
An Algebra of Sequential Decision Problems
Technical Report

Robert Krook
Computer Science and Engineering

University of Gothenburg
Sweden

guskrooro@student.gu.se

Patrik Jansson
Computer Science and Engineering
Chalmers University of Technology

Sweden
patrik.jansson@chalmers.se

ACM Reference Format:
Robert Krook and Patrik Jansson. 2019. An Algebra of Sequential
Decision Problems: Technical Report. In Proceedings of ACM SIG-
PLAN Workshop on Type-Driven Development (TyDe’19). ACM, New
York, NY, USA, 12 pages.

1 Introduction
Sequential decision processes and problems are a well estab-
lished concept in decision theory, with the Bellman equation
[1] as a popular choice for describing them. Botta et al [4]
have formalised the notion of such problems in Idris. Using
dependent types to bridge the gap between description and
implementation of complex systems, for purposes of simu-
lation, has been shown to be a good choice [5]. They have
illustrated how to use their formulation to model e.g. climate
impact research [3], a very relevant problem today.

Evidence based policy making (when dealing with climate
change or other global systems challenges), requires com-
puting policies which are verified to be correct. There are
several possible notions of “correctness” for a policy: com-
puting feasible system trajectories through a state space,
avoiding “bad” states, or even computing optimal policys.
The concepts of feasibility and avoidability have been for-
malised and presented in Botta et al. [2].
Although motivated by the complexity of modelling in

climate impact research, we focus on simpler examples of
sequential decision processes and how to combine them.

Examples: Assume that we have a process p : SDProc that
models something moving through a 1-D coordinate system
with a natural number as the state and +1, 0, and −1 as
actions. If the circumstances change and we need to model
how something moves in a 2-D coordinate system, it would
be convenient if we could reuse the one dimensional system
and get the desired system for free. We seek a combinator
×SDP : SDProc → SDProc → SDProc such that

p2 = p ×SDP p

Both p and p2 use a fixed state space, but we can also handle
time dependent processes. Assume p′ : SDProcT is sim-
ilar to p but time dependent: not all states are available
at all times, meaning p′ is more restricted in the moves

TyDe’19, August 18, 2019, Berlin, Germany
2019.

it can make. If we want to turn this into a process that
can also move around in a second dimension, we want to
be able to reuse both p′ and p. We can use a combinator
×TSDP : SDProcT → SDProcT → SDProcT together with
the trivial embedding of a time independent, as a time de-
pendent, process embed : SDProc → SDProcT .

p2 ′ = p′ ×TSDP (embed p)

As a last example consider the case where we want a pro-
cess that moves either in a 3-D coordinate system p3 =
p2 ×SDP p or in p2 ′. You could think of this as choos-
ing a map in a game. Then we would want a combinator
⊎TSDP : SDProcT → SDProcT → SDProcT such that

game = p2 ′ ⊎TSDP (embed p3)

These combinators, and more, make up an Algebra of SDPs.

2 Sequential Decision Problems
First, we formalise the notion of a Sequential Decision Process
in Agda. A process always has a state, and depending onwhat
that state is there are different controls that describe what
actions are possible in that state. The last component of
a sequential decision process is a function step that when
applied to a state and a control for that state returns the next
state. To better see the type structure we introduce a type
synonym for the family of controls depending on a state:

Con : Set → Set1
Con S = S → Set

and for the the type of step functions defined in terms of a
state and a family of controls on that state:

Step : (S : Set) → Con S → Set
Step S C = (s : S) → C s → S

With these in place we define a record type for SDPs:

record SDProc : Set1 where
constructor SDP
field State : Set

Control : Con State
step : Step State Control

We can extend this idea of a sequential decision process to
that of a problem by adding an additional field reward.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Research

https://core.ac.uk/display/287065729?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TyDe’19, August 18, 2019, Berlin, Germany Robert Krook and Patrik Jansson

reward : (x : State) → Control x → Val

where Val is often R. From the type we conclude that the
reward puts a value on the steps taken by the step func-
tion, based on the state transition and the control used. The
problem becomes that of finding the sequence of controls
that produces the highest sum of rewards. Or, in more real-
istic settings with uncertainty (which can be modelled by a
monadic step function), finding a sequence of policies which
maximises the expected reward. The system presented here
aims at describing finite horizon problems, meaning that the
sum of rewards is over a finite list. Furthermore, rewards
are usually discounted the as time passes. One action now
is worth more than the same action a few steps later. Re-
wards, and problems, are not the focus of this abstract but
are mentioned for completeness.

