CHALMERS

Modelling of non-uniform washcoat in catalytic monolith reactors

M. Walander ${ }^{1 *}$, J. Sjöblom ${ }^{1 * *}$, D. Creaser ${ }^{2}$, B. Lundberg ${ }^{3}$, S. Tamm ${ }^{4}$ and J. Edvardsson ${ }^{4}$
1: Mechanics and Maritime Sciences, Chalmers University of Technology, SE-412 96, Göteborg (Sweden)
2: Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96, Göteborg (Sweden)
3: Volvo Car Corporation, SE-418 78, Göteborg (Sweden) 4: Johnson Matthey, SE-421 31, Göteborg (Sweden) *magwal@chalmers.se, +4676-8335320, **jonas.sjoblom@chalmers.se

WASHCOAT CHARACTERIZATION

- Most 1+1d models assume uniform washcoat with global properties
- SEM (Scanning Electron Microscope) to approximate global and local porosity using imageJ
- IGA (Intelligent Gravimetric Analysis) to measure washcoat diffusivity [1]
- Input for parallel simulations to account for non-uniformity and tangential variations in properties

- Tortuosity, $\tau \approx 4$
- Porosity, $\varepsilon \approx\left[\begin{array}{lll}0.81 & 0.83 & 0.86\end{array}\right]$
- Unused washcoat showed up to 6.2 \% higher local porosity in corners

[^0][^1]
PARALLEL 1+1D MODEL

- Sectioning principle based on equal angle
- Assumes no tangential mass transfer (between slices)

321
Light-off simulation 100 ppm NO

CONCLUSIONS

- IGA and SEM enabled tangentially resolved washcoat diffusivities - important for highly predictive reactor models.
- With global porosity, conversion decreases due to slightly thicker washcoat.
- With local porosity, conversion increases due to higher diffusivity in corners.

[^2]
[^0]: - Washcoat thickness, $\mathrm{d}_{\text {wsc }} 92 \%$ higher in corners
 - $\mathbf{N}=3$ slices gives good tradeoff

[^1]: Acknowledgements: All project members along with the technical support at Johnson Matthey are deeply acknowledged for their help with performing and analyzing the experiments. The Swedish Energy Agency (FFI project 42814-1) is acknowledged for financial support.

[^2]: References:
 [1] - Ruthven DM. Diffusion in type A zeolites: New insights from old data. Microporous and Mesoporous Materials. 2012;162:69-79.

