# Texas A&M University- San Antonio Digital Commons @ Texas A&M University- San Antonio

**Biology Faculty Publications** 

College of Arts and Sciences

7-26-2019

# Adaptation of a microbial detection array as a monitoring tool revealed the presence 2 of mosquito-borne viruses and insectspecific viruses in field-collected mosquitoes

Estelle Martin Monica K. Boruck James Thissen Selene Garcia -Luna Mona Hwang

See next page for additional authors

Follow this and additional works at: https://digitalcommons.tamusa.edu/bio\_faculty

Part of the Biology Commons

## Authors

Estelle Martin, Monica K. Boruck, James Thissen, Selene Garcia -Luna, Mona Hwang, Megan R. Wise De Valdez, Crystal J. Jaing, Gabriel L. Hamer, and Matthias Frank AEM Accepted Manuscript Posted Online 26 July 2019 Appl. Environ. Microbiol. doi:10.1128/AEM.01202-19 Copyright © 2019 American Society for Microbiology. All Rights Reserved.

- 1 Adaptation of a microbial detection array as a monitoring tool revealed the presence
- 2 of mosquito-borne viruses and insect-specific viruses in field-collected mosquitoes
- 3
- 4 Estelle Martin<sup>1</sup>, Monica K. Borucki<sup>2</sup> James Thissen<sup>2</sup>, Selene Garcia-Luna<sup>1</sup>, Mona
- 5 Hwang<sup>2</sup>, Megan Wise de Valdez<sup>3</sup>, Crystal J. Jaing<sup>2</sup>, Gabriel L. Hamer<sup>1</sup>, and Matthias
- 6 Frank<sup>2</sup>
- 7
- 8 <sup>1</sup>Department of Entomology, Texas A&M University, College Station, Texas
- 9 <sup>2</sup> Physical & Life Sciences Directorate, Lawrence Livermore National Laboratory,
- 10 Livermore, California
- 11 <sup>3</sup> Program of Biology, Texas A&M University-San Antonio, San Antonio, Texas
- 12

### 13 **Corresponding authors**:

- 14 Estelle Martin, PhD, Department of Entomology, Texas A&M University, College
- 15 Station, Texas, United States of America
- 16 Phone: (979) 862-3943, E-mail: <u>estelmartin@gmail.com</u>
- 17 Matthias Frank, PhD, Lawrence Livermore National Laboratory, Livermore,
- 18 California, United States of America
- 19 Phone: (925) 423-5068, E-mail: <u>frank1@llnl.gov</u>
- 20
- 21 **Running title**: A microarray to screen mosquitoes for pathogens in Texas
- 22
- 23 Abstract

| 24 | Several mosquito-borne diseases affecting humans are emerging or re-emerging in               |
|----|-----------------------------------------------------------------------------------------------|
| 25 | the United States. The early detection of pathogens in mosquito populations is                |
| 26 | essential to prevent and control the spread of these diseases. In this study, we tested       |
| 27 | the potential applicability of the Lawrence Livermore Microbial Detection Array               |
| 28 | (LLMDA) to enhance bio-surveillance by detecting microbes present in Aedes                    |
| 29 | aegypti, Aedes albopictus and Culex mosquitoes that are major vector species                  |
| 30 | globally, including in Texas. The sensitivity and reproducibility of the LLMDA was            |
| 31 | tested in mosquito samples spiked with different concentrations of dengue virus               |
| 32 | (DENV) revealing a detection limit of >100 but <1000 pfu/mL. Additionally, field-             |
| 33 | collected mosquitoes from Chicago, Illinois and College Station, Texas of known               |
| 34 | infection status (West Nile virus (WNV) and Culex flavivirus (CxFLAV) positive)               |
| 35 | were tested on the LLMDA to confirm its efficiency. Mosquito field samples of                 |
| 36 | unknown infection status, collected in San Antonio, TX and the Lower Rio Grande               |
| 37 | Valley (LRGV), TX were run on the LLMDA and further confirmed by PCR or qPCR.                 |
| 38 | The analysis of the field samples with the LLMDA revealed the presence of cell                |
| 39 | fusing agent virus (CFAV) in Ae. aegypti populations. Wolbachia was also detected in          |
| 40 | several of the field samples ( <i>Ae. albopictus</i> and <i>Culex</i> spp.) by the LLMDA. Our |
| 41 | findings demonstrated that the LLMDA can be used to detect multiple arboviruses of            |
| 42 | public health importance including viruses that belong to the Flavivirus, Alphavirus          |
| 43 | and Orthobunyavirus genera. Additionally, insect-specific viruses and bacteria were           |
| 44 | also detected from field-collected mosquitoes. Another strength of this array is its          |
| 45 | ability to detect multiple viruses in the same mosquito pool allowing for the                 |
| 46 | detection of co-circulating pathogens in an area, and the identification of potential         |
|    | 2                                                                                             |

Downloaded from http://aem.asm.org/ on January 28, 2020 by guest

AEN

47 ecological associations between different viruses. This array can aid in the bio-

48 surveillance of mosquito borne viruses circulating in specific geographical areas.

49

#### 50 Importance

51 Viruses associated with mosquitoes have made a large impact on public and 52 veterinary health. In the US, several viruses including WNV, DENV and chikungunya 53 virus (CHIKV) are responsible for human disease. From 2015-2018, imported Zika 54 cases were reported in the US and in 2016-2017, local Zika transmission occurred in 55 the states of Texas and Florida. With globalization and a changing climate, the 56 frequency of outbreaks linked to arboviruses will increase, revealing a need to 57 better detect viruses in vector populations. With its capacity to detect viruses, 58 bacteria and fungi, this study highlights the ability of the LLMDA to broadly screen 59 field-collected mosquitoes and contribute to the surveillance and management of 60 arboviral diseases.

61

#### 62 Introduction

63 Mosquito-borne viruses emerge and re-emerge at accelerating rates, causing 64 significant morbidity and mortality in humans and animals (1). Due to globalization, 65 mosquito vectors and associated arboviruses have been introduced into new 66 geographic regions (2-5). One noteworthy example was the introduction of WNV 67 into the New World. The virus was first detected in New York in 1999 and then 68 spread throughout the US (6) using several Culex species as vectors. The yellow 69 fever mosquito, Aedes aegypti, and the Asian tiger mosquito, Aedes albopictus, are

Downloaded from http://aem.asm.org/ on January 28, 2020 by guest

invasive mosquito species widespread in urban environments of tropical, 71 subtropical, and temperate regions and are responsible for the emergence or re-72 emergence of multiple mosquito-borne diseases caused by different viral agents 73 including DENV (7-9), CHIKV and, more recently, Zika virus (ZIKV). Since its 74 introduction in Brazil in 2014, ZIKV has spread to the rest of South America, moving 75 north to Central and North America, resulting in the local transmission of the virus 76 in Florida and Texas in 2016-2017 (10-12). 77 These mosquito-borne viruses have proven difficult to manage and control 78 despite considerable attention and the ability to broadly screen mosquitoes for 79 microbes has appeal on many fronts. Microarrays have the ability to detect multiple 80 targets that would be missed by other more specific or targeted assays and could 81 reveal important components of the mosquito microbiome relevant to the 82 transmission of viruses of public and veterinary health importance. Typically, 83 microbial diversity associated with mosquitoes has been studied using both culture-84 dependent and -independent approaches (13-16). While culture-dependent 85 approaches are time consuming, molecular techniques such as reverse transcription polymerase chain reaction (RT-PCR) (17-19) and quantitative real-time PCR (qRT-86 87 PCR) (20-22) are typically designed to be specific at the species or family level. More 88 recently, many new forms of next generation sequencing (NGS) (23, 24) have 89 proven effective to characterize the mosquito microbiome but require the depletion 90 of host derived nucleic acid in order to sensitively detect viruses (25, 26). For

91 bacterial discovery, 16S rRNA sequencing is usually performed (27, 28) but only

92 detects conserved regions of the 16S rRNA gene of bacteria and does not allow for

| 93  | the detection of viruses and other microbes in the sample. Shotgun metagenomic        |
|-----|---------------------------------------------------------------------------------------|
| 94  | sequencing provides the highest resolution to detect different kinds of microbes in a |
| 95  | sample (29) but remains expensive, time consuming and requires extensive              |
| 96  | bioinformatic expertise.                                                              |
| 97  | Accordingly, this study utilizes the LLMDA, which has been designed to screen         |
| 98  | diverse samples for thousands of bacteria, viruses, fungi, and protozoa (30, 31). The |
| 99  | LLMDA version used in this study detects 10,261 species of microbes including         |
| 100 | 4,219 viruses, 5,367 bacteria, 293 archaebacteria, 265 fungi, and 117 protozoa (32).  |
| 101 | The LLMDA has been previously used to detect viral and bacterial pathogens from       |
| 102 | clinical and archeological samples (30, 33). We conducted a pilot study to evaluate   |
| 103 | the utility of the LLMDA to screen mosquito pools collected from multiple regions of  |
| 104 | Texas from 2016 to 2017 for mosquito-borne viruses. The LLMDA was able to             |
| 105 | detect and identify DENV-2, Rift Valley fever virus (RVFV), Mayaro virus (MAYV) in    |
| 106 | spiked mosquito samples, and WNV, CxFLAV and CFAV from field-collected                |
| 107 | mosquitoes. LLMDA results from field-collected mosquitoes were further confirmed      |
| 108 | using standard and/or quantitative PCR methods, and the co-infection of multiple      |
| 109 | viruses was detected from spiked and field collected mosquitoes. Viruses were         |
| 110 | detected from pools of mosquitoes of varying size and tissues including midguts and   |
| 111 | salivary glands. Additionally, Wolbachia was detected from field-collected Aedes      |
| 112 | aegypti and Culex mosquitoes.                                                         |
| 113 |                                                                                       |

