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Abstract 

 

Cancer cell lines play an important and critical part in oncology research. The advances in 
understanding of cancer biology which were achieved in the last few decades would be 
virtually impossible without using cancer cell lines as research models. Therefore better 
understanding of molecular properties of such models is crucial element in cancer research. 
Recently collaborations between Sanger Institute and Massachusetts General Hospital Cancer 
Center and also between Broad institute and Novartis Institutes for BioMedical Research Inc. 
generated mRNA expression, copy number, microRNA expression, sequencing and 
compound sensitivity data for each of the cell lines from the collection covering almost a 
thousand of the available cancer cell lines. Such data provides rich sources to explore 
important insights into tumor biology; however they also highlight the need for additional 
approaches for integrative analysis of multiple data types. The work presented in this thesis is 
significant contribution to the efforts to make use of all available data per sample and existing 
biological knowledge to the greatest possible extent. In particular this work covers two 
research topics: tumor suppressor genes status and gene sets activity analysis on sample by 
sample basis.  

Tumor suppressor genes play a major role in the etiology of human cancer, and typically 
achieve a tumor promoting effect upon complete functional inactivation. Bi-allelic 
inactivation of tumor suppressors may occur through genetic mechanisms (such as loss-of-
function mutations, DNA loss), epigenetic mechanisms (such as promoter methylation or 
histones modifications), signaling mechanisms or a combination of these inactivation 
mechanisms. Prior to the work presented in this thesis no nomenclature system existed in 
order to capture the complexity of tumor suppressor genes functional status and 
correspondingly no computational framework existed to generate such status. In order to 
address this deficiency, a comprehensive nomenclature system and computational framework 
was developed for the assessment of tumor suppressor genes functional “status”. It is utilizing 
several orthogonal genomic data types, including mutation data, copy number, LOH and 
expression. Through correlation with additional data types (compound sensitivity and gene set 
activity) it is shown that this integrative method, which allows accounting for multiple 
mechanisms of tumor suppressor genes inactivation, provides a more accurate assessment of 
tumor suppressor genes status than can be inferred by expression, copy number, or mutation 
alone. The utilization of this comprehensive and systematic computational framework led to 
marked improvement in annotation of TP53 status across extensive collection of cancer cell 
lines. Identifying cell lines with high confidence wild type TP53 status provides critically 
important foundation for efforts to identify signature to predict sensitivity to inhibitors of 
MDM2 driven degradation of TP53. 

Approach to perform gene set activity on sample by sample basis is covered in this thesis 
along with its application to the extensive collection of the cancer cell lines. Underlying 
implementation is used in part to establish pSTAT5 mRNA expression signature in 
hematopoietic cancer cell lines. This signature can potentially make it possible to identify 
patients whom may benefit from JAK inhibitor(s), based on JAK-STAT signaling. 
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Chapter One: Introduction  

This thesis focuses on two main research topics: tumor suppressor genes status and gene sets 

activity analysis on sample by sample basis. 

Tumor suppressor genes play a major role in the etiology of human cancer, and they typically 

have a tumor promoting effect upon complete functional inactivation. Bi-allelic inactivation 

of tumor suppressors may occur through genetic mechanisms (such as loss-of-function 

mutations, DNA loss), epigenetic mechanisms (such as promoter methylation or histones 

modifications), signaling mechanisms or a combination of these inactivation mechanisms. 

Currently there is no nomenclature system in order to capture the complexity of the functional 

status of tumor suppressor genes. There is no computational framework to generate such 

status. In order to address this deficiency, a comprehensive nomenclature system and 

computational framework are developed in this thesis. These components are essential for the 

assessment of the functional “status” of tumor suppressor genes based on several orthogonal 

genomic data types, such as mutation data, copy number, LOH and expression. In this thesis, 

the developed framework is used to generate tumor suppressor genes status for extensive 

collection of cancer cell lines.  

Here is a brief description of the content. Chapter 1.1 provides background information on 

cancer cell lines as models for cancer research and describes collection of cancer cell lines 

used for this work. Chapter 1.2 provides background information on tumor suppressor genes 

biology and their critical importance in cancer biology. 
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It is often desirable to obtain measures of gene sets activity on a sample-by-sample basis. The 

computational framework developed in this thesis offers a z-score based implementation to 

generate gene sets activity on a sample-by-sample basis and integrates it with permutation 

based method to access statistical significance. Chapter 1.3 provides background information 

on gene sets activity analysis research. Later in Chapter 1.3, gene sets activity analysis on a 

sample-by-sample basis is used in part to establish pSTAT5 mRNA expression signature in 

hematopoietic cancer cell lines. Chapter 1.4 provides background information on biology of 

JAK-STAT signaling. Chapter 1.5 outlines the key research steps to develop comprehensive 

computational frameworks to (a) access status of tumor suppressor genes and (b) generate 

gene sets activity on a sample-by-sample basis. 

 

1.1 Cancer cell lines 

 

Cancer cell lines play an important and critical part in oncology research. The advances in 

understanding of cancer biology which were achieved in the last few decades would be 

virtually impossible without using cancer cell lines as research models. 

Cancer is one of the leading causes of death in the world. The Figure 1.1 shows the global 

cancer statistics from 2011, indicating that cancers of various types affect millions of people 

each year around the world (Jemal et al., 2011). Clearly there is need for more pre-clinical, 

translational and clinical research in order to decrease the burden of malignant diseases on 

individuals and society at large. It is important to note that most dramatic improvements in 

cancer treatment are often due to improvements in understanding of cancer biology.  
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A. Jemal et al. A Cancer Journal for Clinicians, 2011, volume 61(2):69-90 (Source: GLOBOCAN 2008) 

Figure 1.1 Global cancer statistics   
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The classical and important example of such improvement is a case of Chronic Myeloid 

Leukemia (CML). The chromosomal abnormality driving CML was discovered in 1959 and 

became known as “Philadelphia Chromosome" (Nowell and Hungerford, 1961). In 1973 it was 

shown that “Philadelphia Chromosome" is a reciprocal translocation between chromosomes 9 

and 22 (Rowley, 1973).After a decade of the research efforts it was shown that translocation 

between chromosomes 9 and 22 results in fusion of Breakpoint Cluster Region (BCR) gene and 

c-abl oncogene 1 (ABL1) gene (Groffen et al., 1984). In 2001 clinical trials demonstrated that 

ABL1 inhibitor imatinib (brand name: Gleevec) is an extremely effective and well tolerated 

treatment for CML (Druker et al., 2001). It is important to note that the development of ABL1 

inhibitors did not stop at that point, since about 25-35 percent of CML patients do not achieve 

complete cytogenetic remission or become eventually resistant to imatinib (Shah et al., 2002). 

The second generation of ABL1 inhibitors such as dasatinib (brand name: Sprycel) (Shah et al., 

2004) and nilotinib (brand name: Tasigna) (Weisberg et al., 2005) are effective against all but 

one known ABL1 mutant (T315I). Third generation ABL1 inhibitor ponatinib (brand name: 

Iclusig) is currently in clinical trials and initial results seems to indicate activity against T315I 

ABL1 mutant (Cortes et al., 2012). It is possible to imagine a scenario in the future where CML 

patients are potentially treated with combination of different ABL1 inhibitors in order to greatly 

reduce chance of encountering resistance to treatment. 

In just few years after introduction of ABL1 inhibitor(s) into clinical practice it became very 

clear that prognosis for CML patients have been drastically improved.  Figure 1.2 demonstrates 

this fact looking at survival of CML patients treated at M. D. Anderson Cancer Center over 

several decades (Quintás-Cardama and Cortes, 2006). A few years later a multicenter study 

showed that about 95% of CML patients continued to have complete cytogenetic remission after 
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6 years of treatment and about 90% of CML patients continued to have complete cytogenetic 

remission after 8 years of treatment (Gambacorti-Passerini et al., 2011). Remarkably in that 

study deaths due to CML accounted for only 1% of CML patients after 8 years of treatment and 

overall life expectancy of CML patients was almost the same as a matched age group of the 

general population. Worldwide there are estimated 100,000 new cases of CML each year (Jemal 

et al., 2011), indicating that lives of hundreds of thousands CML patients have been saved due to 

advances in CML treatment.  

 

Years from referral

Pr
op

or
tio

n 
su

rv
iv

in
g

Year            Total     Dead

95%

Imatinib       230           7
1990-2000   960       334
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1965-1974   123       122
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Quintás-Cardama A, Cortes JE, Mayo Clinic Proceedings Volume 81, Issue 7 2006 973 - 988

Figure 1.2 Survival of patients with CML treated at M. D. Anderson Cancer Center 
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The progress in CML treatment would be very unlikely without usage of CML cancer cell 

lines derived from patients with CML. For example, the work in K562 CML cancer cell line 

led to discovery of tyrosine kinase activity of BCR-ABL fusion (Konopka et al., 1984). Also 

CML cancer cell lines with various ABL1 mutations leading to resistance to imatinib were 

instrumental in developing new generations of ABL1 inhibitors. 

The first cancer cell line was successfully isolated from a patient with aggressive cervical 

cancer and grown in vitro in 1951(Gey et al., 1952). This cell line known as HeLa played an 

important role in overall biological research and not just oncology research. For example this 

cell line played an important role in work on polio vaccine (Scherer et al., 1953). In the 

following decades hundreds of other cancer cell lines were established and made available for 

researchers around the world. The National Cancer Institute (NCI) established the panel of 60 

different human cancer cell lines for testing anti-cancer compounds, this collection became 

known as NCI-60 (Shoemaker et al., 1988).  The NCI-60 panel became the first extensively 

used panel of human cancer cell lines for high throughput compound testing (Monks et al., 

1991) (Weinstein et al., 1997). More than 60,000 compounds have been tested against the 

NCI-60 panel.  

The cancer cell lines have been generated from malignancies covering majority of cancer 

types (Garnett et al., 2012) (Barretina et al., 2012). However there is a wide range of success 

in deriving cancer cell lines from primary tissue samples. For some indications such as breast 

carcinomas and melanomas the success rate is relatively high, while for others such as for 

example prostate cancers the success rate is rather low and only a limited number of unique 

cell lines is available for research (Sobel and Sadar, 2005). Also sometimes it is rather 

difficult to generate a cancer cell line from the primary tumor driven by particular alteration, 
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for example astrocytoma tumors with EGFR amplifications (Pandita et al., 2004). The 

difficulties are due in part to complex and sometimes unclear growth conditions required by 

some of the tumor types which may for example depend on the presence of particular ligand 

that may not be readily available in typical animal based cell media (Scheithauer et al., 1987). 

Recently published work on use of ROCK inhibitor and feeder cells may be important step in 

increasing spectra of primary tumors from which cancer cell lines may be established (Liu, 

Ory, et al., 2012). 

Patient-derived tumor xenografts are another type of cancer model which has received 

significant attention in last few years (Tentler et al., 2012). It is interesting to note that tumor 

xenografts may be the better starting point for cancer cell lines generation than primary 

tumors (Dangles-Marie et al., 2007). 

The role of the cancer microenvironment is a growing area of cancer research (Ungefroren et 

al., 2011). The research in this area lead to realization of the importance of in vivo 

environment and therefore the difference in behavior between cancer cells and primary tumors  

(Gillet et al., 2013). One of the potential ways to address possible differences between in vivo 

and in vitro growth conditions is to grow cell lines in three dimensional scaffolds (Nyga et al., 

2011).     

The Cancer Cell Line Encyclopedia (CCLE) (Barretina et al., 2012) provides a 

comprehensive molecular characterization of nearly a thousand cancer cell lines and therefore 

lays out a foundation for better understanding of cancer cell lines biology. The CCLE 

provides mRNA expression, Affymetrix SNP 6.0 profiles, OncoMap (MacConaill et al., 

2009) mutation screening and exome sequencing data. This rich data set allows a number of 
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different analyses using a combination of multiple data types. This multiplicity allows this 

research project to examine distinct mechanisms of tumor suppressor inactivation across 

CCLE cell lines. 

The following four figures from (Barretina et al., 2012) provide a general overview of CCLE: 

Figure 1.3a shows distribution of cancer types in the CCLE by lineage. This figure shows that 

CCLE covers in reasonable depth a majority of main tumor types. Figure 1.3b shows that 

there is reasonable correlation between CCLE CN profiles and primary tumors CN profiles 

using as a measure GISTIC G-scores (Mermel et al., 2011) across CCLE and 12 

corresponding cancer types included in Tumorscape (Beroukhim et al., 2010). Figure 1.3c 

shows that there is reasonable correlation between CCLE mRNA expression profiles and 18 

corresponding primary tumors cancer types from the expO (http://www.intgen.org/expo) and 

MILE datasets (Haferlach et al., 2010). Figure 1.3d shows that there is reasonable correlation 

between an oncogene point mutation in CCLE cell lines and corresponding primary tumors in 

COSMIC (Forbes et al., 2011) for 378 mutations in 29 genes. 

Affymetrix U133Plus2 mRNA expression, Affymetrix SNP 6.0 data, OncoMap mutation calls 

(MacConaill et al., 2009), exome data sequencing (Hodges et al., 2007), and pharmacological 

profiling data are available at the CCLE web site (http://www.broadinstitute.org/ccle/home). 

Expression data is MAS5 normalized, with a 2% trimmed mean of 150 (Hubbell et al., 2002). 
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J Barretina et al. Nature 483, 603-607 (2012) doi:10.1038/nature11003

Figure 1.3a Distribution of cancer types in the CCLE by lineage. 

Figure 1.3b CCLE CN profiles vs. primary tumors CN profiles. 

The diagonal of the heat map shows the Pearson correlation between corresponding tumor 
types. 

Figure 1.3c CCLE mRNA profiles vs. primary tumors mRNA profiles. 

For each tumor type, the log fold change of the 5,000 most variable genes is calculated 
between that tumor type and all others. Pearson correlations between tumor type fold changes 
from primary tumors and cell lines are shown as a heat map. 

Figure 1.3d CCLE point mutations vs. primary tumors point mutations. 

Comparison of point mutation frequencies between cell lines and primary tumors in COSMIC 
(v56), restricted to genes that are well represented in both sample sets but excluding TP53, 
which is highly prevalent in most tumors types. Pairwise Pearson correlations are shown as a 
heat map. Asterisk indicates that the correlations of oesophageal, liver, and head and neck 
cancer mutation frequencies are restored when including TP53. 
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1.2 Tumor suppressor genes status  

 

Tumor suppressor genes encode proteins that normally inhibit tumor formation caused by 

abnormal cellular proliferation. Tumor suppressor proteins can participate in a variety of 

processes such as negative regulation of the cell cycle, positive regulation of apoptosis, 

regulation of DNA damage response, or other mechanisms (Stanbridge, 1990). The list of 

tumor suppressor genes includes such names as TP53 (tumor protein p53), RB1 

(retinoblastoma 1), APC (adenomatous polyposis coli), and BRCA1 (breast cancer 1, early 

onset). The inactivation of these and other tumor suppressor genes plays a major role in many 

types of cancer (Jones and Thompson, 2009). Also, in general, tumor suppressor genes 

inactivation may be even more frequent events than oncogene activations per individual 

tumor in most solid malignancies, as can be seen in Figure 1.4 from (Vogelstein et al., 2013).  

The first tumor suppressor gene, RB1, was proposed in 1971 (Knudson, 1971). Knudson’s 

elegant work suggested that both copies of RB1 need to be inactivated in one way or another 

in order for a tumor to form and therefore two hits are needed in order to disable a tumor 

suppressor gene. Knudson’s work was based on detailed examination of two types of 

retinoblastomas: familial and sporadic. The familial form of retinoblastomas appears (as their 

name suggests) in families with a history of disease and sporadic retinoblastomas arises in 

children with families without history of disease. The familial form of retinoblastomas leads 

to retinoblastomas affecting both eyes (bilateral) while sporadic retinoblastomas affect only a 

single eye (unilateral).  
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Vogelstein et al. Science 2013;339:1546-1558 

Figure 1.4 Number and distribution of driver gene mutations in five tumor types.  

The total number of driver gene mutations [in oncogenes and tumor suppressor genes (TSGs)] 
is shown, as well as the number of oncogene mutations alone. 
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Bilateral retinoblastomas appear early in life in comparison to unilateral forms. The Knudson 

hypothesis was based on examination of the kinetics of bilateral and unilateral 

retinoblastomas. Knudson proposed that in cases of familial retinoblastoma one copy of RB1 

was inherited in mutant form and therefore only one additional hit to RB1 was required in 

order to generate a tumor. In the case of sporadic retinoblastoma, two somatic inactivating 

events to RB1 are required in order to form the tumor. In 1986 RB1 was cloned and as 

predicted there were inactivating alterations affecting both copies of the gene in affected 

patients (Friend et al., 1986). Children with the familial form of retinoblastoma have at least 

500 times above normal increased risk of developing osteosarcoma tumors during their life 

time (Kleinerman et al., 2005). Further research determined that RB1 plays a critical role in 

cell cycle control (Chellappan et al., 1991), (Nevins, 2001). Figure 1.5 shows the relationship 

between RB1, E2Fs and cell cycle (Weinberg, 2007). Figure 1.6 shows RB1 and other tumor 

suppressor genes and oncogenes involved in regulation of restriction point transition 

(Weinberg, 2007). 

It is important to keep in mind that retinoblastoma tumors belong to a rather small, but quite 

interesting group of malignancies in which a loss of just one tumor suppressor gene leads to 

cancer (Goodrich, 2006). Another example of such tumor type is malignant rhabdoid tumors 

(MRT), which are rare, mostly pediatric, tumors of kidney, liver, soft tissue and central 

nervous system (CNS) (Wick et al., 1995). In MRT loss of SNF5 is sufficient to cause tumor 

formation (McKenna et al., 2008), in fact loss of SNF5 is a critical diagnostic marker. It is 

interesting to note that SNF5 is a core component of the SWI/SNF chromatin remodeling 

complex (Muchardt and Yaniv, 1999). In recent years number of genes such as ARID1A, 

ARID1B, SMARCA2, SMARCA4, etc. encoding subunits of chromatin remodeling 
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complexes have been found to be inactivated in a number of different malignances and with 

noticeable frequency (Wu and Roberts, 2013) (Shain and Pollack, 2013).  

 

 

 

Figure 1.5 RB1, E2Fs and cell cycle 

Hypophosphorylated RB1 blocks transcription activating domain of E2Fs. 
Hyperhosphorylated RB1 releases E2Fs allowing them to activate transcription of genes 
required for progression through cell cycle. E2Fs are inactivated and/or degraded as cells 
enter S phase. 
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Figure 1.6 Restriction point transition signaling 

Elements that promote advance through the R point are drawn in orange, while those that 
block this advance are shown in blue. 
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Both retinoblastoma and malignant rhabdoid tumors are pediatric cancers, which in 

comparison to adult tumors in general have smaller number of genetic alterations (Vogelstein 

et al., 2013). A recent paper investigating Acute lymphoblastic leukemia (ALL) cancers in 

two pairs of identical twins ages 55 and 48 months respectively, showed the same pattern of 

rather low number of genetic alterations (Ma et al., 2013). Relatively small numbers of 

genetic alterations are not completely exclusive to pediatric cancers, for example acute 

myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL) have relatively few 

genetic alterations (Vogelstein et al., 2013). The Cancer Genome Atlas (TCGA) project is 

massive effort to get detailed molecular characterization of thousands primary tumors 

covering a number of different indications, this project is helping to get a more detailed 

picture of genetic alterations in cancer (Cancer Genome Atlas Research Network, 2008). 

At this point there are about 80 well-known and putative tumor suppressor genes. Numbers of 

them are inactivated with rather high frequency. For example TP53 is one of the most 

frequently mutated genes in cancer (Petitjean et al., 2007). The functional status of number of 

tumor suppressor genes directly influences the selection of possible treatment options. For 

example CDK4/6 inhibitors can only be potentially effective against tumors  with wild type 

RB1 (Finn et al., 2009). Also inhibitors of MDM2-driven TP53 protein degradation can only 

be potentially effective against tumors with wild type TP53 (Efeyan et al., 2007). Figure 1.7 

shows a simplified diagram of regulation and function of the TP53 (Ryan et al., 2001). On the 

other hand PARP inhibitors are more likely to be effective in tumors with inactivated BRCA1 

or BRCA2, since PARP enzymes are involved in DNA repair and their inhibition can lead to 
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DNA breaks and BRCA1 and BRCA2 are involved in homologous repair of DNA breaks 

(Kummar et al., 2012).  

 

 

      Ryan KM, Phillips AC, Vousden KH. 2001 Jun;13(3):332-7. 

Figure 1.7 Regulation and function of the TP53 
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Large numbers of DNA SSBs 
persist and are encountered by 
DNA replication forks. These lead 
to replication fork arrest 
associated with a DSB.

PARP functions in base excision 
repair. DNA SSBs form due to 
oxidative damage and its repair. 
Inhibition of PARP activity 
prevents the recruitment of 
XRCC1 and subsequent SSB gap 
filling by DNA polymerases. 

Presence of functional BRCA1 
and BRCA2, allows initiation of 
sister chromatid recombination 
repair. A collapsed replication 
fork may be restarted by this 
mechanism.

When Holliday junctions at 
recombination intermediates 
are resolved, a sister chromatid
exchange may occur. The excess 
number of replication fork 
arrests associated with loss of 
PARP function leads to an 
increase in sister chromatid
recombination events and sister 
chromatid exchanges.

In the absence of functional 
BRCA1 or BRCA2, sister 
chromatid recombination 
and the formation of 
RAD51 foci are severely 
impaired. Replication-
associated DSBs cannot be 
repaired by sister 
chromatid recombination. 
Some remain unrepaired as 
chromatid breaks but many 
are repaired by error-prone 
RAD51-independent 
mechanisms such as non-
homologous end joining 
(NHEJ) and single-strand 
annealing (SSA).

