”1 is a Persian language grammatical construct 

which links two words together. Ezafe means “addition” 

and is an unstressed vowel –e– which marks genitive cases. 

The constructs linked by the Ezafe particle are known as 

“Ezafe constructions”. Some common uses of the Persian 

Ezafe are [1]: 

 a noun before an adjective: 

e.g. 2توپ قرمز (tu:p-Ezafe Germez) “red ball” 

 a noun before a possessor: 

e.g. کتاب علی (ketã:b-Ezafe Ali:) “Ali’s book” 

 some prepositions before nouns: 

e.g. زیر میز (zi:r-Ezafe mi:z) “under the table” 

The Ezafe in its simplest form is pronounced as –e, but 

 
 

1 It is also known as Kasreh. 
2 For each Persian word or phrase we wrote its transliteration within 

parenthesis and its English meaning within double quotes. International 

Phonetic Alphabet (IPA) was used to represent Persian language 

pronunciations. 

generally not indicated in writing. In some cases the Ezafe has 

an explicit sign in writing. For example, with nouns ending in 

 at the end; with (j) ی the Ezafe appears as an ,(ou) و or (:ã) ا

nouns ending in a silent ه (h) (short e followed by a mute h), 

the Ezafe may appear as a superscript ء (hamze) or a ی (j). 

The Ezafe is also found in Urdo [2], Kurdish [3] and 

Turkish [4]. The Persian Ezafe has been discussed extensively 

[5]-[8]. This construction raises several issues in syntax and 

morphology. There are three issues on the function of the 

Ezafe in the literature: (1) the Ezafe is a case marker [9], (2) 

the Ezafe is inserted at PF to identify constituenthood [10], 

and (3) the Ezafe is a phrasal affix [11]. 

Determining the position of an Ezafe construct may 

facilitate text processing activities in natural language 

processing (NLP) applications, such as segmenting a phrase or 

detecting the head word of a phrase [12]. Moreover, 

recognizing words which need an Ezafe is advantageous for 

tokenization [13], morphological analysis, and syntax parsing 

[14], and it is essential for speech synthesis [15]. 

Some NLP tasks in Persian, such as machine translation 

[16], construction of morphological lexicons [14], and 

grammar construction [17], have benefited from the 

availability of an Ezafe construction. However, they have 

determined the position of the Ezafe manually, exploited cases 

in which the Ezafe is visually represented, or extracted some 

insertion rules which are not general; therefore, they could not 

determine the Ezafe tags for all tokens in a text. 

The Persian Ezafe has been discussed extensively in theory 

[5], [18], but there are few works on the automatic detection of 

this construction in Persian texts. The most completely 

reported works on this subject are one work based on 

probabilistic context free grammar (PCFG) [19] and another 

based on classification and regression tree (CART) [20]. The 

former uses a bank including trees of noun groups in Persian 

for training PCFG. Then, a bottom-up parser extracts the most 

probable noun groups of the input. Finally, using lexical 

analysis, the system determines which words need an Ezafe. 

The disadvantage of this method is that writing a PCFG 

requires a large amount of linguistic knowledge. In addition, it 

is not sensitive to lexical information. The latter uses morpho-

syntactic features of words to train and construct binary 

classification trees to predict the presence or absence of an 
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Ezafe between two adjacent words. In fact, there are two kinds 

of rules: rules which predict Ezafe words, and rules which 

predict non-Ezafe words. Although this method can predict the 

absence of an Ezafe with high accuracy, it is not sufficient in 

detecting words which need an Ezafe. In other words, the rules 

which predict the non-Ezafe words act more precisely. 

The main contributions of this paper were (1) introducing a 

framework for combining genetic algorithms with rule-based 

models, and (2) using the proposed framework to develop an 

Ezafe tagger.  

Combining genetic algorithms with rule-based models 

brings the advantages of both approaches and overcomes their 

problems. Genetic algorithms can detect general patterns in 

text, but sometimes they cannot handle exceptions and special 

cases. In such cases, rule-based models can provide significant 

improvements by defining rules for handling special cases and 

exceptions. In our proposed framework, for the rule-based 

model, linguistic rules were extended by analyzing errors of 

the genetic algorithm and defining new rules for handling these 

errors (named as correction rules). In contrast, a rule-based 

model needs a great deal of knowledge external to the corpus 

that only linguistic experts can generate. In fact, acquiring 

rules through interviews with experts is cumbersome and time-

consuming. Furthermore, certain application domains are very 

complicated and may require a large number of rules. 