114 **Results** 

Downloaded from http://aem.asm.org/ on January 28, 2020 by guest

| 115 | In total, we analyzed 39 mosquito pools representing 512 individual mosquitoes                                       |
|-----|----------------------------------------------------------------------------------------------------------------------|
| 116 | (Table S1). Ten pools were field-collected <i>Ae. aegypti</i> (n=116), eight pools were                              |
| 117 | colony-raised <i>Ae. aegypti</i> Liverpool (n=80), eight pools were field-collected <i>Ae.</i>                       |
| 118 | <i>albopictus</i> (n=49), four pools were field-collected <i>Culex</i> spp. (n=86), and six pools                    |
| 119 | were field-collected Cx. quinquefasciatus (n=138). One pool was colony-raised Cx.                                    |
| 120 | <i>quinquefasciatus</i> (n=10) and one pool was an equal mixture of colony-raised <i>Ae.</i>                         |
| 121 | <i>aegypti</i> and <i>Cx. quinquefasciatus</i> (n=20) to serve as a negative control. To                             |
| 122 | understand the compartmentalization of bacteria within Ae. aegypti and Culex spp.                                    |
| 123 | mosquitoes, four additional pools were analyzed: one pool of 23 midguts (MG) and                                     |
| 124 | one pool of 23 salivary glands (SG) for each mosquito species (Ae. aegypti and Culex                                 |
| 125 | spp.).                                                                                                               |
| 126 | LLMDA sensitivity and reproducibility                                                                                |
| 127 | In order to test the LLMDA sensitivity and reproducibility, we spiked known                                          |
| 128 | amounts of DENV serotype 2 (DENV-2) in Ae. aegypti Liverpool mosquito pools                                          |
| 129 | each containing 10 female mosquitoes. Duplicate pools were spiked with $10^2$ plaque                                 |
| 130 | forming units (pfu/mL) of virus or $10^3$ pfu/mL, and two other pools respectively                                   |
| 131 | with $10^4$ pfu/mL or $10^5$ pfu/mL (Table 1). According to our results, the limit of                                |
| 132 | detection or minimum amount of virus required to determine its presence or                                           |
| 133 | absence in the sample is equal or less than $10^3$ pfu/mL and above $10^2$ pfu/mL. The                               |
| 134 | DENV-2 dilutions (10 <sup>3</sup> pfu/mL, 10 <sup>4</sup> pfu/mL and 10 <sup>5</sup> pfu/mL) were all detected using |
| 135 | the array, with positive probes hybridizing to different regions of the DENV-2                                       |
| 136 | genome (Figure 1A). Because positive signals from more than 20% of the probes for                                    |
| 137 | DENV-2 were detected and, in several regions of the genome, these DENV-2 spiked                                      |
|     |                                                                                                                      |

| 139 | probes was close to matching the total number of probes present on the array for                 |
|-----|--------------------------------------------------------------------------------------------------|
| 140 | this target especially for the samples spiked with the highest amount of virus.                  |
| 141 | Additionally, the log CL ratio (ratio between the likelihood of the observed probe               |
| 142 | signal assuming the target is present in the sample and the likelihood assuming no               |
| 143 | target is present) was above 0 and therefore considered DENV positive. An increase               |
| 144 | in the log CL ratio was observed ranging from 56.7 to 224.6 correlating with the                 |
| 145 | increase in amount of spiked virus. The reproducibility of the LLMDA was tested for              |
| 146 | two of the dilutions in duplicates ( $10^2  pfu/mL$ and $10^3  pfu/mL$ ) and showed              |
| 147 | consistency. For the $10^2$ pfu/mL duplicates, no signal was recovered and for the $10^3$        |
| 148 | pfu/mL duplicates the log CI ratio were similar with a respective value of 56.7 and              |
| 149 | 60.7.                                                                                            |
| 150 | Samples spiked with the highest amount of DENV ( $10^5$ pfu/mL and $10^4$ pfu/mL)                |
| 151 | were co-infected with a known amount of Mayaro virus (MAYV) ( $10^4$ pfu/mL). Both               |
| 152 | viruses were successfully detected by the LLMDA (Figure 1A and 1B),                              |
| 153 | demonstrating the ability of the LLMDA to detect viruses from different families if              |
| 154 | present in the same mosquito sample pool. Additionally, Cx. quinquefasciatus spiked              |
| 155 | with known amount of Rift Valley fever virus (RVFV) ( $10^4 \text{ pfu/mL}$ ) also resulted in a |
| 156 | positive signal, highlighting the ability of the LLMDA to detect other arboviruses of            |
| 157 | medical and veterinary importance (Figure 1C). The Ae. aegypti homogenates spiked                |
| 158 | with ZIKV tested negative by the LLMDA. First, as seen on Figure 1D, only 3 probes               |
| 159 | out of the 27 designed to detect ZIKV had a positive signal (the percentage of                   |

samples are considered DENV positive. As seen on Table 2, the number of positive

| ne genome.                                                                                  |
|---------------------------------------------------------------------------------------------|
| were confi                                                                                  |
| d 28.96 for                                                                                 |
| , densoviru                                                                                 |
| samples but                                                                                 |
|                                                                                             |
| tion of LLM                                                                                 |
|                                                                                             |
| n infectior                                                                                 |
| <b>m infection</b><br>n order to te                                                         |
| r <b>n infectio</b> r<br>n order to te<br>o pools, WN                                       |
| r <b>n infection</b><br>n order to te<br>o pools, WN<br>l in Chicago                        |
| r <b>n infectior</b><br>n order to te<br>o pools, WN<br>l in Chicago<br>o pools pre         |
| n order to te<br>o pools, WN<br>l in Chicago<br>o pools pre-<br>successfull                 |
| n order to te<br>o pools, WN<br>i in Chicago<br>o pools pre-<br>successfull<br>out of the 7 |

| 162 | across the genome. And third, the log CL ratio was equal to zero. These spiked            |
|-----|-------------------------------------------------------------------------------------------|
| 163 | samples were confirmed to be ZIKV positive using a qPCR assay with <i>Ct</i> values of    |
| 164 | 20.63 and 28.96 for the samples spiked with $10^4$ and $10^2$ pfu/mL, respectively. In    |
| 165 | addition, densoviruses were detected in all of the DENV-2 and MAYV spiked Ae.             |
| 166 | aegypti samples but were further tested by PCR for confirmation (supplemental             |
| 167 | Table 4).                                                                                 |
| 168 | Application of LLMDA to detection of viruses from field-collected mosquitoes              |
| 169 | of known infection status                                                                 |
| 170 | In order to test the ability of the LLMDA to detect natural virus loads within            |
| 171 | mosquito pools, WNV and CxFLAV naturally infected mosquitoes previously                   |
| 172 | collected in Chicago and College Station were used. Of the two WNV positive               |
| 173 | mosquito pools previously detected using qPCR ( <i>Ct</i> values: 15.16 and 19.95), only  |
| 174 | one was successfully identified as WNV by the LLMDA (Figure 1E). In this particular       |
| 175 | case, 58 out of the 79 probes that characterized WNV were positive and a log CL $$        |
| 176 | score of 115.3 was observed. Interestingly, of these two pools, one was found             |
| 177 | positive for Culex flavivirus (CxFLAV) by the microarray. In this sample, 19 out of 19    |
| 178 | probes were positive (74.4 log CL ratio), revealing the ability of the microarray to      |
| 179 | detect co-infections from naturally infected mosquito pools (Figure 1F). The two          |
| 180 | CxFLAV positive controls from College Station ( <i>Ct</i> values of 18.24 and 30.31) were |
|     |                                                                                           |

positive probes was therefore below the default threshold of 20. Second, the 3 high-

intensity probes cover only a specific region of the genome instead of spanning

181 not detected using the microarray.

160

161

8

Downloaded from http://aem.asm.org/ on January 28, 2020 by guest

### 182 Application of the LLMDA to detection of microbes from field-collected

### 183 mosquitoes of unknown infection status

#### 184 LLMDA viral analysis

185 Several viruses were detected in the field-collected mosquito pools (Figure 1). Ae. 186 aegypti from LRGV (n=2) and San Antonio (n=1) were found positive for cell fusing 187 agent virus (CFAV), an insect-specific flavivirus (Figure 1G). All the 21 probes 188 designed for that virus on the array were positives (log CL ratio=77). Aedes aegypti 189 SGs and MGs pools were also positive for CFAV (log CL ratio=77; positive probe /all 190 target probe =21/21). Interestingly, one *Ae. aegypti* pool from the LRGV was found 191 positive for the avian endogenous retrovirus (23 out of 23 expected probes, log CL 192 ratio=74.9) (Figure 1H). None of the field-collected *Ae. albopictus* or *Culex* spp. 193 tested positive for viruses with the exception of the *Culex* population from Chicago 194 (as described in the previous paragraph). To assess the accuracy of the LLMDA to 195 detect the presence of insect-specific viruses, all samples were tested using 196 conventional PCR methods with gene-specific primers designed for CFAV and 197 CxFLAV (see Table 3 and Table 4). CFAV strain TX AR 11-1022 and CxFLAV strain 198 M23873 obtained from the University of Texas Medical Branch (UTMB) World 199 Reference Center for Emerging Viruses and Arboviruses (WRCEVA) were used as 200 positive controls for the conventional PCR assay. Samples resulting in an amplicon 201 were Sanger sequenced. The CFAV PCR assay confirmed the 5 microarray CFAV 202 positive pools and allowed the detection of 3 additional CFAV positive pools. The 203 CFAV strains detected in the *Ae. aegypti* pools from the LRGV showed 97.7% identity 204 to CFAV strain from Puerto Rico (Accession number: GQ165810) while the CFAV

205 strains from the Ae. aegypti population from San Antonio share 100% homology to a 206 CFAV strain from Mexico (Accession number: KJ476731). Aedes aegypti SGs and MGs 207 were both confirmed positive for CFAV (Table 4). For CxFLAV, only one of the two 208 positive pools from Chicago identified by the microarray was confirmed positive by 209 conventional PCR. While the microarray was not able to detect any CxFLAV positive 210 in the pools from College Station, these 2 pools were detected as CxFLAV positive by 211 PCR (Table 3). CxFLAV strains from Cx. quinquefasciatus (College Station, TX ) and 212 Culex spp. (from Chicago) show 100% identity to CxFLAV strain isolated from Culex 213 pipiens in the US (Accession number: KX512322).

#### 214 LLMDA bacterial analysis

215 Several Ae. albopictus and Culex spp. mosquito pools from Texas and Chicago, were 216 found to be naturally infected with *Wolbachia* (*w*) (Figure 2). *Ae. albopictus* from 217 LRGV and San Antonio were infected with the Wolbachia pipientis Aedes albopictus 218 strain from the supergroup B (wAlbB) (log CL ratio=199.7; positive probe /all target 219 probe =55/59) (Figure 2A). *Culex* spp. mosquitoes from Chicago and Texas (LRGV) 220 were infected with the Wolbachia pipientis Culex pipiens strain from supergroup B 221 (*wPip*) (log CL ratio=95.5; positive probe /all target probe =42/58) (Figure 2B). In 222 the San Antonio collection, one pool of *Culex* was found to be infected with *wAlbB* 223 (log CL ratio=199.7; probe detected/expected=55/59) and one pool of *Ae. albopictus* 224 was infected with Wolbachia pipientis Nasonia vitripennis from subgroup B (wVitB) 225 (log CL ratio=169.6; probe detected/expected=50/56) (Figure 2C). A few other 226 bacteria including Pseudomonas, Klebsiella, Erwinia were detected in various 227 samples (Supplementary Table S4). All mosquito pools identified as positive for

| 229 | qPCR assay (Table 4). Ae. albopictus from the LRGV and San Antonio were                    |
|-----|--------------------------------------------------------------------------------------------|
| 230 | confirmed to be harbor <i>wspB</i> . Additionally, these samples were found to be positive |
| 231 | for the wspA gene. Whereas, 2 Ae. albopictus pools from San Antonio were found             |
| 232 | positives with the LLDA, only one was confirm using the for <i>wsp</i> qPCR assay. The     |
| 233 | Culex spp. from San Antonio, TX, Chicago, IL and the LRGV were all confirmed               |
| 234 | positive for the <i>wspB</i> gene , with <i>Ct</i> values of 23.47, 29.77 and 19.99.       |
| 235 |                                                                                            |
| 236 | Discussion                                                                                 |
| 237 | Viruses                                                                                    |
| 220 | The LLMDA version used in the study (v7) was developed in 2014 and can                     |
| 250 | The LEMDA version used in the study (v/) was developed in 2014 and can                     |
| 239 | detect 4,219 viruses, 5,367 bacteria, 293 archaebacteria, 265 fungi, and 117               |
| 240 | protozoa. We utilized this platform to evaluate its ability to screen mosquito pools       |
| 241 | for viruses and other microbes. Our study demonstrates that the LLMDA is a broad           |
| 242 | screening tool that can be used to detect introduced or emerging pathogens in              |
| 243 | mosquito populations as well as the presence of other insect-specific viruses and          |

bacteria. The LLMDA is able to generate a comprehensive analysis of microbes

implement future vector control programs. Because it is highly multiplexed and is

based on random amplification, the LLMDA presents advantages over single and

sequencing. First, the sensitivity of the array was determined to be above 10<sup>2</sup> and

multiplexed PCR assays, and a cost and time advantages over next generation

circulating in mosquito populations of a specific area that could be used to

Wolbachia using the microarray were subject to a Wolbachia surface protein (wsp)