Farmer et al. Nature 434, 917-921 (14 April 2005) 

Figure 1.8 PARP inhibition and BRCA1/2 status 
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Figure 1.8 illustrates consequences of PARP inhibition in cell with functioning BRCA1 and 

BRCA2 versus cell with loss of function of BRCA1 or BRCA2 (Farmer et al., 2005). Clinical 

progress in using PARP inhibitors was complicated by use of an iniparib compound which 

was supposed to be PARP inhibitor, but failed clinical trials and was eventually shown to be 

not a PARP inhibitor in the first place (Liu, Shi, et al., 2012) (Patel et al., 2012). Despite this 

setback clinical development of PARP inhibitors continued and some of them are now in 

Phase 3 of clinical trials. Table 1.1 lists PARP inhibitors in clinical trials along with 

information on clinical phase and indication(s) (Source http://clinicaltrials.gov). Phase 3 

clinical trials for inhibitors niraparib and olaparib as part of the trials are going to evaluate the 

impact of BRCA1 and BRCA2 status in relation to therapeutic respond to the compounds. 

 

Table 1.1 List of PARP inhibitors in clinical trials. 

 

Compound Sponsor Phase Indication(s) 
Niraparib Tesaro Phase 3 Ovarian cancer 

Olaparib (AZD-2281)  AstraZeneca  Phase 3 
BRCA1/2 mutant 
cancers, solid tumors 

Veliparib (ABT-888)  Abbott  Phase 2 
Prostate, colorectal, 
leukemia, solid tumors 

CEP-9722  Cephalon  Phase 2 
Solid tumors, 
lymphoma 

Rucaparib (CO-338)  
Clovis 
Oncology  Phase 2 

BRCA1/2 mutant 
cancers, solid tumors 

E7016  Eisai  Phase 2 Solid tumors 

BMN-673  
BioMarin 
Pharmaceutical  Phase 1 Leukemia, solid tumors 

 

 

http://clinicaltrials.gov/
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Figure 1.9 shows classes of mutations found in the tumor suppressor genes TP53, APC, ATM 

and BRCA1 (Robles et al., 2002). APC, ATM and BRCA1 have a classical pattern of 

mutations found in the tumor suppressor genes with majority of mutations belonging to 

nonsense or frame-shift classes. However TP53 displays a very different mutation pattern 

with majority of mutations belonging to a missense class. Figure 1.10 provides a detailed 

view of the TP53 mutation patterns (Vousden and Lu, 2002). The main reason for such 

unusual mutational patterns for a tumor suppressor gene is related to the fact that TP53 needs 

to form a tetramer in order to perform its transcriptional factor function. Therefore even if 

only one out of four subunits has a missense mutation it may behave in a dominant negative 

fashion and therefore prevent correct formation of the tetramer (Petitjean et al., 2007).  To this 

end, six highlighted residues on Figure 1.10 represent locations of TP53 hotspot mutations. 

Mutations in these six residues account for about 28% of all TP53 mutations and non-

surprisingly almost all mutations at these locations are considered to be dominant negative 

ones. 

As previously mentioned unlike proto-oncogenes (Croce, 2008), where a single mutation can 

be dominant and lead to cellular transformation, a single mutation in a tumor suppressor gene 

is normally recessive as long as there is a second functional copy of the gene. However, loss 

of function of both tumor suppressor alleles may promote tumor growth or survival providing 

that the loss-of-function is nearly or totally complete. It is possible to infer loss-of-function of 

tumor suppressor genes through a number of genomic measurements, such as mRNA 

transcript expression, DNA copy numbers, and sequencing data.  
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Robles AI, Linke SP, Harris CC  Oncogene. 2002 Oct 7;21(45):6898-907 

Figure 1.9 Mutations found in the tumor suppressor genes TP53, APC, ATM, BRCA1 
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              Vousden KH and Lu X. 2002 Aug;2(8):594-604 

Figure 1.10 Mutations pattern in the tumor suppressor gene TP53 

 

 

 

 



37 

 

Some particular types of alterations leading to inactivation of tumor suppressors may not 

necessary be frequent events, but still are interesting case studies. For example DNA deletions 

which do not affect the coding part of the genes, but instead remove promoter or essential 

enhancer sequences, and also translocations which move promoter or essential enhancer 

sequences away from coding part of the gene; as a result both of these alterations may lead to 

loss of expression of  tumor suppressor genes. The above mentioned mechanisms for 

inactivation of tumor suppressors can be broadly divided in three categories.  

The first category includes inactivation of both alleles by genetic alterations, such as copy 

number loss, loss of heterozygosity (LOH) and mutations.  

The second category includes inactivation of one allele by a mechanism from the first 

category and loss of mRNA expression of second allele by an epigenetic mechanism, such as 

promoter methylation, possible histone modifications and other mechanisms leading to loss of 

mRNA expression.  

The third category includes inactivation of both alleles by an epigenetic mechanism. 

The comprehensive and systematic computational framework is presented in chapter two 

allowing examination of tumor suppressor for gene and sample in question and assignment of 

appropriate status. 

It is important to keep in mind that tumorigenesis is a complicated and multifaceted process. 

Hallmarks of cancer are the key conceptual characteristics likely needed for successful 

tumorigenesis and they are depicted in Figure 1.11 (Hanahan and Weinberg, 2011). There are 

number of underlying molecular mechanisms behind these hallmarks of cancer.  
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Douglas  Hanahan , Robert A.  Weinberg Cell Volume 144, Issue 5 2011 646 - 674 

Figure 1.11 Hallmarks of cancer 
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Figure 1.12 shows a schematic and simplified map of known intracellular signaling networks 

which are critical components of tumorigenesis (Hanahan and Weinberg, 2011). Gene sets 

activity analysis introduced in Chapter 1.3 is an approach that uses existing knowledge of 

intracellular signaling networks in order to better understand complicated processes in 

individual tumors. 

Douglas  Hanahan , Robert A.  Weinberg Cell Volume 144, Issue 5 2011 646 - 674 

Figure 1.12 Intracellular signaling networks in cancer 
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1.3 Gene sets activity analysis 

 

Gene expression analysis on the whole genome level is an important technique in molecular 

biology (Schena et al., 1995) (Lockhart et al., 1996) (Lee et al., 2008). There are number of 

different approaches for analyzing gene expression data sets. Most of the initial 

bioinformatics work on gene expression analysis on the whole genome level was concerned 

with choosing appropriate test statistics to identify differentially expressed genes (Tusher et 

al., 2001) (Smyth, 2004) and on the applying multiple hypothesis corrections (Hochberg and 

Benjamini, 1990) (Storey and Tibshirani, 2003) (Dudoit et al., 2003). One group of 

approaches for analyzing gene expression data is trying to take advantage of existing 

knowledge of molecular pathways available from resources such as  Gene Ontology 

(Ashburner et al., 2000), MSigDB (Liberzon et al., 2011), (Kanehisa et al., 2012), 

BIOCARTA (http://www.biocarta.com) and GeneGo (www.genego.com). Pathway activity 

analysis methods can be classified into two major groups: over representation and the 

aggregate score approaches.  

One of widely known approaches from aggregate score category is generally known as Gene 

Set Enrichment Analysis (GSEA) (Mootha et al., 2003) (Subramanian et al., 2005). There are 

numerous ways to calculate aggregate scores and multiple publications have explored the 

different approaches (Pavlidis et al., 2002) (Goeman et al., 2004) (Kim and Volsky, 2005) 

(Tian et al., 2005) (Dinu et al., 2007) (Irizarry et al., 2009) (Hänzelmann et al., 2013). 

The signal to noise ratio is used by the GSEA method in order to rank gene expression 

differences between two groups of samples.  

http://www.biocarta.com/genes/allpathways.asp
http://www.genego.com/
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𝑆𝑖 = 𝐸�𝑥𝑖𝑗�𝑗∈𝑌1�−𝐸(𝑥𝑖𝑗|𝑗∈𝑌2)
𝜎𝑡�𝑥𝑖𝑗�𝑗∈𝑌1�+𝜎𝑡(𝑥𝑖𝑗|𝑗∈𝑌2)

,  where 

𝑆𝑖 is a signal to noise ratio for the gene i. 

𝑥𝑖𝑗 is an expression value for the gene i in the sample j. 

𝑌1 is a first set of samples. 

𝑌2 is a second set of samples. 

𝐸�𝑥𝑖𝑗�𝑗 ∈ 𝑌1� is an expected value for  the first set of samples. 

𝐸�𝑥𝑖𝑗�𝑗 ∈ 𝑌2� is an expected value for  the second set of samples. 

Expected value is also known as a mean, which for discrete random variable Xi is calculated 

as: 

𝐸(𝑋𝑖)  =  1
𝑁
∑ 𝑥𝑖𝑗𝑁
𝑗=1 , where N is a number of samples in a set for which the mean is 

calculated. 

𝜎𝑡 is a truncated standard deviation for each group of  samples limited from below at 20% of 

the corresponding means in order to decrease spikes in signal to noise ratio due to artificially 

low standard deviation. 

 

𝜎𝑡�𝑥𝑖𝑗�𝑗 ∈ 𝑌∗�  =  �
𝜎�𝑥𝑖𝑗�𝑗 ∈ 𝑌∗�                  𝑖𝑓 𝜎�𝑥𝑖𝑗�𝑗 ∈ 𝑌∗�  ≥ 0.2 × 𝐸�𝑥𝑖𝑗�𝑗 ∈ 𝑌∗� 
0.2 × 𝐸�𝑥𝑖𝑗�𝑗 ∈ 𝑌∗�    𝑖𝑓 𝜎�𝑥𝑖𝑗�𝑗 ∈ 𝑌∗�  < 0.2 × 𝐸�𝑥𝑖𝑗�𝑗 ∈ 𝑌∗�

, where 𝑌∗ 

represents set of samples for which standard deviation is calculated. As before, N is a number 

of samples in a set for which standard deviation is calculated. 
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𝜎 is a standard deviation, defined as 𝜎(𝑥𝑖)  =  �
∑  �𝑥𝑖 − 𝐸(𝑥𝑖)�

2𝑁
𝑗=1

𝑁
 

GSEA uses modified Kolmogorov-Smirnov statistic to assess gene set enrichment. For a kth 

gene set, 𝑆𝑘𝐺𝑆𝐸𝐴  =  𝑠𝑢𝑝𝑙=1...𝑁�𝐹𝑙
𝑔𝑘  −  𝐹𝑙

𝑔𝑘�����, where 𝑆𝑘𝐺𝑆𝐸𝐴  is a enrichment score for the gene 

set k; N is number of genes in rank gene list; l is a rank in the gene list. 

𝐹𝑙
𝑔𝑘 is a cumulative distribution function calculated for genes in gene set k. 

𝐹𝑙
𝑔𝑘  =  

∑ 𝑆ℎ𝐼ℎ𝑙
ℎ=1

∑ 𝑆ℎ𝐼ℎ𝑁
ℎ=1

 

where  𝑆ℎ is signal to noise for gene h. 

𝐹𝑙
𝑔𝑘���� =  

∑ (1 −  𝐼ℎ)𝑙
ℎ=1
(𝑁 −  𝑛𝑘)  

𝐹𝑙
𝑔𝑘���� is a cumulative distribution function calculated for genes not in gene set k. 

where 𝑛𝑘 is number of genes in the gene set k. 

𝐼ℎ  =  �
1   𝑖𝑓  ℎ ∈  𝑔𝑘
0   𝑖𝑓  ℎ ∈  𝑔𝑘

 

GSEA enrichment scores are normalized using the expected value of the positive or negative 

null distribution statistic generated by sample permutation. This normalization is necessary in 

order to be able to compare GSEA enrichment values across gene sets of different sizes.  

 

𝑆́𝑘𝐺𝑆𝐸𝐴  =  

⎩
⎪
⎨

⎪
⎧ 𝑆𝑘𝐺𝑆𝐸𝐴

𝐸(𝑆𝑘𝐺𝑆𝐸𝐴|𝑆𝑘𝐺𝑆𝐸𝐴  ≥ 0)
   𝑖𝑓  𝑆𝑘𝐺𝑆𝐸𝐴  ≥  0

𝑆𝑘𝐺𝑆𝐸𝐴

𝐸(𝑆𝑘𝐺𝑆𝐸𝐴|𝑆𝑘𝐺𝑆𝐸𝐴  < 0)
   𝑖𝑓  𝑆𝑘𝐺𝑆𝐸𝐴  <  0
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𝑆́𝑘𝐺𝑆𝐸𝐴 is a normalized enrichment score for gene set k. 

The Kolmogorov-Smirnov statistic is non-parametric and distribution free, therefore it makes 

no assumptions on distribution properties of underlying data set (Gibbons, 2003). The 

Kolmogorov-Smirnov statistic is based on analysis of cumulative distribution function, also 

known as empirical distribution function. This statistical approach may therefore allow for the 

detection of differences between distributions even if, for example, the means of underlying 

distributions are the same. However in general non-parametric statistics are less sensitive if 

the underlying data meets requirements of the particular parametric statistical test (Freedman, 

2005).  

Work by (Irizarry et al., 2009) indicated that z-scores can be successfully used to calculate 

aggregate scores of gene set enrichment in part by comparing analysis results generated using 

z-scores based approach and GSEA from the same datasets. In fact (Irizarry et al., 2009) 

analysis demonstrated examples where z-scores based approach seems to be superior to 

GSEA. In z-scores based approach two-sample t-test based statistics is used to estimate 

differences in expression for each gene between two groups of samples. 

𝑡𝑖 =  𝐸�𝑥𝑖𝑗�𝑗∈𝑌1�−𝐸(𝑥𝑖𝑗|𝑗∈𝑌2)

�𝜎2�𝑥𝑖𝑗�𝑗∈𝑌1�+𝜎2(𝑥𝑖𝑗|𝑗∈𝑌2)
  

𝑡𝑖 is a t-statistic for the gene i. 

𝑆𝑘𝑧  =  𝐸(𝑡𝑖|𝑖 ∈ 𝐺𝑘)�𝑛𝑘 

𝑆𝑘𝑧 is z-score for gene set k. 

𝐺𝑘 is set of genes in gene set k. 

𝑛𝑘 is number of genes in the gene set k. 
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Statistical significance of z-scores for gene sets can be estimated using assumption of standard 

normal distribution. 

𝑆𝑘𝑧 is not able to detect changes in scales, because such changes do not cause mean shift. For 

example it’s possible, in some scenarios, to have a pathway in which up-regulated and down 

regulated genes balance each other almost exactly and the balance is dynamically preserved.  

To account for such cases 𝜒2 test is used by (Irizarry et al., 2009). 

𝑆𝑘
𝜒2 =  

∑ �𝑡𝑖  −  𝐸(𝑡𝑖)�
2

 −  (𝑛𝑘  − 1)𝑖∈𝐺𝑘
2(𝑛𝑘  − 1)  

𝑆𝑘
𝜒2 is 𝜒2 score for gene set k. 

 

Additional research pointed to examples in which GSEA analysis seems to generate results 

superior to z-scores based approach (Tamayo et al., 2012). GSEA analysis and z-scores based 

approach seems to produce over all similar results and each method has its own pluses and 

minuses which in part depend on underlying datasets and gene sets in question. 

There is also a significant number of publications and tools for analysis that uses 

overrepresentation approach (Grosu et al., 2002) (Doniger et al., 2003) (Zeeberg et al., 2003) 

(Dennis et al., 2003) (Al-Shahrour et al., 2004) (Zhong et al., 2004) (Zhou and Su, 2007) 

(Beltrame et al., 2013). Overrepresentation approach takes a look at the list of differentially 

expressed genes and searches for gene sets which are represented in the list more often than 

would be expected just by chance. 

The hypergeometric test is often used to access statistical significance of overrepresentation 

analysis. One tailed P-value could be calculated by the hypergeometric test in the following 

way: 
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p = ∑ �𝑀𝑖 ��
𝑁−𝑀
𝐾−𝑖 �

�𝑁𝐾�
𝐾
𝑖=𝑥   , where: 

N is the total number of genes available in the collection of gene sets with mRNA expression 

data. 

M is the number of genes in the gene set of interest. 

K is the number of differentially expressed genes. 

x is the number of differentially expressed genes which belong to gene set of interest. 

�𝑛𝑘� is a binomial coefficient and its value given by 𝑛!
𝑘!(𝑛−𝑘)!

 

 

The methods described in this introductory chapter up to this point require performing 

differential gene set analysis between two groups of samples as a first step. Due to this 

requirement the result of the analysis is a relative measure of gene set enrichment between 

two groups. However in a number of cases it is desirable to obtain measures of gene sets 

activity on a sample-by-sample basis. Also, in case of modern database repositories with tens 

of thousands gene expression profiles, it becomes increasingly difficult to use pathway  

enrichment  analysis to generate analyses covering all profiles due to the combinatorial 

explosion  of possible grouping of samples. 

Compared to classical pathway  enrichment  analysis between two groups of samples, 

pathway activity analysis on a sample-by-sample basis is a much less well studied approach, 

although there is still a modest body of work in that area. Methods for pathway activity 

analysis on a sample-by-sample basis could be roughly divided into four generic categories: 
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mean/median based methods  (Guo et al., 2005) (Breslin et al., 2005), z-scores based methods 

(Levine et al., 2006) (Lee et al., 2008), sample level extensions of GSEA (Edelman et al., 

2006) (Barbie et al., 2009) (Hänzelmann et al., 2013) and principal component analysis (PCA) 

based methods (Tomfohr et al., 2005) (Bild et al., 2006).  

Z-score transformation is a classical method of data normalization and there is a long and 

solid history of using z-scores for normalization of gene expression data (Cheadle et al., 

2003). Therefore it seems like the z-scores based methods for pathway activity analysis on a 

sample-by-sample basis are built on a firm foundation. 

 

1.4 JAK-STAT signaling pathway 

 

In chapter three, the application of gene sets activity analysis to Cancer Cell Line 

Encyclopedia cell lines is discussed and also its application to generation of pSTAT5 mRNA 

expression signature in hematopoietic cancer cell lines. The following paragraphs introduce 

the JAK-STAT pathway and its relevance to hematopoietic malignancies.  

The JAK-STAT pathway is one of the key signaling pathways downstream of cytokine and 

growth factor receptors.  It plays a critical role in hematopoiesis, immune functions and many 

human diseases (Pesu et al., 2008).  The JAK family comprises of four non-receptor protein 

tyrosine kinases, namely JAK1, JAK2, JAK3, and TYK2 (Stark and Darnell, 2012).  JAK1, 

JAK2, and TYK2 are expressed ubiquitously, while JAK3 is expressed mainly in 

hematopoietic cells.   
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Following the binding of a ligand to its receptor, receptor-associated JAKs are activated. Once 

activated by cytokines or growth factors through receptor-ligand interactions, JAKs 

phosphorylate the receptor and members of the STAT transcription factors.  A number of 

STAT molecules, including STAT1, 3, 4, 5 and 6, have been identified (Murray, 2007) 

(Rawlings et al., 2004).  STAT proteins once phosphorylated and activated by JAKs, dimerize 

and translocate to the nucleus where they modulate the expression of target genes 

(Vainchenker et al., 2011).  Figure 1.13 shows the JAK-STAT signaling diagram  (Liao et al., 

2013). 

 

 

Liao W, Lin JX, Leonard WJ Immunity Volume 38, Issue 1 2013 13 - 25 

Figure 1.13 JAK-STAT signaling 
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Aberrant JAK-STAT signaling has been implicated in multiple human pathologies.  The high 

incidence of acquired somatic activating mutations found in JAK2 in MPNs 

(myeloproliferative neoplasms) is one example of the involvement of this pathway in disease.  

Mutations in the upstream thrombopoietin receptor (MPLW515L) and the loss of JAK 

regulation by LNK (LNK exon 2 mutations) have been associated with myelofibrosis 

(Vainchenker et al., 2011) (Pikman et al., 2006).  Mutations in JAK2, mostly JAK2 V617F, 

that lead to constitutive activation of JAK2, have been found in the majority of patients with 

primary myelofibrosis (Kralovics et al., 2005) (Baxter et al., 2005) (Levine et al., 2005). 

Additional mutations in JAK2 exon 12 have been identified in polycythemia vera and 

idiopathic erythrocytosis (Scott et al., 2007).  Additionally, activated JAK-STAT has been 

implicated as a survival mechanism for human cancers (Hedvat et al., 2009).  Taken together, 

multiple molecular mechanisms have been identified that can lead to aberrant activation of 

JAK-STAT signaling in human disease. 

Given the roles of JAK-STAT activation in human cancers and the multiple ways in which the 

pathway can be dysregulated, it becomes important to identify patients with aberrantly 

activated JAK-STAT pathways that could benefit from JAK inhibitor therapy.  The detection 

of JAK activation through the measurement of phospho-JAK or phospho-STATs in clinical 

samples is subject to many technical and logistical variables such as sample processing, 

epitope preservation and detection; therefore deriving a gene expression based signature 

indicative of STAT5 activation status could be of practical importance.  
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1.5 Thesis summary  

 

This thesis involves the construction of a computational framework to determine the status of 

tumor suppressor genes and the application of this knowledge to the cell lines in the CCLE 

collection as outlined in the following steps: 

1. Compilation of a list of tumor suppressor genes from the literature containing all previously 

validated tumor suppressor genes and also capturing some putative tumor suppressor genes. 

For genes on the list information was collected on known loss of function missense mutations.  

2.  Design and construction of a computational module to detect genetic alterations affecting 

both alleles. This module is based on analysis of data from SNP chips and data from exome 

sequencing.   

3. Design and construction of a computational module to detect epigenetic alterations. Since 

epigenetic data is not wildly available, gene expression data is used as a proxy in most cases. 

Such substitution is not a perfect solution; however it is a reasonable practical approach.  The 

expression data is used to identify samples with likely absent expression of gene in question.  

4. Integration of the above modules in a flexible data analysis framework can allow users to 

determine tumor suppressor genes status and place them in one of the three categories 

described above in the introduction. Based on the category definitions and data used to place 

them in appropriate category the first category will contain genes that have high confidence of 

being completely disable in the cell line in question. The second category will contain genes 

which have medium confidence of being completely disabled in the cell line in question.  The 
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third category will contain genes which have lower confidence of being completely disabled 

in the cell line in question.  

5. The framework was used to analyze CCLE collection of cancer cell lines. The initial results 

of the analyses performed in this study have already been made available for scientific 

community through publication in a leading journal (Sonkin et al., 2013). 

The construction of computational framework to determine gene sets activity across an 

extensive collection of gene sets and it application to the cell lines of the CCLE collection 

consisted of the following steps: 

1.  Determination of the appropriate normalization approach for expression of genes a across 

set of samples.  

2. Determining an appropriate method for measuring gene sets activity scores using 

normalized data points from the first step. 