Therefore, the acquired rules may be incomplete or even 

partially correct. In order to overcome these problems, we can 

handle general patterns by genetic algorithms and only define 

correction rules to handle special cases, which means less time 

handling by expert humans. We can also define a set of general 

rules besides correction rules in order to reduce the run time of 

the genetic algorithm.  

There is a remarkable amount of ongoing research on 

applying machine learning approaches to different tasks of 

NLP in the English language. Most machine learning 

approaches such as those methods based on hidden Markov 

models, use information extracted from a tagged corpus to 

assign a suitable tag to each word according to preceding tags. 

Since these approaches are purely statistical, as such they are 

most suitable for cases that have a corpus large enough to 

contain all possible combinations of n-grams. In contrast, 

evolutionary algorithms offer a more generalized method that 

can be applied to any statistical model. For example, they can 

be applied to perform tagging operations according to the 

Markov model (tag prediction for a current word based on 

preceding tags) or improve the Markov results by using more 

contextual information (for example, using tags of preceding 

words or those of following words). In other words, HMM or 

other models can be used as part of the fitness function in a 

genetic algorithm. Therefore, a genetic algorithm provides 

more flexibility than any of the other classical approaches such 

as HMM based methods. On the other hand, the effectiveness 

of using hybrid approaches has been demonstrated in different 

NLP tasks [21]. Thus a hybrid approach for determining the 

position of Ezafe construction was chosen for this study. 

Results of the tests in this study show that our proposed 

algorithm outperformed other algorithms for Persian Ezafe 

tagging as well as the classical MM based method. 

The rest of the paper is organized as follows. Section 2 

introduces the annotated corpus of Persian texts. Section 3 

explains our proposed model. Experiment results are discussed 

in section 4. Finally, section 5 concludes the paper. 

II. THE CORPUS 

An annotated corpus of Persian text is needed in order to 

train and evaluate the Ezafe tagger. This corpus must be 

annotated with POS and Ezafe tags. For the current work, a 

subset of Persian POS tagged corpora known as Peykareh3 

[21] was used. This collection was gathered from daily news 

and common texts and contained about 2.6 million, manually 

tagged tokens. The main corpus was tagged with a rich set of 

POS tags consisting of 550 different tags from which 20 tags 

were selected for the system. Those that could be detected by 

the present Persian POS taggers were selected for use in the 

system applied to this study. 

The tagged corpus was divided into three sets: (1) a training 

set including 423,721 tokens, (2) a held-out data set containing 

1,010,375 tokens, and (3) a test set containing 39,850 tokens. 

A big portion of the Peykareh corpus was set aside as a 

held-out dataset. The held-out dataset was used to find 

exceptions to general rules in the rule-based model. Since the 

exceptions occur only rarely, much more data was needed to 

determine the exceptions. Furthermore, to determine the 

classes of conjunctions and prepositions which never take an 

Ezafe or always require an Ezafe, the held-out data set was 

searched. Thus, a sufficiently large data set was needed to find 

as many words as possible. 

III. THE PROPOSED ALGORITHM 

This paper proposes a hybrid approach to determine the 

position of Ezafe constructions in Persian texts. The Ezafe 

tagger contained two phases. The first phase used the rule-

based model to tag as many words as possible. Then the 

second phase ran the genetic algorithm to assign tags to the 

tokens which had not been assigned an Ezafe tag in the 

previous phase. Therefore, a faster genetic algorithm was 

achieved by producing more tagged tokens that had been 

generated from the rule-based model. 

The Ezafe tagger assigned each word of an input sentence 

with one of two tags: true or false. Tag true for a word meant 

that it requires an Ezafe, and the tag false meant it does not 

require one. 

A. The rule-based model 

Initially, some general rules such as “verbs do not take an 

Ezafe” were defined using linguistic knowledge. Although the 

genetic algorithm could detect these tags correctly by training 

on annotated examples, we preferred to define such rules in 

 
3 This corpus also is known by its author’s name, Bijankhan. 
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order to reduce the run time of the algorithm. The more tokens 

detected by the rule-based model there were, the less 

chromosome length and lower number of generations were 

needed. 

Next, the exceptions of each rule were explored on the held-

out data, and some new rules were defined to handle 

exceptions. This process was repeated. In other words, if the 

generated rules had exceptions, new rules were defined. In 

some cases we could not find suitable rules to fix errors. In 

these cases, probabilistic rules were used. 

