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Abstract

In this paper, we extend Jradi et al. (2019). First, we use the asymmetric Laplace 

distribution, which is a more reasonable assumption in quantile models. Second, we 

address the issue of statistical inference for the optimal quantile. Finally, we allow for 

endogeneity in quantile stochastic frontier models. The new formulation is 

implemented in a Bayesian framework using Markov Chain Monte Carlo. We employ 

the celebrated Philippine rice data as in Jradi et al. (2019). Jradi et al. (2019) did not 

provide efficiency measures, which, in our framework, is straightforward to do. 
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1. Introduction 

Quantile estimation of stochastic frontier models has received a lot of attention in 

the literature (Behr, 2010; Bernini et al., 2004; Knox et al., 2007; Kumbhakar et al., 

2019, Liu et al., 2008) including the fundamental papers of Jradi and Ruggiero (2019). 

As Jradi, Parmeter and Ruggiero (2019) write: “An obvious appeal of quantile 

regression is that it is known to provide a more complete picture of a conditional 

distribution [...] and is a robust alternative to regression based methods. Whereas the 

conditional quantile estimator is determined through minimization of the ‘‘check’’ 

function (Koenker and Bassett, 1978) defined for a particular quantile, the median say, 

the ordinary least squares estimator stems from minimization of the sum of squared 

errors making it susceptible to outliers.” (Jradi, Ruggiero and Parmeter, 2019, p. 15). 

In this paper, we provide an alternative to Jradi, Parmeter and Ruggiero (2019). 

Jradi, Parmeter and Ruggiero (2019) provide an estimate of the optimal quantile �̂�∗ 

provided we have a normal-half normal distribution. In our case, conditional on 

inefficiency, the two-sided error component follows an asymmetric Laplace 

distribution (ALD), which is more consistent with the quantile regression formulation, 

and then inefficiency is assigned a given distribution. As Jradi, Ruggiero and Parmeter 

(2019, page 17) write: “One may ask why we elect to determine �̂�∗ by minimizing the 

distance over a fixed grid of selected 𝜏s. [...] This is an important issue and one that we 

leave for future research”. As they also write in their footnote 6, “An important issue 

for future work is to examine the statistical properties of �̂�∗”.  

Our novelty relative to Jradi, Parmeter and Ruggiero (2019) is that the one-sided 

error, conditionally on inefficiency, follows an ALD, so we do not have a normal-half 

normal specification. More specifically, we have what might be called an ALD–half 

normal specification (see also Tsionas, 2020). The issue of distributional properties of 

�̂�∗  is addressed directly and we can, in fact, provide the marginal posterior of the 

optimal quantile. Our second novelty is that although Jradi, Ruggiero and Parmeter 

(2019) did not provide efficiency measures, in our framework this is straightforward to 

do. Third, we allow for endogeneity which we know it is quite important when 

estimating production functions (in the quantile framework or otherwise). Finally, we 

feel it is important to mention that a big caveat that should be mentioned about JPR is 

that their paper does not engage in quantile estimation of the stochastic frontier model 

per se, but attempts to find the quantile that is consistent with the exact location of the 
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frontier. Given that the frontier is a well conceived concept, this is quite different that 

looking at a corresponding quantile in the conditional distribution of output. Both are 

equally important, but different and JPR really only look at the first. Our approach looks 

at the second. For related work, see Horrace and Parmeter (2018).1  

2. Model 

In what follows we first present the stochastic frontier model with ALD errors 

without taking account of endogeneity. In Section 2.2 we take up the issue of 

endogeneity which is common in applied production studies.  

 

2.1. Not accounting for endogeneity 

Suppose  

 𝑦𝑖 = 𝑥′
𝑖𝛽 + 𝑣𝑖 − 𝑢𝑖 ,  𝑖 = 1, … , 𝑛, (1) 

where 𝑥𝑖 is a 𝑘 × 1 vector of regressors2, 𝛽 is a 𝑘 × 1 vector of parameters, 𝑣𝑖 is 

a two-sided error terms, and 𝑢𝑖  is a non-negative error component representing 

technical inefficiency. Let us take inefficiency given for the moment. The standard 

quantile regression problem is based on the asymmetric Laplace distribution (ALD) for 