3. Designing a computational approach to calculate statistical significance of gene sets 

activity scores. 

4. Validation of gene sets activity scores on the set of gene sets with known behavior in a 

particular set of samples. 

5. The framework was used to analyze gene sets activity across the CCLE collection of cancer 

cell lines using a large collection of annotated gene sets. Results were used as one of the 

inputs for predictive modeling of anticancer drug sensitivity (Barretina et al., 2012). 

6. This underlying method was used in part to establish pSTAT5 mRNA expression signature 

in hematopoietic cancer cell lines and manuscript is under review (Sonkin et al., 2014). 
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Chapter Two: Tumor suppressor genes status in Cancer Cell Line Encyclopedia 

 

This chapter presents details of systematic and comprehensive computational framework for 

the assessment of tumor suppressor genes status developed as part of thesis research.  

Chapter 2.1 provides rational for selecting particular tumor suppressor genes for analysis and 

collection of associated annotation data. Chapter 2.2 describes the approach used to 

incorporate several orthogonal genomic data types, such as mutation data, copy number, LOH 

and expression in order to account for different mechanisms of tumor suppressor genes 

inactivation mechanisms. Chapter 2.3.1 presents major findings. Chapter 2.3.2 uses 

relationship between TP53 status and Nutlin-3 sensitivity in order to demonstrate that 

integrative method, which allows accounting for multiple mechanisms of tumor suppressor 

genes inactivation, provides a more accurate assessment of tumor suppressor genes status than 

can be inferred by expression, copy number, or mutation alone. Chapters 2.3.3 uses 

relationship between RB1 status and PD-0332991 sensitivity to reiterate conclusion from 

chapter 2.3.2. Chapter 2.4.1 highlights clinical relevance of TP53 status, chapter 2.4.2 uses 

BAP1 example to show how integrative tumor suppressor gene status can help to find new 

putative tumor suppressor genes and chapter 2.4.3 outlines potential future refinements. 
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2.1 Selecting tumor suppressor genes for analysis 

 

The list of 82 well-known and putative tumor suppressors has been compiled based on a 

comprehensive literature review. Among them, 69 genes have mutation, copy number and 

expression data available and, therefore, were selected for the analysis in this thesis. List of 

these 69 genes is provided in Appendix A1.2. 

The information was assembled from the literature on known loss of function missense 

mutations Table 2.1. Unfortunately, at this time the number of clearly validated loss of 

function missense mutations is small (only 38 entries covering 7 genes). It is likely that there 

are other bona fide losses of function missense mutations that have not been sufficiently 

validated or annotated. Creation of a comprehensive and reliable resource of clearly validated 

loss of function (as well as gain of function) missense mutations in cancer would be very 

useful for the field of oncology research. Hopefully, efforts like the MutaDATABASE (Bale 

et al., 2011) and ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/) projects will help to establish 

such a resource. Also, as can be seen in the Table 2.1, some of the validated somatic loss of 

function mutations are found in dbSNP (Sherry et al., 2001), and are not explicitly noted to be 

somatic variants or pathogenic alleles. Therefore, in order to prevent the incorrect removal of 

somatic mutations, extra steps must be taken when using dbSNP as a filter to remove germ 

line SNPs from cancer samples sequencing. 

 

 

http://www.ncbi.nlm.nih.gov/clinvar/
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Table 2.1 Known loss of function missense mutations. 
 

Gene ENTREZ ID AA Change dbSNP ID Dominant Negative 
CDKN2A 1029 H83Y 

  CDKN2A 1029 D84Y rs11552822 
 CDKN2A 1029 D108Y 

  CDKN2A 1029 P114L 
  MLH1 4292 V384D 
  PTEN 5728 R130G 
  PTEN 5728 R130Q 
  PTEN 5728 R173C 
  PTEN 5728 R173H 
  RB1 5925 C706F 
  STK11 6794 D194N 
  STK11 6794 D194V 
  STK11 6794 E199K 
  STK11 6794 P281L 
  TP53 7157 V143A 
 

N 
TP53 7157 V157F 

 
Y 

TP53 7157 R158L 
 

Y 
TP53 7157 R158H 

 
N 

TP53 7157 R175H rs28934578 Y 
TP53 7157 Y220C 

 
Y 

TP53 7157 M237I 
 

N 
TP53 7157 G245S rs28934575 Y 
TP53 7157 R248Q rs11540652 Y 
TP53 7157 R248W 

 
Y 

TP53 7157 R249S 
 

Y 
TP53 7157 R273C 

 
Y 

TP53 7157 R273H rs28934576 Y 
TP53 7157 R273L 

 
Y 

TP53 7157 R280K 
 

N 
TP53 7157 R280S 

 
N 

TP53 7157 R280T 
 

N 
TP53 7157 R282G 

 
N 

TP53 7157 R282W 
 

Y 
VHL 7428 P81S rs5030806 

 VHL 7428 L85P rs5030828 
 VHL 7428 L89H rs5030807 
 VHL 7428 L158Q 

  VHL 7428 R167W rs5030820 
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2.2 Methods 

2.2.1 Overview 

As described above mechanisms of inactivation of tumor suppressors can be divided into 

three major categories. Figure 2.1 illustrates each sub-category with a simplified diagram.    

 

- nonsense, frame shift or loss of function missense mutation 

- dominant negative mutation

- DNA loss

- Absence of mRNA expression 

G-D G-M G-M

E-G-D E-G-M E

Figure 2.1 Tumor suppressor inactivation categories.
G - stands for genetic alteration, D - stands for deletion, M – stands for mutation 
E - stands for absence of expression

 

 



55 

 

2.2.2 Inactivation category by genetic mechanisms 

 

The first inactivation category “G” is based completely on genetic mechanisms of inactivation 

of both alleles (Stanbridge, 1990) (Ponder, 2001) and, therefore, can be considered as the 

highest confidence category. 

The genetic category can be subdivided further into 2 sub-categories: 

1. The sub-category “G-M” is based on a homozygous nonsense, frame shift, loss of function 

missense mutation or heterozygous/homozygous dominant negative mutation. 

2. The sub-category “G-D” is based on deletion of both alleles (bi-allelic loss). 

 

One way for a gene to appear in the sub-category “G-M” is to have LOH status derived from 

Affymetrix SNP 6.0 data and a homozygous mutation deduced from the exome sequencing 

data. The exons of targeted genes were covered to average depth of 60-fold. A strict cut off of 

at least twenty reads for the mutant allele is applied to the exome data in order to decrease the 

possibility of failure to obtain sequence data for both alleles due to under sampling; no more 

than one read for the wild type allele is allowed. Any nonsense or frame shift mutation is 

considered to lead to the loss of function; only validated loss of function missense mutations 

from the Table 2.1 are used. Figure 2.1 illustrates a sub-category “G-M” with the most likely 

scenario of loss of one allele and inactivation of the other by mutation. However it is possible 

to have identical multiple copies of an allele inactivated by the mutation. It is useful to keep in 

mind that males have an automatic genetic “LOH” on X chromosome, and females have a 
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mosaic allele specific expression pattern (due to random inactivation of one of two X 

chromosomes during early embryogenesis (Heard et al., 1997)). 

 

Another “G-M” mechanism is dominant negative mutation. As can be seen from Table 2.1, 

only TP53 is considered to have dominant negative mutations in the list of 69 tumor 

suppressors that are examined in this paper. A cut-off value of at least 20 reads for the mutant 

allele in exome sequencing data is used to consider mutation as a trusted one. This stringent 

cut off is used to minimize false positive calls. OncoMap mutation calls are also used for this 

sub-category. 

Exome sequencing data generated using short reads has a variable read depth with highest 

coverage approximately in the middle of capture probes and gradually decreasing coverage as 

the distance increases. Coverage drop at the TP53 R273C mutation (Figure 2.2) is example of 

such scenario and something that needs to be kept in mind while working with short reads 

exome sequencing data. In Figure 2.2 Broad institute Integrative Genomics Viewer (IGV) 

(Robinson et al., 2011) is used to show alignment of short reads to a 374 bp fragment of TP53 

reference sequence in the SW-1710 cell line. On the far right side of the Figure 2 red double 

headed line points to the 14 reads with green bar representing nucleotide change causing 

R273C amino acid change (opposite end of the line points to the corresponding reference 

sequence). The top part of the figure shows a bar histogram representing the depth of 

coverage. The histogram shows maximum reads depth of 147 around 7,576,900 bp and 

coverage depth dropping below 20 around 7,577,100 bp. In the particular case of TP53 
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R273C mutation the data provided by OncoMap for that mutation helps to augment 

sequencing data. 

 

 

 

Figure 2.2 Coverage drop at the TP53 R273C mutation in SW1710 cell line.
IGV is used to show alignment of reads to 374 bp fragment of TP53 reference sequence in SW1710 cell line. 
On the far right side of the figure red double headed line points to the 14 reads with green bar representing nucleotide change 
causing R273C amino acid change (opposite end of the line points to the corresponding reference sequence). Histogram 
shows maximum reads depth of 147 around 7,576,900 bp and coverage depth drop below 20 around 7,577,100 bp.
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For a gene to be in the sub-category “G-D”, it must have a loss of both alleles based on the 

Affymetrix SNP 6.0 data. Theoretically, a CN ratio of 1 corresponds to a diploid genome with 

2 copies of the gene, CN ratio of 1.5 corresponds to 3 copies of the gene, CN ratio of 0.5 

corresponds to 1 copy of the gene, etc. Since there is data compression and increase in noise 

at low CN ratio numbers, CN ratio below 0.25 is used as an indicator of loss of both alleles. 

 

2.2.3 Inactivation category by Genetic mechanisms and loss of the expression 

 

The second category “E-G” includes inactivation of one allele by a genetic mechanism and 

loss of the expression of the second allele. The loss of the expression could be due to multiple 

reasons, such as loss of upstream signaling, mutations in promoter and enhancer regions and 

any one of several possible epigenetic mechanisms, such as promoter methylation and 

possible histone modifications. The  epigenetic mechanism of inactivation of  tumor 

suppressor genes is considered to be of fundamental importance in tumorigenesis (Jones and 

Baylin, 2002). Since epigenetic data is not available at this point for the majority of the CCLE 

cell lines, gene expression data is used as a proxy for the epigenetic mechanism; this 

substitution is not perfect, however it provides a reasonable practical approach. Expression 

data is used to identify cell lines with likely absent expression of gene in question. Affymetrix 

U133Plus2 arrays have been used in CCLE to generate mRNA expression profiles. MAS5 

algorithm with Target Signal Intensity set to 150 (Hubbell et al., 2002) is used to generate 

expression values. A given gene is considered as not expressed in the cell line if its expression 

is below 32, while both mean and median expression of this gene across all cell lines are 
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above 100 indicating presence of dynamic range of expression. In general, expression below 

32 in most cases would indicate the absence of the corresponding protein. For calculation of 

mean and median gene expression values, cell lines with CN ratio below 0.25 were discarded, 

in order to decrease artificial under-estimation of expression distributions of cell lines with 

remaining functional DNA.  

An effort was made to use gene expression distribution between cell lines with CN ratio < 

0.25 and cell lines with CN ratio > 0.6 in order to improve gene expression cut off. However, 

systematic improvement in threshold behavior has not been achieved. Attempts examining 

gene expression in particular lineages also did not result in systematic improvements, at least 

in part due to decrease in sample sizes. Also, as expected (Choe et al., 2005) (Pepper et al., 

2007), the same overall results were obtained using RMA (Irizarry et al., 2003) instead of 

MAS5. 

The second category can be further divided into two sub-categories: 

1. The sub category “E-G-D” is characterized by deletion of one allele and absence of gene 

expression.  

2. The sub category “E-G-M” is characterized by nonsense, frame shift or loss of function 

missense mutation on one allele and absence of gene expression.  

Exome sequencing data and OncoMap mutation calls are used for this sub category. Since the 

second category, in general, requires absence of mRNA expression, sub category “E-G-M” 

will mostly cover the scenarios when the mutation leads to mRNA decay. Therefore, in the 

majority of cases mRNA expression from single allele with a loss of function mis-sense 

mutation will not qualify for sub category “E-G-M”.  
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Utilization of RNA-seq data (Mortazavi et al., 2008) would allow determination of allele-

specific expression and, therefore, would help to better cover sub-category “E-G-M”. In the 

next phase of the CCLE project, RNA-seq data will be generated for the majority of cell lines. 

 

2.2.4 Inactivation category by loss of the expression 

 

The third category “E” is based on loss of the expression of both alleles. As in the “E-G” 

category, epigenetic mechanisms are likely playing an important role in the loss of the 

expression. Category “E-LOH” denotes LOH in addition to absence of mRNA expression. 

In order to help identify cell lines with functional wild type tumor suppressors, wild type 

category was established. The wild type category is based on absence of non-synonymous 

mutations, splice sites mutations, CN loss (CN ratio above 0.9) or LOH (based on CN data).  

The wild type category could be further divided into two sub-categories: 

1. The sub category “WT-E” has mRNA expression of at least 300.  

2. The sub category “WT” has mRNA expression above 32 and below 300. 

Generally, mRNA expression above 300 indicates the presence of corresponding protein. 

Therefore, this cut-off is used for mRNA expression for the “WT-E” sub-category.  

Finally, a catch-all category “0” is defined for cases which do not qualify any of the above 

categories. Category “0” has two additional sub-categories: 
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1. “0-D” is characterized by deletion of one allele.  

2. “0-M” is characterized by heterozygous nonsense, frame shift or loss of the function 

missense mutation. 

Figure 2.3 illustrates category assignment by means of simplified flow chart. 

 

 

Is homozygous nonsense, frame shift, loss of function missense or heterozygous  dominant negative 
mutation or deletion of both alleles detected ?

G-M, G-D 

YESNO

Is heterozygous nonsense, frame shift or loss of function missense 
mutation or deletion of one allele detected ? 

Is a mRNA expression absent ?

NO

Is a mRNA expression absent ?

YES

E, E-LOH

YES

E-G-M, E-G-D 

YES

0-M, 0-D 

NO

Are non-synonymous mutations, splice 
sites mutations, LOH absent ?

NO

YES

WT, WT-E

NO

0

Figure 2.3 Simplified flow chart of category assignments. 
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2.3 Results  

 

     2.3.1 Overview 

 

For 69 tumor suppressor genes which have all data types available a systematic and 

comprehensive matrix of tumor suppressor status across 799 CCLE cell lines using categories 

described in the Methods section have been generated. A web-interface for selecting cell lines 

with desirable status of tumor suppressor(s) is available at http://cancer.tools.glacombio.net.  

Appendix A1.3 lists summaries of inactivation categories counts for all examined genes and 

Table 2.2 shows fragment of Supplemental Excel file from (Sonkin et al., 2013).  

 

Table 2.2 Status of 69 tumor suppressors in 799 cell lines. 

Fragment of Supplemental Excel file from (Sonkin et al., 2013). 

Name APC  ATM CDKN2A CDKN2B LATS2 MLH1 MSH2 NF2 PTEN  RB1 STK11 TP53 TSC1 VHL 

697 0 WT-E E-LOH 0 WT WT-E WT-E 0 WT-E WT-E WT WT-E WT WT 

BDCM WT-E 0 WT WT WT WT-E WT-E WT WT-E WT-E WT WT-E WT WT 

BT-549 WT-E WT WT-E WT 0 0 0 0 0 E-LOH 0 0 0 WT 

GDM-1 WT-E 0 E WT WT-E WT-E WT-E WT WT-E 0 WT WT-E WT WT 

HPB-ALL 0 0 WT WT WT G-M 0-D WT-E WT-E WT-E WT E-G-D WT 0-D 

KE-37 WT-E 0 G-D 0 WT WT-E WT-E WT-E E-G-D 0 WT WT WT WT 

KOPN-8 0 WT-E WT WT WT-E 0 WT-E WT-E WT-E WT-E WT G-M WT WT-E 

Loucy 0-D 0 0-D 0-D E WT-E WT-E WT 0 WT-E WT 0 WT WT 

MHH-CALL-2 0 0 G-D G-D 0 0 0 0 0 0 0 0 0 0 

MHH-CALL-3 WT-E WT-E G-D 0-D WT WT-E WT-E WT-E WT-E WT-E 0-D WT-E WT-E WT 

MHH-CALL-4 WT-E 0 G-D G-D WT-E WT-E WT-E 0 WT-E WT-E WT WT-E WT WT 

http://cancer.tools.glacombio.net/
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Appendix A2 contains a CD with a CCLE_TS-Genes-Status.xls file which has tumor 

suppressor status for 69 genes across all 799 CCLE cell lines.  Results presented in Appendix 

A1.3 clearly shows that a systematic and comprehensive framework to access tumor 

suppressor genes status is indeed able to capture multiple mechanisms of inactivation of 

tumor suppressor genes and therefore improves characterization of alterations in cancer cell 

lines. As one would expect, genes CDKN2A, TP53, RB1, PTEN and APC are among most 

frequently disabled genes in cancer cell lines as clearly demonstrated by Appendix A1.3. Not 

surprisingly, TP53 was inactivated in about 50 percent of cases by dominant negative 

mutations (Petitjean et al., 2007). CDKN2A appears to be the most frequently disabled gene 

in CCLE. In about 76% of cases CDKN2A is likely to be inactivated by DNA deletion of both 

alleles. While this is a larger proportion than may be expected, the effect may be partially 

explained by the small genomic size of the CDKN2A locus (only 25 kbp). Publications by 

(Kitagawa et al., 2002) and (Sasaki et al., 2003) also reported high frequency of CDKN2A 

inactivation by DNA deletion of both alleles. Also recent provisional TCGA data indicate that 

a high percentage of primary tumor samples have CDKN2A inactivated by DNA deletion of 

both alleles (http://www.cbioportal.org). This evidence seems to indicate that such an 

inactivation mechanism is not just specific to cancer cell lines, but may be commonly found 

in primary tumor samples. Figure 2.4 shows the relationship between CDKN2A CN ratios, 

mutation status and mRNA expression across 799 CCLE cancer cell lines. As can be seen 

from Figure 2.4 the frequency of CDKN2A inactivations by means of loss of mRNA 

expression without any other genetic alterations is not high. CDKN2B is disabled almost as 

often as CDKN2A, however CDKN2B is located just 6 kbp from CDKN2A locus and 

http://www.cbioportal.org/
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therefore the loci may be physically deleted together. Figure 2.5 shows the relationship 

between CDKN2A and CDKN2B CN ratios across 799 CCLE cancer cell lines.  

 

 

Figure 2.4 CDKN2A CN ratios, status and mRNA expression
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Figure 2.5 CDKN2A, CDKN2B CN ratios and CDKN2A status
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2.3.2 TP53 status and Nutlin-3 sensitivity 

 

Nutlin-3 is an inhibitor of MDM2-driven TP53 protein degradation (Vassilev, 2004) 

(Kubbutat et al., 1997). Mechanistically, only cell lines with wild type TP53 can be 

potentially sensitive to this inhibitor as confirmed in part by sensitivity of wild type MEFs 

cells and by the loss of sensitivity in the TP53 knock out MEFs (Efeyan et al., 2007). This 

knowledge can be used to assess an integrative approach to determining tumor suppressor 

status. Figure 2.6 shows the relationship between TP53 status and sensitivity to Nutlin-3. Cell 

lines with IC50 below 4.5 µM are considered to be sensitive to Nutlin-3 and cell lines with 

IC50 above 6.5 µM are considered to be insensitive to Nutlin-3. (The IC50 is concentration at 

which the drug response reached an absolute inhibition of 50%). As illustrated by Figure 2.6, 

all cell lines with TP53 inactivated by any mechanism are insensitive to Nutlin-3. Table 2.3 

shows that each inactivation category is statistically significantly enriched for insensitive cell 

lines in comparison to wild type ones, by the Fisher exact test.  

Table 2.3 also illustrates that combining multiple inactivation categories leads to more 

significant statistical results. In cell lines with inactivated TP53 one would expect to see a 

drop in TP53-driven signaling. The KEGG (Kanehisa et al., 2012) and BIOCARTA 

(http://www.biocarta.com) representations of the TP53 signaling pathway are well established 

references. Pathway activity scores  were calculated for 4,162 MSigDB (Liberzon et al., 2011)  

gene sets covering multiple gene sets sources including KEGG and BIOCARTA using the 

approach described in Chapter 3. Correlation coefficients were calculated between each TP53 

http://www.biocarta.com/
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inactivation category / wild type category and TP53 pathway activity scores based on KEGG 

and BIOCARTA gene sets.  

 

 

 

 

Nutlin-3 IC50 μMNutlin-3  AMAX

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
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-90

Out of 237 insensitive cell lines:
121 have TP53 inactivated by Genetic mechanism
33   have TP53 inactivated by Epigenetic / Genetic mechanism
19   have TP53 inactivated by Epigenetic mechanism

Wild Type

Genetic Inactivation
Epigenetic / Genetic Inactivation
Epigenetic Inactivation

TP53 status by color:

Sensitive Insensitive

Figure 2.6 Nutlin-3 sensitivity across 491 CCLE cell lines in relation to TP53 status
Each dot represents cell line with TP53 inactivation status marked by color.
All cell lines with TP53 inactivated by any mechanism are insensitive to Nutlin-3.
TP53 Wild Type status covers: WT-E and WT categories. TP53 Genetic Inactivation status covers: G-M and G-
D categories. TP53 Epigenetic Inactivation status covers  E-LOH category. 
TP53 Epigenetic / Genetic Inactivation status covers:  E-G-M and E-G-D categories.
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Table 2.3 TP53 inactivation categories and Nutlin-3 insensitivity. 