228

244

245

246

247

248

249

Accepted Manuscript Posted Online

Applied and Environmental Microbiology

AEM

positive

| 251 | importance around the world. The array probes were designed to detect both                 |
|-----|--------------------------------------------------------------------------------------------|
| 252 | conserved and unique regions of DENV using whole genome sequences from 3097                |
| 253 | DENV genomes from all four serotypes of which 403 were specific to DENV-2. The             |
| 254 | limit of detection of this virus in our array is within the range of viral detection from  |
| 255 | previous studies using the LLMDA (31, 34) and of other microarrays (35, 36). An            |
| 256 | interesting feature of the LLMDA is its ability to detect multiple infections from a       |
| 257 | single sample pool that would normally be missed if a gene-specific PCR approach is        |
| 258 | used. For example, the LLMDA detected both MAYV and DENV from mosquito pools               |
| 259 | co-infected with known amounts of both viruses. The LLMDA also successfully                |
| 260 | detected several viruses in field-collected mosquitoes of known (Table 2) and              |
| 261 | unknown (Table 3) infection status. For instance, in our study, one <i>Culex</i> spp. pool |
| 262 | from Chicago, IL, was found to be dually infected with WNV and CxFLAV, which               |
| 263 | confirms prior studies documenting the co-circulation of these two viruses (37, 38).       |
| 264 | The presence of several viruses in a mosquito pool does not necessarily mean co-           |
| 265 | infection in a single mosquito but co-infection of these two viruses has been              |
| 266 | previously reported (38, 39). Additionally, CxFLAV has been shown to interact with         |
| 267 | WNV transmission in <i>Culex</i> mosquitoes (40). This highlights the ability of the       |
| 268 | LLMDA to detect and identify two closely related viruses, and viruses from different       |
| 269 | families within a sample if present.                                                       |
| 270 | LLMDA and PCR assays both detected the presence of CFAV and CxFLAV in                      |

below 10<sup>3</sup> pfu/mL using serial dilution of DENV-2, a virus of major public health

271 several mosquito pools. When the LLMDAv7 array was designed in 2014, 22

| 272 | CxFLAV sequences and one CFAV genome were publicly available. CxFLAV was                        |
|-----|-------------------------------------------------------------------------------------------------|
| 273 | detected from <i>Culex</i> spp. mosquito pools collected in Chicago, IL, but not in <i>Cx</i> . |
| 274 | quinquefasciatus pools from College Station, TX. The inconsistency of the microarray            |
| 275 | to detect CxFLAV could be due to the variation in sequence between CxFLAV strains               |
| 276 | from different geographic origin or from different host species. Here the portion of            |
| 277 | the NS5 gene sequenced shows a 100% homology to the Cx. pipiens strain KX512322                 |
| 278 | but full genome analysis of CxFLAV strains from different localities and different              |
| 279 | mosquito species have been shown to cluster in two different clades (clade 1 and 2)             |
| 280 | with all the Cx. quinquefasciatus related strains clustering together in clade 2 (41)           |
|     |                                                                                                 |
| 281 | Additionally, the inconsistency of the results could be due to the difference in                |
| 282 | sensitivity between the two techniques and the fact that while the conventional PCR             |
| 283 | relies on the use of gene-specific primers, the microarray relies on the use of                 |
| 284 | random primers during the amplification process. All Aedes spp. pools were found                |
| 285 | to be negative for CxFLAV.                                                                      |
|     |                                                                                                 |
| 286 | CFAV was detected in <i>Ae. aegypti</i> from San Antonio, TX and the LRGV, TX. Once             |
| 287 | again, the conventional PCR allowed the detection of CFAV in two additional                     |
| 288 | samples probably due to the difference in sensitivity between the two techniques.               |
| 289 | The tissue dissection revealed the presence of CFAV in both the MG and the SG, the              |
| 290 | two main barriers of arbovirus replication within the mosquito. This tropism                    |
| 291 | suggests its potential for interaction with other viruses present within the mosquito           |
| 292 | The ability of CFAV to transmit from one generation to the next (42) as well as its             |
| 293 | ability to interact with DENV in Ae. aegypti cell line (43) makes it a promising                |
|     |                                                                                                 |

Applied and Environmental

Microbiology

294

295

296

| candidate for paratransgenesis. Culex spp. pools were found to be negative for CF    |
|--------------------------------------------------------------------------------------|
| The ability of the LLMDA to detect insect-specific viruses is of interest because it |
| allows the characterization of ecological associations between insect-specific       |
| viruses and human pathogens that occur in nature. These could in turn be             |
| investigated for the impact of the insect specific virus on the transmission of the  |
| human pathogen and serve as potential future vector control strategies.              |
|                                                                                      |
| The ZIKV strain PRVABC59 used in this study belongs to the Asian lineage and wa      |
| not detected using the LLMDA. The LLMDA was designed in 2014, when the only          |
| ZIKV sequence available was the MR-766 African lineage strain (accession numb        |
| NC_012532.1). Both viral strains share only 87-90% homology (44, 45). Thus, it i     |
| likely that the genetic diversity of the PRVABC59 ZIKV strain compared to the MI     |
| 766 African strain, did not allow for an efficient detection by the Zika probes pres |
| on the LLMDA. This result specifically highlights the need to design additional      |
| probes capable of recognizing the more contemporary Asian lineage of ZIKV and        |
| more broadly the perpetual need to update the microarray as new viruses or vira      |
|                                                                                      |

to be negative for CFAV.

| 297 | viruses and human pathogens that occur in nature. These could in turn be                |
|-----|-----------------------------------------------------------------------------------------|
| 298 | investigated for the impact of the insect specific virus on the transmission of the     |
| 299 | human pathogen and serve as potential future vector control strategies.                 |
|     |                                                                                         |
| 300 | The ZIKV strain PRVABC59 used in this study belongs to the Asian lineage and was        |
| 301 | not detected using the LLMDA. The LLMDA was designed in 2014, when the only             |
| 302 | ZIKV sequence available was the MR-766 African lineage strain (accession number:        |
| 303 | NC_012532.1). Both viral strains share only 87-90% homology (44, 45). Thus, it is       |
| 304 | likely that the genetic diversity of the PRVABC59 ZIKV strain compared to the MR-       |
| 305 | 766 African strain, did not allow for an efficient detection by the Zika probes present |
| 306 | on the LLMDA. This result specifically highlights the need to design additional         |
| 307 | probes capable of recognizing the more contemporary Asian lineage of ZIKV and           |
| 308 | more broadly the perpetual need to update the microarray as new viruses or viral        |
|     |                                                                                         |

309 strains are discovered or emerge.

310 Overall, this study was able to detect several viral symbionts. In the Ae. 311 aegypti samples spiked with DENV-2 and/or MAYV, densoviruses were detected but 312 not in the non-spiked sample. This reflects the presence of the densoviruses in the 313 C6/36 cells used to grow the different viruses (46-49). Surprisingly, endogenous 314 avian retrovirus (EAV) was found in one pool of female Ae. aegypti collected from an 315 autocidal gravid ovitrap (AGO) from the LRGV. EAV are non-infectious ancient

AEM

| 316 | elements of virus that integrated into their host genome and are found in all species         |
|-----|-----------------------------------------------------------------------------------------------|
| 317 | of the genus <i>Gallus</i> (50, 51). Many homeowners in the communities where mosquito        |
| 318 | trapping was done have chickens and this result suggests that Ae. aegypti had                 |
| 319 | previously fed on chickens or chicken DNA had contaminated the mosquitoes.                    |
| 320 | However, no human pathogen was detected using the LLMDA, presumably, due to                   |
| 321 | our limited set of field samples. In Texas, a total of 381 imported human Zika cases          |
| 322 | and 10 locally acquired ZIKV cases in the LRGV with 6 cases in 2016 and 4 cases in            |
| 323 | 2017 (11, 12). In this context, the probability of detecting ZIKV infected mosquitoes         |
| 324 | was low, especially because these mosquitoes were not being collected from or                 |
| 325 | around the homes of human ZIKV cases. The use of the LLMDA for virus detection                |
| 326 | should be further tested using mosquitoes collected from regions with active                  |
| 327 | arbovirus transmission areas and, if possible, from confirmed or probable human               |
| 328 | cases households.                                                                             |
| 329 | Although the number of viral species detected in our field samples is low our results         |
| 330 | are comparable to other studies using microarrays to determine the virome of field-           |
| 331 | collected mosquitoes. For example, the study of 10 mosquito pools collected in                |
| 332 | Thailand revealed the presence of three different viruses: CyFLAV in <i>Culey</i>             |
| 552 | Thanking revealed the presence of three anterent viruses. Oxi hav in outer                    |
| 333 | <i>quinquefasciatus</i> (n=1), DENV-3 in <i>Aedes aegypti</i> (n=1) and Japanese encephalitis |

- 334 virus (JEV) in two pool of *Cx. tritaeniorhyncus* containing respectively 24 and 25
- 335 mosquitoes (35). Authors using pan viral family primers coupled with conventional
- PCR also report low numbers of virus positive pools. For example, in a study
- 337 performed in Puerto Rico, 528 pools representing 1584 mosquitoes lead to the

identification of one insect-specific virus: CFAV in 67 pools (52). Other authors
using cell culture (observation of CPE) followed by conventional PCR using pan viral
family primers to detect viruses in mosquito samples have rarely detected extensive
number of viral species. For example, in a study done in Brazil, researchers collected
950 adult female mosquitoes representing 16 species. From these only two pools
tested positive for flavivirus and later identified as Nhumirim virus and Ilheus virus
(53, 54).

345 The LLMDA is able to detect a wide variety of viruses including mosquito-346 borne RNA viruses and insect-specific RNA viruses, and is able to detect co-infection 347 in mosquito pools, making it an efficient tool for surveillance of known pathogens in 348 under-studied areas such as the LRGV. Given the recent interest of using bacteria or 349 insect-specific viruses as a bio-control tool and the role of co-infection on pathogen 350 transmission, this tool can contribute to better understanding of disease dynamics 351 in a particular region. However periodic updates of probe sequences using genome 352 data from more contemporary strains is necessary to enable detection of emergent 353 RNA virus genomes due to their high mutation rates.

#### 354 Bacteria

- 355 The LLMDA results show the presence of *Wolbachia* in several mosquito pools
  356 which was confirmed with qRT-PCR assay targeting the surface protein *wsp. Ae.*
- 357 *aegypti,* the primary vector of dengue, Zika, and chikungunya, was found to be
- 358 negative for the presence of *Wolbachia*, which confirms previous observations (55).