A policy is a function from states to controls:

Policy : (S : Set) → Con S → Set
Policy S C = (s : S) → C s

Given a list of policies to apply, one for each time step, we
can compute the trajectory of a process from a starting state.
Here the #st and #sf functions extract the state and step com-
ponent from the SDProc respectively.

trajectory : {n : N} → (p : SDProc)
→ Vec (Policy (#st p) (#c p)) n
→ #st p → Vec (#st p) n

trajectory sys [] x0 = []

trajectory sys (p :: ps) x0 = x1 :: trajectory sys ps x1
where x1 : #st sys

x1 = (#sf sys) x0 (p x0)

As an example of a trajectory computation we return to the
one dimensional process 1d-sys (called just p in the intro)
and an example policy sequence pseq. Ideally pseq is the re-
sult of an optimization computed using Bellmans backwards
induction. Here we just illustrate one trajectory:

pseq = tryleft :: tryleft :: right :: stay :: right :: []
test1 : trajectory 1d-sys pseq 0 ≡ 0 :: 0 :: 1 :: 1 :: 2 :: []
test1 = refl

In an applied setting many trajectories would be computed
to explore the system behaviour. This brief example is fully
presented in an accompanying technical report [6].

In this abstract we focus on non-monadic, time-independent,
sequential decision processes, but the algebra extends nicely
to the more general case.

3 The Product Combinator
To compute p2 we need to define a product combinator for
SDPs. We illustrate what this combinator does in Figure 1.
The state of the product of two processes is the cartesian
product of the two separate states.

Figure 1. The product process holds components of both
states and applies the step function to both components
simultaneously. Each component of the next state has two
incoming arrows as the policy that computes the control that
is used has access to both components of the previous state.

Given two control families, we can compute the control
family for pairs of states. The inhabitants (the controls) of
each family member are pairs of controls for the two state
components.

×C : {S1 S2 : Set } →

Con S1 → Con S2 → Con (S1 × S2)
(C1 ×C C2) (s1 , s2) = C1 s1 × C2 s2
Given two step functions we can define a new step function
for the product process by returning the pair computed by
applying the individual step functions to the corresponding
components of the input.

_×sf _ : {S1 S2 : Set } {C1 : Con S1 } {C2 : Con S2 }
→ Step S1 C1 → Step S2 C2

→ Step (S1 × S2) (C1 ×C C2)

(sf1 ×sf sf2) (s1 , s2) (c1 , c2) = (sf1 s1 c1 , sf2 s2 c2)

Finally, we can compute the product of two sequential deci-
sion processes by applying the combinators componentwise.

×SDP : SDProc → SDProc → SDProc
(SDP S1 C1 sf1) ×SDP (SDP S2 C2 sf2)
= SDP (S1 × S2) (C1 ×C C2) (sf1 ×sf sf2)

To illustrate how the combinator works we apply it to the
system (1d-sys) mentioned previously.

2d-system = 1d-sys ×SDP 1d-sys

Now 2d-system is a process of two dimensions rather than
one, as illustrated by the type of test2.

2d-pseq = zipWith _×P_ pseq pseq
test2 : trajectory 2d-system 2d-pseq (0 , 5)

≡ (0 , 4) :: (0 , 3) :: (1 , 4) :: (1 , 4) :: (2 , 5) :: []
test2 = refl

4 Wrapping up
In the technical report [6] we present more combinators
for time dependent and time independent processes and
policies. We implement the example of a coordinate system
described above, and make it even more precise as a time
dependent process. Future work includes generalising to
monadic SDPs and applying our combinators to the green
house gas emission problem [3].