The genetic algorithm tagged tokens according to the 

context; however, experiments showed that words which 

appeared in an infrequent context usually took an incorrect tag 

from the genetic algorithm. We tried to handle these cases 

through hand-crafted rules. Thus, the initial rule-based model 

and the genetic algorithm were run on the held-out data, and 

errors were analyzed to introduce rules that would fix them. 

In this way, a set of 53 hand-crafted rules was developed. 

Then, the most suitable sequence of rules was determined in 

terms of avoiding bleeding and creeping; in fact, a tree was 

constructed. The first level of the tree contained some general 

rules. Level 2, consisted of some rules for handling exceptions 

of the first level and so it continued. However, each node in 

level i handled an exception of the rule of its parent node in 

level i-1 (if that rule had exceptions).  

At the first stage of the proposed algorithm, each rule was 

taken individually from the rule-set one at a time and the 

function was performed only if the rule was applicable to the 

input word. 

Rules were categorized according to various dimensions: 

 Deterministic vs. probabilistic rules: Deterministic 

rules are those which are always valid and correct; 

probabilistic rules may have exceptions. In other words, 

probabilistic rules are valid most of the time, but as they may 

have exceptions we apply them with a probability of less than 

100%. This probability is extracted from the corpus. 

 Negative vs. positive rules: Negative rules find and tag 

negative examples which are the structures which never take 

an Ezafe, while the positive rules determine structures which 

need an Ezafe. 

 Syntactic, morphological and lexical rules: Syntactic 

rules use part-of-speech to tag words (either as the target word 

or a neighboring word) in a sequence to determine the Ezafe 

tag, while morphological rules consider internal and 

morphological structures of a word to do this task, and lexical 

rules consider real words. 

In the rest of this section these categories are discussed in 

more detail some examples are given from each category. 

 

1) Syntactic Rules 

Some POS categories enforced a special tag on words or on 

neighboring words. The accusative case marker را (rã:) and 

verbs were among this set. 

 Verbs 

o In the Persian language the Ezafe is not used with verbs. 

The following rule dictated that verbs, which were shown 

in the corpus with the POS tag V, never take an Ezafe. 

If POS(X) =V Then EZ-Tag(X) =false  

o If a verb appears as a stand-alone, the word before it does 

not take an Ezafe. We presented this by the following 

rule: 

If POS(X) =V Then EZ-Tag(X-1) =false 

o If the verb is not a stand-alone and appears as an 

attachment (enclitic) to another word, then the previous 

word (before the combination) may take an Ezafe. This is 

the case for some of the enclitics representing the copula 

verb ‘to be’ such as ی (i:) “to be- single second person” 

and   َم  (æm) “to be- single first person”. These enclitics 

are ambiguous and, in addition to copula verbs, can be 

interpreted as an indefinite marker or as a single first-

person possessive pronoun, respectively. For example, the 

word شاعری (∫ã:?eri:) may mean شاعر هستی (∫ã:?er 

hæsti:) “you are poet” or ک شاعری  (jek ∫ã:?er) “a poet”. 

In the first case, even though the whole word was tagged 

as a verb in the corpus, it is actually a combination of a 

noun and a verb. Even though its verb part and its 

previous word do not take an Ezafe, the word before the 

noun part of it may take one. As another example, in the 

following sentence the word دولتم (dolætæm) “I’m 

government” is an abbreviation of دولت هستم (dolæt 

hæstæm) “I am government”. In Peykareh corpus, this 

word was tagged as verb with POS tag V,AJCC. 

However, the previous word takes an Ezafe.  
 من در استخدام دولتم.

I am a government employee. 

Thus, we used POS tag V, ACJJ for this kind of verbs to 

prevent applying the previous rule for them. 

 The accusative case marker را (rã:) 

o The Persian language has an accusative case marker را 

(rã:) that follows the direct object, adverb or 

prepositional object. The following rule dictated that the 

accusative case marker, which was shown in the corpus 

with the POS tag POSTP, never takes an Ezafe. 

If POS(X) =POSTP Then EZ-Tag(X)=false 

o The word before را (rã:) does not take an Ezafe too. 

If POS(X) =POSTP Then EZ-Tag(X-1)=false 

o In some cases the accusative case marker is attached to 

the previous noun or pronoun. For example the word 

 in ,(:mæn rã) من را is an abbreviation of (:mærã) 4مرا

which را (rã:) is an object marker and من (mæn) “me” is 

a pronoun. This rule was written as follows: 

If postfix(X) = accusative-case-marker EZ_Tag(X) =false 

 

2) Morphological rules 

The following rules are examples of morphological rules 

that determine structures that take an Ezafe. 

