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Abstract—Hardware impairments are the inevitable limiting
factors in radio frequency communication systems, and in
particular in mm-wave, the impairments can severely affect
system performance. In this paper, we propose an additive noise
modeling technique for modeling and analyzing the residual
hardware impairments, more accurately than previously done
in the literature. We analyze the effects of joint residual phase
noise and IQI in both transmitter and receiver by using additive
noise modeling as a representation method and indicate how
other impairments can be described in the same framework. We
derive the signal to distortion plus noise ratio (SDNR) for both
the joint and the individual effects of impairments and validate
the formulations with simulations which also acknowledge the
usefulness of the additive noise modeling as a mean for accurate
hardware impairments study.

Index Terms—Hardware impairments, residual phase noise,
IQI, additive noise modeling, variance of error.

I. INTRODUCTION

According to the ever-increasing demands for achieving
higher data rates and higher bandwidth in next generation of
wireless networks, the concerns over hardware impairments
have got more attention as one of the major limiting factors in
communication system designs, and several projects are now
contributing to this topic [1]. Relevant hardware impairments
are e.g., non-linear distortions in the power amplifier, phase
noise (PN), in-phase and quadrature imbalance (IQI), timing
jitter, and carrier frequency offset (CFO). To handle the
destructive effects of these impairments and compensating the
residual effects, several calibrations should be carried out in
various parts of the system. For designing and evaluating these
compensation algorithms, the system performance needs to be
analyzed which can be made by modeling the impairments,
and then evaluating the performance in terms of impairment
parameters and residual effects. Such calibration/compensation
analysis in communication systems, is even more relevant in
mm-wave communication due to the more destructive effects
of hardware impairments in these higher bands [1].
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Modeling and analysis of hardware impairment effects on
radio frequency (RF) communication systems are done in
the literature within several different settings. Regarding the
statistical hardware modeling, in [2] a statistical model is
proposed for residual transmitter RF impairments, that de-
scribes the sum of all impairments as an independent and
identical distribution (i.i.d) additive Gaussian noise, which is
a general interpretation based on central limit theorem. In a
similar approach, in [3] a MIMO system which is affected by
residual transmit RF impairments is considered, and achievable
rates are calculated for such a system. In a more accurate
approach, authors in [4] use behavioral modeling of hardware
impairments and the Bussgang theorem [5] for separating
distortion from signal, and derive an approximate aggregate
statistical model for the distortions and apply it to a MIMO-
OFDM system. In [6], the joint effect of residual phase noise
and IQI is studied focusing on the error vector magnitude
(EVM) of single-carrier, linear, and memory-less modulated
signals, such as phase-shift keying and quadrature amplitude
modulation (QAM). In [7], the authors analyze the impact of
joint IQI and PN on the performance of beam-forming OFDM
direct-conversion transceivers by quantifying the normalized
mean square error (NMSE). In [8] and [9], the effect of
hardware impairments are studied for single-carrier scenarios
and it is analytically proved that single-carrier transmission is
more robust to hardware impairments.

In this paper, we derive an accurate additive noise modeling
for hardware impairments which is in general able to provide
a term-by-term description for the individual and combined
effects of hardware impairments. The proposed method relies
on considering accurate behavioral models for different im-
pairments and employing tools such as Taylor expansion to
describe the received signal as the sum of a desired signal and
a distortion (which is uncorrelated with the desired signal).
This framework is signal-agnostic and it can be employed
for both single-carrier direct-conversion transceivers or OFDM
transceivers. As a case study, we apply this modeling method
to a system impaired by residual PN and IQI and demonstrate
its usefulness in performance evaluation and identification of



the dominant source of distortions.
Our proposed method improves on the existing statistical

hardware impairment studies, e.g., [2]–[4], in two ways: 1)
By taking into account the behavioral models corresponding
to different hardware impairments, the proposed modeling
method facilitates a more accurate characterization of the
individual and combined residual impairments. 2) This model
provides a term-by-term description of different components
of the distortion which allows for determining the dominant
source of errors.