An Algebra of Sequential Decision Problems TyDe’19, August 18, 2019, Berlin, Germany

We thank the anonymous reviewers for their helpful com-
ments and the Agda developers for a great tool!

References
[1] Richard Bellman. 1957. Dynamic Programming. Princeton University

Press.
[2] Nicola Botta, Patrik Jansson, and Cezar Ionescu. 2017. Contributions

to a computational theory of policy advice and avoidability. Journal
of Functional Programming 27 (2017), 1–52. https://doi.org/10.1017/
S0956796817000156

[3] N. Botta, P. Jansson, and C. Ionescu. 2018. The impact of uncertainty on
optimal emission policies. Earth System Dynamics 9, 2 (2018), 525–542.
https://doi.org/10.5194/esd-9-525-2018

[4] Edwin Brady. 2013. Idris, a general-purpose dependently typed pro-
gramming language: Design and implementation. Journal of Func-
tional Programming 23, 05 (2013), 552–593. https://doi.org/10.1017/
S095679681300018X

[5] Cezar Ionescu and Patrik Jansson. 2013. Dependently-typed program-
ming in scientific computing: Examples from economic modelling. In
24th Symposium on Implementation and Application of Functional Lan-
guages (IFL 2012) (LNCS), Ralf Hinze (Ed.), Vol. 8241. Springer, 140–156.
https://doi.org/10.1007/978-3-642-41582-1_9

[6] Robert Krook and Patrik Jansson. 2019. An Algebra of Sequential Deci-
sion Problems. Technical Report. Computer Science and Engineering,
Chalmers University of Technology and University of Gothenburg,
Sweden. http://www.cse.chalmers.se/~patrikj/papers/AlgSDP_Krook_
Jansson_2019_TechReport.pdf.

https://doi.org/10.1017/S0956796817000156
https://doi.org/10.1017/S0956796817000156
https://doi.org/10.5194/esd-9-525-2018
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1007/978-3-642-41582-1_9
http://www.cse.chalmers.se/~patrikj/papers/AlgSDP_Krook_Jansson_2019_TechReport.pdf
http://www.cse.chalmers.se/~patrikj/papers/AlgSDP_Krook_Jansson_2019_TechReport.pdf

TyDe’19, August 18, 2019, Berlin, Germany Robert Krook and Patrik Jansson

5 Technical Report
The rest of this report makes up the technical report. The
technical report describes further combinators, discusses
time dependent processes and provide more thorough exam-
ples.
The work described in this text is the result of a project

carried out at Gothenburg University by Robert Krook, un-
der the supervision of Patrik Jansson. Robert has worked
independently and met once a week with Patrik over the
course of 8 weeks to discuss progress, potential bottlenecks
and what to do next. Patrik has been an invaluable source
of information, both regarding sequential decision problems
and how to write a scientific text.

6 Example
Let us consider a sequential decision process where the state
space is a one dimensional coordinate system represented
by natural numbers.

1d-state : Set
1d-state = N

Seeing how the state space are the natural numbers we
emphasize that the coordinate system has only positive co-
ordinates. In any given state, generally, we can choose to
either increment, decrement or do nothing to the state. In
the edge case where the state is 0 we can not decrement the
state. We can encode this control as a type family in Agda.

data 1d-control : 1d-state → Set where
Right : {n : 1d-state } → 1d-control n
Stay : {n : 1d-state } → 1d-control n
Left : {n : 1d-state } → 1d-control (suc n)

We implement the step function by pattern matching on the
control. In the case of the Left control Agda recognises that
the state must be a sucessor. We increment or decrement
the state accordingly and leave it unchanged for the Stay
control.