𝑣𝑖 and provides the maximum likelihood estimator when  

 𝑦𝑖|𝑥𝑖, 𝑢𝑖 ∼ 𝐴𝐿𝐷(𝑥′
𝑖𝛽 − 𝑢𝑖 , 𝜎𝑣, 𝜏),  𝑖 = 1, … , 𝑛, (2) 

where 𝜎𝑣 > 0 is a scale parameter, 𝜏 ∈ (0,1) denotes quantile, and 𝐴𝐿𝐷(𝜇, 𝜎𝑣, 𝜏) 

has density which is given by 𝑓(𝑒) =
𝜏(1−𝜏)

𝜎𝑣
exp {−

𝑒(𝜏−𝕀(𝑒<0))

𝜎𝑣
} . Clearly, we can 

express this model as:  

 𝑦𝑖 = 𝑥′
𝑖𝛽𝜏 + 𝑣𝑖 − 𝑢𝑖 ,  𝑖 = 1, … , 𝑛, (3) 

where 𝑣𝑖|𝑥𝑖, 𝑢𝑖 ∼ 𝐴𝐿𝐷(0, 𝜎𝑣, 𝜏),  𝑖 = 1, … , 𝑛 . We also assume 𝑢𝑖 ∼ 𝑁+(0, 𝜎𝑢
2),  𝑖 =

1, … , 𝑛. Our problem in this paper is to investigate the endogeneity of 𝑥𝑖, viz. when 𝑥𝑖 

orthogonal to or independent of 𝑣𝑖.  

An alternative and, perhaps, more useful representation is:  

 𝑦𝑖 = 𝑥′
𝑖𝛽 + 𝜎𝑣𝐴(𝜏)𝜉𝑖 + 𝑣𝑖 − 𝑢𝑖 ,  𝑖 = 1, … , 𝑛, (4) 

 

                                                 
1 We would like to thank an anonymous reviewer for raising this point. 
2For simplicity we focus on the cross-sectional case but the same analysis applies to panel data 

as we will see in our application. 
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where  

 𝑣𝑖|𝜉𝑖 ∼ 𝑁(0,  𝜎𝑣
2𝐵(𝜏)𝜉𝑖),  𝑖 = 1, … , 𝑛, (5) 

where 𝐴(𝜏) =
1−2𝜏

𝜏(1−𝜏)
, 𝐵(𝜏) =

2

𝜏(1−𝜏)
 and 𝜉𝑖  follows a standard exponential 

distribution, see for example Kuzobowski and Podgorski (2000) and Lum and Gelfand 

(2012). This representation is different compared to Tsionas (2020) which leads to 

differences in MCMC formulations. In the absence of endogeneity, and in a Bayesian 

framework it is easy to think of 𝜏 as part of the parameter vector in which case a prior 

𝑝(𝜏|𝛽, 𝜎𝑣, 𝜎𝑢) is assigned, say 𝑝(𝜏|𝛽, 𝜎𝑣, 𝜎𝑢) ∝ const., and 𝜏 ∈ (0,1). This prior is 

non-informative. Assuming 𝑝(𝛽, 𝜎𝑣, 𝜎𝑢) ∝ 𝜎𝑣
−1𝜎𝑢

−1,viz. a non-informative prior, the 

posterior becomes:  

𝑝(𝜃, 𝑢, 𝜏|𝐷) ∝ 

[𝜏(1 − 𝜏)]𝑛𝜎𝑣
−(𝑛+1)

𝜎𝑢
−(𝑛+1)

exp {−
∑ (𝑦𝑖−𝑥′

𝑖𝛽+𝑢𝑖)𝑛
𝑖=1 (𝜏−𝕀(𝑦𝑖−𝑥′

𝑖𝛽+𝑢𝑖<0))

𝜎𝑣
−

∑ 𝑢𝑖
2𝑛

𝑖=1

2𝜎𝑢
2 } 𝑝(𝜃).  