TP53 inactivation Fisher exact p-value for Nutlin-3 insensitivity 

Genetic Inactivation 3.69E-07 

Epigenetic / Genetic Inactivation  3.43E-03 

Epigenetic Inactivation  2.95E-02 

Epigenetic / Genetic Inactivation 
and Epigenetic Inactivation 2.82E-04 

Epigenetic / Genetic Inactivation, 
Epigenetic Inactivation and Genetic 
Inactivation  1.03E-08 

 

p-values indicate how likely just by chance the observed enrichment in insensitive cell lines 
for each of inactivation groups vs. wild type cell lines. 
Genetic Inactivation covers: G-M and G-D categories. 
Epigenetic / Genetic Inactivation covers:  E-G-D category.  
Epigenetic Inactivation covers  E-LOH category. 
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Table 2.4 summarizes results of correlation calculations, as anticipated negative correlations 

are observed for each inactivation category. Out of 4,162 correlation coefficients for each 

inactivation category, the correlation coefficients for BIOCARTA TP53 pathway have the 

most negative values in 4 out of 5 cases. The statistical significance of the distribution of 

TP53 pathway activity scores between cell lines from particular inactivation category and 

wild type cell lines is confirmed by t-test. As indicated by above observations, the 

consideration of multiple mechanisms of inactivation provides us with a more complete and 

informative landscape of TP53 inactivation and better genomic characterizations of cell lines 

models.  

Table 2.4 TP53 inactivation categories and TP53 Signaling Pathways. 

 

 

TP53 inactivation 

Correlation 
coefficient and rank 

for KEGG TP53 
Signaling Pathway 

t-test p-value for 
KEGG TP53 

Signaling Pathway 
scores 

Correlation 
coefficient and rank 

for BIOCARTA TP53 
Signaling Pathway 

t-test p-value for 
BIOCARTA TP53 

Signaling 

Pathway scores 

Genetic Inactivation -0.35 (2) 1.15E-10 -0.45 (1) 2.41E-17 

Epigenetic / Genetic 
Inactivation -0.35 (4) 4.40E-07 -0.45 (2) 1.42E-11 

Epigenetic Inactivation -0.39 (2) 2.67E-08 -0.51 (1) 2.47E-14 

Epigenetic / Genetic 
Inactivation and Epigenetic 
Inactivation -0.44 (3) 1.77E-12 -0.57 (1) 3.18E-21 

Epigenetic / Genetic 
Inactivation, Epigenetic 
Inactivation and Genetic 
Inactivation -0.39 (2) 3.95E-16 -0.51 (1) 2.54E-27 
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2.3.3 RB1 status and PD-0332991 sensitivity 

 

PD-0332991 is a CDK4/6 inhibitor and mechanistically only cell lines with wild type RB1 

can be potentially sensitive to this inhibitor (Finn et al., 2009). Figure 2.7 shows the 

relationship between RB1 status and sensitivity to PD-0332991. Cell lines with IC50 below 

4.5 µM are considered to be sensitive to PD-0332991 while cell lines with IC50 above 6.5 µM 

are considered to be insensitive to PD-0332991.  

PD-0332991 IC50 μMPD-0332991 AMAX
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Out of 178 insensitive cell lines:
17 have TP53 inactivated by Genetic mechanism
3 have TP53 inactivated by Epigenetic / Genetic mechanism
4   have TP53 inactivated by Epigenetic mechanism

Wild Type

Genetic Inactivation
Epigenetic / Genetic Inactivation
Epigenetic Inactivation

RB1 status by color:

Sensitive Insensitive

Figure 2.7 PD-0332991 sensitivity across 203 CCLE cell lines in relation to RB1 status.
Each dot represents cell line with RB1 inactivation status marked by color. 
All cell lines with RB1 inactivated by any inactivation mechanism are insensitive to PD-0332991.
RB1 Wild Type status covers: WT-E and WT categories. RB1 Genetic Inactivation status covers: G-M and G-D categories. 
RB1 Epigenetic Inactivation status covers  E-LOH category. RB1 Epigenetic / Genetic Inactivation status covers: E-G-D category.
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As illustrated by Figure 2.7 all cell lines with RB1 inactivated by any mechanism are 

insensitive to PD-0332991. Table 2.5 shows that each inactivation category by itself is not 

statistically significantly enriched for insensitive cell lines in comparison to wild type ones, 

however statistical significance is reached by combining multiple inactivation categories. 

 

Table 2.5 RB1 inactivation categories and PD-0332991 insensitivity. 

RB1 inactivation  Fisher exact p-value for PD-0332991 insensitivity  

Genetic Inactivation  1.16E-01  

Epigenetic / Genetic Inactivation  6.73E-01  

Epigenetic Inactivation  5.91E-01  

Epigenetic / Genetic Inactivation and 
Epigenetic Inactivation  4.01E-01  

Epigenetic / Genetic Inactivation, 
Epigenetic Inactivation and Genetic 
Inactivation  5.06E-02  

 

p-values indicate how likely just by chance the observed enrichment in insensitive cell lines 
for each of inactivation groups vs. wild type cell lines. 
Genetic Inactivation covers: G-M and G-D categories. 
Epigenetic / Genetic Inactivation covers:  E-G-D category.  
Epigenetic Inactivation covers  E-LOH category. 
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2.4 Discussion 

 

The examples in Chapters 2.3.2 and 2.3.3 for TP53 and RB1 clearly demonstrate that 

accounting for multiple mechanisms of tumor suppressor genes inactivation leads to a much 

more accurate determination of tumor suppressor functional status. Such enhanced accuracy 

could be useful component in efforts to improve preclinical stratification of anticancer 

therapeutics. A summary of these results has been published in a leading journal (Sonkin et 

al., 2013). 

The approach presented here and its application to CCLE will clearly improve the 

characterization of the status of tumor suppressor genes in cancer cell line models. It is 

important to reiterate that the status of tumor suppressor gene(s) can play a critical role in 

selecting appropriate therapeutic strategy for the patient in clinical practice. In order to 

highlight this point it is useful to take more detailed look at strategies to target TP53 in 

cancer.  

 

2.4.1 TP53 clinical relevance 

 

In about 50% of cancer cases TP53 is directly inactivated by number of different mechanisms 

and in approximately other 50% of cancer cases wild type TP53 protein function is at least 

partially inhibited or TP53 signaling pathway is down regulated (Brown et al., 2009). Work in 

multiple cancer models demonstrated that absence of TP53 function is important in tumor 
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maintenance and therefore restoring TP53 function is promising therapeutic approach 

(Martins et al., 2006) (Ventura et al., 2007) (Xue et al., 2007). Globally there are about 13 

million patients diagnosed with cancer every year (Jemal et al., 2011), therefore about 6.5 

million patients each year are  diagnosed with tumor(s) in which TP53 is inactivated and 

approximately other 6.5  million patients each year are  diagnosed with tumor(s) with wild 

type TP53 protein. Therefore strategies to target TP53 in cancer are split in two major groups. 

One set of strategies is for targeting cancer with no wild type TP53 protein and the second set 

of strategies is for targeting cancer with wild type TP53 protein. Figure 2.8 summarizes 

approaches to target tumors with mutant TP53 protein and Figure 2.9 summarizes approaches 

to target tumors with wild type TP53 protein (Chen et al., 2010).  
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Figure 2.8 Strategies in reactivation of mutant TP53. 

NSC176327 induces p73 expression and activates TP53-like activity in a TP53 independent manner. This 
approach is especially useful in tumors with TP53 deletion. 

RETRA relieves the negative effect of mt TP53 on p73 and induces p73 expression. Treatment of RETRA 
exhibits TP53-like activity. 

All molecules/approaches in the box rescue mt TP53 function by assisting mt TP53 refolding or driving the 
protein folding equilibrium from denatured/mt conformation more toward the native functional/wt
conformation. Restoration of native conformation to mt TP53 endows its wild-type activity.

Fang  Chen , Wenge Wang , Wafik S.  El-Deiry Biochemical Pharmacology Volume 80, Issue 5 2010 724 - 730
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Figure 2.9 Strategies in wild-type TP53 activation.

Tenovin-6 inhibits protein-deacetylase activity of SirT1 and SirT2. Acetylation results in the stabilization of 
TP53 and interferes MDM2-mediated degradation. 

NEI inhibits the nuclear export protein CRM1 which increases nuclear TP53 level indirectly.

HLI98 blocks the ubiquitin ligase activity of HDM2. It prevents TP53 degradation and elevates TP53 level 
indirectly.

RITA binds to TP53 and interferes with MDM2 and TP53 interaction which activates TP53 function.

Both Nutlins and MI219 interact with MDM2 and block TP53 interaction. Consequently, they activate TP53.

Fang  Chen , Wenge Wang , Wafik S.  El-Deiry Biochemical Pharmacology Volume 80, Issue 5 2010 724 - 730

 

 

In addition to the approaches outlined in Figure 2.8 and Figure 2.9 the TP53 gene therapy 

(Huang et al., 2009) (Yang et al., 2010) and synthetic lethal approaches (Brown et al., 2009) 

are the other major areas of the research. 



76 

 

MDM2 TP53 interaction inhibitors are the most clinically advanced therapeutics for trying to 

improve treatment for patients with wild type TP53 protein. Table 2.6 lists MDM2 TP53 

interaction inhibitors which are currently in early clinical trials. (Source 

http://clinicaltrials.gov)  

Table 2.6 MDM2 TP53 interaction inhibitors in clinical trials 

Compound Name Sponsoring Organization Phase 
RO5045337 Hoffmann-La Roche Phase 1B Dose Escalation Study 
RO5503781 Hoffmann-La Roche Phase 1 Dose Escalation Study 
MK-8242 Merck Phase 1 Dose Escalation Study 
SAR405838 Sanofi Phase 1 Dose Escalation Study 
AMG 232 Amgen Phase 1 Dose Escalation Study 
CGM097 Novartis Pharmaceuticals Phase 1 Dose Escalation Study 

 

Table 2.7 shows sensitivity to MDM2 TP53 interaction inhibitor Nutlin-3 in CCLE Acute 

myeloid leukemia (AML) cell lines.  

Table 2.7 Sensitivity to Nutlin-3 in CCLE AML cell lines. 

Cell Line Lineage TP53 status Nutlin-3 Crossing Point μM Nutlin-3  AMAX Nutlin-3 sensitivity 
SIG-M5 acute myeloid leukaemia WT-E 1.45 -92.08 sensitive
EOL-1 acute myeloid leukaemia WT-E 2.91 -93.82 sensitive
OCI-AML5 acute myeloid leukaemia WT-E 3.42 -60.77 sensitive
OCI-AML2 acute myeloid leukaemia WT-E 4.70 -77.39 intermediate
MOLM-13 acute myeloid leukaemia WT-E 8.00 -20.00 insensitive
MONO-MAC-1 acute myeloid leukaemia G-M 8.00 -4.60 insensitive
KO52 acute myeloid leukaemia G-M 8.00 -16.12 insensitive
NB-4 acute myeloid leukaemia G-M 8.00 1.69 insensitive
CMK acute myeloid leukaemia E-G-D 8.00 -21.16 insensitive
CMK-11-5 acute myeloid leukaemia E-G-D 8.00 1.67 insensitive  

As was highlighted in section 2.3, independently of the mechanism of inactivation of TP53 all 

cell lines with disabled TP53 are insensitive to Nutlin-3. In the panel of CCLE AML cell lines 

approximately half of TP53 wild type cell lines are sensitive to Nutlin-3. In the TCGA study 

across 200 primary AML samples TP53 was inactivated in about 9% of cases (Cancer 
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Genome Atlas Research Network, 2013). Currently the first-line treatment of most AML 

subtypes consists primarily of chemotherapy. Worldwide there are estimated 200,000 new 

cases of AML each year (Jemal et al., 2011), indicating that MDM2 TP53 interaction 

inhibitors could potentially improve treatment for approximately 90,000 new AML patients 

each year. 

Table 2.8 shows sensitivity to MDM2 TP53 interaction inhibitor Nutlin-3 in CCLE Acute 

lymphoblastic leukemia (ALL) cell lines.  

Table 2.8 Sensitivity to Nutlin-3 in CCLE ALL cell lines. 

Cell Line Lineage TP53 status Nutlin-3 Crossing Point μM Nutlin-3  AMAX Nutlin-3 sensitivity 
697 acute lymphoblastic leukaemia WT-E 1.89 -93.85 sensitive

NALM-6 acute lymphoblastic leukaemia WT-E 2.54 -90.20 sensitive
BDCM acute lymphoblastic leukaemia WT-E 2.93 -81.52 sensitive
Reh acute lymphoblastic leukaemia WT-E 7.59 -50.50 insensitive
RPMI-8402 acute lymphoblastic leukaemia G-M 8.00 -47.54 insensitive
P12-ICHIKAWAacute lymphoblastic leukaemia G-M 8.00 -75.94 insensitive
PF-382 acute lymphoblastic leukaemia G-M 8.00 4.24 insensitive
HPB-ALL acute lymphoblastic leukaemia E-G-D 8.00 3.67 insensitive  

 In the panel of CCLE ALL cell lines approximately 75% of TP53 wild type cell lines are 

sensitive to Nutlin-3. In primary ALL samples TP53 is inactivated in about 30% of cases and 

inactivation mechanisms are split approximately equally between point mutations, DNA loss 

and loss of expression (Agirre et al., 2003). Currently the first-line treatment of most ALL 

subtypes consists primarily of chemotherapy. Worldwide there are estimated 120,000 new 

cases of ALL each year (Jemal et al., 2011), indicating that MDM2 TP53 interaction 

inhibitors could potentially improve treatment for approximately 60,000 new ALL patients 

each year. 
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Table 2.9 lists clinical trials indications for MDM2 TP53 interaction inhibitors. It is evident 

from this table that there is a wide variety of indications in which initial wave of clinical trials 

is performed.  

Table 2.9 Clinical trials indications for MDM2 TP53 interaction inhibitors. 

Indication 
Acute Lymphoblastic Leukemia 
Acute Myeloid Leukemia 
Chronic Lymphocytic Leukemia 
Chronic Myeloid Leukemia 
Hodgkin Lymphoma 
Liposarcoma 
Melanoma 
Non-Hodgkin Lymphoma 
Prostate 
Soft Tissue Sarcomas 
Solid Tumors 

 

Different indications have varying frequencies of TP53 wild type tumors and also varying 

sensitivity to MDM2 TP53 interaction inhibitors. Figure 2.10 shows TP53 status across CCLE 

tumor sites. As mention before 6.5 million new patients each year are estimated to have 

tumors with wild type TP53. Therefore there is a potential for MDM2 TP53 interaction 

inhibitors to improve treatment for hundreds of thousands new patients each year. 
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TP53 status by color:

Figure 2.10 TP53 status across CCLE tumor sites.
TP53 Wild Type status covers: WT-E and WT categories. 
TP53 Inactivated status covers: G-M, G-D, E-G-M, E-G-D and E-LOH categories. 
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As with practically any treatment on target or off target toxicity is an unfortunate reality. 

Table 2.10 lists adverse events in small proof of concept clinical study (part of phase 1b 

study) of RG7112 in 20 patients with liposarcoma (Ray-Coquard et al., 2012).  

Table 2.10 Adverse events in RG7112 liposarcoma study. 

(Ray-Coquard, et al., 2012 Lancet Oncol. 2012 Nov;13(11):1133-40) 

Adverse event Total Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 
Nausea 14 (70%) 2 (10%) 11 (55%) 1 (5%) 0 0 
Vomiting 11 (55%) 5 (25%) 4 (20%) 2 (10%) 0 0 
Asthenia 9 (45%) 3 (15%) 6 (30%) 0 0 0 
Diarrhoea 9 (45%) 7 (35%) 1 (5%) 1 (5%) 0 0 
Thrombocytopenia 8 (40%) 1 (5%) 2 (10%) 2 (10%) 3 (15%) 0 
Fatigue 6 (30%) 2 (10%) 4 (20%) 0 0 0 
Neutropenia 6 (30%) 0 0 0 6 (30%) 0 
Alopecia 4 (20%) 3 (15%) 1 (5%) 0 0 0 
Constipation 3 (15%) 2 (10%) 1 (5%) 0 0 0 
Decreased appetite 3 (15%) 2 (10%) 0 1 (5%) 0 0 
Abdominal pain 2 (10%) 1 (5%) 1 (5%) 0 0 0 
Anaemia 2 (10%) 1 (5%) 1 (5%) 0 0 0 
Atrial fibrillation 2 (10%) 1 (5%) 1 (5%) 0 0 0 
Back pain 2 (10%) 2 (10%) 0 0 0 0 
Dysgeusia 2 (10%) 2 (10%) 0 0 0 0 
Reflux 2 (10%) 1 (5%) 1 (5%) 0 0 0 
Pain in extremity 2 (10%) 1 (5%) 1 (5%) 0 0 0 
Pyrexia 2 (10%) 1 (5%) 1 (5%) 0 0 0 
Urinary tract infection 2 (10%) 2 (10%) 0 0 0 0 
Febrile neutropenia 1 (5%) 0 0 0 1 (5%) 0 

 

Serious adverse events (grade four and above) such as thrombocytopenia, neutropenia and 

febrile neutropenia have been observed in that study in eight patients. Thrombocytopenia is a 

condition in which blood has a lower than normal number platelets. Platelets are essential for 

blood clot formation and therefore thrombocytopenia can lead to serious bleeding and can be 

potentially fatal. Neutropenia is a condition in which blood has a lower than normal number 

of neutrophils. Neutrophils are an essential part of the innate immune system and therefore 
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neutropenia can lead to bacterial infections which could be life threatening. Febrile 

neutropenia is a serious condition in which neutropenia leads to infection and such condition 

can be potentially fatal. This highlights the importance of selecting only patients with wild 

type TP53 protein for treatment with MDM2 TP53 interaction inhibitor(s) in order to spare 

patients with inactivated TP53 from potential toxicity from treatments which have no chance 

to benefit them. And since as was previously discussed TP53 could be inactivated by different 

mechanisms it is important to account for multiple mechanisms of TP53 inactivation. Also 

from clinical and translational perspectives concentrating on patients with wild type TP53 

protein may help to determine which patients may get the greatest therapeutic benefit from 

MDM2 TP53 interaction inhibitor(s).  

 

2.4.2 BAP1 tumor suppressor status 

 

Comprehensive analysis of tumor suppressor genes status can also be used to either discover 

or provide additional line of evidence for putative tumor suppressor genes. This could be 

illustrated using BRCA1-associated protein-1 (BAP1) as example. BAP1 was identified in 

1998 as a novel ubiquitin hydrolase which binds to the BRCA1 RING finger and enhances 

BRCA1-mediated cell growth suppression and was proposed to be potential putative tumor 

suppressor gene (Jensen et al., 1998) (Ventii et al., 2008). Recent publications proposed the 

link between inactivation of BAP1, including germ line mutations, and different malignances, 

such as: lung mesothelioma, uveal melanoma, melanoma and renal cell carcinomas (Testa et 

al., 2011) (Carbone et al., 2012) (Peña-Llopis et al., 2012). The tumor suppressor status 
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framework was run across CCLE for BAP1 gene and ten cell lines have been identified with 

BAP1 inactivation Table 2.11. In these ten cancer cell lines three different mechanisms of 

BAP1 inactivation have been identified: three cell lines have homozygous loss of function 

mutations, five cell lines have homozygous DNA loss and two cell lines have loss of one 

allele of BAP1 and loss of mRNA expression of other allele. Identification of multiple 

classical mechanisms of tumor suppressor inactivation in BAP1 gene increases the confidence 

of this gene belonging to tumor suppressor category.  

Table 2.11 CCLE cancer cell lines with inactivated BAP1. 

Cell Line Name Cell Line Lineage BAP1 status 
TUHR14TKB kidney carcinoma G-M 
VMRC-RCW kidney carcinoma G-M 
HCC1187 breast ductal carcinoma G-M 
SK-BR-3 breast carcinoma G-D 
AU-565 breast carcinoma G-D 
IST-MES2 lung mesothelioma G-D 
NCI-H226 lung squamous cell carcinoma G-D 
NUGC-4 stomach signet ring adenocarcinoma G-D 
RT112/84 bladder carcinoma E-G-D 
JL-1 lung mesothelioma E-G-D 

 

TUHR14TKB, VMRC-RCW are renal cell carcinomas while IST-MES2, JL-1 are lung 

mesotheliomas. As mentioned above these two lineages have been potentially linked to 

inactivation of BAP1. Interestingly three CCLE breast carcinomas cell lines have inactivated 

BAP1. Since BAP1 is proposed to enhance BRCA1-mediated cell growth suppression it is 

possible to speculate that BAP1 can also be potentially inactivated in breast cancer and 

possibly in familial cases of breast cancer. 
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2.4.3 Potential future refinements 

 

It is possible to envision how to further refine the introduced here methodology to 

comprehensively access status of tumor suppressor genes along the following lines. 

The ability to accurately differentiate between two mutations affecting two different alleles 

and mutations affecting just one allele is limited by the length of sequencing reads. This 

limitation may have important implications. For example, in the case of APC, which is often 

disabled in colorectal cancers, a loss of function mutation affecting the first allele and also a 

different loss of function mutation affecting the second allele may occur relatively frequently. 

For example, in familial colorectal cancers one allele may be disabled by a germ line loss of 

function mutation while the other allele may be disabled by somatic loss of function mutation 

(Fodde, 2002). Therefore, in the case of APC, the total number of cell lines identified by the 

approach presented here as being genetically inactivated is likely to be underestimated. This 

situation is likely to improve with increase in length of sequencing reads, but in the meantime 

current estimates will represent minimum numbers of cell lines in such cases. 

Genetic and epigenetic regulation of many tumor suppressors is complemented by 

posttranslational regulation. For example, TP53 has recently been referred to as one of the 

group of “massively regulated genes” with several alternative splicing sites and alternative 

translation initiation sites together generating potentially as many as ten distinct isoforms of 

the gene product (Hollstein and Hainaut, 2010). At the post-translational level, the biological 

activity of TP53 depends on its intracellular concentration and can be modulated by 

conformational changes, different intracellular localization, DNA-binding activity and 
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interactions with other proteins. The accumulation and activity of the protein are also 

regulated by a suite of post-translational modifications that can include phosphorylation, 

acetylation, ubiquitination, sumoylation, neddylation, methylation and glycosylation. For 

example negative regulation of TP53 is provided in part by the MDM2 and MDM4 proteins, 

which are important determinants of TP53 abundance and subcellular localization. 

Some of the tumor suppressors can be haploinsufficient (Payne and Kemp, 2005) and, in this 

case, the decrease in mRNA expression alone could have substantial tumor promoting effects. 

It is interesting to note that recent work suggests that a loss of single copy of the 

chromosomes containing multiple tumor suppressor genes may lead to selective growth 

advantage (Xue et al., 2012) (Solimini et al., 2012). Future work on incorporating 

considerations of posttranslational regulations and haploinsufficiency may improve 

characterization of tumor suppressor genes status in cancer models. 