1d-step : (x : 1d-state) → 1d-control x → 1d-state
1d-step x Right = suc x
1d-step x Stay = x
1d-step (suc x) Left = x

We define a policy to be a function that given a state select
a control. The policies right, stay and tryleft are all policies
of this kind. tryleft is special in the sense that if the state is
zero it will do nothing, as it can not go left.

1d-Policy = (x : 1d-state) → 1d-control x
right stay tryleft : 1d-Policy
right = Right
stay = Stay
tryleft zero = Stay
tryleft (suc s) = Left

We can parameterise a policy over a coordinate and define a
policy that will select controls that moves the system towards
this coordinate.

towards : N → 1d-Policy
towards goal n with compare n goal
... | less = Right
... | equal = Stay
... | greater = Left

With the three components state, control and step, we can
instantiate a sequential decision process.

1d-sys : SDProc
1d-sys = SDP 1d-state 1d-control 1d-step

A policy sequence is now just a vector of policies.

pseq : PolicySeq (#st 1d-sys) (#c 1d-sys) 5
pseq = tryleft :: tryleft :: right :: stay :: right :: []

We can evaluate the system using this sequence, starting
from different points. We can use ≡ and refl to assert that
the system behaves as intended.

test1 : trajectory 1d-sys pseq 0 ≡ 0 :: 0 :: 1 ::
1 :: 2 :: []

test1 = refl

test2 : trajectory 1d-sys pseq 5 ≡ 4 :: 3 :: 4 ::
4 :: 5 :: []

test2 = refl

We can use the clever policy to steer the process towards a
goal.

test3 : trajectory 1d-sys (replicate (towards 5)) 2 ≡

3 :: 4 :: 5 :: 5 :: 5 :: []
test3 = refl

To turn a process into a problem we need to introduce
a notion of a goal, described by a reward function. For our
example we define the reward function to be parameterised
over a target coordinate. The reward function could then
reward a proposed step based on how close to the target it
lands.

1d-reward : 1d-state
→ (x : 1d-state) → 1d-control x
→ 1d-state → N

1d-reward target x0 y x1
= if distance target x1 < distance target x0
then 2
else (if distance target x0 < distance target x1
then 0
else 1)

We can redefine the sequential decision process above to be
a sequential decision problem simply by instantiating the
SDProb record.

An Algebra of Sequential Decision Problems TyDe’19, August 18, 2019, Berlin, Germany

problem : 1d-state → SDProblem
problem target
= SDProb 1d-state 1d-control

1d-step (1d-reward target)

7 Combinators for sequential decision
processes

Now that we’ve seen an example of a sequential decision
process and are getting comfortable with the concept, it
is suitable to move forward and see what we can do with
processes. This section will explore different ways sequential
decision processes can be combined in order to produce more
sophisticated processes.
We already defined the product combinator, and before

we move on to additional combinators we’d like to make
a few notes on the product combinator. An observation to
be made is that in order for the new system to exist in any
state, it has to hold components of both prior states. This
has the consequence that if the state space of one of the
prior processes is empty, the new problems state space is
also empty. Similarly, if one of the components reaches a
point where there are no available controls, and thus can not
progress, the other component will not be able to progress
either.

Looking back at the example of the one dimensional coor-
dinate system we find ourselves wondering if we would now
indeed get a process of a two dimensional coordinate system
seemingly for free. The answer, unsurprisingly, is yes.

2d-system = 1d-sys ×SDP 1d-sys

In section 11 we introduce combinators for policy se-
quences. Here we use the product combinator to produce a
policy sequence that is compatible with the new process.