(6) 

 

2..2 Accounting for endogeneity 

To account for endogeneity, in the presence of instruments 𝑧𝑖 ∈ ℝ𝑑𝑧  we use the 

following “reduced form”:  

 𝑥𝑖 = Π𝑧𝑖 + 𝑣𝑖0,  𝑖 = 1, . . . , 𝑛, (7) 

 

where Π is a 𝑘 × 𝑑𝑧 matrix, and  

 𝑉𝑖 = [
𝑣𝑖

𝑣𝑖0
] |𝜉𝑖 ∼ 𝑁𝑘+1(0,  𝐴(𝜏)𝜉𝑖Σ),  𝑖 = 1, . . . , 𝑛, (8) 

 

subject to the restriction that 𝜎11 = 𝜎𝑣
2, where Σ is a (𝑘 + 1) × (𝑘 + 1) covariance 

matrix. Notice that dependence between 𝑣𝑖 and 𝑣𝑖0 is modeled via both the general 

form of Σ  and 𝜉𝑖  as well. Jointly, (5) and (8), unconditionally on 𝜉𝑖  form a 

multivariate ALD. The details of our Markov Chain Monte Carlo (MCMC) are 

presented in the Appendix. Relative to Tsionas (2020) the specification in (5) and (8), 

becomes quite different once endogeneity is taken into account as the reduced form 

now depends on 𝜏 and, in effect, the conditional distribution of 𝑥𝑖s shifts with 𝜏. This 

fact allows straightforward generalizations of the present model to the case of input-
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oriented or output-oriented distance functions.  

3. Application 

We use the same data as in Jradi, Parmeter and Ruggiero (2019), viz. the celebrated 

rice farming data collected in the Philippines, see Coelli et al. (2005) and Parmeter et 

al. (2019). The data are composed of 43 farmers observed annually for eight years. Even 

though the data constitutes a panel, we ignore this as in Jradi, Parmeter and Ruggiero 

(2019).  

The output variable (𝑦) is tonnes of freshly threshed rice. The input variables are 

area (𝑥1) of planted rice (𝑥2), total labor (𝑥3) used (man-days of family and hired-labor) 

and fertilizer (𝑥4). Following Rho and Schmidt (2015) we normalize the inputs and 

output at their respective means prior to taking the log transformation. This implies that 

we can sum the coefficients on the linear terms of the translog production frontier to 

calculate returns to scale (RTS) at the means.  

Endogeneity plagues applied econometrics practice and, more often than not, it is a 

serious issue. In the context of production functions, for example, it is known that inputs 

are endogenous, at least since Zellner, Kmenta and Dreze (1966). Input endogeneity 

holds under most behavioral assumptions for the firm and, of course, when noise/ 

shocks are known by the firm but not the economist as in this case, input decisions 

necessarily depend on the realization of shocks. Moreover, as rice production depends 

a lot on weather and other types of shocks, it is highly unlikely that inputs are exogenous 

or predetermined so considering endogeneity is extremely important in this application.  

Access to the posterior is provided via Markov Chain Monte Carlo (MCMC) using 

150,000 iterations, omitting the first 50,000 to mitigate possible start-up effects. To 

check convergence we have used ten different chains starting from different initial 

conditions. Drawing MCMC for 𝛽, 𝜎𝑣, 𝜎𝑢 is straightforward. For 𝑢𝑖s and 𝜏 this is 

not the case but we provide the details in the Appendix.  

Our parameter estimates are reported in Table 1, although they do not have a 

structural interpretation, to compare with Jradi, Parmeter and Ruggiero (2019). Our 

marginal posterior density of 𝜏 is reported in Fig. 1.  
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Fig. 1 Marginal posterior density for τ 

 

Interestingly, the marginal posterior is bimodal with two modes near 0.90 and 0.92. 

The posterior mean is 0.906 with posterior standard deviation 0.0085, and the posterior 

median is 0.903.  
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Table 1. Posterior moments 

𝛽1  0.372  

(0.032)  

𝛽2  0.303  

(0.044)  

𝛽3  0.322  

(0.017)  

𝛽11  -0.117  

(0.016)  

𝛽12  -0.255  

(0.019)  

𝛽13  0.135  

(0.020)  

𝛽22  0.214  

(0.019)  

𝛽23  -0.181  

(0.025)  

𝛽33  -0.122  

(0.044)  

trend  0.005  

(0.002)  

𝜆  3.403  

(0.019)  

𝜎2  0.127  

(0.025)  

𝜏  0.912  

(0.014)  

Notes: The coefficients are the same as in Εq. (7) in Jradi, Parmeter and Ruggiero (2019). 