 When a word ending in the plural suffix ها (hã:) needs the 

 
4 Sometimes it means ‘my’ and other times it means ‘me’ 
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Ezafe, the letter ی (j) must be attached to the end of the 

word in writing. Thus, if a plural word ends in ها (hã:), 

this word should not be followed by an Ezafe unless it is 

followed by a ی (j) clitic. 

If postfix(X)=ها Then EZ-Tag(X)=false 

Consider the following example. 

 نامه های علی را خواندم.

I read Ali’s letters. 

The word نامه ها (nã:me hã:) “letters” is the plural 

form of نامه (nã:me) “letter”. When this word requires 

Ezafe, we add ی (j) at the end of it.  

 If the last character of a word is   ا (Tanvin)5, then it does 

not take an Ezafe. 

If LastChar(X) =   ا Then EZ-Tag(X)=false 

 

3) Lexical rules 

Lexical rules consider real form of words as shown in the 

following examples:  

 Prepositions 

Reference [23] showed that the class of prepositions in the 

Persian language is not uniform with respect to the Ezafe. 

Some prepositions reject the Ezafe (These prepositions were 

called Class P1.), while others either permit or require it. We 

divided the latter group into two classes. The first class which 

always requires an Ezafe was called Class P2. The other class 

which permits an Ezafe but does not necessarily require one 

was called Class P3. Table I shows some examples of each 

class. We applied the following rules to handle prepositions: 

If POS(X) =P and WORD(X)ClassP1 Then EZ-Tag(X)=false 

If POS(X) =P and WORD(X)ClassP2 Then EZ-Tag(X)=true 

 

TABLE I 

EXAMPLES OF PREPOSITION CLASSES 

Class name Examples 

 

 

Class P1 

 

 ”to“ (be)  به

 ”from“ (æz)  از

 ”with“ (:bã)   با

 ”in, on “ (dær)  در

 

 

Class P2  

 

 ”in the middle“ (væsæt)  وسط

 ”around“ (du:r)    دور

 ”outside“ (bi:ru:n) بیرون

 ”inside“ (dã:xel)   داخل

 

 

Class P3 

 ”under“ (zi:r) زیر

 ”on“ (:ru)   رو

 ”up“ (:bã:lã)   بالا

 ”in front of“ (dʒoulou)   جلو

 

 

 Conjunctions 

Same as prepositions, we divided conjunctions into two 

classes. Some conjunctions never take an Ezafe (These 

conjunctions were called Class C1), while others always take 

an Ezafe (These conjunctions were called Class C2). In order 

to determine these classes we searched 300 files of Peykareh 

corpus which were selected as held-out data. Some examples 

of Class C1 and Class C2 are presented in Table II. The 

following rules applied to conjunctions: 

If POS(X) =CONJ and WORD(X)ClassC1 Then EZ-Tag(X)=false 

If POS(X) =CONJ and WORD(X)ClassC2 Then EZ-Tag(X)=true 

 

TABLE II 

EXAMPLES OF CONJUNCTION CLASSES 

Class name Examples 

 

 

 

Class C1 

 

 ”and“ (væ) و

 ”because“ (:zi:rã)  زیرا

ای   (jã:) “or” 

 ”that“ (ke)  که

 ”means“ (:jæni)  یعنی

 

 

Class C2 

ælã:ræɣ?) علی رغم me) “in spite 

of” 

 ”except“ (beestesnã:?e)  باستثناء

 ”except“ (sævã:je) سوای

 ”in spite of“ (bærxælã:fe) برخلاف

 

 Adverbs 

We also divided Persian adverbs into three classes. Class 

A1 contained adverbs which never take an Ezafe; class A2 

included adverbs with an obligatory Ezafe; class A3 contained 

adverbs with an optional Ezafe. Examples of these classes are 

shown in Table III. The following rules applied to adverbs:  

If POS(X) =ADV and WORD(X)ClassA1 Then EZ-Tag(X)=false 

If POS(X) =ADV and WORD(X) ClassA2 Then EZ-Tag(X)=true 

 

TABLE III 

EXAMPLES OF ADVERB CLASSES 

Class name Examples 

 

 

Class A1 

 

 ”specially“ (bevi:ʒe) بویژه

 ”never“ (hi:t∫gã:h) هیچگاه

 ”maybe“ (ã:jæd∫) شاید

 

 

Class A2  

 

 ”like“ (mesle) مثل

 ”like“ (mã:nænde) مانند

قبیل از  (æz Gæbi:le) “such 

as” 

 

Class A3 
 ”past“ (gozæ∫te) گذشته

 ”annual“ (sã:li:jã:neh) سالیانه

 

 

4) Probabilistic rules 

We also defined 5 probabilistic rules which were correct 

and valid in most cases but had some exceptions in a few 

cases. Defining each rule, the probability of that rule was 

calculated according to the corpus. The lowest probability 

among these rules was 0.95. Here, we discuss some of the 

probabilistic rules. 