2d-pseq : PolicySeq (#st 2d-system) (#c 2d-system) 5
2d-pseq = zipWith _×P_ pseq pseq

And now we can evaluate this new process like we did with
the one dimensional system.

run2d = trajectory 2d-system 2d-pseq
2d-test1 : run2d (0 , 5)

≡

(0 , 4) :: (0 , 3) :: (1 , 4) ::
(1 , 4) :: (2 , 5) :: (2 , 5) :: []

2d-test1 = refl

2d-test2 : run2d (5 , 5)
≡

(4 , 4) :: (3 , 3) :: (4 , 4) ::
(4 , 4) :: (5 , 5) :: (5 , 5) :: []

2d-test2 = refl

Functional programmers will often find they are in need of
a unit, e.g when using reduce or other frequently appearing

Figure 2. Illustration of the singleton process. The subscript
0 is meant to indicate that the state remains the same when
the process advances.

constructs from the functional paradigm. Before we begin
implementing a unit for the product case we want to clarify
what we mean by a unit. A unit to a process is one that when
combined with another process, produces a process where
the change at each step is exactly that of the other process.

What we are after is a process that will not carry any extra
information, or rather one that can not alter the informa-
tion it carries. Recall that in order for the state space of the
product process to not be empty, both state spaces of the
separate processes has to be non-empty. In order to call the
step function the control space also has to be inhabited. In
an effort to minimise the information the unit carries we
declare its state space and control space to be singletons. The
step function becomes a constant function that given the
only state and the only control, will return the only state.

singleton : SDProc
singleton = record {

State = ⊤;
Control = λ state → ⊤;
step = λ state → λ control → tt }

An example of evaluating the singleton process is illustrated
in Figure 2
Taking the product of any process and the singleton pro-

cess would produce a process where the only change of
information during each step is that of the process which is
not the singleton. Of course, the other process could itself
be the singleton process also, in which case the only change
in each step is exactly that of the singleton process, which is
no change at all.

7.1 Coproduct
Seeing how we defined a product combinator of two pro-
cesses, we are interested in also defining a sum combinator
for processes. The approach is similar to that of the product
case.
The inhabitants of the sum control is the sum of the in-

habitants of the prior controls.

⊎C : {S1 S2 : Set }
→ Con S1 → Con S2 → Con (S1 ⊎ S2)

(C1 ⊎C C2) (inj1 s1) = C1 s1
(C1 ⊎C C2) (inj2 s2) = C2 s2

Calculating a new step function from two prior step functions
is relatively straight forward. The first input is the sum of
the two states. Depending on which state the first argument

TyDe’19, August 18, 2019, Berlin, Germany Robert Krook and Patrik Jansson

(a) Left injection.

(b) Right injection.

Figure 3. The coproduct of two processes. The process will
take the shape of either of the two alternatives, but never
both or a mix of the two.

belongs to, one of the prior step functions is applied to it and
the second argument, the control for that state. The result of
the application is then injected into the sum type using the
same injection as the input.
_⊎sf _ : {S1 S2 : Set }

→ {C1 : Con S1 } → {C2 : Con S2 }
→ Step S1 C1 → Step S2 C2

→ Step (S1 ⊎ S2) (C1 ⊎C C2)

(sf1 ⊎sf sf2) (inj1 s1) c1 = inj1 (sf1 s1 c1)
(sf1 ⊎sf sf2) (inj2 s2) c2 = inj2 (sf2 s2 c2)

The sum of two problems is computed by applying the sum
operators componentwise, and Figure 3 illustrate how such
a problem is evaluated.
⊎SDP : SDProc → SDProc → SDProc
SDP S1 C1 sf1 ⊎SDP SDP S2 C2 sf2
= SDP (S1 ⊎ S2) (C1 ⊎C C2) (sf1 ⊎sf sf2)

In the case of the product process the two prior processes
were not entirely independent. If one process could not
progress the other process was affected in the sense that
it too could not progress further. The sum of two processes
keeps the two problems truly independent. In fact, the co-
product of two processes will start progressing from some
initial state, and depending on which injection is used the
other process will never advance.

A unit to the coproduct combinator is the empty process.
The process has no states, no controls and the step function
will return its input state. However, we will never be able to
call the step function since we can not supply a state.
empty : SDProc
empty = record {

State = ⊥;
Control = λ state → ⊥;
step = λ state → λ control → state }

Combining any process with the empty process using
the coproduct combinator will produce a process that acts

exactly as that of the given process. There is no way to
begin advancing the empty process, and so the only available
option is to select an initial state from the other process and
start progressing that.