Applied and Environmental

Microbiology

| 361  | populations of <i>Ae. albopictus</i> has been previously reported (56) and <i>Ae. albopictus</i> is  |
|------|------------------------------------------------------------------------------------------------------|
| 362  | often found infected with group A (wAlbA) and B strains (wAlbB) as suggested by                      |
| 363  | our results. Additionally, report of superinfection with the two strains has been                    |
| 364  | published (55). Wolbachia have been shown to limit DENV transmission (57) and                        |
| 365  | modulate CHIKV replication (58) in Ae. albopictus. The current study also detected                   |
| 366  | Wolbachia in Culex populations from Chicago, San Antonio and the LRGV, confirming                    |
| 367  | previous studies in Cx. quinquefasciatus from Australia (O'Neil et al 1992), Brazil and              |
| 368  | Argentina (59) and other <i>Culex</i> spp. in the USA such as <i>Culex pipiens</i> (56, 60, 61). The |
| 369  | presence of these endosymbionts in field populations in Texas is significant since                   |
| 370  | wPip (Group B) has been reported to induce resistance to WNV in <i>Cx.</i>                           |
| 371  | quinquefasciatus mosquitoes (62, 63). Because of its impact on transmission of                       |
| 372  | human pathogens, and on the mosquito reproduction, lifespan and resistance to                        |
| 373  | insecticides, knowledge of Wolbachia strains circulating in specific areas are needed                |
| 374  | if Wolbachia-based vector control strategies are to be implemented.                                  |
| 375  | Overall the number of bacterial bits in the mosquito pools was lower than                            |
| 0.70 |                                                                                                      |
| 376  | expected which might be explained by the lack of sufficient genomic sequences                        |
| 377  | specific to insect related bacterial species available during the array probe design,                |
| 378  | the low concentration of bacterial species in the samples or the genetic divergence                  |
| 379  | of the bacterial strains present in our samples when compare to bacterial genomes                    |
| 380  | used to develop the microarray. Additionally, the LLMDA was designed using only                      |
|      |                                                                                                      |

The secondary vector of these viruses, Ae. albopictus, was found to be infected with

Wolbachia in 60% of the pools tested. The presence of Wolbachia in natural

382

| full genomes sequences and if at that time only partial bacterial sequences related to       |
|----------------------------------------------------------------------------------------------|
| the mosquito microbiome were available, they would not have been included on the             |
| microarray. Since the development of this array many studies have shown the                  |
| importance of bacteria (64-66), viruses (67-69) and fungi (70, 71) in the                    |
| epidemiology of mosquito-borne diseases, demonstrating the need to better                    |
| characterize the mosquito microbiome. Updating the microarray with probes                    |
| designed to detect the major components of insects' microbiome could help alleviate          |
| the low number of bacterial hits detected in this study. In this study, we wanted to         |
| test the LLMDA's ability to detect microbes present in mosquito samples without              |
| the need of a targeted enrichment. The LLMDA was successful at identifying viral             |
| pathogens without a baited approach, but is not adequate to detect the whole                 |
| bacterial community. Instead the LLMDA seems to be efficient at detecting dominant           |
| bacterial species. Wolbachia has been reported to be the dominant member of Ae.              |
| albopictus and Culex mosquitoes (56) and has been successfully detected with the             |
| LLMDA. Other bacteria including Pseudomonas, Klebsiella and Erwinia have been                |
| detected from <i>Culex</i> spp. and <i>Ae. aegypti</i> in our samples (Supplemental Table 4) |

Downloaded from http://aem.asm.org/ on January 28, 2020 by guest

| 385 | epidemiology of mosquito-borne diseases, demonstrating the need to better                      |
|-----|------------------------------------------------------------------------------------------------|
| 386 | characterize the mosquito microbiome. Updating the microarray with probes                      |
| 387 | designed to detect the major components of insects' microbiome could help alleviate            |
| 388 | the low number of bacterial hits detected in this study. In this study, we wanted to           |
| 389 | test the LLMDA's ability to detect microbes present in mosquito samples without                |
| 390 | the need of a targeted enrichment. The LLMDA was successful at identifying viral               |
| 391 | pathogens without a baited approach, but is not adequate to detect the whole                   |
| 392 | bacterial community. Instead the LLMDA seems to be efficient at detecting dominant             |
| 393 | bacterial species. <i>Wolbachia</i> has been reported to be the dominant member of <i>Ae</i> . |
| 394 | albopictus and Culex mosquitoes (56) and has been successfully detected with the               |
| 395 | LLMDA. Other bacteria including Pseudomonas, Klebsiella and Erwinia have been                  |
| 396 | detected from <i>Culex</i> spp. and <i>Ae. aegypti</i> in our samples (Supplemental Table 4)   |
| 397 | which have already been reported in mosquitoes and their breeding sites (16, 29,               |
| 398 | 72-75). We also encountered issues related to non-specific probe binding in our                |
| 399 | samples, mostly to conserved regions of bacteria such as 23S or 16S might also                 |
| 400 | explain the low number of bacterial species. Because we used a stringent threshold             |
| 401 | of determining a positive signal, i.e., at least 20% of probes were detected for a             |
| 402 | target sequence, and the criteria that probes should cover various regions of the              |
| 403 | genome, these non-specific hits were not reported. In our case after removal of non-           |
|     | 18                                                                                             |

specific bacterial hits, *Wolbachia* was the most significant bacterial species
confirmed to be present in the mosquito pools. Such challenges have been reported
previously in low biomass samples (76). Other approaches, such as shotgun
metagenomic sequencing, would be alternative methods to characterize the
microbiome.

409 In summary, to explore the potential usefulness of the LLMDA for bio-410 surveillance, we took advantage of an on-going mosquito surveillance program 411 along the Texas-Mexico border in the LRGV where ZIKV circulated in 2016-2017 412 resulting in 10 of local transmission, involving Ae. aegypti as the vector (12). A 413 subset of the mosquito collections was tested using the LLMDA and although no 414 pools tested positive for ZIKV, the microarray was able to detect CFAV in Ae. aegypti 415 populations from the LRGV and San Antonio that could have an impact on the 416 epidemiology of Aedes-vectored viral diseases. Similarly, CxFLAV was observed in 417 several *Culex* populations. *Wolbachia* was detected in high frequency in *Ae*. 418 albopictus and Culex spp. mosquitoes but not found in Ae. aegypti. Further 419 characterization of the presence and strain types of locally occurring insect-specific 420 viruses and *Wolbachia* is important (77, 78) for possible biological-based control 421 interventions (66, 79, 80). The study presents the broad detection capability, 422 sensitivity and ease of use of the LLMDA approach for surveillance of mosquito-423 borne diseases of medical importance. This detection array could also aid in the 424 surveillance of pathogens transmitted by other arthropods vectors, such as ticks. 425 The study also demonstrated some limitations of the LLMDA and the need to

426 develop an improved array including updated viral and bacterial full genomic

427 sequences deposited in GenBank since 2014 for more up to date bio-surveillance

428 studies.

#### 429 Material and methods

#### 430 Mosquito samples

431 Mosquitoes were collected in several locations in Texas (San Antonio and the LRGV) 432 using three trapping methods. Autocidal gravid ovitraps (AGO; SpringStar Inc.), BG 433 sentinel traps (Biogents), and Prokopack aspirators (John W. Hock Co) were used 434 (supplemental Table 1). Whole female mosquitoes were pooled by trap and species 435 with a maximum size of 50 individuals per pool. Additionally, MG and SG of Ae. 436 aegypti and Culex spp. were obtained by dissection of a subset of mosquitoes from 437 the LRGV and pooled. These specimens were first surface sterilized (5 minutes in 438 70% ethanol) and rinsed twice in a sterile Phosphate buffered saline (PBS) solution 439 and then individual MG and SG were dissected under a dissecting microscope and 440 rinsed in PBS.

441 LLMDA sensitivity and reproducibility

Four different viruses were used in this assay; one alphavirus: Mayaro virus (MAYV)
strain INHRR11a-10, two flaviviruses: DENV-2 strain INH125271 and ZIKV strain
PRVABC59, and one bunyavirus: Rift Valley fever virus (RVFV) strain MP-12. For
dengue virus, 100 μL of a 10-fold serial dilution (10<sup>5</sup> pfu/mL -10<sup>2</sup> pfu/mL) of the
virus was spiked into *Ae. aegypti* Liverpool strain mosquito homogenate. The
dilutions corresponding to 10<sup>2</sup> pfu/mL and 10<sup>3</sup> pfu/mL were done in duplicate to

Applied and Environmental Microbioloay

| 448 | assess reproducibility. Additionally, 100 $\mu L$ of a $10^4$ pfu/mL the of MAYV virus was   |
|-----|----------------------------------------------------------------------------------------------|
| 449 | spiked into the mosquito homogenates containing 100 $\mu L$ of $10^4$ pfu/mL and 100 $\mu L$ |
| 450 | of $10^5$ pfu/mL of DENV-2. 100 $\mu$ L of $10^4$ pfu/mL of RVFV was spiked into <i>Cx.</i>  |
| 451 | quinquefasciatus pool. One pool of Ae. aegypti and Cx. quinquefasciatus was used as a        |
| 452 | negative control. For ZIKV, two dilutions were tested, $10^4$ pfu/mL and $10^2$ pfu/mL.      |
| 453 | The ZIKV spiked mosquito pools were tested by the ZIKV reverse transcription                 |
| 454 | quantitative real time PCR assay targeting the non-structural protein 5 (NS5) gene           |
| 455 | (81, 82) to verify for the presence/absence of infection (Table S2).                         |
| 456 | LLMDA validation using field-collected sample of known status                                |
| 457 | WNV positive field-collected mosquitoes from Chicago, IL (2010) and CxFLAV                   |
| 458 | positive field-collected mosquitoes from College Station, TX (2013) were assessed            |
| 459 | on the LLMDA. These pools had been previously tested positive in other studies               |
| 460 | using qRT-PCR targeting the envelope genes of WNV and CxFLAV (20, 39).                       |
| 461 | Mosquito sample preparation and nucleic acid extraction                                      |
| 462 | Three sample preparation methods were tested to evaluate different processing                |
| 463 | protocols that would optimize recovery of nucleic acid, retain the ability to isolate        |
| 464 | viruses, and remove surface exogenous nucleic acid. In method 1, mosquitoes were             |
| 465 | directly homogenized in TRIzol. In method 2, mosquitoes were homogenized in                  |
| 466 | Hank's balanced salt solution (HBSS, Thermo). In method 3, mosquitoes were                   |
| 467 | washed in 70% ethanol for 5 minutes followed by 2 PBS washes. Each mosquito                  |
| 468 | pool was homogenized in a 2 mL microcentrifuge tube containing a single 2.8 mm               |
| 469 | stainless steel bead. Mosquitoes used for the MG and SG dissection were prepared             |
| 470 | following the procedure from method 3. Tubes were then centrifuged for 5 minutes             |