The paper is organized as follows. In Section II, we illustrate
additive noise modeling with a case study of joint residual
phase noise and IQI. In Section III, we validate the analytic
study with simulations. In Section IV, we explain how this
framework can be applied on other hardware impairments and
finally, the paper is concluded in Section V.

II. ADDITIVE NOISE MODELING AND ANALYSIS

A. Additive Noise modeling of Residual Phase Noise and IQI

In RF communication systems, by assuming non-frequency
selective IQI and residual phase noise, the up-converted signal
with frequency of fT can be written as [10]:

x′(t) = ej(2πfTt +ϕT(t))(x(t) + αTx
∗(t)), (1)

where αT indicates the impact of IQI in the transmitter, ϕT(t)
stands for the transmitter phase noise and x(t) is a complex
symmetric base-band signal (x(t) and x∗(t) are uncorrelated).
At the receiver side (RX), by considering an ideal non-
frequency-selective channel with complex channel coefficient
A for the base-band received signal, and down-conversion
oscillator frequency of fR, we have:

y(t) =

ej(−2πfRt +ϕR(t))(Ax′(t) + w(t) + αR(Ax′(t) + w(t))∗),
(2)

where αR indicates the impact of IQI in the receiver, ϕR(t)
indicates the receiver phase noise and w(t) represents the
channel additive noise. Now if we consider perfect frequency
offset estimation (fR = fT), we can rewrite the above formu-
lation as:

y(t) =

AejϕPN(t)x′(t) + w(t) + αR(A∗e−jϕPN(t)x′(t)∗ + w∗(t)).
(3)

where ϕPN(t) is the residual phase noise remained in the
system after compensation of phase noise in TX and RX. The
equation (3) is a nonlinear function of ϕPN(t), but assuming

that the residual phase noise is small, we can accurately
approximate it with a Taylor expansion1:

y(t) =

Ax(t) +A∗αT
∗αRx(t) +AαTx

∗(t) + jAϕPN(t)αTx
∗(t)

+A∗αRx
∗(t)− jA∗αRϕPN(t)x∗(t) + jAϕPN(t)x(t)

−jA∗αT
∗αRϕPN(t)x(t) + αRw

∗(t) + w(t),
(4)

where x(t), ϕPN(t) and w(t) are stochastic zero mean and
independent random variables. The first two terms contribute
to the desired signal x(t), and the rest, uncorrelated with
x(t), are considered as distortion terms. Equation (4) clearly
indicates the severity of each impairment in the distortion. We
can define the error (distortion) term (∆) and the desired term
(Λ) as follows:

∆ = jAϕPN(t)x(t)− jA∗αT
∗αRϕPN(t)x(t) +AαTx

∗(t)

+jAϕPN(t)αTx
∗(t) +A∗αRx

∗(t)− jA∗αRϕPN(t)x∗(t)

+αRw
∗(t) + w(t),

(5)
Λ = Ax(t) +A∗αT

∗αRx(t), (6)

where according to the assumptions on x(t), ϕPN (t), and
w(t), the desired term and error term are uncorrelated. The
error term (∆) is zero mean, so we have:

σ2
∆ =

|A|2σ2
ϕPN
σ2
x + |A|2|αT|2|αR|2σ2

ϕPN
σ2
x + |A|2|αT|2σ2

x + σ2
N

+|A|2|αT|2σ2
ϕPN
σ2
x + |A|2|αR|2σ2

x + |A|2|αR|2σ2
ϕPN
σ2
x

+|αR|2σ2
N − 4<(A2αTαR

∗σ2
ϕPN
σ2
x) + 2<(A2αTαR

∗σ2
x).