Another interesting aspect of tumor suppressor genes biology is the existence of mutations 

which lead to partial, but not complete loss of function. There are several interesting examples 

of such cases. In TP53 the most frequent mutations lead to complete loss of function and in 

most cases also have a dominant negative effect, however 10% to 20% of low or medium 

frequency mutations belong to partial loss of function group (Petitjean et al., 2007). 

Classification of mutations as complete loss of function, partial loss of function or functional 

was mainly based on work in eight different yeast cells by examination of TP53 

transactivation activity for all possible missense mutations produced by point mutagenesis 

across entire sequence of TP53 (Kato et al., 2003). As was previously mention in this chapter 

the TP53 transcriptionally activates or represses variety of target genes which in turn lead to 
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number of different phenotypes including DNA repair, cell cycle arrest and apoptosis. Partial 

loss of function mutations in TP53 lead to mosaic phenotype with preservation or partial 

preservation of transactivation activity for some target genes and complete loss of  

transactivation activity for other target genes. Germline partial loss of function mutations of 

TP53 are also found in about 20% of Li-Fraumeni syndrome (LFS) and Li-Fraumeni-like 

syndrome (LFL) cases, and it seems like there is a potential relation between severely of TP53 

mutations and on set of cancer (Olivier et al., 2003). Very intriguing clinical case of Familial 

Adenomatous Polyposis (FAP) is described by (Zajac et al., 2000), in this case there is a 

germline truncating mutation in APC and  germline partial loss of function mutation in TP53. 

Combination of these two mutations seems to result in much more severe phenotype than 

typically observed with germline mutation in APC by itself.  

The partial loss of function mutations are not unique to TP53 and are likely to be present in 

many tumor suppressor genes as has been reported for example in PTEN (Wu et al., 2000) , 

APC (Hughes et al., 2002) and RB1 (Sun et al., 2006). The existence and likely relevance of 

partial loss of function mutations in tumor suppressor genes suggests another potential future 

improvement for tumor suppressor status framework, it could be beneficial to create 

additional category for partial loss of function mutations. 

The work on tumor suppressor status analysis also highlights the interesting possibility of 

identifying homozygous deletions based on exome sequencing data. More sensitive 

identification of homozygous deletions and especially small homozygous deletions would be 

useful addition to tumor suppressor status analysis and beyond. There are number of potential 

technical obstacles for such analysis, but it would be interesting to investigate the visibility of 

detection of small homozygous deletions using exome sequencing data. 
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There are many ways to take advantage of tumor suppressor status knowledge. For example, 

in studying the function of the gene in question it is often important to understand the aspects 

of the protein function due to its potential scaffolding function versus its enzymatic activity. 

Therefore cell line(s) with gene in question in G-D or E-G-D status would provide 

experimental model candidate(s) which likely have no protein and on another hand cell line(s) 

with gene in G-M status would provide experimental model candidate(s) with variety of 

different phenotypes including one in which protein is still present, but it’s enzymatic activity 

is lost due to point mutation. Another interesting example could be combining tumor 

suppressor status with oncogene status in the pathway of interest should allow to better 

defining cell lines with dysregulated or un-affected pathway. Detailed examination of cell 

lines with multiple major tumor suppressors in the wild type state may help to better 

understand peculiarities of signaling cascades. From the translational perspective, preclinical 

stratification of anticancer drug sensitivity could benefit from systematically derived tumor 

suppressor status.  

 

2.5 Summary 

 

This chapter describes the approach used to incorporate several orthogonal genomic data 

types, such as mutation data, copy number, LOH and expression in order to account for 

different mechanisms of tumor suppressor genes inactivation mechanisms. Relationship 

between TP53 status and Nutlin-3 sensitivity was used to demonstrate the advantages of the 

integrative method, which allows accounting for multiple mechanisms of tumor suppressor 



87 

 

genes inactivation, provides a more accurate assessment of tumor suppressor genes status than 

can be inferred by expression, copy number, or mutation alone. Relationship between RB1 

status and PD-0332991 sensitivity was used to reiterate advantages of accounting for multiple 

mechanisms of tumor suppressor genes inactivation. Clinical relevance of the more accurate 

assessment of tumor suppressor genes status was highlighted with TP53 role in cancer and 

selection of potential treatment. BAP1 example was used to show how integrative tumor 

suppressor gene status can help to find new putative tumor suppressor genes. Potential future 

refinements were discussed as well. 
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Chapter Three: Gene sets activity analysis in Cancer Cell Line Encyclopedia 

 

This chapter describes the details of the computational framework for the gene set activity 

analysis on sample by sample basis developed as part of thesis research and it is application to 

Cancer Cell Line Encyclopedia (CCLE). 

Chapter 3.1 describes rationale for selecting gene sets for the analysis. Chapter 3.2.1 describes 

the approach used to generate gene set activity analysis on sample by sample basis. Chapters 

3.2.2 and 3.2.3 take advantage of tissue specific genes and tissue specific processes 

respectively to validate analysis results. Chapter 3.2.4 discusses effects of permutation 

fractions depth on the analysis. Chapter 3.3.1 highlights results of gene set activity analysis on 

sample by sample basis across cancer cell lines of Cancer Cell Line Encyclopedia. Chapter 

3.3.2 demonstrates utility of gene set activity analysis on sample by sample basis in 

generation of pSTAT5 mRNA expression signature. Chapter 3.3.3 shows interesting 

relationship between BRAF inhibitor sensitivity and MITF signaling discovered by gene set 

activity analysis on sample by sample basis. Chapter 3.4.1 highlights clinical relevance of 

pSTAT5 gene signature. Chapters 3.4.2 and 3.4.3 shows relationship between permutation 

fractions, gene set activity scores and Z-scores based statistics. 
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3.1 Selecting gene sets for analysis 

 

One of the critical inputs into Gene Set Activity Analysis is collection of gene sets used for 

the analysis. Currently there are number of pathway databases providing access to collections 

of gene sets. Some of these pathway databases are freely publicly available and some are 

commercial and require the license. KEGG (Kanehisa et al., 2012) and BIOCARTA 

(http://www.biocarta.com) are the classical examples of freely publicly available pathway 

databases. GeneGo (www.genego.com), Ingenuity (www.ingenuity.com) and BIOBASE 

(www.biobase-international.com) are some of the commercially available pathway databases. 

Publications by (Bauer-Mehren et al., 2009) and (Ooi et al., 2010) provide in depth reviews of 

pathway databases. 

MetaCore Data Base from GeneGo (www.genego.com) provides extensive collection of 

canonical and transcriptionally directional gene sets which went through additional rounds of 

manual curation.  Curators at GeneGo review original literature sources and other available 

sources of information to assess the credibility of reported findings. These efforts are thought 

to improve the underlying quality of gene sets memberships and decrease the redundancy due 

to possible consolidation of gene sets from different sources. Another important advantage of   

GeneGo gene sets collection is an availability of directionality information for targets of 

transcription factors. This allows formation of transcriptionally directional gene sets which at 

least conceptually should allow the better read outs of transcriptional activity derived from 

mRNA profiling. Due to the above reasons the GeneGo gene sets were selected as primary 

source of gene sets for Gene Set Activity Analysis. The version of GeneGo gene sets used for 

http://www.biocarta.com/
http://www.biobase-international.com/
http://www.genego.com/
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the analysis consists of 566 canonical pathways and 716 transcriptionally directional gene 

sets, in total 1,282 GeneGo gene sets are selected for Gene Set Activity Analysis. Gene set 

names of GeneGo transcriptionally directional gene sets include an “inhibited” suffix which 

indicates that the gene set represents set of genes which are supposed to be transcriptionally 

inhibited by the transcription factor in question. Alternatively, genes with an “activated” 

suffix indicate that the gene set represents set of genes which are supposed to be 

transcriptionally activated by transcription factor in question. 

The GeneGo gene sets collection is a very useful resource. However, since this is a 

commercial product, not every one may have an access to gene sets memberships. In order to 

address this point a subset of gene sets from the freely available Molecular Signatures 

Database (MSigDB) (Liberzon et al., 2011) was also selected for Gene Set Activity Analysis. 

MSigDB (http://www.broadinstitute.org/gsea/msigdb/index.jsp) is a collection of annotated 

gene sets maintained by Broad Institute GSEA team. MSigDB gene sets collection is based 

mainly on online pathway databases and gene sets mined from publications in PubMed 

(www.ncbi.nlm.nih.gov/pubmed). Table 3.1 lists online pathway databases which are used as 

major sources of MSigDB Canonical Pathways. The names of MSigDB Canonical Pathways 

contain the following suffixes to indicate the source of the gene set: BIOCARTA, KEGG, 

REACTOME, SA (Sigma Aldrich), SIG (Signaling Gateway), ST (Signaling Transduction 

KE). The subset of MSigDB version 3.0 selected for the Gene Set Activity Analysis consist of 

326 cytogenetic bands gene sets, 2120 gene sets representing signatures of genetic and 

chemical perturbations, 880 canonical pathways, 221 microRNA targets gene sets and 615 

transcription factor targets  gene sets. In total 4,162 MSigDB version 3.0 gene sets have been 

selected for the analysis. 
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Table 3.1 Online database sources for MSigDB Canonical Pathways. 

 

Resource Name  URL link 
BioCarta  http://www.biocarta.com 
KEGG  http://www.genome.jp/kegg 
Pathway Interaction Database  http://pid.nci.nih.gov 
Reactome  http://www.reactome.org 
SigmaAldrich  http://www.sigmaaldrich.com/life-science.html 
Signaling Gateway  http://www.signaling-gateway.org 
Signal Transduction KE  http://stke.sciencemag.org 
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3.2 Methods 

 

3.2.1 Overview 

 

Based on the literature review described in Chapter 1.3, a z-score based transformation 

approach was chosen for normalizing mRNA gene expression data. Gene set activity score 

calculations could be outlined as a following two-step process.  

The first step in the process of calculating gene set activity scores is to perform z-score 

transformation for each probe set expression values across set of samples.  

𝑧𝑖,𝑗  =  
𝑥𝑖,𝑗 − 𝜇𝑖
𝛿𝑖  +  𝜀 

𝑧𝑖,𝑗 is z-score value for probe set i in sample j 

𝑥𝑖,𝑗  is MAS5 expression value for probe set i in sample j  

𝜇𝑖  is a mean of expression values for probe set i across all samples 

𝛿𝑖 is Standard Deviation of expression values for probe set i across all samples 

𝜀 is Standard Deviation Constant, 10 is used for MAS5 expression values 

Standard Deviation Constant is used in order to prevent spikes in z-scores due to occasional 

artificially low Standard Deviation values. 
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The second step is to calculate gene set activity scores by adding up Zi,j score from genes in 

particular gene set and normalizing by square root of number genes in the gene set. 

𝑆𝑗  =  
∑ 𝑍𝑖,𝑗 
𝑁
𝑖=1

√𝑁
 

𝑆𝑗  is the gene set activity score of the given gene set in sample j.  

N - number of genes in the gene set. 

Gene set activity scores could be calculated taking in the account expected directionality in 

gene expression of pathway genes. 

𝑆𝑗  =  
∑ 𝑍𝑖,𝑗 𝐷𝑖𝑁
𝑖=1

√𝑁
 

where 𝐷𝑖 =  � 1  𝑖𝑓 𝑔𝑒𝑛𝑒 𝑖 𝑖𝑠 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑏𝑒 𝑢𝑝 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 
−1 𝑖𝑓 𝑔𝑒𝑛𝑒 𝑖 𝑖𝑠 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑏𝑒 𝑑𝑜𝑤𝑛 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑  

Gene set activity scores also could be calculated using absolute values of Zi,j scores. This 

could be beneficial in cases than for example particular pathway consist of genes with 

corresponding Zi,j scores which cancel each other, however the level of signaling may still 

have biological consequences. 

𝑆𝑗  =  
∑ �𝑍𝑖,𝑗 �𝑁
𝑖=1

√𝑁
 

Gene set scores permutation fractions are calculated based on gene set activity scores 

calculated for 1000 randomly generated gene sets of particular size in particular sample. 

Permutation fraction of 0.001 corresponds to unusually high activity of the gene set and 

permutation fraction of 1.000 corresponds to unusually low activity of the gene set. Since 
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calculation of permutation fractions is a computationally expensive method the underlying 

software code was implemented in parallelizable way, so it could be run on a computational 

cluster. Permutation fractions could be converted to p-values by following approach:  

1) If permutation fraction values are ≤ 0.5 they are multiplied by factor of two. 

2) If permutation fraction values are ≥ 0.501 they are subtracted from 1.001 and multiplied by 

the factor of two. 

3) If permutation fraction values are between 0.5 and 0.501, the p-values are set to one. 

Before applying gene sets activity analysis to mRNA expression data set from Cancer Cell 

Line Encyclopedia it is important to show that the method described above produces 

biologically meaningful results. Two approaches have been used for this purpose.  

 

3.2.2 Validation using tissue specific genes 

 

The first approach is based on tissue specific genes which have been identified by Ge et al. 

(2005) for diverse collection of tissue types. Ge et al. (2005) identified tissue specific genes 

for 36 tissue types/subtypes, however some of them represent different anatomical areas of 

the brain and for the purpose of this analysis tissue specific genes for 29 tissue types were 

actually used. For many tissue types Ge et al. (2005) pooled RNA from multiple individual 

donors. Tissue specific genes are expected to be expressed in only/mostly one tissue type. 

Twenty nine gene sets have been created based on the data from  Ge et al. (2005)  each 
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representing set of genes which supposed to be expressed only/mostly in corresponding 

normal human tissue. 

Table 3.2 shows Gene Set Activity Scores for these 29 gene sets for liver sample GSM44702 

which was used by Ge et al. (2005) in order to derive liver tissue specific genes in the first 

place.  

Table 3.2 Gene Set Activity Scores for liver sample from the Ge et al. (2005) study. 

 

Gene Set Name  Gene Set Size  Gene Set Activity Score Permutation Fraction 
Liver 171 54.4 0.001 
Kidney 26 0.92 0.118 
Small_Intestine 36 0.82 0.132 
Fetal_Liver 21 0.7 0.15 
Adrenal_gland 27 0.55 0.201 
Spleen 28 0.52 0.228 
Prostate 9 0.14 0.299 
Ovary 8 0.14 0.309 
Colon 14 0.01 0.407 
Thyroid 17 -0.03 0.42 
Lung 32 -0.13 0.524 
Trachea 12 -0.14 0.469 
Placenta 54 -0.3 0.668 
Salivary_gland 17 -0.36 0.657 
Bladder 11 -0.47 0.738 
Uterus 9 -0.5 0.756 
Pancreas 39 -0.6 0.805 
Heart 23 -0.74 0.861 
Thymus 41 -0.9 0.927 
Bone_Marrow 38 -0.98 0.942 
Breast 14 -1.04 0.971 
Fetal_Brain 33 -1.15 0.968 
Skin 73 -1.15 0.955 
Stomach 25 -1.16 0.972 
Skeletal_Muscle 71 -1.26 0.979 
Testis 376 -1.57 0.996 
Fetal_Lung 37 -1.57 1 
Brain 299 -6.56 1 
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As expected, the Gene Set Activity Score is clearly much higher for the gene set representing 

liver-specific genes than for other 28 gene sets representing other tissue types. Also as 

expected the permutation fraction for the gene set representing liver-specific genes is much 

lower than for the remaining 28 gene sets representing other tissue types.  

Table 3.3 Top liver specific Gene Set Activity Scores across set of normal samples. 

 

Sample Name  Gene Set Activity Score Permutation Fraction 
normal liver GSM144285 89.47 0.001 
normal liver GSM18954 79.32 0.001 
normal liver GSM44702 77.19 0.001 
normal liver GSM144282 73.69 0.001 
normal liver GSM18953 69.01 0.001 
normal liver GSM18906 26.66 0.001 
normal liver GSM18905 22.52 0.001 
normal liver GSM44706 18.67 0.001 
normal pancreas GSM26415 9.67 0.025 
normal pancreas GSM26419 9.46 0.109 
normal pancreas GSM26423 8.95 0.023 
normal pancreas GSM26428 8.80 0.145 
normal autonomic ganglia GSM19011 7.65 0.014 
normal pancreas GSM26302 7.45 0.189 
normal autonomic ganglia GSM19012 7.32 0.005 
normal kidney GSM18955 7.28 0.001 
normal striated muscle GSM19014 7.26 0.001 
normal pancreas GSM26399 7.05 0.027 
normal upper aero-digestive tract GSM227859 7.01 0.02 
normal striated muscle GSM19008 6.91 0.003 
normal nerve sheath GSM19005 6.65 0.013 
normal pancreas GSM26416 6.62 0.227 
normal kidney GSM146789 6.57 0.001 
normal striated muscle GSM19013 6.56 0.033 
normal pancreas GSM26296 6.56 0.004 
normal pancreas GSM26424 6.43 0.108 
normal upper aero-digestive tract GSM227858 6.37 0.03 
normal nerve sheath GSM19006 6.35 0.014 
normal pancreas GSM26407 6.34 0.059 
normal kidney GSM12098 6.17 0.001 
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In order to take a look at Gene Set Activity Scores for tissue specific gene sets in the 

independent set of normal human tissues, gene sets activity analysis for 29 tissue specific 

gene sets was run for 938 publicly available normal human tissue samples. Table 3.3 shows 

Gene Set Activity Scores for the liver specific gene set in 30 samples with highest Gene Set 

Activity Scores. The top entries in this table are enriched for liver samples and liver samples 

in general have noticeably higher Gene Set Activity Scores. 

The human liver is heavily involved in numerous metabolic related processes, some of which 

only take place in liver and not in any other organs; partially due to these reasons the liver-

specific gene set is relatively large, consisting of 171 member genes. Because of this it would 

be prudent to also examine a different tissue specific gene set of smaller size. The ovary-

specific gene is an appropriate example for this purpose as it is the smallest tissue specific 

gene set, consisting of only 8 member genes. Table 3.4 shows Gene Set Activity Scores for 29 

gene sets for ovary sample GSM44674 which was used by (Ge et al., 2005) in order to derive 

liver- specific genes in the first place. As expected Gene Set Activity Score is clearly much 

higher for gene set representing ovary tissue specific genes than for other 28 gene sets 

representing other tissue types. Also as expected the permutation fraction for the gene set 

representing ovary-specific genes is lower than for most others in the 28 gene sets 

representing other tissue types. In order to take a look at Gene Set Activity Scores for ovary-

specific gene sets in the independent set of normal human tissues, gene sets activity analysis 

of 29 tissue specific gene sets calculated for 938 publicly available normal human tissue 

samples was used one more time.  
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Table 3.4 Gene Set Activity Scores for ovary sample from (Ge et al., 2005) study. 

 

Gene Set Name  Gene Set Size  Gene Set Activity Score Permutation Fraction 
Ovary 8 10.54 0.001 
Fetal_Lung 37 2.05 0.001 
Bladder 11 0.74 0.063 
Prostate 9 0.27 0.216 
Uterus 9 0.21 0.255 
Heart 23 -0.15 0.566 
Adrenal_gland 27 -0.27 0.684 
Thyroid 17 -0.52 0.861 
Salivary_gland 17 -0.55 0.871 
Breast 14 -0.63 0.931 
Skeletal_Muscle 71 -0.68 0.909 
Kidney 26 -0.74 0.969 
Stomach 25 -0.85 0.981 
Fetal_Brain 33 -0.86 0.981 
Lung 32 -0.88 0.984 
Colon 14 -0.92 0.989 
Placenta 54 -0.98 0.988 
Trachea 12 -0.98 0.99 
Pancreas 39 -1.02 0.994 
Fetal_Liver 21 -1.16 0.999 
Spleen 28 -1.22 1 
Bone_Marrow 38 -1.24 1 
Small_Intestine 36 -1.46 1 
Skin 73 -1.48 1 
Thymus 41 -1.6 1 
Testis 376 -1.78 1 
Liver 171 -2.51 1 
Brain 299 -5.77 1 

 

 

Table 3.5 shows Gene Set Activity Scores for ovary specific gene set in 30 samples with 

highest Gene Set Activity Scores. The top entries in this table are enriched for ovary samples 

and ovary samples in general have noticeably higher Gene Set Activity Scores. 
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Table 3.5 Top ovary specific Gene Set Activity Scores across set of normal samples. 

 

Sample Name  Gene Set Activity Score Permutation Fraction 
normal ovary GSM44674 20.36 0.001 
normal ovary GSM139478 11.39 0.001 
normal ovary GSM139477 11.23 0.001 
normal ovary GSM139476 9.9 0.001 
normal ovary GSM139479 8.75 0.001 
normal pancreas GSM26415 4.79 0.043 
normal striated_muscle GSM19008 4.67 0.005 
normal pancreas GSM26419 4.35 0.079 
normal haematopoietic_and_lymphoid_tissue GSM30583 3.12 0.014 
normal ovary GSM18998 2.93 0.013 
normal pancreas GSM26399 2.81 0.066 
normal pituitary GSM44699 2.58 0.005 
normal upper_aerodigestive_tract GSM227859 2.56 0.075 
normal autonomic_ganglia GSM19011 2.5 0.094 
normal placenta GSM18968 2.39 0.026 
normal striated_muscle GSM19007 2.27 0.093 
normal stomach GSM144271 2.26 0.016 
normal pancreas GSM26423 2.24 0.18 
normal haematopoietic_and_lymphoid_tissue GSM30584 2.23 0.078 
normal stomach GSM144266 2.19 0.017 
normal ovary GSM18997 2.18 0.034 
normal adrenal_gland GSM18995 2.18 0.028 
normal stomach GSM144272 2.16 0.018 
normal smooth_muscle GSM18959 2.11 0.003 
normal pancreas GSM26416 2.11 0.194 
normal striated_muscle GSM19014 2.01 0.113 
normal kidney GSM52495 1.98 0.006 
normal pancreas GSM26424 1.97 0.178 
normal pituitary GSM19021 1.89 0.02 
normal adrenal_gland GSM18948 1.86 0.029 
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3.2.3 Validation using tissue specific processes 

 

The second approach is based on tissue specific processes, for example Bile Acid 

Biosynthesis which is a liver-specific process. Unfortunately this approach is somewhat 

limited due to the lack of authoritative and comprehensive sources for tissue specific 

processes. Nevertheless this could be an informative exercise especially for such tissues as 

liver which should have gene expression data from genes involved in number of metabolic 

related process. As mention in Chapter 3.1 MetaCore Data Base from GeneGo 

(www.genego.com) provides an extensive collection of manually reviewed canonical and 

transcriptionally directional gene sets, the version used for this analysis consist of about 1,282 

gene sets. Table 3.6 shows Gene Set Activity Scores for these gene sets in liver sample 

GSM44702 from (Ge et al., 2005) with highest Gene Set Activity Scores. As expected the top 

entries in this table are enriched for metabolic related process including Bile Acid 

Biosynthesis and Estradiol metabolism which are considered to be liver-specific processes. 