 Long vowels 

There are three long vowels in Persian: ا (ã:), ی (i:) and و 

(u:). Generally, when a word ending in ا (ã:) or و (u:) needs 

an Ezafe, the letter ی (j) is added to the end of it. However, 

this rule has some exceptions.  

In the case of ا (ã:),  these exceptions happen when we 

replace أ (Alef Hamze) by ا (ã:) (single alef). Alef Hamze is a 

single Arabic character that represents the two-character 

                                                                                                     
5 This sign was taken from Arabic alphabet 

http://en.wikipedia.org/wiki/Voiced_palato-alveolar_affricate
http://en.wikipedia.org/wiki/Voiced_velar_fricative
http://en.wikipedia.org/wiki/Voiced_palato-alveolar_sibilant
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combination of Alef plus Hamze and in Persian writing is 

sometimes replaced by the letter ا (ã:). Consider the following 

example: 
 آقای احمدی منشا فساد را فقر می داند.

“Mr. Ahamdi believes that the source of evil is poverty.” 

The word آقا (ã:Gã:) “Mr.” takes a ی (j) at the end because 

it requires the Ezafe; however, the word منشا (mæn∫æ) 

“source” also ends in ا (ã:) and needs the Ezafe, but it does 

not get ی (j). In fact, the last character of this word is أ (Alef 

Hamze) which is written the same as ا (ã:).  

To compute the probability of the rule, the algorithm 

searched the held-out data set and computed the percentage of 

words ending with ا (ã:) and the Ezafe which had the letter ی 

(j) added. In other words, this probability was computed by the 

following formula: 

 

  (1) 

 

Thus, the following rule was defined with a 95% 

probability: 

If LastChars(X) =ای Then with a 0.95 probability EZ-Tag(X) =true 

In the same way, the following rules were defined: 

If LastChars(X) =ا Then with a 0.9978 probability EZ-Tag(X) =false 

If LastChars(X) =وی Then with a 0.96 probability EZ-Tag(X) =true 

 Tanvin 

Tanvin is a sign which is derived from Arabic. The 

following rule says that with a probability of 96.24% the word 

preceding a word that has   ا (Tanvin) as the final character 

does not take an Ezafe: 

If LastChars(X) =   ا Then with a 0.9624 probability EZ-Tag(X-1) 

=false 

Frequency counts for the rule-categories are shown in 

Table IV.  

 
TABLE IV 

NUMBER OF EXTRACTED RULES IN EACH CATEGORY 

Syntactic Morphological Lexical Probabilistic 

25 4 19 5 

 

 

After running the rule-based model, some of the tokens 

remained untagged. Thus, a genetic based algorithm was used 

to tag the remaining words. 

B. Genetic tagging algorithm 

The proposed genetic algorithm receives a natural language 

sentence and assigns a corresponding tag according to 

previously computed training information from the annotated 

corpus. Formally, given a sequence of n words and 

corresponding POS tags, the aim is to find the most probable 

Ezafe tag sequence.  

In our implementation, each gene can take values: true or 

false. Individuals of the first generation were produced 

randomly. After producing an individual, all tokens of a given 

sentence were assigned Ezafe tags (some of tokens get Ezafe 

tag by the rule-based model and others get Ezafe tag by the 

genetic algorithm).  

An initial population was created randomly by assigning a 

random value to each untagged gene (some genes were 

assigned Ezafe tags from the rule-based model). These 

individuals were sorted according to fitness value of 

individuals from high to low. 

Three genetic operations were used for producing the next 

generation. 

 Selection: All individuals in the population are sorted 

according to fitness, so the first individual was the best fit 

in the generation. To perform crossover, the ith and 

(i+1)th individuals of the current generation were 

selected, where i=1,2,...,[(p+1)/2] and p was the 

population size. The aim of selection was to choose the 

fitter individuals. 

 Crossover: Selected two chromosomes, crossover 

exchanges portioned of a pair of chromosomes at a 

randomly chosen point called the crossover point. 