“trend” corresponds to their 𝜃 . Moreover, 𝜎2 = 𝜎𝑣
2 + 𝜎𝑢

2 , 𝜆 =
𝜎𝑢

𝜎𝑣
 and 𝜏  is the quantile 

parameter. 

 

Our returns to scale (RTS) measure averages3 to 0.997 (with posterior s.d. 0.032) 

compared to 0.963 in Jradi, Parmeter and Ruggiero (2019). To the best of our 

knowledge Jradi, Parmeter and Ruggiero (2019) did not provide efficiency measures. 

                                                 
3If the 𝑥s are in deviations from means, then the sum of 𝛽𝑗s provides average RTS. 
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In a Bayesian setting (in) efficiency can be estimated easily using the MCMC draws for 

𝑢𝑖s. Their sample distribution is provided in Fig. 2. The mean and standard deviation 

of efficiency estimates are, respectively, 0.873 and 0.0415.  

 

Fig. 2. Sample densities of efficiency 

 

Estimates of efficiency are different in panel (a) of Fiγ. 2, the intuition being that 

inconsistent parameter estimates, derived when endogeneity is ignored, have a large 

impact on such estimates. The fact that such estimates are quite different is interpreted 

as direct evidence that the amount of endogeneity is substantial. To the extent, 

therefore, that parameter estimates of the frontier are quite different, implies that 

efficiency estimates are quite different as well. From panel (a) the differences are, 

indeed, substantial.  

The point that 𝜏  can be estimated and, therefore, it has a marginal posterior 

distribution, has been overlooked in the literature and, for the most part, applied 

researchers would be interested in something like Fig. 2 which shows how inefficiency 

varies with a given value of 𝜏. This point of view is not necessarily correct. In panel 
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(a) of Figure 1, we present the marginal posterior of 𝜏 when uncertainty with respect 

to this parameter is taken into account (that is when 𝜏 is integrated out of the joint 

posterior of inefficiency, 𝜏 and other parameters). So, the evidence in panel (b) of Fig. 

2 would be more appropriate for researchers that want to look into efficiency 

distributions for a given quantile, but if uncertainty with respect to the particular 

quantile is important, then empirical researchers need to look at panel (a) of Fig. 2.  

In panel (c) of the same Figure, we present cumulative distribution functions (cdf) 

corresponding to different quantiles. From this evidence, it is clear that we do not have 

the “quantile crossing problem”. In other applications, this could happen and more 

research is needed to address this issue.  

Finally, in panel (d) we present sample densities of inefficiency estimates similar to 

those reported in panel (a) of Fig. 1, when we consider alternative priors for the quantile 

parameter, viz. 𝑝(𝜏|𝛽, 𝜎𝑣, 𝜎𝑢) ∝ 𝜏𝑎−1(1 − 𝜏)𝑏−1, viz. a beta distribution, where the 

prior parameters 𝑎,  𝑏  are randomly selected (i.e. uniformaly distributed) in the 

interval 0 to 10. MCMC is implemented again 10,000 times and 100 representative 

inefficiency densities are presented in panel (d) of Figure 2. These densities are quite 

similar to the one reported in panel (a) of Fig. 1 as well as to one another so, we do not 

have sensitivity with respect to a reasonable prior.4  

 

Concluding remarks 

In this paper we take up the issue of quantile estimation in stochastic frontier models 

using the asymmetric Laplace distribution (ALD). The ALD is the distribution of the 

two-sided error, conditionally on technical inefficiency. In turn, the one-sided error 

term that represents inefficiency is assigned a half-normal distribution. We believe that, 

relative to the current state of the art, we improve quantile estimation of stochastic 

frontier models in three ways. First, the ALD is well-suited as a distribution of the two-

sided error term in the sense that this is closely associated with the ALD interpretation 

of quantile regression in regression models. Second, our MCMC techniques provide 

directly (in) efficiency estimates utilizing fully our assumptions. Third, we successfully 

address the issue of statistical inferences for the optimal quantile and, additionally, we 