471 at 15,000 g. Nucleic acids were extracted from 100  $\mu$ L of the homogenate

supernatant using a RNA and DNA TRIzol extraction method. 472

#### 473 LLMDA analysis

474 The LLMDA v7 4x180K microarray consists of probes that targets both conserved 475 and unique genomic regions of sequenced microbial species and has multiple 476 probes per microbial genomic sequence to serve as an internal validation 477 mechanism (34). All samples were analyzed using the LLMDA as described 478 previously (30, 32). Briefly, RNA was reverse-transcribed to cDNA using the 479 phosphorylated random hexamer/SuperScriptIII (P-N6/SSIII) method, which uses 480 the Superscript III Reverse Transcription kit (Invitrogen) and 5'-phosphorylated 481 random hexamers (P-N6) (Eurofins MWG Operon) followed by the Qiagen 482 QuantiTech Whole Transcriptome kit (30, 32). Each sample was loaded onto the 483 LLMDA and allowed to hybridize for 40 h at 55°C in a rotator oven. After 484 hybridization, the microarray was washed following standard manufacturer's 485 protocols with CGH wash buffers (Agilent) and further cleaned using a nitrogen gas 486 stream to remove any particulates from the array surface. The microarray was then 487 scanned and the data analyzed using a statistical method previously described (34). 488 Briefly, the intensity of each probe is transformed into a positive or negative signal. 489 A positive signal is obtained when the intensity of the probe exceeds an intensity 490 threshold set to the 95<sup>th</sup> percentile of negative controls (33). In other words, if the 491 probe intensity is above the 95<sup>th</sup> percentile of the sum of the intensity of the random 492 control probes on the array, then that probe is considered to have a positive signal. 493 Given the different parameters used to validate our results, there is still a 5% chance

| 494 | for a false positive probe signal ( $100\% - 95\%$ ). A sample was assigned to a species |
|-----|------------------------------------------------------------------------------------------|
| 495 | when at least 20% of all the probes present for this particular species had a positive   |
| 496 | signal. Since we set a 20% threshold of all probes to assign a species as positive,      |
| 497 | there is still a certain probability that even with 20% of the probes lighting up, the   |
| 498 | sample would be a false positive detection.                                              |
| 499 | We then used a likelihood maximization algorithm to identify the target that             |
| 500 | explains the largest portion of the observed positive probes signal while minimizing     |
| 501 | the number of negative probe signal. The log likelihood for each of the possible         |
| 502 | targets was estimated from the BLAST similarity scores of the array feature and          |
| 503 | target sequences, together with the feature sequence complexity and other                |
| 504 | covariates derived from the BLAST results as described previously (34).                  |
| 505 | PCR assay to confirm microarray results                                                  |
|     |                                                                                          |

- PCR assay to confirm microarray results
- 506 Confirmation of the viral species detected in the field samples from San Antonio and
- 507 the LRGV was performed by conventional PCR using gene-specific primers
- 508 amplifying a 206 bp region of NS5 of CxFLAV (39) and a 340bp fragment of CFAV E
- 509 gene (42). Additionally, presence of Wolbachia in the mosquito samples was
- 510 confirmed using quantitative PCR targeting the Wolbachia outer surface protein
- 511 wspA and wspB genes (58) (Supplemental Table 3).

#### 512 Acknowledgments

- 513 We thank the World Reference Center for Emerging Viruses and Arboviruses
- 514 (WRCEVA) at the University of Texas Medical Branch, and the Centers for Disease
- 515 Control and Prevention for providing with the different positive controls used in

| 516 | this st                          | cudy. Field support for collecting mosquito samples was provided by Ester     |  |
|-----|----------------------------------|-------------------------------------------------------------------------------|--|
| 517 | Carba                            | jal, Edwin Valdez, Jose Juarez, Joel Obregon, Michelle Ximenez, Estefany      |  |
| 518 | Villalo                          | bbos, and undergraduate researchers from Texas A&M-SA. This work was          |  |
| 519 | perfor                           | rmed, in part, under the auspices of the U.S. Department of Energy by         |  |
| 520 | Lawre                            | ence Livermore National Laboratory under Contract DE-AC52-07NA27344.          |  |
| 521 | This v                           | vork was supported by an internal LLNL grant, by an NIH R21                   |  |
| 522 | (5R21                            | AI128953-02) and by Texas A&M AgriLife Research.                              |  |
| 523 | Confl                            | ict of Interest                                                               |  |
| 524 | No conflict of interest declared |                                                                               |  |
| 525 | Reference                        |                                                                               |  |
| 526 | 1.                               | Weaver SC, Reisen WK. 2010. Present and future arboviral threats. Antiviral   |  |
| 527 |                                  | Res 85:328-45.                                                                |  |
| 528 | 2.                               | Kraemer MU, Sinka ME, Duda KA, Mylne A, Shearer FM, Brady OJ, Messina JP,     |  |
| 529 |                                  | Barker CM, Moore CG, Carvalho RG, Coelho GE, Van Bortel W, Hendrickx G,       |  |
| 530 |                                  | Schaffner F, Wint GR, Elyazar IR, Teng HJ, Hay SI. 2015. The global           |  |
| 531 |                                  | compendium of Aedes aegypti and Ae. albopictus occurrence. Sci Data           |  |
| 532 |                                  | 2:150035.                                                                     |  |
| 533 | 3.                               | Powell JR, Tabachnick WJ. 2013. History of domestication and spread of        |  |
| 534 |                                  | Aedes aegyptia review. Mem Inst Oswaldo Cruz 108 Suppl 1:11-7.                |  |
| 535 | 4.                               | Gratz NG. 2004. Critical review of the vector status of Aedes albopictus. Med |  |
| 536 |                                  | Vet Entomol 18:215-27.                                                        |  |

Applied and Environmental Microbiology

AEM

| 537 | 5.  | Lambrechts L, Scott TW, Gubler DJ. 2010. Consequences of the expanding            |
|-----|-----|-----------------------------------------------------------------------------------|
| 538 |     | global distribution of Aedes albopictus for dengue virus transmission. PLoS       |
| 539 |     | Negl Trop Dis 4:e646.                                                             |
| 540 | 6.  | Kilpatrick AM. 2011. Globalization, land use, and the invasion of West Nile       |
| 541 |     | virus. Science 334:323-7.                                                         |
| 542 | 7.  | Camargo S. 1967. History of Aedes aegypti eradication in the Americas. Bull       |
| 543 |     | World Health Organ 36:602-3.                                                      |
| 544 | 8.  | Hotez PJ. 2016. Zika in the United States of America and a fateful 1969           |
| 545 |     | decision. PLoS Negl Trop Dis 10:e0004765.                                         |
| 546 | 9.  | Soper FL. 1963. The elimination of urban yellow fever in the Americas             |
| 547 |     | through the eradication of Aedes aegypti. Am J Public Health Nations Health       |
| 548 |     | 53:7-16.                                                                          |
| 549 | 10. | Likos A, Griffin I, Bingham AM, Stanek D, Fischer M, White S, Hamilton J,         |
| 550 |     | Eisenstein L, Atrubin D, Mulay P, Scott B, Jenkins P, Fernandez D, Rico E, Gillis |
| 551 |     | L, Jean R, Cone M, Blackmore C, McAllister J, Vasquez C, Rivera L, Philip C.      |
| 552 |     | 2016. Local mosquito-borne transmission of Zika virus - Miami-Dade and            |
| 553 |     | Broward counties, Florida, June-August 2016. MMWR Morb Mortal Wkly Rep            |
| 554 |     | 65:1032-8.                                                                        |
| 555 | 11. | Center for Disease Control and Prevention. Cumulative Zika virus disease          |
| 556 |     | case in the United States, 2015–2018.                                             |
| 557 | 12. | Martin E, Medeiros MCI, Carbajal E, Valdez E, Juarez JG, Garcia-Luna S, Salazar   |
| 558 |     | A, Qualls WA, Hinojosa S, Borucki MK, Manley HA, Badillo-Vargas IE, Frank M,      |
| 559 |     | Hamer GL. 2019. Surveillance of <i>Aedes aegypti</i> indoors and outdoors using   |

| 5 | 60 |     | autocidal gravid ovitraps in South Texas during local transmission of Zika    |
|---|----|-----|-------------------------------------------------------------------------------|
| 5 | 61 |     | virus, 2016 to 2018. Acta Trop 192:129-137.                                   |
| 5 | 62 | 13. | Gusmao DS, Santos AV, Marini DC, Bacci M, Jr., Berbert-Molina MA, Lemos FJ.   |
| 5 | 63 |     | 2010. Culture-dependent and culture-independent characterization of           |
| 5 | 64 |     | microorganisms associated with Aedes aegypti (Diptera: Culicidae) (L.) and    |
| 5 | 65 |     | dynamics of bacterial colonization in the midgut. Acta Trop 115:275-81.       |
| 5 | 66 | 14. | Kim CH, Lampman RL, Muturi EJ. 2015. Bacterial communities and midgut         |
| 5 | 67 |     | microbiota associated with mosquito populations from waste tires in East-     |
| 5 | 68 |     | Central Illinois. J Med Entomol 52:63-75.                                     |
| 5 | 69 | 15. | Pidiyar VJ, Jangid K, Patole MS, Shouche YS. 2004. Studies on cultured and    |
| 5 | 70 |     | uncultured microbiota of wild Culex quinquefasciatus mosquito midgut based    |
| 5 | 71 |     | on 16s ribosomal RNA gene analysis. Am J Trop Med Hyg 70:597-603.             |
| 5 | 72 | 16. | Zouache K, Raharimalala FN, Raquin V, Tran-Van V, Raveloson LH,               |
| 5 | 73 |     | Ravelonandro P, Mavingui P. 2011. Bacterial diversity of field-caught         |
| 5 | 74 |     | mosquitoes, Aedes albopictus and Aedes aegypti, from different geographic     |
| 5 | 75 |     | regions of Madagascar. FEMS Microbiol Ecol 75:377-89.                         |
| 5 | 76 | 17. | Kuno G. 1998. Universal diagnostic RT-PCR protocol for arboviruses. J Virol   |
| 5 | 77 |     | Methods 72:27-41.                                                             |
| 5 | 78 | 18. | Scaramozzino N, Crance JM, Jouan A, DeBriel DA, Stoll F, Garin D. 2001.       |
| 5 | 79 |     | Comparison of flavivirus universal primer pairs and development of a rapid,   |
| 5 | 80 |     | highly sensitive heminested reverse transcription-PCR assay for detection of  |
| 5 | 81 |     | flaviviruses targeted to a conserved region of the NS5 gene sequences. J Clin |
| 5 | 82 |     | Microbiol 39:1922-7.                                                          |