Also the top entry in the table is HNF4A-activated gene set which contains genes 

transcriptionally activated by Hepatocyte nuclear factor 4 alpha (HNF4A) transcriptional 

factor. HNF4A transcriptionally activates Hepatocyte nuclear factor 1 alpha (HNF1A) which 

is liver specific transcriptional factor. On the other hand Appendix A1.4 shows Gene Set 

Activity Scores for gene sets in the same liver sample GSM44702 from (Ge et al., 2005) with 

the lowest Gene Set Activity Scores. As expected the gene sets with lowest Gene Set Activity 

Scores seem to be enriched for entries which are not metabolic or liver-specific processes.  
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Table 3.6 Top GeneGo Gene Set Activity Scores for liver sample from (Ge et al., 2005) study. 

Gene Set Name  Gene Set Size  Gene Set Activity Score Permutation Fraction 
HNF4A_activated 79 18.90 0.001 
Androstenedione and testosterone 
biosynthesis and metabolism p.2 17 14.05 0.001 
Immune response  _Lectin Induced 
complement pathway 39 13.67 0.001 
Estradiol metabolism 21 13.17 0.001 
HNF1A_activated 57 13.14 0.001 
NR1I3_activated 16 12.57 0.001 
HNF1B_HNF1A_activated 34 12.38 0.001 
Retinol metabolism 31 12.27 0.001 
Immune response  _Classic complement 
pathway 42 12.24 0.001 
PXR_activated 37 11.74 0.001 
DBP_activated 11 11.67 0.001 
Bile Acid Biosynthesis 22 11.58 0.001 
CEBPA_activated 95 11.38 0.001 
Glycine, serine, cysteine and threonine 
metabolism 45 11.12 0.001 
Acetaminophen metabolism 15 10.96 0.001 
Immune response  _Alternative 
complement pathway 23 10.91 0.001 
STAT3_activated 87 10.85 0.001 
2-Naphthylamine and 2-Nitronaphtalene 
metabolism 19 10.78 0.001 
Leucune, isoleucine and valine 
metabolism.p.2 25 10.41 0.001 
Androstenedione and testosterone 
biosynthesis and metabolism p.3 16 10.30 0.001 
CEBPB_activated 114 10.19 0.001 
1-Naphthylamine and 1-Nitronaphtalene 
metabolism 12 9.99 0.001 
Alanine, cysteine, and L-methionine 
metabolism 23 9.37 0.001 
GCR_activated 59 9.28 0.001 
Tryptophan metabolism 32 9.27 0.001 
Benzo[a]pyrene metabolism 12 9.24 0.001 
SHP_inhibited 11 9.06 0.001 
HNF3B_activated 38 8.80 0.001 
Vitamin E (alfa-tocopherol) metabolism 17 8.65 0.001 
Androstenedione and testosterone 
biosynthesis and metabolism p.1 19 8.42 0.001 
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Taken together the above examples show that the implementation of the method for Gene Set 

Activity Analysis on individual samples level introduced at the beginning of the methods 

section produces the result which seems to agree with biological intuition. 

 

3.2.4 Permutation fractions depth 

 

The permutation fractions in the above method are calculated with 1,000 permutations which 

in most cases is sufficiently deep and at the same time computationally manageable. However 

since the number of permutations is finite in some cases permutation fractions by themselves 

do not provide an ideal level of resolution. For example: Table 3.7 shows Gene Set Activity 

Scores for 29 tissue specific gene sets for spleen sample GSM44673 which was used by (Ge 

et al., 2005) in order to derive spleen specific genes in the first place. As expected the Gene 

Set Activity Score is clearly much higher for the gene set representing spleen tissue specific 

genes than for the other 28 gene sets representing other tissue types. However the top three 

tissue specific gene sets spleen, thymus and bone-marrow have the same permutation fraction 

of 0.001 which is likely due to an insufficient number of permutations to differentiate between 

them. Table 3.7 also shows permutation fractions calculated with 10,000 and 100,000 

permutations. As it can be seen from the table, an increase to 10,000 permutations allows 

differentiating permutation fractions between thymus and bone-marrow specific gene sets; 

and an increase to 100,000 permutations allows differentiating permutation fractions between 

spleen, thymus and bone-marrow specific gene sets. 
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Table 3.7 Gene Set Activity Scores for spleen sample from (Ge et al., 2005) study. 

 

Gene Set 
Name  
 

Gene Set 
Size 
 

Gene Set 
Activity Score 
 

Permutation 
Fraction 1000 
permutations 

Permutation 
Fraction 10,000 
permutations 

Permutation 
Fraction 100,000 
permutations 

Spleen 28 20.31 0.001 1.00E-04 1.00E-05 
Thymus 41 2.76 0.001 1.00E-04 5.00E-05 
Bone Marrow 38 2.1 0.001 0.0011 8.30E-04 
Thyroid 17 0.78 0.088 0.0536 0.05388 
Bladder 11 0.1 0.401 0.5113 0.51137 
Breast 14 -0.03 0.511 0.3957 0.39837 
Ovary 8 -0.13 0.599 0.6805 0.68566 
Uterus 9 -0.16 0.651 0.5208 0.51805 
Lung 32 -0.17 0.663 0.7227 0.73272 
Placenta 54 -0.31 0.767 0.9094 0.91576 
Adrenal gland 27 -0.47 0.886 0.9265 0.928 
Trachea 12 -0.5 0.874 0.8504 0.84559 
Prostate 9 -0.52 0.924 0.8924 0.88959 
Fetal Lung 37 -0.53 0.91 0.9035 0.90895 
Salivary gland 17 -0.65 0.962 0.932 0.93004 
Kidney 26 -0.69 0.964 0.9655 0.96621 
Stomach 25 -0.69 0.958 0.8638 0.86359 
Pancreas 39 -0.76 0.98 0.9787 0.97568 
Colon 14 -0.79 0.982 0.9853 0.98521 
Heart 23 -0.79 0.982 0.9728 0.97248 
Fetal Liver 21 -0.83 0.98 0.9719 0.97203 
Skeletal 
Muscle 71 -0.9 0.991 0.9696 0.9698 
Small Intestine 36 -0.91 0.993 0.9898 0.99092 
Fetal Brain 33 -1.02 0.995 0.9864 0.98679 
Skin 73 -1.3 1 0.9999 0.99983 
Testis 376 -1.35 1 0.9998 0.99975 
Liver 171 -2.04 1 1 1 
Brain 299 -5.33 1 1 1 
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3.3 Results 

 

3.3.1 Overview 

 

In order to get a comprehensive view of gene sets activity across CCLE each of the canonical 

and transcriptionally directional gene sets available from GeneGo Inc. and in addition each 

tissue specific gene set described in the above Methods section was used to generate activity 

scores and permutation fraction for 964 CCLE cancer cell lines for which mRNA expression 

profiles were available. As was mention in section 3.1 there are 1,282 gene sets from GeneGo 

and 29 tissue specific gene sets adding up to a total number of 1,311 gene sets. Appendix A2 

CD contains files with gene sets activity scores and permutation fractions for GeneGo 

canonical gene sets, GeneGo transcriptionally directional gene sets, tissue specific gene sets 

across 964 CCLE cancer cell lines. The results of this analysis were used along with other 

CCLE data sets as inputs in (Barretina et al., 2012) for modeling anticancer drug sensitivity. 

One of the reasons for using Gene Set Activity Analysis output for modeling anticancer drug 

sensitivity has to do with its potential to help with the decreasing multidimensionality of data 

input into machine learning algorithms.  

Cancer cell line mRNA expression profiles are well known to cluster in such way that solid 

and hematopoietic cancers lines tend to cluster away from each other while cell lines from the 

same cancer indications in general cluster together (Armstrong et al., 2002). To access Gene 

Set Activity Scores generated for the CCLE the unsupervised hierarchical clustering with 
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correlation as distance measure was used to cluster Gene Set Activity Scores for 964 CCLE 

lines.  

 

 

 

Figure 3.1 Hierarchical clustering of Gene Set Activity Scores for CCLE lines.

Figure 3.2 Hierarchical clustering of Gene Set Activity Scores for hematopoietic CCLE lines.
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Figure 3.1 shows hematopoietic cancer cell lines clustering in the right corner and solid 

cancer cell lines to the left of the hematopoietic cluster. Figure 3.2 shows in more details the 

hematopoietic cancer cell lines cluster, this more detailed view shows that cell lines from the 

same indications in general cluster together, for example we can observed the tendency of 

plasma cell myelomas, acute myeloid leukaemias and acute lymphoblastic leukaemias  to 

form separate clusters. Therefore Figures 3.1 and 3.2 seems to suggest that Gene Set Activity 

Scores preserved underlying mRNA expression profiles data structure while at the same time 

helping to decrease dimensionality from about 22,000 features to about 1,300 features. 

Also as was mentioned in section 3.1, a subset of MSigDB version 3.0 gene sets collection 

was also selected as source of gene sets for Gene Set Activity Analysis. In total gene sets 

activity scores and permutation fractions were calculated for 4,162 MSigDB version 3.0 gene 

sets. Appendix A2 CD contains files with gene sets activity scores and permutation fractions 

for MSigDB cytogenetic bands gene sets, MSigDB gene sets representing signatures of 

genetic and chemical perturbations, MSigDB canonical pathways, MSigDB microRNA 

targets gene sets and MSigDB transcription factor targets  gene sets across 964 CCLE cancer 

cell lines. 
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3.3.2 pSTAT5 mRNA expression signature 

 

3.3.2.1 Gene signature enrichment 

 

As was mentioned in section 1.4 deriving a gene expression based signature indicative of 

STAT5 activation status could be of practical importance. STAT5 is a transcriptional factor 

for which there is reasonably well defined set of transcriptional targets (MetaCore from 

GeneGo Inc.). The 47 genes which are considered to be transcriptional targets of STAT5 and 

have probe sets on the U133Plus2 array were selected for analysis. For each of the 47 genes, 

the best probe set was chosen based on combination of manual review, a computational 

approach (Nurtdinov et al., 2010) and also by taking in the account dynamic expression range 

across all CCLE cancer cell lines.  

Two sets of CCLE hematopoietic cell lines with pSTAT5 Western blot data were available for 

analysis. The first set has data for 28 cell lines with 8 pSTAT5 positive and 20 pSTAT5 

negative by Western blotting (Table 3.8).  The second set has data for 12 unique cell lines, 

with 6 pSTAT5 positive and 6 pSTAT5 negative by Western blotting (Table 3.8). Taken 

together, this means that 40 unique cell lines with known pSTAT5 status are available for 

analysis (Table 3.8). 
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Table 3.8 pSTAT5 status for 40 CCLE hematopoietic cell lines 

Cell Line Name pSTAT5 set 1 pSTAT5 set 2 
THP-1 N N 
PL-21 

 
N 

OCI-AML2 
 

N 
NOMO-1 

 
N 

HL-60 
 

N 
KASUMI-1 

 
N 

SKM-1 
 

N 
MM1-S N 

 ST486 N 
 NCI-H929 N 
 JM1 N 
 Loucy N 
 RPMI 8226 N 
 Toledo N 
 MC116 N 
 Reh N 
 KMS-12-BM N 
 RS4;11 N 
 BDCM N 
 U-937 N 
 HD-MY-Z N 
 HuNS1 N 
 SUP-T1 N 
 CA46 N 
 RL N 
 HH N 
 MOLM-13 Y Y 

AML-193 Y Y 
Set-2 Y Y 
TF-1 Y Y 

HEL 92.1.7 Y Y 
EOL-1 

 
Y 

F-36P 
 

Y 
Kasumi-6 

 
Y 

MV-4-11 
 

Y 
M-07e 

 
Y 

OCI-AML5 
 

Y 
K-562 Y 

 SUP-B15 Y 
 MEG-01 Y 
  

Gene set activity scores were calculated for 40 cell lines from Table 3.8 using a gene set 

consisting of 47 STAT5 transcriptional targets. Figure 3.3 shows that there is a tendency for 

pSTAT5 negative cell lines to have lower gene set activity scores and for pSTAT5 positive 

cell lines have a higher gene set activity scores. Based on this encouraging pattern data from 
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the first set of cell lines were used for signature enrichment and data from second set of cell 

lines were used for signature validation.   

In order to try to improve gene signature, fold changes and Student's t-Test probabilities 

between pSTAT5 positive and pSTAT5 negative cell lines were calculated using data from 

the enrichment cell line set. For fold change calculations, a value of 50 was added to the 

expression averages for pSTAT5 positive and pSTAT5 negative cell lines in order to decrease 

noise from low expressing genes.  Positive values indicate higher expression in pSTAT5 

positive lines, while negative values indicate higher expression in pSTAT5 negative lines.  

Student's t-Test was run using two-tailed distribution and homoscedastic settings. Appendix 

A1.5 provides the results for all 47 genes. 

Data from Appendix A1.5 was used to create 3 genes sets (Table 3.9). The first one included 

four genes (PIM1, CISH, SOCS2, ID1) with lowest p-values and fold changes above 4. The 

second gene set contains the aforementioned four genes and LCN2 and EPOR, both of which 

have fold changes around 2 and p-values below 0.01. The third gene set carries the additional 

gene, EGR1, which has a fold change of around 2.7, but a p-value of ~ 0.06. Table 3.10 

provides the gene set activity scores for three gene signatures across all cell lines. 
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Figure 3.3 pSTAT5 status and gene signature scores for a 47-gene signature

47-genes Signature Activity ScoreCell Line Name

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

AML-193
BDCM

CA46
EOL-1
F-36P

HD-MY-Z
HEL 92.1.7

HH
HL-60

HuNS1
JM1

K-562
KASUMI-1

Kasumi-6
KMS-12-BM

Loucy

M-07e
MC116

MEG-01
MM1-S

MOLM-13
MV-4-11

NCI-H929
NOMO-1

OCI-AML2
OCI-AML5

PL-21
Reh

RL
RPMI 8226

RS4;11

Set-2
SKM-1
ST486

SUP-B15
SUP-T1

TF-1
THP-1
Toledo
U-937

p-STAT5 negative p-STAT5 positive

Table 3.9 Putative gene signatures to differentiate pSTAT5 status 

4-gene signature 6-gene signature 7-gene signature 

PIM 1 PIM 1 PIM 1 

CISH CISH CISH 

SOCS2 SOCS2 SOCS2 

ID1 ID1 ID1 

 LCN2 LCN2 

 EPOR EPOR 

  EGR1 
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Table 3.10 Gene signature activity scores for three gene signatures across 40 cell lines 

Cell Line Name 4-genes 
 

 6-genes  
 

7-genes  
 

pSTAT5 set 1 
 

pSTAT5 set2 
 

pSTAT5 
 THP-1 -0.82 -0.88 -0.93 N 

 
N 

PL-21 -0.72 -0.41 -0.22 
 

N N 
OCI-AML2 0.43 0.3 -0.07 

 
N N 

NOMO-1 0.12 -0.06 -0.37   N N 
HL-60 -0.83 -0.92 -1.17 

 
N N 

KASUMI-1 -0.56 -0.7 -0.95 
 

N N 
SKM-1 -0.88 -0.94 -1.2 

 
N N 

MM1-S -0.68 -0.61 -0.9 N 
 

N 
ST486 -1.02 -0.99 -1.25 N 

 
N 

NCI-H929 -0.6 -0.55 -0.68 N 
 

N 
JM1 -0.99 -1.1 -1.38 N 

 
N 

Loucy -1.03 -1 -1.27 N 
 

N 
RPMI 8226 -0.71 -0.73 -1.02 N 

 
N 

Toledo -0.98 -1.11 -1.39 N 
 

N 
MC116 -1.06 -1.01 -1.26 N 

 
N 

Reh 0.14 0 -0.38 N 
 

N 
KMS-12-BM -0.16 -0.04 -0.41 N 

 
N 

RS4;11 -0.7 -0.85 -1.12 N 
 

N 
BDCM -0.87 -0.94 -1.05 N 

 
N 

U-937 -0.48 -0.5 -0.81 N 
 

N 
HD-MY-Z -0.85 -0.74 -0.32 N 

 
N 

HuNS1 -0.76 -0.71 -1.01 N 
 

N 
SUP-T1 -0.89 -0.92 -1.19 N 

 
N 

CA46 -0.94 -0.98 -1.25 N 
 

N 
RL -1.12 -1.13 -1.41 N 

 
N 

HH -1.01 -0.98 -1.27 N 
 

N 
MOLM-13 2.13 1.79 1.36 Y 

 
Y 

AML-193 2.46 1.74 1.32 Y 
 

Y 
Set-2 1.72 2.38 1.93 Y 

 
Y 

TF-1 1.65 2.63 2.07 Y 
 

Y 
HEL 92.1.7 1.7 1.38 1.42 Y 

 
Y 

EOL-1 7.46 5.98 5.22 
 

Y Y 
F-36P 4.32 4.55 3.93 

 
Y Y 

Kasumi-6 2.47 1.77 1.36 
 

Y Y 
MV-4-11 0.81 0.66 0.37 

 
Y Y 

M-07e 3.06 2.34 1.99 
 

Y Y 
OCI-AML5 1 0.64 0.24 

 
Y Y 

K-562 6.12 4.92 4.63 Y 
 

Y 
SUP-B15 1.21 0.69 0.4 Y 

 
Y 

MEG-01 3.09 2.94 2.53 Y 
 

Y 
 



112 

 

3.3.2.2 Gene signature validation 

 

The validation set of cell lines was used to independently validate these gene sets. For the 

three gene signatures, the probability associated with the Student's t-Test between gene 

signature activity scores for pSTAT5 positive and pSTAT5 negative cell lines was calculated 

using data from independent validation cell lines set and in all cell lines from enrichment and 

validation sets combined. Student's t-Test was run using two-tailed distribution and 

heteroscedastic settings. Table 3.11 provides the results for three gene signatures in the 

validation set cell lines and in all cell lines. As can be seen from Table 3.11, all three gene 

signatures have p-values below 0.05 in the independent validation set. The lowest p-value is 

observed for the 7-gene signature in cell lines of set 1 and set 2 combined.  

Table 3.11 t-test p-values for three gene signatures across 40 cell lines 

Cell lines set 
4-genes signature        
t-test p-value 

6-genes signature        
t-test p-value  

7-genes signature             
t-test p-value  

Validation (set 2)  0.015 0.016 0.016 

Enrichment + validation  

(set 1 and set 2) 

1.305E-05 

 

6.001E-06 

 

5.511E-06 

 

 

Figure 3.4 shows the relationship between the pSTAT5 status and 4-gene signature activity 

scores across all cell lines; this demonstrates the ability of the signature to discriminate 

between pSTAT5 positive and pSTAT5 negative haematopoietic cell lines. 
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Interestingly, in 4 genes signature two of the genes (PIM1 and ID1) are known positive 

activators of the JAK-STAT5 pathway, and the other two (SOCS2 and CISH) are known 

negative regulators thereof. 

 

 

 

 

Figure 3.4 pSTAT5 status and gene signature scores for a 4-gene signature 

4-genes Signature Activity ScoreCell Line Name

-1 0 1 2 3 4 5 6 7

AML-193
BDCM

CA46
EOL-1
F-36P

HD-MY-Z
HEL 92.1.7

HH
HL-60

HuNS1
JM1

K-562
KASUMI-1

Kasumi-6
KMS-12-BM

Loucy

M-07e
MC116

MEG-01
MM1-S

MOLM-13
MV-4-11

NCI-H929
NOMO-1

OCI-AML2
OCI-AML5

PL-21
Reh

RL
RPMI 8226

RS4;11

Set-2
SKM-1
ST486

SUP-B15
SUP-T1

TF-1
THP-1
Toledo
U-937

p-STAT5 negative p-STAT5 positive
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Pim kinases, which play critical roles in cell survival and are believed to be important targets 

in hematological malignancy, are reportedly regulated at the transcriptional level, 

immediately downstream of STAT signaling (Amaravadi and Thompson, 2005) (Bachmann 

and Möröy, 2005) (Wang et al., 2001) (White, 2003). Indeed, it has been reported that JAK 

inhibition would lead to the down modulation of PIM1 and PIM2 mRNA in SET-2 cells 

(Gozgit et al., 2008) (Wood et al., 2009). Thus, activated JAK2 would result in increased 

PIM1 mRNA via the activation of STAT5. 

ID1 is involved in cell cycle progression and hematopoietic stem cell self-renewal (Norton et 

al., 1998) (Jankovic et al., 2007) (Perry et al., 2007). Studies have shown that ID1 promotes 

survival during erythroid differentiation in fetal liver (Wood et al., 2009). ID1 is a target of 

the JAK2-STAT5 signaling pathway in erythroid cells with its expression being modulated by 

activated STAT5. Furthermore, ID1 transcript levels are elevated in cells harboring the 

JAK2V617F mutation, when compared to JAK2 WT cells, and they are down modulated by a 

JAK inhibitor (Perry et al., 2007). 

SOCS2 is a member of the suppressors of cytokine signal (SOCS) family (Lai SY et al., 

2010).  SOCS members inhibit JAK kinase activity and facilitate proteosomal degradation of 

JAK (Wood et al., 2009).  It has been reported that SOCS expression is correlated with 

STAT5 activity (Sen et al., 2012). 

Cytokine inducible SH2-domain containing protein (CISH) is an immediate early gene 

induced by IL-2, IL-3, EPO and GM-CSF (Endo et al., 1997).  It is a STAT5 target gene, a 

member of the SOCS family and it inhibits JAK-STAT5 signaling via a feedback loop 

(Matsumoto et al., 1997) (Ram and Waxman, 1999).  Specifically, CISH expression is 
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increased with the activation of JAK-STAT5 in the presence of specific ligands such as IL-2 

or Prolactin (PRL) in respective model systems (Fang et al., 2008).  Additionally, IL-2 

induced CISH expression was shown to be suppressed by a dominant-negative STAT5 

(Mitchell et al., 2003). 