(7)
Similarly, the variance of the desired term can be obtained
using (6) as:

σ2
Λ = (|A|2 + |A|2|αT|2|αR|2 + 2<[A2αTαR

∗])σ2
x. (8)

Equations (7) and (8) provide a clear picture of how different
impairments contribute to the desired signal and the distortion.
This allows for an accurate characterization of the impact
of different hardware impairments (residual phase noise and
IQI in this particular example) on the performance of the
system. Furthermore, by studying these equations, we gain
an immediate insight on how different impairments can
amplify each other and more importantly, we can determine
the dominant sources of distortion (as we will do in our
numerical examples in Section III). To collect the effects
of all components together and tracking them more easily
we use signal to distortion plus noise ratio (SDNR) as a

1This is an accurate approximation for oscillators [11].



performance metric for further discussions, defined as:

SDNR = σ2
Λ/σ

2
∆. (9)

This metric also gives a direct insight to the capacity and
can be used in capacity analysis, too, but in this paper we
don’t analyze the capacity. In the next section we will evaluate
the effect of impairments based on analyzing this metric in
simulation rounds.

III. SIMULATION RESULTS AND NUMERICAL ANALYSIS

The main message in this paper is the Taylor expansion
technique, based on accurate behavioral models, to describe
hardware impairments, as discussed earlier. However, in this
section we illustrate the power with the proposed technique
to understand and qualitatively and quantitatively evaluate the
effects of impairments, by case studies.

For numerical analysis we have made simulations for several
scenarios to accurately indicate the effects of applying each
impairment parameter. We study the effect of IQI in terms of
αT and αR, and the effect of residual phase noise in terms
of σ2

ϕPN
. We evaluate the SDNR based on equation (9) as

the performance metric in all of the simulations. We define
two scenarios, high-SNR with SNR=20 dB and low-SNR with
SNR = 0 dB. In all of the simulations, we have applied
normalization to the formulations to preserve the total power
and to make sure that no energy is added to the system by
impairment effects. For a fair comparison, we also keep the
total power of IQI constant, so we will consider the following
constraint in all of our simulations:

|αT|2 + |αR|2 = γ2 (10)

where γ is a constant.
In Fig.1.a and b, the SDNR is represented versus variance

of residual phase noise with different settings of IQI for both
high-SNR (Fig.1 (a)) and low-SNR (Fig. 1 (b)). Comparing
the cases when we have IQI in TX (red curves marked with
plus) or at the RX (black curves marked with circle), we can
see that in the high-SNR regime both curves are completely
on top of each other, but in the low-SNR regime the RX IQI is
more serious. This is due to the term (α2

Rσ
2
N) in equation (7),

which is the contribution of additive white Gaussian noise. For
the case of having IQI in both TX and RX (with the sum IQI
power the same as in the one-sided cases), we have considered
two different scenarios when the phase difference (η) between
αT and αR is 0 (magenta curve marked with cross) or π/2
(brown curve marked with asterisk) we explain more on this
parameter on Fig. 4. In the low-SNR regime, we can see that
both of them have better performance in comparison to the
case of having IQI only in the RX. This is due to the fact that
in equation (4) and more precisely on the numerator and the
denominator of SDNR (given in (7) and (8)), the effect of αT
and αR appears on both the desired signal and the distortion
signal as you can see the portions on each equation. As seen
in Fig. 1, for both η = 0 and η = π/2, the performance is
similar in high-SNR regime which is due to dominant role of
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Fig. 1: SDNR vs. variance of phase noise in: a) high and b)
low SNR regimes

signal power. In the low-SNR regime, for η = 0, we see higher
SDNR by increasing the variance of residual phase noise. This
is due to the term (−4<(A2αTα

∗
Rσ

2
PN
σ2
x)) in equation (8). This

term is proportional to cos(η) which is maximized for η = 0
(cos(η) = 1) and then by increasing the variance of residual
phase noise, the denominator in equation (10) subsequently
decreases and the SDNR become higher.