| 583 | 19. | Eshoo MW, Whitehouse CA, Zoll ST, Massire C, Pennella TT, Blyn LB, Sampath       |
|-----|-----|----------------------------------------------------------------------------------|
| 584 |     | R, Hall TA, Ecker JA, Desai A, Wasieloski LP, Li F, Turell MJ, Schink A, Rudnick |
| 585 |     | K, Otero G, Weaver SC, Ludwig GV, Hofstadler SA, Ecker DJ. 2007. Direct          |
| 586 |     | broad-range detection of alphaviruses in mosquito extracts. Virology             |
| 587 |     | 368:286-95.                                                                      |
| 588 | 20. | Lanciotti RS, Kerst AJ, Nasci RS, Godsey MS, Mitchell CJ, Savage HM, Komar N,    |
| 589 |     | Panella NA, Allen BC, Volpe KE, Davis BS, Roehrig JT. 2000. Rapid detection of   |
| 590 |     | West Nile virus from human clinical specimens, field-collected mosquitoes,       |
| 591 |     | and avian samples by a TaqMan reverse transcriptase-PCR assay. J Clin            |
| 592 |     | Microbiol 38:4066-71.                                                            |
| 593 | 21. | Lanciotti RS, Calisher CH, Gubler DJ, Chang GJ, Vorndam AV. 1992. Rapid          |
| 594 |     | detection and typing of dengue viruses from clinical samples by using            |
| 595 |     | reverse transcriptase-polymerase chain reaction. J Clin Microbiol 30:545-51.     |
| 596 | 22. | Lanciotti RS, Kerst AJ. 2001. Nucleic acid sequence-based amplification          |
| 597 |     | assays for rapid detection of West Nile and St. Louis encephalitis viruses. J    |
| 598 |     | Clin Microbiol 39:4506-13.                                                       |
| 599 | 23. | Sadeghi M, Popov V, Guzman H, Phan TG, Vasilakis N, Tesh R, Delwart E.           |
| 600 |     | 2017. Genomes of viral isolates derived from different mosquitos species.        |
| 601 |     | Virus Res 242:49-57.                                                             |
| 602 | 24. | Coffey LL, Page BL, Greninger AL, Herring BL, Russell RC, Doggett SL, Haniotis   |
| 603 |     | J, Wang C, Deng X, Delwart EL. 2014. Enhanced arbovirus surveillance with        |
| 604 |     | deep sequencing: Identification of novel rhabdoviruses and bunyaviruses in       |
| 605 |     | Australian mosquitoes. Virology 448:146-58.                                      |

| 606 | 25. | Shi M, Neville P, Nicholson J, Eden JS, Imrie A, Holmes EC. 2017. High-       |
|-----|-----|-------------------------------------------------------------------------------|
| 607 |     | resolution metatranscriptomics reveals the ecological dynamics of mosquito-   |
| 608 |     | associated RNA viruses in Western Australia. J Virol 91.                      |
| 609 | 26. | Fauver JR, Grubaugh ND, Krajacich BJ, Weger-Lucarelli J, Lakin SM, Fakoli LS, |
| 610 |     | 3rd, Bolay FK, Diclaro JW, 2nd, Dabire KR, Foy BD, Brackney DE, Ebel GD,      |
| 611 |     | Stenglein MD. 2016. West African Anopheles gambiae mosquitoes harbor a        |
| 612 |     | taxonomically diverse virome including new insect-specific flaviviruses,      |
| 613 |     | mononegaviruses, and totiviruses. Virology 498:288-299.                       |
| 614 | 27. | Osei-Poku J, Mbogo CM, Palmer WJ, Jiggins FM. 2012. Deep sequencing           |
| 615 |     | reveals extensive variation in the gut microbiota of wild mosquitoes from     |
| 616 |     | Kenya. Mol Ecol 21:5138-50.                                                   |
| 617 | 28. | Zink SD, Van Slyke GA, Palumbo MJ, Kramer LD, Ciota AT. 2015. Exposure to     |
| 618 |     | West Nile virus increases bacterial diversity and immune gene expression in   |
| 619 |     | Culex pipiens. Viruses 7:5619-31.                                             |
| 620 | 29. | Chandler JA, Liu RM, Bennett SN. 2015. RNA shotgun metagenomic                |
| 621 |     | sequencing of northern California (USA) mosquitoes uncovers viruses,          |
| 622 |     | bacteria, and fungi. Front Microbiol 6:185.                                   |
| 623 | 30. | Rosenstierne MW, McLoughlin KS, Olesen ML, Papa A, Gardner SN, Engler O,      |
| 624 |     | Plumet S, Mirazimi A, Weidmann M, Niedrig M, Fomsgaard A, Erlandsson L.       |
| 625 |     | 2014. The microbial detection array for detection of emerging viruses in      |
| 626 |     | clinical samplesa useful panmicrobial diagnostic tool. PLoS One 9:e100813.    |

| 627 | 31. | Thissen JB, McLoughlin K, Gardner S, Gu P, Mabery S, Slezak T, Jaing C. 2014. |
|-----|-----|-------------------------------------------------------------------------------|
| 628 |     | Analysis of sensitivity and rapid hybridization of a multiplexed microbial    |
| 629 |     | detection microarray. J Virol Methods 201:73-8.                               |
| 630 | 32. | Jaing CJ, Thissen JB, Gardner SN, McLoughlin KS, Hullinger PJ, Monday NA,     |
| 631 |     | Niederwerder MC, Rowland RR. 2015. Application of a pathogen microarray       |
| 632 |     | for the analysis of viruses and bacteria in clinical diagnostic samples from  |
| 633 |     | pigs. J Vet Diagn Invest 27:313-25.                                           |
| 634 | 33. | Devault AM, McLoughlin K, Jaing C, Gardner S, Porter TM, Enk JM, Thissen J,   |
| 635 |     | Allen J, Borucki M, DeWitte SN, Dhody AN, Poinar HN. 2014. Ancient            |
| 636 |     | pathogen DNA in archaeological samples detected with a microbial detection    |
| 637 |     | array. Sci Rep 4:4245.                                                        |
| 638 | 34. | Gardner SN, Jaing CJ, McLoughlin KS, Slezak TR. 2010. A microbial detection   |
| 639 |     | array (MDA) for viral and bacterial detection. BMC Genomics 11:668.           |
| 640 | 35. | Grubaugh ND, Petz LN, Melanson VR, McMenamy SS, Turell MJ, Long LS,           |
| 641 |     | Pisarcik SE, Kengluecha A, Jaichapor B, O'Guinn ML, Lee JS. 2013. Evaluation  |
| 642 |     | of a field-portable DNA microarray platform and nucleic acid amplification    |
| 643 |     | strategies for the detection of arboviruses, arthropods, and bloodmeals. Am J |
| 644 |     | Trop Med Hyg 88:245-53.                                                       |
| 645 | 36. | Grubaugh ND, McMenamy SS, Turell MJ, Lee JS. 2013. Multi-gene detection       |
| 646 |     | and identification of mosquito-borne RNA viruses using an oligonucleotide     |
| 647 |     | microarray. PLoS Negl Trop Dis 7:e2349.                                       |
| 648 | 37. | Obara-Nagoya M, Yamauchi T, Watanabe M, Hasegawa S, Iwai-Itamochi M,          |
| 649 |     | Horimoto E, Takizawa T, Takashima I, Kariwa H. 2013. Ecological and genetic   |

| 650 |     | analyses of the complete genomes of Culex flavivirus strains isolated from         |
|-----|-----|------------------------------------------------------------------------------------|
| 651 |     | Culex tritaeniorhynchus and Culex pipiens (Diptera: Culicidae) group               |
| 652 |     | mosquitoes. J Med Entomol 50:300-9.                                                |
| 653 | 38. | Newman CM, Krebs BL, Anderson TK, Hamer GL, Ruiz MO, Brawn JD, Brown               |
| 654 |     | WM, Kitron UD, Goldberg TL. 2017. Culex flavivirus during West Nile Virus          |
| 655 |     | epidemic and interepidemic years in Chicago, United States. Vector Borne           |
| 656 |     | Zoonotic Dis 17:567-575.                                                           |
| 657 | 39. | Newman CM, Cerutti F, Anderson TK, Hamer GL, Walker ED, Kitron UD, Ruiz            |
| 658 | :   | MO, Brawn JD, Goldberg TL. 2011. <i>Culex</i> flavivirus and West Nile virus       |
| 659 |     | mosquito coinfection and positive ecological association in Chicago, United        |
| 660 |     | States. Vector Borne Zoonotic Dis 11:1099-105.                                     |
| 661 | 40. | Kent RJ, Crabtree MB, Miller BR. 2010. Transmission of West Nile virus by          |
| 662 |     | Culex quinquefasciatus say infected with Culex Flavivirus Izabal. PLoS Negl        |
| 663 |     | Trop Dis 4:e671.                                                                   |
| 664 | 41. | Bittar C, Machado DC, Vedovello D, Ullmann LS, Rahal P, Araujo Junior JP,          |
| 665 |     | Nogueira ML. 2016. Genome sequencing and genetic characterization of               |
| 666 |     | Culex Flavirirus (CxFV) provides new information about its genotypes. Virol J      |
| 667 |     | 13:158.                                                                            |
| 668 | 42. | Contreras-Gutierrez MA, Guzman H, Thangamani S, Vasilakis N, Tesh RB.              |
| 669 |     | 2017. Experimental infection with and maintenance of cell fusing agent virus       |
| 670 |     | (Flavivirus) in Aedes aegypti. Am J Trop Med Hyg 97:299-304.                       |
| 671 | 43. | Zhang G, Asad S, Khromykh AA, Asgari S. 2017. Cell fusing agent virus and          |
| 672 |     | dengue virus mutually interact in <i>Aedes aegypti</i> cell lines. Sci Rep 7:6935. |

| 673 | 44. | Faria NR, Azevedo R, Kraemer MUG, Souza R, Cunha MS, Hill SC, Theze J,                 |
|-----|-----|----------------------------------------------------------------------------------------|
| 674 |     | Bonsall MB, Bowden TA, Rissanen I, Rocco IM, Nogueira JS, Maeda AY, Vasami             |
| 675 |     | F, Macedo FLL, Suzuki A, Rodrigues SG, Cruz ACR, Nunes BT, Medeiros DBA,               |
| 676 |     | Rodrigues DSG, Queiroz ALN, da Silva EVP, Henriques DF, da Rosa EST, de                |
| 677 |     | Oliveira CS, Martins LC, Vasconcelos HB, Casseb LMN, Simith DB, Messina JP,            |
| 678 |     | Abade L, Lourenco J, Alcantara LCJ, de Lima MM, Giovanetti M, Hay SI, de               |
| 679 |     | Oliveira RS, Lemos PDS, de Oliveira LF, de Lima CPS, da Silva SP, de                   |
| 680 |     | Vasconcelos JM, Franco L, Cardoso JF, Vianez-Junior J, Mir D, Bello G,                 |
| 681 |     | Delatorre E, Khan K, et al. 2016. Zika virus in the Americas: Early                    |
| 682 |     | epidemiological and genetic findings. Science 352:345-349.                             |
| 683 | 45. | Haddow AD, Schuh AJ, Yasuda CY, Kasper MR, Heang V, Huy R, Guzman H,                   |
| 684 |     | Tesh RB, Weaver SC. 2012. Genetic characterization of Zika virus strains:              |
| 685 |     | geographic expansion of the Asian lineage. PLoS Negl Trop Dis 6:e1477.                 |
| 686 | 46. | Jousset FX, Barreau C, Boublik Y, Cornet M. 1993. A parvo-like virus                   |
| 687 |     | persistently infecting a C6/36 clone of Aedes albopictus mosquito cell line            |
| 688 |     | and pathogenic for Aedes aegypti larvae. Virus Res 29:99-114.                          |
| 689 | 47. | Chen S, Cheng L, Zhang Q, Lin W, Lu X, Brannan J, Zhou ZH, Zhang J. 2004.              |
| 690 |     | Genetic, biochemical, and structural characterization of a new densovirus              |
| 691 |     | isolated from a chronically infected <i>Aedes albopictus</i> C6/36 cell line. Virology |
| 692 |     | 318:123-33.                                                                            |
| 693 | 48. | Paterson A, Robinson E, Suchman E, Afanasiev B, Carlson J. 2005. Mosquito              |
| 694 |     | densonucleosis viruses cause dramatically different infection phenotypes in            |
| 695 |     | the C6/36 Aedes albopictus cell line. Virology 337:253-61.                             |