 Mutation: Selected an untagged gene randomly and 

toggled its value, for example if its value was true, it was 

reset to false and vice versa. 

 

1) Fitness Functions 

To evaluate the quality of Ezafe tags generated for an 

individual, four functions were used; F1, F2, F3 and F4. These 

functions considered the context in which a word appeared. 

Context consisted of a current word, one tag to the left and 

another to the right and the previous and next word. 

F1 considered the sequence of POS tags of a sentence. The 

probability of the sequence of POS tags of a sequence of n 

words was as follows: 

 

   (2) 

 

Where,  represents the probability 

that the current word with POSi tag gets the Ezafe when the 

next word has the POSi+1 tag. The probability of assigning the 

Ezafe to a word given the next POS tag was computed as: 

 

 (3) 

 

Where, count  was the number of occurrences 

of the  sequence within the training corpus, and 

 was the number of  

occurrences when the first token has an Ezafe within the same 

corpus. In order to compute F1 function, the HMM model can 

be used with the Viterbi algorithm [24]. 

For computing F2 function, a data driven approach was 

applied to calculate the probability that a specific word has the 

Ezafe.  

 

  (4) 
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F2 was defined because some words in Persian are mostly 

assigned a special tag. For example, the word   تقریبا 

(tæGri:bæn) “approximately” never take an Ezafe.  

F3 function was the probability that a token gets an Ezafe 

when it occurs before a specific word in the training corpus.  

 

  (5) 

 

This function was defined to handle compound words such 

as اختلاف نظر (extelã:f-Ezafe næzær) “difference in 

opinion”. 

In Persian, some words such as سایر (sã:jer) “other” get 

the Ezafe most of the time. Therefore, we defined the F4 

function to consider these words. The F4 function was the 

probability that a specific word occurs after a word with the 

Ezafe in the training corpus. 

 

  (6) 

 

The following fitness function was used to evaluate the 

genetic algorithm:   

 

 (7) 

 

Where  are constant parameters chosen from [0,1) and 

show relative importance of syntactic and lexical information. 

It was assumed that 0 is a legal value to show the effect of 

removing one or more functions from the formula. To adjust 

 parameters in the fitness function formula, variable 

structure learning automata were applied on chunked held-out 

data. For more information you can see [25]. Finally, the 

values of w1, w2, w3 and w4 were set to 0.8, 0.5, 0.1 and 0.1 

respectively. 

IV. EXPERIMENTS 

The proposed algorithm was implemented using java 

language and was run on a Pentium IV processor. First, the 

rule-based model was run followed by the genetic algorithm, 

and the best solution was selected. Approximately 78% of the 

tokens were tagged with the rule-based model, because about 

80% of the tokens selected as test data did not require an 

Ezafe, and most of them were tagged by the rule-based system. 

To evaluate the performance of our proposed algorithm, 

three measures were taken: accuracy (the percentage of 

correctly tagged tokens), precision (the percentage of 

predicted tags that were correct) and recall (the percentage of 

predictable tags that were found).  

Since performance was related to both precision and recall, 

the F-measure was given as the final evaluation. 

 

 (8) 

A. Tuning Parameters of the Genetic Algorithm 

The efficiency of a genetic algorithm greatly depends on 

how its parameters are tuned. To adjust the genetic parameters, 

a subset of 34,832 tokens from held-out data set was selected. 

Then, the proposed algorithm was run on this set.  

Beginning with a baseline configuration, such as Dejong’s 

setting [26] with 1000 generations, 50 chromosomes in each 

generation and 0.6 for crossover probability, the algorithm was 

run for different mutation probabilities (Pm) from 0.01 to 0.3.  

Fig. 1 shows that the best results were obtained using the 

mutation probability 0.05. 

 

 
Fig. 1. Average fitness values of executing of the GA using different mutation 

probabilities 

 

In the same way, crossover probability was set to 0.6. In 

Fig. 2 the results of running the genetic algorithm using 

mutation probability 0.05, crossover probability 0.6, 

population size 50 and different number of generations are 

shown. 

 

 
Fig. 2. Average fitness values of executions of the GA using different number 

of generations 

 

Table V shows the optimum values of genetic algorithm 

parameters. 

 
TABLE V 

SELECTED VALUES FOR GENETIC ALGORITHM PARAMETERS 

Pm Pc population size generations 

0.05 0.6 50 150 

 

B. Effectiveness of the Proposed Algorithm 

The experiment applied 423,721 annotated tokens as the 

training set and 39,850 tokens as the test set. Parameter 

settings shown in Table V were used for the genetic algorithm. 