In Fig.2, the SDNR is plotted versus |αT| and |αR| for both
high-SNR and low-SNR regimes with the variance of residual
phase noise 0.001. In the low-SNR regime, the effect of |αR|
is more severe than the effect of |αT|, but in the high-SNR
regime, where the signal power is dominant, the effect of both
are quite similar. In Fig. 3, the SDNR is plotted versus the IQI
and the phase noise. We see that, when the magnitude of the
IQI components are low, the effect of the phase noise is more
severe, but when the IQI is high, the effect of phase noise
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Fig. 2: SDNR vs. IQI in: a) high and b) low SNR regimes
both with σ2

PN = 0.001

is not that much severe. We can also see a little threshold
effect for the IQI, such that the system even at high SNR can
tolerate a small amount of IQI with small effect, but for phase
noise there is no threshold effect. These two figures give us a
clear sense of the dominant impairment in different scenarios
of high-SNR and low-SNR.

In Fig. 4, we study the effect of the channel coefficient
A. The channel coefficient is not part of the hardware im-
pairments, but since it has an important role on the SDNR
metric as in equations (7)-(9), it deserves a separate study. In
Fig. 4.a, the SDNR is depicted versus channel phase in high-
SNR regime for different values of η (η = −π/2, 0, π/2).
Interestingly, as we see in the figure, the SDNR varies with
the channel phase and relative IQI phase values. In Fig. 4.b,
the SDNR versus the channel phase is depicted for different
variances of residual phase noise, and we see that the SDNR
decreases by increasing the variance of residual phase noise.
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Fig. 3: SDNR vs. IQI and Variance of Phase Noise in: a) high
and b) low SNR regimes

IV. ADDITIVE NOISE MODELING FOR OTHER IMPAIRMENTS

The additive noise modeling framework can also be applied
to other impairments in the same way as we did in (4)-
(9). As we talk about RF communications, other effects of
hardware impairments such as timing jitter, power amplifier
non-linearity, CFO, and DC offset should be considered as
they can degrade the system performance, considerably. In this
section we present the additive noise modeling for some of
these impairments without proof. More details on proofs and
also further analytical studies will be published in an extended
transaction version of this paper.

In case of timing jitter, which can introduce inter-symbol
interference (ISI), we have:
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Fig. 4: SDNR vs. channel phase in: a) different values of η
and b) different variances of residual phase noise

yk =

Axkf(τ + δ0)︸ ︷︷ ︸
Desired-signal(Λ)

+

k+M∑
l=k−M,l 6=k

Axlg((k − l)T + δ0 + τ) + wk︸ ︷︷ ︸
ISI signal and noise(∆)

,

(11)
where δ0 + τ is the timing jitter, g(t) is the matched filter
function and M is the number of effecting taps defined
according to the pulse-shaping filter design, and f is given
by:

f(t) =

∞∫
−∞

g (t− υ)g(υ)dυ. (12)

We can follow the same procedure as we do in (7)-(9) to
define the SDNR metric and analyze the impairments using
additive noise modeling. Such derivations can also be made for
CFO and power amplifier nonlinearity by exploiting additive
noise modeling technique.

It is also possible to apply the additive noise modeling
framework with different settings on multiple-input multiple-
output (MIMO) scenarios for both the point-to-point MIMO
(such as back-haul links) and the multi-user MIMO (cellular
networks) to analyze the hardware impairment effects. At
one hand, many effects can be described as multiple SISO
imperfections, while other depends quite a lot on the MIMO
setting. We leave this for future work.

V. CONCLUSION

In this paper, we have introduced a method for statistical
study of hardware impairment effects in RF communications
by exploiting an additive noise modeling technique. As the
main advantage in comparison with other statistical methods,
the proposed modeling can accurately represent the effects of
hardware impairments by providing a term-by-term description
of their individual and combined effects. As a case study,
we have exploited additive noise modeling for joint residual
phase noise and IQI and we have discussed how similar steps
can be utilized for studying the impacts of other hardware
impairments such as timing jitter, CFO and power amplifier
nonlinearities.
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