| 696 | 49. | Cataneo AHD, Kuczera D, Mosimann ALP, Silva EG, Ferreira AGA, Marques JT,          |
|-----|-----|------------------------------------------------------------------------------------|
| 697 |     | Wowk PF, Santos C, Bordignon J. 2019. Detection and clearance of a mosquito        |
| 698 |     | densovirus contaminant from laboratory stocks of Zika virus. Mem Inst              |
| 699 |     | Oswaldo Cruz 114:e180432.                                                          |
| 700 | 50. | Sacco MA, Nair VK. 2014. Prototype endogenous avian retroviruses of the            |
| 701 |     | genus Gallus. J Gen Virol 95:2060-70.                                              |
| 702 | 51. | Sacco MA, Flannery DM, Howes K, Venugopal K. 2000. Avian endogenous                |
| 703 |     | retrovirus EAV-HP shares regions of identity with avian leukosis virus             |
| 704 |     | subgroup J and the avian retrotransposon ART-CH. J Virol 74:1296-306.              |
| 705 | 52. | Cook S, Bennett SN, Holmes EC, De Chesse R, Moureau G, de Lamballerie X.           |
| 706 |     | 2006. Isolation of a new strain of the flavivirus cell fusing agent virus in a     |
| 707 |     | natural mosquito population from Puerto Rico. J Gen Virol 87:735-48.               |
| 708 | 53. | Pauvolid-Correa A, Solberg O, Couto-Lima D, Kenney J, Serra-Freire N, Brault       |
| 709 |     | A, Nogueira R, Langevin S, Komar N. 2015. Nhumirim virus, a novel flavivirus       |
| 710 |     | isolated from mosquitoes from the Pantanal, Brazil. Arch Virol 160:21-7.           |
| 711 | 54. | Pauvolid-Correa A, Kenney JL, Couto-Lima D, Campos ZM, Schatzmayr HG,              |
| 712 |     | Nogueira RM, Brault AC, Komar N. 2013. Ilheus virus isolation in the               |
| 713 |     | Pantanal, west-central Brazil. PLoS Negl Trop Dis 7:e2318.                         |
| 714 | 55. | Kitrayapong P, Baimai V, O'Neill SL. 2002. Field prevalence of <i>Wolbachia</i> in |
| 715 |     | the mosquito vector Aedes albopictus. Am J Trop Med Hyg 66:108-11.                 |
| 716 | 56. | Muturi EJ, Ramirez JL, Rooney AP, Kim CH. 2017. Comparative analysis of gut        |
| 717 |     | microbiota of mosquito communities in central Illinois. PLoS Negl Trop Dis         |
| 718 |     | 11:e0005377.                                                                       |

| 719 | 57. | Mousson L, Zouache K, Arias-Goeta C, Raquin V, Mavingui P, Failloux AB.           |
|-----|-----|-----------------------------------------------------------------------------------|
| 720 |     | 2012. The native Wolbachia symbionts limit transmission of dengue virus in        |
| 721 |     | Aedes albopictus. PLoS Negl Trop Dis 6:e1989.                                     |
| 722 | 58. | Mousson L, Martin E, Zouache K, Madec Y, Mavingui P, Failloux AB. 2010.           |
| 723 |     | Wolbachia modulates Chikungunya replication in Aedes albopictus. Mol Ecol         |
| 724 |     | 19:1953-64.                                                                       |
| 725 | 59. | Morais SA, Almeida F, Suesdek L, Marrelli MT. 2012. Low genetic diversity in      |
| 726 |     | Wolbachia-infected Culex quinquefasciatus (Diptera: Culicidae) from Brazil        |
| 727 |     | and Argentina. Rev Inst Med Trop Sao Paulo 54:325-9.                              |
| 728 | 60. | Rasgon JL, Scott TW. 2003. Wolbachia and cytoplasmic incompatibility in the       |
| 729 |     | California Culex pipiens mosquito species complex: parameter estimates and        |
| 730 |     | infection dynamics in natural populations. Genetics 165:2029-38.                  |
| 731 | 61. | Morningstar RJ, Hamer GL, Goldberg TL, Huang S, Andreadis TG, Walker ED.          |
| 732 |     | 2012. Diversity of <i>Wolbachia pipientis</i> strain <i>wPip</i> in a genetically |
| 733 |     | admixtured, above-ground Culex pipiens (Diptera: Culicidae) population:           |
| 734 |     | association with form molestus ancestry and host selection patterns. J Med        |
| 735 |     | Entomol 49:474-81.                                                                |
| 736 | 62. | Micieli MV, Glaser RL. 2014. Somatic Wolbachia (Rickettsiales:                    |
| 737 |     | Rickettsiaceae) levels in Culex quinquefasciatus and Culex pipiens (Diptera:      |
| 738 |     | Culicidae) and resistance to West Nile virus infection. J Med Entomol 51:189-     |
| 739 |     | 99.                                                                               |

| 740 | 63. | Glaser RL, Meola MA. 2010. The native Wolbachia endosymbionts of               |
|-----|-----|--------------------------------------------------------------------------------|
| 741 |     | Drosophila melanogaster and Culex quinquefasciatus increase host resistance    |
| 742 |     | to West Nile virus infection. PLoS ONE 5:e11977.                               |
| 743 | 64. | Tan CH, Wong PJ, Li MI, Yang H, Ng LC, O'Neill SL. 2017. wMel limits zika and  |
| 744 |     | chikungunya virus infection in a Singapore Wolbachia-introgressed Ae.          |
| 745 |     | <i>aegypti</i> strain, wMel-Sg. PLoS Negl Trop Dis 11:e0005496.                |
| 746 | 65. | Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, Rocha     |
| 747 |     | BC, Hall-Mendelin S, Day A, Riegler M, Hugo LE, Johnson KN, Kay BH, McGraw     |
| 748 |     | EA, van den Hurk AF, Ryan PA, O'Neill SL. 2009. A <i>Wolbachia</i> symbiont in |
| 749 |     | Aedes aegypti limits infection with dengue, chikungunya, and Plasmodium.       |
| 750 |     | Cell 139:1268-78.                                                              |
| 751 | 66. | Lambrechts L, Ferguson NM, Harris E, Holmes EC, McGraw EA, O'Neill SL, Ooi     |
| 752 |     | EE, Ritchie SA, Ryan PA, Scott TW, Simmons CP, Weaver SC. 2015. Assessing      |
| 753 |     | the epidemiological effect of Wolbachia for dengue control. Lancet Infect Dis  |
| 754 |     | 15:862-6.                                                                      |
| 755 | 67. | Goenaga S, Kenney JL, Duggal NK, Delorey M, Ebel GD, Zhang B, Levis SC,        |
| 756 |     | Enria DA, Brault AC. 2015. Potential for co-infection of a mosquito-specific   |
| 757 |     | flavivirus, Nhumirim virus, to block West Nile virus transmission in           |
| 758 |     | mosquitoes. Viruses 7:5801-12.                                                 |
| 759 | 68. | Hall-Mendelin S, McLean BJ, Bielefeldt-Ohmann H, Hobson-Peters J, Hall RA,     |
| 760 |     | van den Hurk AF. 2016. The insect-specific Palm Creek virus modulates West     |
| 761 |     | Nile virus infection in and transmission by Australian mosquitoes. Parasit     |
| 762 |     | Vectors 9:414.                                                                 |

| 763 | 69. | Romo H, Kenney JL, Blitvich BJ, Brault AC. 2018. Restriction of Zika virus    |
|-----|-----|-------------------------------------------------------------------------------|
| 764 |     | infection and transmission in Aedes aegypti mediated by an insect-specific    |
| 765 |     | flavivirus. Emerg Microbes Infect 7:181.                                      |
| 766 | 70. | Dong Y, Morton JC, Jr., Ramirez JL, Souza-Neto JA, Dimopoulos G. 2012. The    |
| 767 |     | entomopathogenic fungus Beauveria bassiana activate toll and JAK-STAT         |
| 768 |     | pathway-controlled effector genes and anti-dengue activity in Aedes aegypti.  |
| 769 |     | Insect Biochem Mol Biol 42:126-32.                                            |
| 770 | 71. | Ramirez JL, Short SM, Bahia AC, Saraiva RG, Dong Y, Kang S, Tripathi A,       |
| 771 |     | Mlambo G, Dimopoulos G. 2014. Chromobacterium Csp_P reduces malaria           |
| 772 |     | and dengue infection in vector mosquitoes and has entomopathogenic and in     |
| 773 |     | vitro anti-pathogen activities. PLoS Pathog 10:e1004398.                      |
| 774 | 72. | Minard G, Tran FH, Dubost A, Tran-Van V, Mavingui P, Moro CV. 2014.           |
| 775 |     | Pyrosequencing 16S rRNA genes of bacteria associated with wild tiger          |
| 776 |     | mosquito Aedes albopictus: a pilot study. Front Cell Infect Microbiol 4:59.   |
| 777 | 73. | Minard G, Mavingui P, Moro CV. 2013. Diversity and function of bacterial      |
| 778 |     | microbiota in the mosquito holobiont. Parasit Vectors 6:146.                  |
| 779 | 74. | Thongsripong P, Chandler JA, Green AB, Kittayapong P, Wilcox BA, Kapan DD,    |
| 780 |     | Bennett SN. 2017. Mosquito vector-associated microbiota: Metabarcoding        |
| 781 |     | bacteria and eukaryotic symbionts across habitat types in Thailand endemic    |
| 782 |     | for dengue and other arthropod-borne diseases. Ecol Evol 8:1352-1368.         |
| 783 | 75. | Yadav KK, Datta S, Naglot A, Bora A, Hmuaka V, Bhagyawant S, Gogoi HK,        |
| 784 |     | Veer V, Raju PS. 2016. Diversity of Cultivable Midgut Microbiota at Different |