Table VI compares our approach with a baseline method 

and other available methods based on PCFG [19] and CART 

[20]. We also implemented the binary Markov model with 

Viterbi decoding (a typical algorithm widely used for 

stochastic tagging). As can be seen, our proposed algorithm 
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outperformed these algorithms in terms of F-measure. The 

baseline assumed all words have an Ezafe, resulting in 100% 

recall but very low precision (15.79%). We could define 

another baseline where no word has the Ezafe tag. In this case, 

we would achieve 84.21% precision, but the recall would be 0. 

 
TABLE VI 

EVALUATING OUR PROPOSED ALGORITHM IN TERMS OF F-MEASURE 

 recall precision F-measure 

Our proposed algorithm 88.81 87.85 88.33 

Baseline 100 15.79 27.27 

PCFG method [19] 86.74 87.54 87.14 

CART method [20] 88.85 84.13 86.43 

Viterbi method 95.51 78.63 86.25 

 

Since we had no access to the corpus that was used for 

training in the CART method [20] or a description of the exact 

features used, we could not regenerate the exact results. For 

this reason, we used two approaches for comparison. In the 

first approach, we compared results of our proposed method 

with the best results reported in [20], and in the second one, 

we implemented the CART method using the same features as 

our proposed method and tested it on our test corpus. Since the 

performance of the second approach was much lower than 

what was reported in [20], we only presented the results of the 

first approach in Table VI. 

In the above-mentioned experiments, correct POS tags were 

used, because results from the proposed algorithm were 

compared to those from other available Ezafe taggers. Since 

these taggers had used correct tags, we also used the correct 

tags to enable the comparison. By using a Tnt tagger, the 

proposed algorithm achieved a 95.08% accuracy, while with 

correct tags it achieved an accuracy of 95.49%. This indicates 

that the tagging error decreased the Ezafe detection accuracy 

by only about 0.41%. The reason for this is that both the rule-

based model and the genetic algorithm consider other features 

besides POS tags, and these features can, to some extent, cover 

the errors of the POS tagger. 

Considering accuracy as the percentage of correctly 

assigned tags, we evaluated the performance of the proposed 

algorithm from two different aspects: (1) the overall accuracy 

by taking all tokens in the test corpus into account, and (2) the 

accuracy for words with an Ezafe and without an Ezafe, 

respectively. Table VII shows that the overall accuracy of the 

proposed algorithm was around 95.26%. Additionally, the 

accuracy for detecting words without an Ezafe was 

significantly higher than that for words with an Ezafe (96.89% 

versus 88.81%). 

 
TABLE VII 

EVALUATING OUR PROPOSED ALGORITHM IN TERMS OF ACCURACY 

Number of correctly tagged tokens 

 with Ezafe without Ezafe Total 

Corpus 8054 31796 39850 

Our proposed 

Algorithm 

7153 30807 37960 

Accuracy 88.81 96.89 95.26 

 

Table VIII compares overall accuracy from the combination 

of the rule-based model and the genetic algorithm. 

Approximately 78% of tokens were tagged by the rule-based 

model with 99.21% accuracy. In fact, from tokens in the test 

set, 30,972 tokens were tagged by the rule-based model and 

among them 30,728 tokens were assigned correct tags. In 

contrast, the genetic algorithm assigned correct tags to 7,232 

tokens from 8,878 tokens and achieved 81.46% accuracy. 

 
TABLE VIII 

COMPARING THE ACCURACY OF THE RULE-BASED MODEL VERSUS GENETIC 

ALGORITHM 

 Number of 

tagged 

tokens 

Number of 

correctly tagged 

tokens 

Accuracy 

Rule-based model 30972 30728 99.21 

Genetic algorithm 8878 7232 81.46 

 

Table IX compares the accuracy of the rule-based model 

versus the genetic algorithm. In RBM1, we ran the rule-based 

model and assigned the false tag to tokens which did not get 

the Ezafe tag after applying the rules. In contrast, the untagged 

tokens got true tags in RBM2. We also ran the genetic 

algorithm alone (without the rule-based model). Results show 

that the combination of the rule-based model and the genetic 

algorithm outperformed both individual algorithms. As might 

be expected, the main problem of the RBM models was 

missing rules, which caused some tokens remained untagged, 

and the main problem of the genetic algorithm was special 

cases that could not be handled by general patterns. 