                                                 
4We are grateful to a reviewer for pointing out the necessity of this exercise. 
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address formally the endogeneity problem. In terms of future research, it would be quite 

interesting to see how the no-quantile-crossing property can be imposed (see Wang et 

al., 2014, Tsionas, 2020).  
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Appendix. Technical Appendix 

In this Appendix, we show how to implement MCMC. The major difficulty in 

implementing numerical inference by MCMC is that in (8) the covariance matrix is 

Σ𝑖 ≡ 𝐴(𝜏)𝜉𝑖Σ  which depends on both 𝜏  and 𝜉𝑖 . Suppose Σ = [
𝜎11 𝜎1

′

𝜎1 Σ11
]  where 

Σ11 is 𝑘 × 𝑘 and 𝜎1 is 𝑘 × 1.  

Using results from partitioned inversion we have: 

 

Σ𝑖
−1

= [𝐴(𝜏)𝜉𝑖]
−1 [

1

𝜎11 − 𝜎1
′𝛴11

−1𝜎1

⋅

−Σ11
−1𝜎1(𝜎11 − 𝜎1

′Σ11
−1𝜎1)−1 (Σ11 − 𝜎1

′Σ11
−1𝜎1)−1

]. 
(A.1) 

 

In turn we can write the augmented posterior distribution as follows:  

𝑝(𝜃, 𝜏, Σ, {𝑢𝑖}𝑖=1
𝑛 , {𝜉𝑖}𝑖=1

𝑛 |𝐷) ∝

𝜎𝑣
−(𝑛+1)

∏[

𝑛

𝑖=1

𝐴(𝜏)𝜉𝑖]
−1|Σ|−𝑛/2 ⋅ 𝑝(𝜃, 𝜏, 𝜎) ⋅ exp (−

𝑄

2
−

1

2𝜎𝑢
2

∑ 𝑢𝑖
2

𝑛

𝑖=1
) ⋅ ∏ 𝐼

𝑛

𝑖=1

(0 < 𝜉𝑖 < 1),
 

 

where  
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𝑄 = (∏[

𝑛

𝑖=1

𝐴(𝜏)𝜉𝑖]
−1) [𝑦𝑖 − 𝑥′

𝑖𝛽 − 𝜎𝑣𝐴(𝜏)𝜉𝑖 + 𝑢𝑖

⋮ 𝑥𝑖

− Π𝑧𝑖]
′Σ−1[

𝑦𝑖 − 𝑥′
𝑖𝛽 − 𝜎𝑣𝐴(𝜏)𝜉𝑖 + 𝑢𝑖

𝑥𝑖 − Π𝑧𝑖
], 

(A.2) 

 

and Σ−1 = [

1

𝜎11−𝜎1
′𝛴11

−1𝜎1
⋅

−Σ11
−1𝜎1(𝜎11 − 𝜎1

′Σ11
−1𝜎1)−1 (Σ11 − 𝜎1

′Σ11
−1𝜎1)−1

].  

 

To simplify the computations as much as possible we adopt the following strategy:  

1.  Draw a candidate 𝛽 from 𝑁(𝑏, 𝑉𝑏) where 𝑏 = (𝑋′𝑋)−1𝑋′[𝑦 − 𝜎𝑣𝐴(𝜏)𝜉 +

𝑢],  𝑉𝑏 = ℎ𝜎𝑣
2(∏ [𝑛

𝑖=1 𝐴(𝜏)𝜉𝑖]
−1)(𝑋′𝑋)−1 where ℎ is a positive constant. We 

use a Metropolis-Hastings criterion to determine whether the candidate is 

accepted, otherwise we set the new MCMC draw to its previous value. 

Regarding ℎ , we determine it so that during the burn-in phase so that, 

approximately, 25% of candidates are accepted.  

2. We draw 𝜎𝑣, 𝜏,  and {𝜉𝑖}𝑖=1
𝑛  using a random-walk Metropolis Hastings 

algorithm.  

3. We draw {𝑢𝑖}𝑖=1
𝑛  from 𝑁+(0,  ℎ𝑜𝜎𝑢

2) and then we use a Metropolis-Hastings 

criterion to determine whether the candidate is accepted. Regarding ℎ𝑜 , we 

determine it so that during the burn-in phase so that, approximately, 25% of 

candidates are accepted.  

 