| 785 |     | Stages of the Asian Tiger Mosquito, Aedes albopictus from Tezpur, India. PloS       |
|-----|-----|-------------------------------------------------------------------------------------|
| 786 |     | one 11:e0167409-e0167409.                                                           |
| 787 | 76. | Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, Turner P,            |
| 788 |     | Parkhill J, Loman NJ, Walker AW. 2014. Reagent and laboratory                       |
| 789 |     | contamination can critically impact sequence-based microbiome analyses.             |
| 790 |     | BMC Biol 12:87.                                                                     |
| 791 | 77. | Altinli M, Gunay F, Alten B, Weill M, Sicard M. 2018. Wolbachia diversity and       |
| 792 |     | cytoplasmic incompatibility patterns in <i>Culex pipiens</i> populations in Turkey. |
| 793 |     | Parasit Vectors 11:198.                                                             |
| 794 | 78. | Mixão V, M Mendes A, Mauricio I, Calado M, Novo M, Belo S, Almeida A. 2016.         |
| 795 |     | Molecular detection of Wolbachia pipientis in natural populations of                |
| 796 |     | mosquito vectors of Dirofilaria immitis from continental Portugal: First            |
| 797 |     | detection in <i>Culex theileri</i> , vol 30.                                        |
| 798 | 79. | Kamtchum-Tatuene J, Makepeace BL, Benjamin L, Baylis M, Solomon T. 2017.            |
| 799 |     | The potential role of Wolbachia in controlling the transmission of emerging         |
| 800 |     | human arboviral infections. Curr Opin Infect Dis 30:108-116.                        |
| 801 | 80. | Dutra HL, Caragata EP, Moreira LA. 2017. The re-emerging arboviral threat:          |
| 802 |     | Hidden enemies: The emergence of obscure arboviral diseases, and the                |
| 803 |     | potential use of <i>Wolbachia</i> in their control. Bioessays 39.                   |
| 804 | 81. | Lanciotti RS, Kosoy OL, Laven JJ, Velez JO, Lambert AJ, Johnson AJ, Stanfield       |
| 805 |     | SM, Duffy MR. 2008. Genetic and serologic properties of Zika virus associated       |
| 806 |     | with an epidemic, Yap State, Micronesia, 2007. Emerg Infect Dis 14:1232-9.          |

| 807 | 82. | Liang W, He X, Liu G, Zhang S, Fu S, Wang M, Chen W, He Y, Tao X, Jiang H, Lin     |
|-----|-----|------------------------------------------------------------------------------------|
| 808 |     | X, Gao X, Hu W, Liu Y, Feng L, Cao Y, Yang G, Jing C, Liang G, Wang H. 2015.       |
| 809 |     | Distribution and phylogenetic analysis of <i>Culex</i> flavivirus in mosquitoes in |
| 810 |     | China. Arch Virol 160:2259-68.                                                     |
| 811 |     |                                                                                    |
| 812 |     |                                                                                    |

Applied and Environmental Microbiology

AEM

### 814 Tables

#### 815 Table 1: LLMDA limit of detection and reproducibility in spiked mosquito pools

| Virus         | Pfu/mL                            | LLMDA detection | Log Cl ratio | Probes         | Mosquito species |
|---------------|-----------------------------------|-----------------|--------------|----------------|------------------|
|               |                                   |                 |              | positive/total |                  |
| DENV-2        | 10 <sup>2</sup>                   | NEG             | -            | -              | Ae. aegypti      |
|               | 10 <sup>2</sup>                   | NEG             | -            | -              | Ae. aegypti      |
|               | 10 <sup>3</sup>                   | POS             | 56.7         | 20/27          | Ae. aegypti      |
|               | 10 <sup>3</sup>                   | POS             | 60.7         | 23/33          | Ae. aegypti      |
| DENV-2 + MAYV | 10 <sup>4</sup> ; 10 <sup>4</sup> | POS             | 197.1; 78.5  | 46/47; 20/25   | Ae. aegypti      |
|               | 10 <sup>5</sup> ;10 <sup>4</sup>  | POS             | 224.6; 122.3 | 53/54 ; 25/25  | Ae. aegypti      |
| RVFV          | 10 <sup>4</sup>                   | POS             | 52.8         | 16/19          | Cx. quinq.       |
| ZIKV          | 10 <sup>4</sup>                   | NEG             | 0            | 3/27           | Ae. aegypti      |
|               | 10 <sup>2</sup>                   | NEG             | 0            | 3/27           | Ae. aegypti      |

Applied and Environmental Microbiology

AEM

#### 818 Table 2: Comparison of LLMDA and qPCR results in naturally infected mosquito pools

#### 819

| Virus  | qPCR      | Observed  | LLMDA     | Log Cl | Probes         | Mosquito   | Additional  | Log Cl | Probes         |
|--------|-----------|-----------|-----------|--------|----------------|------------|-------------|--------|----------------|
|        | detection | Ct values | detection | ratio  | positive/total | species    | LLMDA virus | ratio  | positive/total |
|        |           |           |           |        |                |            | detected    |        |                |
| WNV    | POS       | 15.16     | POS       | 115.3  | 58/79          | Culex spp. | CxFLAV      | 74.4   | 19/19          |
|        | POS       | 19.95     | NEG       | -      | 0/79           | Culex spp. | CxFLAV      | -      | 0/19           |
| CxFLAV | POS       | 18.24     | NEG       | -      | 0/75           | Cx. quinq. | -           | -      | -              |
|        | POS       | 30.31     | NEG       | -      | 0/75           | Cx. quinq. | -           | -      | -              |

# 820

821

#### 822 Table 3: LLMDA and conventional PCR detection of field-collected samples

| Locality | Mosquito sposios | Sample | Sample<br>Virus<br>size | LLMDA      | PCR        | Sanger       |
|----------|------------------|--------|-------------------------|------------|------------|--------------|
| Locality | Mosquito species | size   |                         | detection* | detection* | sequencing % |

| LRGV            | Ae. aegypti    | 96  | CFAV   | 2(9)  | 3(9)  | 97.7% GQ165810 |
|-----------------|----------------|-----|--------|-------|-------|----------------|
| San Antonio     | Ae. aegypti    | 33  | CFAV   | 1(2)  | 2(2)  | 100% KJ476731  |
| Colony          | Ae. aegypti    | 40  | CFAV   | 0(4)  | 0 (4) | -              |
| LRGV            | Ae. albopictus | 4   | CFAV   | 0(3)  | 0(3)  | -              |
| San Antonio     | Ae. albopictus | 36  | CFAV   | 0 (2) | 0(2)  | -              |
| College Station | Ae. albopictus | 9   | CFAV   | 0(3)  | 0(3)  | -              |
| LRGV            | Cx. quinq.     | 25  | CxFLAV | 0(2)  | 0(2)  | -              |
| San Antonio     | Cx. quinq.     | 13  | CxFLAV | 0(2)  | 0(2)  | -              |
| College Station | Cx. quinq.     | 100 | CxFLAV | 0(2)  | 2(2)  | 100% KX512322  |
| Chicago         | Culex spp.     | 70  | CxFLAV | 2(2)  | 1(2)  | 100% KX512322  |
| LRGV            | Culex spp      | 16  | CxFLAV | 0(2)  | 0(2)  | -              |
|                 |                |     |        |       |       |                |

\*x(x): number of positive pools out of total number of pools tested

823

824

Downloaded from http://aem.asm.org/ on January 28, 2020 by guest

Downloaded from http://aem.asm.org/ on January 28, 2020 by guest

825 Table 4: LLM LRGV LRGV

825 **Table 4:** LLMDA and conventional PCR detection of insect-specific viruses in mosquito midgut and salivary glands

|          |                   |                 |    |                | LLMDA      | PCR        |
|----------|-------------------|-----------------|----|----------------|------------|------------|
| Locality | Mosquito Species  | Tissue          | n  | Virus detected | detection* | detection* |
| LRGV     | Ae. aegypti       | Midgut          | 23 | CFAV           | POS (1/1)  | POS (1/1)  |
| LRGV     | Ae. aegypti       | Salivary glands | 23 | CFAV           | POS (1/1)  | POS (1/1)  |
| LRGV     | <i>Culex</i> spp. | Midgut          | 23 | CxFLAV         | NEG (0/1)  | NEG (0/1)  |
| LRGV     | <i>Culex</i> spp. | Salivary glands | 23 | CxFLAV         | NEG (0/1)  | NEG (0/1)  |

826 (x/x): number of positive pools out of total number of pools tested

827

828

829 **Table 5:** *Wolbachia* detection in field mosquito sample from Texas and Chicago using LLMDA and qPCR using the *wsp* gene.

LLMDA qPCR

| ed Online  |  |
|------------|--|
| Poste      |  |
| Manuscript |  |
| Accepted / |  |
|            |  |

Applied and Environmental Microbiology

| Locality    | Mosquito species  | n  | Bacteria  | detection* | Strain | detection* | wsp | Ct values    |
|-------------|-------------------|----|-----------|------------|--------|------------|-----|--------------|
| LRGV        | Ae. albopictus    | 4  | Wolbachia | 1(3)       | wAlbB  | 1(3)       | A+B | 25.02; 24.34 |
| San Antonio | Ae. albopictus    | 36 | Wolbachia | 2(2)       | wAlbB, | 1(1)       | A+B | 19.37; 21.70 |
|             |                   |    |           |            | wVitB  | 1(1)       | В   | 19.99        |
| San Antonio | Cx. quinq.        | 13 | Wolbachia | 1(2)       | wAlbB  | 1(2)       | В   | 23.47        |
| Chicago     | <i>Culex</i> spp. | 70 | Wolbachia | 1(2)       | wpip   | 1(2)       | В   | 29.77        |
| LRGV        | <i>Culex</i> spp. | 41 | Wolbachia | 1(4)       | wpip   | 1(4)       | В   | 19.99        |
|             |                   |    |           |            |        |            |     |              |

830 (x/x): number of positive pools out of total number of pools tested

831

832

833

| 836 | Figure 1: LLMDA probe detection for A) DENV-2, B) MAYV , C) RVFV, D) ZIKV, E)                                             |
|-----|---------------------------------------------------------------------------------------------------------------------------|
| 837 | WNV, F) CxFLAV, G) CFAV, H) Avian endogenous retrovirus. For each virus, two                                              |
| 838 | graphs are available, the upper panel represents the intensity of the probes                                              |
| 839 | according to the position of the target in the genome; the lower panel represents the                                     |
| 840 | probability of detection according to the genome region. Sample for which i)                                              |
| 841 | intensity was higher than the $99^{th}$ percentile of the control probes are shown in                                     |
| 842 | purple, ii) intensity is comprised between the $99^{th}$ and $95^{th}$ percentile are shown in                            |
| 843 | orange and iii) the probes for which the intensity was below the $95^{\mathrm{th}}$ percentile of                         |
| 844 | the control probes are in red.                                                                                            |
|     |                                                                                                                           |
| 845 | Figure 2: LLMDA probe detection of <i>Wolbachia</i> strains. A) <i>Wolbachia pipientis</i>                                |
| 846 | wAlbB, B) Wolbachia endosymbiont wVitB, C) Wolbachia endosymbiont of Culex                                                |
| 847 | quinquefasciatus. For each bacteria, the upper panel represents the intensity of the                                      |
| 848 | probes according to the position of the target in the genome (< 99 <sup>th</sup> percentile of                            |
| 849 | control in purple, $[95^{\text{th}}-99^{\text{th}}]$ in orange, > $95^{\text{th}}$ in red. The lower panel represents the |
| 850 | probability of detection according to the genome region                                                                   |
| 851 |                                                                                                                           |
| 057 |                                                                                                                           |
| 054 |                                                                                                                           |

AEM







\$

Inclu Excluded from analysis

Intensity above 99th percentile of random controls Intensity between 95th and 99th percentiles Intensity below 95th percentile

4000

4000

6000

6000

Position in target sequence

8000

8000

:

••

:

10000

10000

- : 0





B) Mayaro virus

Log intensity

4

¢

±.

6000

uenc

6000



\* 4

10000

:

10000

8000

8000

1.0 Detection probability 0.4 0.6 0.8 0.2 2000



B) Wolbachia pipientis of Culex quinquefasciatus



C) Wolbachia wVitB of Nasonia vitripennis



Intensity above 99th percentile of random controls Δ