 

TABLE IX 

COMPARING THE ACCURACY OF THE RULE-BASED MODEL VERSUS GENETIC 

ALGORITHM 

 Accuracy 

RBM1 85.29 

RBM2 91.21 

GA 89.21 

Combination of rule-based and GA 95.26 

 

Since the ratio of words with an Ezafe to words without an 

Ezafe was low, the Kappa coefficient was used to evaluate the 

proposed algorithm. This measure was first suggested for 

linguistic classification tasks [27] and has since been used to 

avoid dependency of the score on the proportion of non-breaks 

in the text. The Kappa coefficient (K) was calculated as: 

 

 (9) 

Where, Pr(A) was accuracy, and Pr(E) was the ratio of 

words without an Ezafe to total words. Table X shows how to 

evaluate an algorithm in terms of Kappa value. Using (9) the 

Kappa coefficient became 0.77. According to Table X, our 

proposed algorithm is assessed as good. 

 
TABLE X 

DECISION MAKING BY USING KAPPA [19] 

Kappa values Strength of agreement 

K<0.2 bad 

0.2<K0.4 average 

0.4<K0.6 relatively good 
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0.6<K0.8 good 

0.8<K1 very good 

 

Table XI shows that our proposed algorithm outperformed 

previously reported algorithms in terms of Kappa value. 

 
TABLE XI 

COMPARING THE PERFORMANCE OF THE PROPOSED ALGORITHM WITH OTHER 

METHODS 

Kappa value 

Our proposed algorithm PCFG method CART method 

0.77 0.74 0.72 

 

In the final experiment, we assessed the impact of training 

corpus size on the performance of the proposed algorithm. The 

corpus size was reduced slightly until it reached 32% of the 

initial training corpus size. The results are presented in Fig. 3. 

As can be seen, the proposed algorithm’s accuracy did not 

show a significant drop when reducing the training corpus size 

from 100% to 60%. 

 

 
Fig. 3. The impact of training corpus size on performance 

 

V. CONCLUSION AND FUTURE WORK 

This paper proposes a framework for recognizing the 

position of Ezafe constructions in Persian written texts that 

combines genetic algorithms with rule-based models. Genetic 

algorithms provide a search strategy to learn general Ezafe 

patterns in text optimizing a measure of probability that is 

effective globally. However, the rule-based model handles 

special cases and exceptions to general patterns. Results of the 

tests reported in this study show that the proposed algorithm 

outperformed other algorithms for Persian text Ezafe tagging 

and classical HMM based methods. 

Although this paper presents an algorithm for Persian Ezafe 

tagging, the principles can be applied to other NLP tasks such 

as POS tagging or chunking in any language. A genetic 

algorithm can be used for any language to find common 

statistical patterns for tagging. Obviously, there may be 

exceptions to these patterns, so some rules are defined to 

handle exceptions in the rule-based model that serve to 

improve performance of the genetic algorithm. In fact, 

combining a genetic algorithm with the rule-based model 

improves performance of the tagging process. 

In addition, we showed that the accuracy of the proposed 

algorithm does not depend highly on the training corpus size. 

This feature is advantageous for practical applications, 

because annotating training corpora for text analysis purposes 

is an extremely demanding task. 

In future work, linguistic rules may be extended by 

analyzing errors of test data. It is also observed that input of 

the Ezafe-tag set has a major influence on accuracy. Errors in 

the training data have caused some problems, and these can be 

reduced by correcting the training data.  

In addition, it is intended that new attributes be added to the 

fitness function of the genetic algorithm. One advantage of the 

genetic algorithm compared to other classical approaches such 

as HMM based methods is that new attributes can be added to 

the system and this facilitates examination of the effect of 

different attributes on tagging without altering the system’s 

basic structure. Thus, tests will be done on new attributes 

applied to the fitness function of the genetic algorithm and to 

evaluate effects on tagging accuracy. 

It was also observed that high accuracy is extremely 

influenced by input tag set. A richer tag set with POS 

information produces more accurate results. For example, we 

can consider additional information with a POS noun, such as 

time, location, and so on. In addition, in [5] there is a class of 

lexical words called eventive adjectives, and they cannot co-

occur with an Ezafe in contrast with other lexical words. 

Consider the following examples. Predicative adjectives may 

only appear in Light Verb Constructions (a) and not in Ezafe 

Constructions (b). 

 

(a) علی کتاب را فراموش کرد  “Ali forgot the 

book.”  

(b) *  فراموش کتاب توسط علی  “forgetting the 

book by Ali” 

We are going to enrich the tagset with more POS tags such 

as eventive adjectives to define more accurate rules. 
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