 

3.3.2.3 Gene signature and pharmacodynamics response to ruxolitinib 

 

The functional relevance of these 4 genes to pSTAT5 increases the validity of using such a 

signature to predict pathway activation. In order to further validate 4 genes signature my 

collaborators on manuscript (which is under review) performed set of wet lab experiments 

outlined in this section (Appendix A1.1, Sonkin et al.). 

Nine different cell-lines (Table 3.12) were treated with two concentrations of the JAK1/2 

inhibitor ruxolitinib (0.2µM and 1µM) and DMSO, and sampled at two functional time points 

(4 and 24 hrs).  

Table 3.12 List of cell lines used for additional validation of pSTAT5 signature 

Cell Line Name pSTAT5 JAK2 mutation 
AML-193 Y NO 
HEL 92.1.7 Y YES 
Set-2 Y YES 
TF-1 Y NO 
UKE-1 Y YES 
PL-21 N NO 
Reh N NO 
RPMI 8226 N NO 
U-937 N NO 
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For each treatment and time point the total STAT5 and pSTAT5 levels were examined by 

Western blot analysis and the expression of the four signature genes was determined by 

qPCR. The baseline expression levels of the pSTAT5 positive cell lines were notably higher 

than that of the pSTAT5 negative cell lines (Figure 3.5). In each case there was at least a one 

ΔCT increase between the highest negative and lowest positive cell line level of expression, 

with most having large expression differences. If the signature genes are examined 

cumulatively the difference is quite large. 

Figure 3.5 qRT-PCR results after 4 hours  of treatment with vehicle (DMSO)

CISH     PIM1     SOCS2      ID1
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Figure 3.6 demonstrates modulation of pSTAT5 and the expression of the 4 signature genes 

by ruxolitinib in two pSTAT5 positive cell lines and two pSTAT5 negative cell lines. Figure 

3.7 shows normalized average expression in 5 pSTAT5 positive cell lines and 4 pSTAT5 

negative cell lines in response to ruxolitinib, normalized to the respective DMSO-treated 

controls. The average difference in the 4 and 24 hour treatments in the pSTAT5 positive cell 

lines showed a reduction in the 4 signature genes at both ruxolitinib concentrations (Figure 

3.7). The 4 hour time point has less variation around the treatment effect than the later time 

point. The pSTAT5 negative cell lines show a larger degree of variation with some time 

points showing slight reduction, some slight increase, but no consistent pattern as observed 

with the positive cell lines. This can be seen in the individual cell lines as well. The two 

negative cell lines demonstrate a minimal change in expression levels (Figure 3.6). As with 

the cumulative analysis there is a slight reduction in expression at the lower ruxolitinib 

concentration, 4 hour time point for some genes, but also some increased expression as well. 

The five pSTAT5 positive cell lines showed a reduction in expression of most genes at all 

time-points and concentrations (Figure 3.7). There are a few exceptions where one gene, a 

different one in individual cell lines, showed an increase in expression. The pattern of 

transcript down-regulation was present and consistent with both ruxolitinib concentrations 

and time-points. This finding is consistent with the four signature gene relationship to the 

activation status of pSTAT5. 

The modulation of the 4 genes from signature by ruxolitinib was further examined in vivo.  To 

this end, the UKE-1 tumor xenograft model was treated with ruxolitinib.  Tumor samples 

were acquired and analyzed 4 Hr or 24 Hr after single dose of ruxolitinib at 60 mg/kg.  
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Figure 3.6 Modulation of pSTAT5 and the expression of the signature genes by ruxolitinib

CISH     PIM1     SOCS2      ID1

SET2 (pSTAT5-positive) TF-1 (pSTAT5-positive)

U937 (pSTAT5-negative) RPMI 8226 (pSTAT5-negative)
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Figure 3.7 Response to ruxolitinib in pSTAT5 positive and negative cell lines 

CISH     PIM1     SOCS2      ID1

5 pSTAT5-positive cell lines 4 pSTAT5-negative cell lines
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The modulation of pSTAT5 in tumor lysate was examined by Western blotting (Figure 3.8).  

The modulation of the 4 genes from signature by ruxolitinib in this tumor model is consistent 

with that observed in vitro (Figure 3.8). (The rebound in pSTAT5 level and corresponding 

rebound in 4 genes mRNA expression is due to decrease in compound concentration.) 

 

Figure 3.8 Modulation of pSTAT5 by ruxolitinib in the UKE-1 tumor xenograft 

CISH     PIM1     SOCS2      ID1

Expression of the signature genespSTAT5 in tumor lysate by 
Western blotting
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3.3.3 BRAF inhibitor sensitivity and MITF transcriptional targets 

 

Another potentially interesting observation based on gene set activity scores pointed to a 

positive correlation between genes transcriptionally activated by MITF and sensitivity to 

BRAF inhibitors in V600E mutant melanomas. BRAF is a well-known oncogenic driver and 

about 50% of melanomas have an activating V600E mutation (Ascierto et al., 2012). PLX-

4720 is a selective and potent inhibitor of oncogenic mutant BRAF (Tsai et al., 2008). A high 

percentage of patients respond to PLX-4720, however unfortunately resistance to the 

compound often develops in a few months (Flaherty et al., 2010). Most likely there are 

multiple mechanisms of resistance to the inhibitor. Some mechanisms of resistance are due to 

mutations reactivating the mitogen-activated protein kinase (MAPK) signaling cascade, for 

example such as N-RAS mutations (Nazarian et al., 2010) and MEK1 mutations (Wagle et al., 

2011).  Also the MAPK pathway could be potentially reactivated by MAP3K8  up regulation 

(Johannessen et al., 2010) and there are instances of resistance to the BRAF inhibitors 

independent of MAPK pathway (Nazarian et al., 2010). Identifying additional mechanisms of 

intrinsic resistance to BRAF inhibitors may lead to new therapeutics which would increase the 

percentage of melanoma patients responding to treatment and also potentially increase the 

duration of their response. 

Table 3.13 shows MITF-Activation gene set scores and PLX-4720 IC50 µM in melanoma cell 

lines with BRAF V600E mutation. Cell lines with IC50 below 1.5 µM are considered to be 

sensitive to PLX-4720 while cell lines with IC50 above 4.0 µM are considered to be 

insensitive to PLX-4720.  
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Table 3.13  MITF_Activation gene set scores and PLX-4720 IC50 µM 

 

Cell Line Name MITF_Activation gene set score PLX-4720 IC50 µM  
loximvi 0.64 8.00 
wm115 -0.48 8.00 
hs294t 2.84 8.00 
skmel31 1.2 8.00 
rpmi7951 0.12 8.00 
wm793 -0.74 8.00 
igr39 1.29 8.00 
hs695t 0.67 7.26 
skmel24 0.14 5.15 
colo741 6.7 4.04 
mdamb435s -0.78 2.31 
c32 0.37 2.21 
k029ax 7.74 2.11 
hs939t 3.51 2.10 
ht144 1.85 1.34 
g361 4.63 1.29 
wm1799 2.79 1.23 
uacc257 11.7 1.06 
igr37 10.19 0.90 
rvh421 3.14 0.77 
colo679 3.86 0.55 
wm983b 1.38 0.51 
skmel5 6.18 0.37 
melho 10.11 0.31 
malme3m 9.01 0.29 
a375 0.62 0.26 
uacc62 0.56 0.25 
wm88 0.25 0.20 

 

Student's t-Test was run using two-tailed distribution and homoscedastic settings for MITF-

Activation gene set scores in BRAF inhibitor sensitive cell lines versus BRAF inhibitor 

insensitive cell lines. The probability associated with the Student's t-Test is 0.02 indicating a 

potential nonrandom relationship between genes transcriptionally activated by MITF and 
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sensitivity to BRAF inhibitors in V600E mutant melanomas. Interestingly (Tap et al., 2010) 

also concluded that MITF expression could be a potential predictor of sensitivity to BRAF 

inhibitors in BRAF mutant melanomas. MITF is a master regulator of melanocyte 

development and melanoma oncogene (Garraway et al., 2005) (Levy et al., 2006). Appendix 

A1.6 lists genes transcriptionally activated by MITF.  

 

MITF expression levels are possibly adjusted to satisfy the balance needed to sustain survival 

and proliferation of melanomas (Goding, 2011). Also it was suggested melanoma cell may 

have an ability to switch between MITF low and MITF high expression in vivo, with MITF 

low potentially corresponding to migratory phenotype and MITF high corresponding to 

proliferative phenotype (Hoek et al., 2008). The underlying plasticity in the MITF expression 

in melanomas may result in heterogeneous MITF expression in the tumor and potentially be 

one of the factors in the development of resistance to BRAF inhibitors in BRAF mutant 

melanomas. 
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3.4 Discussion 

 

Gene set activity scores on individual samples level represent an interesting approach for 

analyzing mRNA expression profiles. In the above section such an approach was applied to 

all cancer cell lines in CCLE collection with available U133Plus2 data. 

 

3.4.1 pSTAT5 gene signature clinical relevance 

 

Gene set activity scores helped to identify potential pSTAT5 gene signature in hematological 

malignancies. It is important to note that the STAT5 signature is not limited only to aberrant 

JAK2 mutations. Other genetic events involving ABL, ALK, or FLT3 activation may drive 

STAT5 activation (Carlesso et al., 1996) (Mizuki et al., 2000) (Zhang et al., 2000) (Hayakawa 

et al., 2000) (Nieborowska-Skorska et al., 2001), which can be reflected in an elevated 

signature. For example, K562 is a CML line bearing the Bcr-Abl translocation (Allen et al., 

1992).  Its STAT5 positivity is likely driven by a high activity of Abl. Also, the fact that 

myelofibrosis patients with wild type JAK2 benefited from ruxolitinib treatment support the 

notion that the JAK-STAT pathway is active in patients with wild type JAK2 and targeting 

this pathway is known to yield clinical benefit (Harrison et al., 2012). Furthermore, preclinical 

findings on possible combination synergy between JAK and PI3K/mTOR inhibitors would 

suggest that JAK-STAT signaling is a part of the intricate and complex oncogenic network 

(Maude et al., 2012) (Bogani et al., 2013). The potential utility of pSTAT5 gene signatures to 
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identify subpopulations of patients who may benefit from JAK inhibitor(s) is a rather 

intriguing possibility. 

 

 

 

 

Figure 3.9 Oxidative phosphorylation activity in 964 CCLE cancer cell lines.
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3.4.2 Permutation fractions and gene set activity scores distributions 

 

Gene set activity analysis applied to CCLE cancer cell lines mainly took advantage of gene 

set activity scores, however it is worthwhile to touch on permutation fractions which were 

also generated for each cell line and gene set.  

Oxidative phosphorylation is one of the major mechanisms for energy production in 

eukaryotic cells and it was previously demonstrated that genes involved in oxidative 

phosphorylation are tightly co-regulated (van Waveren and Moraes, 2008). Figure 3.9 shows 

gene set activity scores and permutation fractions for a gene set comprised of genes involved 

in oxidative phosphorylation for 964 CCLE cancer cell lines. The combination of gene set 

activity scores and permutation fractions displayed in Figure 3.9 reveals a pattern where the 

vast majority of cells have co-expression of genes involved in oxidative phosphorylation. The 

genes are either up regulated together or down regulated together in most cancer cell lines. 

Permutation fractions distribution in 964 CCLE lines for 1311 gene sets is shown on Figure 

3.10. This figure shows a nearly symmetrical distribution for permutation fractions in relation 

to the average. The expected number of permutation fractions in each of the 1000 bins could 

be calculated as (964 x 1311)/1000 which is about 1264 per bin. The bins with more than 

3792 permutation fractions could be defined as unusual events, which would approximately 

correspond to permutation fractions below 0.006 and above 0.997. Permutation fractions 

distribution density is more concentrated at the right tail of distribution in comparison to the 

left tail of distribution. 
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Figure 3.11 shows gene set activity scores distribution in 964 CCLE lines for 1311 gene sets. 

As expected the mean of the activity scores distribution is around zero and standard deviation 

is around one. Figure 3.12 shows gene set activity scores distribution in -5.00 to 5.00 range, in 

that window which covers vast majority of data points the distribution is nearly symmetrical.  
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Figure 3.12 Gene set activity scores distribution in -5.00 to 5.00 range.
(964 CCLE lines for 1311 gene sets)
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Permutation fractions relation to gene set activity scores in 964 CCLE lines for 1311 gene sets 

is shown on Figure 3.13. This figure shows overall reasonable concordance between 

permutation fractions and gene set activity scores. 

 

 

 

Figure 3.13 Permutation fractions versus gene set activity scores in 964 CCLE lines.
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3.4.3 Z-scores based FDR-corrected p-values 

 

Since Figure 3.12 shows that distribution of gene set activity scores for 1311 gene sets across 

964 cell lines have a shape resembling a normal distribution, we can therefore try to estimate 

gene set activity score threshold which would correspond to p-value of 0.05 under False 

Discovery Rate (FDR) control. Under FDR control for 1311 gene sets the nominal p-value 

would be 0.05/1311 which approximately equal to 3.8E-05 and corresponding z-score for 

two-tailed test is approximately equal to 4.12. As can be seen from Figure 3.13 vast majority 

of gene set activity scores above 4.12 have permutation fraction < 0.006 and also vast 

majority of gene set activity scores below -4.12 have permutation fraction > 0.997. Therefore 

there is a reasonable concordance between calculations based on z-scores and calculations 

based on permutation fractions. Appendix A2 CD contains a file with nominal p-values based 

on z-scores and file with corresponding FDR corrected p-values (Hochberg and Benjamini, 

1990) for 1311 gene sets across all 964 CCLE cell lines. Figure 3.14 shows permutation 

fractions distribution for corresponding z-scores based FDR-corrected p-values below 0.05 for 

1311 gene sets across all 964 CCLE cell lines. This figure indicates that concordance between 

permutation fractions and corresponding z-scores based FDR-corrected p-values below 0.05 is 

better at the left tail of distribution in comparison to the right tail of distribution. 
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Figure 3.14 Permutation fractions distribution for z-scores based FDR-corrected p-values < 0.05.
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There are number of challenges in generating and interpreting gene set activity scores. 

Unusually high or low activity scores allow us to focus our attention on potentially more 

relevant biological processes. However it does not necessarily mean that scores which do not 

stand out are not providing important information. For example it is possible to imagine a 

scenario where a particular pathway has mediocre activity scores and values between different 

samples that do not vary more than 1.5 times; yet such changes could still have far reaching 

effects on the cell. Also there are number of the gene sets defined based on signaling 

pathways which depend on posttranslational modifications and which in turn may not be 

reflected correctly or at all on the mRNA expression level. Activity scores for directional 

transcriptional gene sets often provide the most relevant read outs of biological activity; 

however they also can be diluted by transcriptional targets on which they have little effect or 

on the contrary some important transcriptional targets may not yet be known or not have been 

accounted for. Other possible complications are the differences between different lineages, 

such differences may mean that some gene sets need to have different composition for 

different lineages. On another hand the challenges outlined above could also potentially 

indicate that future improvements in gene set compositions and interpretation may increase 

the relevance of gene set activity analysis.  
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3.5 Summary 

 

This chapter described details of the computational framework for the gene set activity 

analysis on sample by sample basis. The framework has been developed as part of doctoral 

research. It was applied to mRNA expression data analysis from Cancer Cell Line 

Encyclopedia. Tissue specific genes and tissue specific processes were used to validate 

analysis results. Generation of pSTAT5 mRNA expression signature demonstrated utility of 

gene set activity analysis on sample by sample basis. Potential clinical relevance of pSTAT5 

gene signature was highlighted. An interesting relationship between BRAF inhibitor 

sensitivity and MITF signaling was discovered by taking advantage of gene set activity 

analysis on sample by sample basis.  
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Chapter 4:  General Discussion 

 

During the last few decades significant progress has been made in understanding molecular 

interactions involved in various cancers. In recent years due to the exponential increase in 

DNA sequencing capacity and corresponding exponential decrease in cost of DNA 

sequencing, the amount of available genomic information for oncology research has greatly 

increased. Also, for the first time significant numbers of samples with multiple genomic data 

sets per sample have became available. These introduce the challenge and at the same time 

the opportunity for improving existing computational approaches in analyzing these new and 

potentially information-rich data sets. 

There are number of a ways how availability of multiple genomic data sets per sample can be 

utilized. For example, gene fusion detection could be done using RNA-seq data and whole 

genome sequencing data. Whole genome sequencing data allows detection of a wide range of 

fusions and quantifies amplification of potential fusion products, but it does not provide 

information on actual expression of fusion products. RNA-seq data on other hand provides 

mRNA expression of fusion product and also can detect read through fusions (Akiva et al., 

2006) which cannot be detected from whole genome sequencing data. At the same time RNA-

seq data may introduce a number of false positive results due to complex isoform structures 

and other technical and biological reasons (Asmann et al., 2011).  Combining fusion detection 

from RNA-seq data and whole genome sequencing data helps to decrease the number of false 
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positive events and also to narrow down the search to the most relevant fusions (McPherson et 

al., 2011). 

 

4.1 Tumor suppressor genes status analysis 

 

The comprehensive and systematic computational framework to interrogate tumor suppressor 

genes status presented in this thesis contributes to improvement in understanding of cancer 

cell lines which play critical role in cancer research. The comprehensive nomenclature 

introduced in this work allows capturing in one short string the underlying status of tumor 

suppressor for gene and sample in question. It is important to note that prior to this work there 

were no published comprehensive nomenclature system for tumor suppressor status. The 

tumor suppressor status using this systematic nomenclature could be used as input in other 

computational data analysis methods. For example, tumor suppressor genes status could be 

used as one of the inputs in machine learning algorithms trying to predict sensitivity to 

number of different anticancer compounds. In fact status of tumor suppressor genes generated 

for CCLE cancer cell lines are already extensively used in variety of approaches for target 

identification and biomarker discovery. 

Improvements in characterizing tumor suppressor status, made possible due to work presented 

in this thesis, are relevant for selecting with high levels of confidence cell lines with 

functional (wild type) tumor suppressor genes and also on another side of the spectra selecting 

with high confidence cell lines with inactivated tumor suppressor genes. Identifying cell lines 

with wild type TP53 is critical for efforts to identify signature to predict sensitivity to 
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inhibitors of MDM2 driven degradation of TP53. On the other hand identifying cell lines with 

inactivated BRCA1 or BRCA2 are important for efforts to widen therapeutic benefits from 

PARP inhibitors. The status of 69 tumor suppressor genes across almost 800 CCLE cancer 

cell lines have already been shared with the scientific community through publication in the 

Journal of Molecular Oncology providing a valuable resource for years to come (Sonkin et 

al., 2013).   

The work on tumor suppressor status framework also adds to the number of voices advocating 

the creation of a comprehensive and reliable resource for annotation of loss of function as 

well as gain of function missense mutations in cancer. Such a resource would be very useful 

for the field of oncology research, especially keeping in mind the increasing volume of 

sequencing data available for basic, translational and clinical research. 

In the future several additional genomic data sets are going to be available for cancer cell 

lines, most notably the RNA-seq data and DNA methylation database. Incorporating this and 

other additional data sets would allow further improvements in interrogation of tumor 

suppressor status. The RNA-seq data would allow detecting potential allele specific 

expression and therefore provide more precise tumor suppressor status in cases than wild type 

and mutant alleles of genes in question are present.  It also may allow detection of novel 

isoforms which lead to loss of wild type functionality. DNA methylation data on the other 

hand may provide potential mechanistic explanation and additional layer of evidence to loss 

of expression of gene in question in case of absence of any other detectable genetic 

alterations. Whole genome sequencing data at sufficient depth is eventually going to be 

available for cancer cell lines, and combining it with all other genomic data sets should 

provide comprehensive genetic characterization of cell lines. The detailed analysis of 
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promoter and enhancer regions may provide evidence on additional mechanisms of tumor 

suppressor genes inactivation. Such characterization may also detect more instances of cancer 

with tumor suppressor genes inactivation and no oncogene alterations. In depth investigation 

of such cases may help to better understand underlying signaling pathways and highlight 

potential opportunities for therapeutic interventions.        

The same approach introduced here for the analysis of tumor suppressor status in cancer cell 

lines can, with some modifications, be extended to analysis of primary tumor samples and 

xenografts established from primary tumor samples. Such analysis should allow more precise 

characterization of tumor suppressor status in samples in question. 

The framework introduced in this work and outlined in Figure 2.3 was designed specifically 

to help better define status of tumor suppressor genes in cancer. However the framework 

could be adapted for applications outside of the oncology field. For example some of the 

genetic syndromes are caused by loss of function of variety of genes, and genes could be 

inactivated by different mechanisms and to different degrees (Strachan et al., 2011) (Ségalat, 

2007). In fact the amount of potential remaining functionality of the gene or genes in question 

in number of cases is related to severity of symptoms (Nussbaum et al., 2007). With 

appropriate modification the existing framework can help to account for multiple mechanisms 

of genes inactivation and also potentially account for degree of inactivation in genetic 

syndromes. Also since some of the phenotypes associated with genetic syndromes could be 

caused by loss of function of one of the genes from the set of multiple genes, it is possible to 

consider generating aggregative status call covering the whole set of genes. 
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4.2 Gene sets activity analysis on sample by sample basis 

 

Gene set activity scores calculated in this thesis for nearly one thousand cancer cell lines, 

based on mRNA expression profiles, allow another angle in characterization of transcriptional 

read outs. It is important to note that prior to this work generating sample based gene set 

activity scores for such extensive collection of cancer cell lines have not been previously 

attempted. This work demonstrated that it is possible to perform sample based gene set 

activity analysis across thousands of samples. It also added additional support to the notion 

that z-score based gene set activity analysis is a solid and practical approach. The framework 

presented here for assessing gene set activity scores on sample by sample basis is regularly 

used to investigate epidemiology of variety of pathways across hundreds of   cell lines and 

thousands of primary and metastatic tumor samples. 

This framework is a good platform for investigating various potential future improvements.  

One of the key areas for future improvements is the enhancement of membership of gene sets. 

In general it is easier to interpret gene set activity scores than genes in the gene set for gene 

set activity analysis based on mRNA data are transcriptionally regulated in the same direction 

by the biological process in question. In order to achieve such memberships for canonical 

signaling pathways the computational approach needs to be developed to distil signaling 

pathway in question to its core of transcriptionally regulated genes. Such work would likely 

need to be followed up by wet lab experiments in order to further confirm and refine gene set 

memberships.  
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Gene set activity scores were used in part to define pSTAT5 mRNA expression signature in 

hematopoietic cancer cell lines. This signature can potentially make it possible to identify 

patients whom may benefit from JAK inhibitor(s), based on JAK-STAT signaling. The poster 

outlining the pSTAT5 mRNA expression signature have been presented at 2013 American 

Society of Clinical Oncology (ASCO) annual meeting and it was downloaded more than 200 

times just in a span of few days, indicating the relevance of work to basic, translational and 

clinical oncology research.  

 

4.3 Summary 

 

Two main research projects formed a foundation of the presented thesis: gene set activity 

analysis on sample by sample basis and a tumor suppressor genes status analysis. 

Computational framework developed for gene set activity analysis allows integrating 

knowledge of signaling pathways with mRNA expression profiles available for each sample 

of extensive collection of cancer cell lines from Cancer Cell Line Encyclopedia. This 

framework was utilized for generating mRNA expression based signature reflecting 

phosphorylation status of STAT5. Antibody based approach to access pSTAT5 status is 

complicated by multiple technical and logistic challenges which greatly decreases availability 

of such analysis in clinical practice. Expression-based assessment of pSTAT5 status promises 

potentially higher availability of such analysis in clinic. Knowledge of pSTAT5 status based 

on mRNA expression signature has a potential to help to select patients for treatment by JAK2 

inhibitors. 
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Comprehensive and systematic computational framework developed for tumor suppressor 

genes status analysis takes the integration theme a few steps further. The framework takes 

advantage of mutation, copy number and mRNA expression data available for cancer cell 

lines in Cancer Cell Line Encyclopedia. Availability of multiple data sets per individual cell 

line allows the framework to account for multiple mechanisms of tumor suppressor genes 

inactivation. Accounting for multiple mechanisms of inactivation of tumor suppressor genes 

improves genomic characterization of cancer cell lines which are important and heavily used 

models for cancer research. In particular the improvement in characterization of TP53 status 

in cancer cell lines  due to work presented in this thesis creates a better foundation for 

research to predict which patients would benefit from treatment with inhibitors of MDM2 

driven TP53 degradation. 
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Appendix A1.2 List of 69 well-known and putative tumor suppressor genes. 

 

Gene ENTREZ ID Gene Title 
APC 324 adenomatous polyposis coli 
ARID1A 8289 AT rich interactive domain 1A (SWI-like) 
ATM 472 ataxia telangiectasia mutated 
ATR 545 ataxia telangiectasia and Rad3 related 
BMPR1A 657 bone morphogenetic protein receptor, type IA 
BRCA1 672 breast cancer 1, early onset 
BRCA2 675 breast cancer 2, early onset 
BRIP1 83990 BRCA1 interacting protein C-terminal helicase 1 
CDC73 79577 cell division cycle 73, Paf1/RNA polymerase II complex component 
CDH1 999 cadherin 1, type 1, E-cadherin (epithelial) 
CDKN1A 1026 cyclin-dependent kinase inhibitor 1A (p21, Cip1) 
CDKN1B 1027 cyclin-dependent kinase inhibitor 1B (p27, Kip1) 
CDKN2A 1029 cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4) 
CDKN2B 1030 cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4) 
CHEK1 1111 Checkpoint kinase Chk1 (CHK1) 
CHEK2 11200 CHK2 checkpoint homolog (S. pombe) 
CREBBP 1387 CREB binding protein 
CYLD 1540 cylindromatosis (turban tumor syndrome) 
DLC1 10395 deleted in liver cancer 1 
FANCA 2175 Fanconi anemia, complementation group A 
FANCB 2187 Fanconi anemia, complementation group B 
FANCC 2176 Fanconi anemia, complementation group C 
FANCD2 2177 Fanconi anemia, complementation group D2 
FANCE 2178 Fanconi anemia, complementation group E 
FANCF 2188 Fanconi anemia, complementation group F 
FANCG 2189 Fanconi anemia, complementation group G 
FANCI 55215 Fanconi anemia, complementation group I 
FANCL 55120 Fanconi anemia, complementation group L 
FANCM 57697 Fanconi anemia, complementation group M 
FBXW7 55294 F-box and WD repeat domain containing 7 
FH 2271 fumarate hydratase 
FHIT 2272 fragile histidine triad gene 
FLCN 201163 folliculin 
HIPK2 28996 homeodomain interacting protein kinase 2 
KDM6A 7403 ubiquitously transcribed tetratricopeptide repeat, X chromosome 
LATS1 9113 LATS, large tumor suppressor, homolog 1 (Drosophila) 
LATS2 26524 LATS, large tumor suppressor, homolog 2 (Drosophila) 
MEN1 4221 multiple endocrine neoplasia I 
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MLH1 4292 mutL homolog 1, colon cancer, nonpolyposis type 2 (E. coli) 
MSH2 4436 mutS homolog 2, colon cancer, nonpolyposis type 1 (E. coli) 
MSH6 2956 mutS homolog 6 
NBN 4683 nibrin 
NF1 4763 neurofibromin 1 
NF2 4771 neurofibromin 2 (merlin) 
PALB2 79728 partner and localizer of BRCA2 
PRKAR1A 5573 protein kinase, cAMP-dependent, regulatory, type I, alpha 
PTCH1 5727 patched homolog 1 (Drosophila) 
PTEN 5728 Putative protein tyrosine phosphatase (PTEN) 
RAD50 10111 RAD50 homolog (S. cerevisiae) 
RAD51 5888 RAD51 homolog (RecA homolog, E. coli) (S. cerevisiae) 
RB1 5925 retinoblastoma 1 
RUNX1 861 runt-related transcription factor 1 
SDHB 6390 succinate dehydrogenase complex, subunit B, iron sulfur (Ip) 
SDHD 6392 succinate dehydrogenase complex, subunit D 
SMAD2 4087 SMAD family member 2 
SMAD4 4089 SMAD family member 4 
SMARCB1 6598 SWI/SNF related, actin dependent regulator of chromatin, subfamily b 1 
STK11 6794 serine/threonine kinase 11 
STK3 6788 serine/threonine kinase 3 (STE20 homolog, yeast) 
SUFU 51684 suppressor of fused homolog (Drosophila) 
TGFBR2 7048 transforming growth factor, beta receptor II (70/80kDa) 
TNFAIP3 7128 tumor necrosis factor, alpha-induced protein 3 
TP53 7157 tumor protein p53 
TP53BP1 7158 tumor protein p53 binding protein 
TSC1 7248 tuberous sclerosis 1 
TSC2 7249 tuberous sclerosis 2 
VHL 7428 von Hippel-Lindau tumor suppressor 
WRN 7486 Werner syndrome 
WT1 7490 Wilms tumor 1 
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Appendix A1.3 Summary of inactivation categories counts for 69 tumor suppressor genes 

 

Gene 
Symbol 

G 
# 

E-G 
# 

 

G-M 
# 

G-D 
# 

 

E-G-D 
# 

E-G-M 
# 

 

E 
# 

E-LOH 
# 

 

WT-E 
# 

WT 
# 

CDKN2A 231 16 
 

0 231 
 

16 0 
 

42 15 
 

97 101 
CDKN2B 215 0 

 
0 215 

 
0 0 

 
0 0 

 
18 218 

TP53 179 39 
 

176 3 
 

21 18 
 

0 37 
 

84 89 
RB1 36 5 

 
29 7 

 
3 2 

 
0 7 

 
295 5 

PTEN 20 9 
 

14 6 
 

9 0 
 

2 7 
 

398 0 
SMAD4 20 0 

 
6 14 

 
0 0 

 
0 0 

 
6 353 

KDM6A 15 0 
 

1 14 
 

0 0 
 

0 0 
 

0 132 
APC 13 2 

 
13 0 

 
2 0 

 
0 1 

 
226 141 

NF1 10 0 
 

7 3 
 

0 0 
 

0 0 
 

13 419 
TGFBR2 8 21 

 
0 8 

 
15 6 

 
52 30 

 
235 96 

MLH1 7 1 
 

6 1 
 

0 1 
 

18 4 
 

350 2 
FHIT 6 0 

 
0 6 

 
0 0 

 
0 0 

 
5 232 

CDH1 5 0 
 

2 3 
 

0 0 
 

0 0 
 

183 234 
STK11 5 0 

 
3 2 

 
0 0 

 
0 0 

 
0 414 

NF2 4 6 
 

3 1 
 

6 0 
 

0 3 
 

224 197 
MSH2 4 5 

 
2 2 

 
4 1 

 
0 0 

 
519 66 

ARID1A 4 2 
 

3 1 
 

1 1 
 

0 2 
 

98 251 
DLC1 4 0 

 
2 2 

 
0 0 

 
0 0 

 
103 241 

VHL 3 4 
 

3 0 
 

4 0 
 

0 0 
 

13 413 
SMARCB1 3 1 

 
0 3 

 
0 1 

 
0 0 

 
288 157 

ATM 3 0 
 

3 0 
 

0 0 
 

0 1 
 

169 120 
RUNX1 3 0 

 
0 3 

 
0 0 

 
0 0 

 
6 496 

LATS2 2 17 
 

0 2 
 

17 0 
 

52 25 
 

214 88 
TSC2 2 1 

 
1 1 

 
1 0 

 
1 2 

 
24 427 

CREBBP 2 1 
 

1 1 
 

1 0 
 

0 0 
 

426 5 
BMPR1A 2 0 

 
0 2 

 
0 0 

 
22 12 

 
301 91 

FBXW7 1 2 
 

1 0 
 

2 0 
 

1 1 
 

53 257 
CDKN1B 1 1 

 
0 1 

 
1 0 

 
0 0 

 
524 3 

BRCA1 1 0 
 

1 0 
 

0 0 
 

1 0 
 

321 78 
FANCA 1 0 

 
0 1 

 
0 0 

 
0 0 

 
3 535 

FANCB 1 0 
 

0 1 
 

0 0 
 

0 0 
 

0 120 
FANCC 1 0 

 
1 0 

 
0 0 

 
0 0 

 
0 418 

FANCG 1 0 
 

1 0 
 

0 0 
 

0 0 
 

309 41 
FANCM 1 0 

 
1 0 

 
0 0 

 
0 0 

 
0 396 

LATS1 1 0 
 

1 0 
 

0 0 
 

0 0 
 

0 422 
MSH6 1 0 

 
0 1 

 
0 0 

 
0 0 

 
555 1 

PRKAR1A 1 0 
 

0 1 
 

0 0 
 

0 0 
 

1 549 
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TNFAIP3 1 0 
 

1 0 
 

0 0 
 

0 0 
 

84 327 
TSC1 1 0 

 
1 0 

 
0 0 

 
0 0 

 
74 368 

WRN 1 0 
 

0 1 
 

0 0 
 

0 0 
 

71 280 
PTCH1 0 3 

 
0 0 

 
3 0 

 
48 17 

 
142 212 

HIPK2 0 1 
 

0 0 
 

1 0 
 

34 9 
 

228 288 
FANCF 0 1 

 
0 0 

 
1 0 

 
10 5 

 
95 375 

CDKN1A 0 0 
 

0 0 
 

0 0 
 

41 10 
 

239 275 
STK3 0 0 

 
0 0 

 
0 0 

 
6 3 

 
370 120 

CHEK2 0 0 
 

0 0 
 

0 0 
 

3 0 
 

74 311 
CHEK1 0 0 

 
0 0 

 
0 0 

 
1 0 

 
429 46 

FANCD2 0 0 
 

0 0 
 

0 0 
 

1 0 
 

350 43 
RAD51 0 0 

 
0 0 

 
0 0 

 
1 0 

 
319 155 

ATR 0 0 
 

0 0 
 

0 0 
 

0 0 
 

534 7 
BRCA2 0 0 

 
0 0 

 
0 0 

 
0 0 

 
7 295 

BRIP1 0 0 
 

0 0 
 

0 0 
 

0 0 
 

13 465 
CDC73 0 0 

 
0 0 

 
0 0 

 
0 0 

 
445 53 

CYLD 0 0 
 

0 0 
 

0 0 
 

0 0 
 

28 448 
FANCE 0 0 

 
0 0 

 
0 0 

 
0 0 

 
2 493 

FANCI 0 0 
 

0 0 
 

0 0 
 

0 0 
 

506 10 
FANCL 0 0 

 
0 0 

 
0 0 

 
0 0 

 
572 19 

FH 0 0 
 

0 0 
 

0 0 
 

0 0 
 

440 133 
FLCN 0 0 

 
0 0 

 
0 0 

 
0 0 

 
2 288 

MEN1 0 0 
 

0 0 
 

0 0 
 

0 0 
 

261 300 
NBN 0 0 

 
0 0 

 
0 0 

 
0 0 

 
211 318 

PALB2 0 0 
 

0 0 
 

0 0 
 

0 0 
 

317 186 
RAD50 0 0 

 
0 0 

 
0 0 

 
0 0 

 
1 404 

SDHB 0 0 
 

0 0 
 

0 0 
 

0 0 
 

458 0 
SDHD 0 0 

 
0 0 

 
0 0 

 
0 0 

 
463 0 

SMAD2 0 0 
 

0 0 
 

0 0 
 

0 0 
 

375 3 
SUFU 0 0 

 
0 0 

 
0 0 

 
0 0 

 
0 420 

TP53BP1 0 0 
 

0 0 
 

0 0 
 

0 0 
 

146 155 
WT1 0 0 

 
0 0 

 
0 0 

 
0 0 

 
55 467 
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Appendix A1.4 Lowest GeneGo Gene Set Activity Scores for liver sample from (Ge et al., 2005). 

Gene Set Name  Gene Set Size  Gene Set Activity Score Permutation Fraction 
HNRPD_inhibited 1 -1.88 0.998 
Development_PDGF signaling via 
MAPK cascades 46 -1.90 1 
Cell cycle_Start of DNA replication in 
early S phase 43 -1.91 1 
Cytoskeleton remodeling_Role PKA in 
cytoskeleton reorganization 81 -1.93 1 
Cytoskeleton remodeling_RalA 
regulation pathway 33 -1.97 0.998 
Transport_ACM3 in salivary glands 55 -1.99 1 
wtCFTR and deltaF508 traffic / 
Membrane expression (norm and CF) 43 -2.00 1 
Development_WNT signaling pathway. 
Part 1. Degradation of beta-catenin in 
the absence WNT signaling 28 -2.00 1 
Translation _Regulation activity of 
EIF2 56 -2.01 1 
Immune response  _CCR3 signaling in 
eosinophils 119 -2.03 1 
dGTP metabolism 38 -2.03 1 
Gqa specific GPCRs (in brain) 31 -2.07 1 
Development_Endothelin-1/EDNRA 
signaling 69 -2.10 1 
Neurophysiological process_PGE2-
induced pain processing 39 -2.16 1 
Cytoskeleton remodeling_Regulation of 
actin cytoskeleton by Rho GTPases 62 -2.16 1 
Cytoskeleton remodeling_Keratin 
filaments 48 -2.20 1 
Immune response  _Function MEF2 in 
T lymphocytes 92 -2.21 1 
Cell adhesion_Integrin-mediated cell 
adhesion 90 -2.27 1 
Cell cycle_Role of Nek in cell cycle 
regulation 55 -2.29 1 
KLF10_inhibited 1 -2.34 1 
SKIL_inhibited 1 -2.34 1 
Cytoskeleton remodeling_Reverse 
signalling by ephrin B 80 -2.46 1 
Cytoskeleton remodeling_Slit-Robo 
signaling 56 -2.49 1 
Transcription_Role of heterochromatin 
protein 1 (HP1) family in transcriptional 
silencing 45 -2.49 1 
Transcription_Ligand-Dependent 110 -2.49 1 
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Transcription of Retinoid-Target genes 
Regulation of CFTR activity (norm and 
CF) 93 -2.51 1 
Apoptosis and survival_BAD 
phosphorylation 83 -2.55 1 
Cell cycle_Spindle assembly and 
chromosome separation 88 -3.08 1 
Cytoskeleton 
remodeling_Neurofilaments 50 -3.24 1 
Development_Role of CDK5 in 
neuronal development 76 -3.29 1 
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Appendix A1.5  Fold change and t-test p-values between p-STAT5(+) and p-STAT5(-) cell lines. 

Gene Name Entrez 
 

probe set p-STAT5+ mean p-STAT5- mean Fold t-test p-value 
PIM1 5292 209193_at 875 134 5.04 6.82E-07 
CISH 1154 223961_s_at 245 21 4.15 5.86E-06 
SOCS2 8835 203373_at 2441 326 6.63 1.64E-05 
ID1 3397 208937_s_at 1548 332 4.19 0.00331972 
LCN2 3934 212531_at 80 8 2.24 0.00453474 
EPOR 2057 209962_at 118 38 1.91 0.00836353 
KIR3DL1 3811 211687_x_at 24 14 1.15 0.02315812 
C3AR1 719 209906_at 91 35 1.66 0.02897651 
BCL2L1 598 212312_at 270 167 1.47 0.03413896 
IGJ 3512 212592_at 106 3746 -

 
0.04997906 

EGR1 1958 227404_s_at 1035 351 2.71 0.0638939 
OSM 5008 230170_at 53 17 1.55 0.10218279 
TBX21 30009 220684_at 40 12 1.46 0.14215803 
TNFRSF13B 23495 207641_at 27 71 -1.57 0.15316237 
ESR1 2099 205225_at 10 18 -1.15 0.15905403 
XIAP 331 228363_at 711 1041 -1.43 0.20670021 
ABCB1 5243 243951_at 34 19 1.21 0.21057215 
IL18 3606 206295_at 91 50 1.41 0.26985569 
SKP2 6502 210567_s_at 256 345 -1.29 0.27693167 
MYC 4609 202431_s_at 5556 4662 1.19 0.30379619 
SRP9 6726 201273_s_at 5997 6579 -1.1 0.36038668 
FOS 2353 209189_at 98 55 1.41 0.42764108 
IL10 3586 207433_at 7 23 -1.29 0.45530643 
EBF1 1879 227646_at 565 1033 -1.76 0.46111412 
CSN1S1 1446 208350_at 4 3 1.02 0.50498373 
ONECUT1 3175 210745_at 8 10 -1.03 0.54105495 
HSD3B2 3284 206294_at 4 5 -1.02 0.54197609 
SLC30A2 7780 230084_at 16 15 1.02 0.54712739 
SP1 6667 224760_at 367 311 1.15 0.55826135 
PRF1 5551 214617_at 76 73 1.02 0.56205153 
IFNG 3458 210354_at 8 9 -1.03 0.56455525 
IL22 50616 222974_at 6 4 1.02 0.56529166 
CITED4 163732 228625_at 38 94 -1.64 0.58702634 
CCND1 595 208712_at 40 107 -1.75 0.60420565 
RAD51 5888 205024_s_at 576 626 -1.08 0.66382789 
PAX5 5079 206802_at 9 11 -1.03 0.68588032 
CSN2 1447 207951_at 10 11 -1.02 0.69349354 
SOCS1 8651 210001_s_at 142 102 1.26 0.72728647 
RBMS1 5937 225265_at 310 296 1.04 0.7600465 
PTGS2 5743 204748_at 28 49 -1.27 0.78891958 
SOCS3 9021 227697_at 118 26 2.21 0.81490784 
EPAS1 2034 200878_at 429 157 2.31 0.8417473 
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TRGC2 6967 216920_s_at 466 410 1.12 0.8773761 
FOXP3 50943 221333_at 3 3 -1 0.93339042 
CDKN1A 1026 202284_s_at 173 182 -1.04 0.94107376 
TLR2 7097 204924_at 64 72 -1.07 0.96066244 
GADD45G 10912 204121_at 11 11 1 0.98495784 
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Appendix A1.6  Genes transcriptionally activated by MITF 

Gene 
Symbol Gene Title 

Entrez Gene 
ID 

ACP5 acid phosphatase 5, tartrate resistant 54 
BCL2 B-cell CLL/lymphoma 2 596 
CDH1 cadherin 1, type 1, E-cadherin (epithelial) 999 
CDKN1A cyclin-dependent kinase inhibitor 1A (p21, Cip1) 1026 
CDKN2A cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4) 1029 
CLCN7 chloride channel 7 1186 
CTSK cathepsin K 1513 
DCT dopachrome tautomerase (dopachrome delta-isomerase, tyrosine-related protein 2) 1638 
MLANA melan-A 2315 
GZMB granzyme B (granzyme 2, cytotoxic T-lymphocyte-associated serine esterase 1) 3002 

HIF1A 
hypoxia inducible factor 1, alpha subunit (basic helix-loop-helix transcription 
factor) 3091 

ITGA4 integrin, alpha 4 (antigen CD49D, alpha 4 subunit of VLA-4 receptor) 3676 
MC1R melanocortin 1 receptor (alpha melanocyte stimulating hormone receptor) 4157 
MET  met proto-oncogene (hepatocyte growth factor receptor) 4233 
TRPM1 transient receptor potential cation channel, subfamily M, member 1 4308 
NGFR nerve growth factor receptor (TNFR superfamily, member 16) 4804 

SERPINE1 
serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1), 
member 1 5054 

PRKCB protein kinase C, beta 5579 
PTGDS prostaglandin D2 synthase 21kDa (brain) 5730 
SILV silver homolog (mouse) 6490 
TBX2 T-box 2 6909 
TPH1 tryptophan hydroxylase 1 7166 
TPSAB1 tryptase alpha/beta 1 7177 
TYR tyrosinase (oculocutaneous albinism IA) 7299 
TYRP1 tyrosinase-related protein 1 7306 
BEST1 bestrophin 1 7439 
CADM1 cell adhesion molecule 1 23705 
PGDS prostaglandin D2 synthase, hematopoietic 27306 
OSTM1 osteopetrosis associated transmembrane protein 1 28962 
OSCAR osteoclast associated, immunoglobulin-like receptor 126014 
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