7.2 Yielding Coproduct
Computing the coproduct of two processes and getting a
process that behaves like either of the two, without actually
considering the other process, leaves us wondering what
this is useful for. It would be more useful if we could jump
between the two processes. To do this, we first need to define
a relation between states. We define a relation on two state
and define it to be a mapping from an inhabitant of one state
to an inhabitant of the other.

⇄ : (S1 S2 : Set) → Set
s1 ⇄ s2 = (s1 → s2) × (s2 → s1)

Combining the two controls on the states is similar to that
of the coproduct case, when looking at the type. However,
instead of the new control being defined as either of the two
prior ones, it is now Maybe either of the two previous ones.
The idea is that we extend the control space to have one
more inhabitant, the value nothing. If we select this control
the process should yield in favour of the other process.

_⊎m
C _ : {S1 S2 : Set }

→ Con S1 → Con S2 → Con (S1 ⊎ S2)
(C1 ⊎m

C C2) (inj1 s1) = Maybe (C1 s1)
(C1 ⊎m

C C2) (inj2 s2) = Maybe (C2 s2)

The new step function needs to accomodate for this scenario
where the process should yield in favour of the other. To
implement this the new step function needs to know how to
yield. We describe how to yield by supplying an element of
type S1 ⇄ S2 . If the selected control is nothing the step func-
tion will apply the appropriate component of this element
to the current state.

⊎m
sf : {S1 S2 : Set } {C1 : Con S1 } {C2 : Con S2 }

→ (S1 ⇄ S2)
→ Step S1 C1 → Step S2 C2

→ Step (S1 ⊎ S2) (C1 ⊎m
C C2)

⊎m
sf sf1 sf2 (inj1 s1) (just c) = inj1 (sf1 s1 c)

⊎m
sf sf1 sf2 (inj2 s2) (just c) = inj2 (sf2 s2 c)

⊎m
sf (v1 ,) sf1 sf2 (inj1 s1) nothing = inj2 (v1 s1)

⊎m
sf (, v2) sf1 sf2 (inj2 s2) nothing = inj1 (v2 s2)

Since the other operators were infix, we give a syntax decla-
ration that mimics the same style.

syntax ⊎m
sf r sf1 sf2 = sf1 ⟨ r ⟩ sf2

Now we can compute the yielding coproduct of two pro-
cesses by applying the new operations componentwise.

An Algebra of Sequential Decision Problems TyDe’19, August 18, 2019, Berlin, Germany

Figure 4. Illustration of the yielding coproduct process. It
is capable of switching between the two processes, as illus-
trated by the calls to v1 and v2.

_⊎m
SDP_ : (p1 : SDProc) → (p2 : SDProc)

→ (#st p1 ⇄ #st p2)
→ SDProc

((SDP S1 C1 sf1) ⊎m
SDP (SDP S2 C2 sf2)) rel

= SDP (S1 ⊎ S2) (C1 ⊎m
C C2) (sf1 ⟨ rel ⟩ sf2)

With a combinator such as this one could you model e.g a
two player game. The processes would be the players and
the combined process allows each to take turns making their
next move. In section 11 we discuss how a policy for such a
process is something of a game leader.
A unit to the yielding coproduct combinator is the same

one as that for the regular coproduct combinator. If the state
space is not inhabited, the process could never progress as
we will not be able to call the step function. Further more,
we would not be able to give a definition for a function
S1 → S2 .

7.3 Interleaving processes
The next combinator we introduce is one that interleaves
processes. The state of such a process holds components of
both prior states, but takes turns applying the step function
to each of them. This behaviour could be similar to that
of a game, where two players take turns making their next
move. However, the users do not knowwhat moves the other
player has made, and can therefore not make particularly
smart moves. In section 11 it is reasoned that writing new
policies for a process like this will be a policy that does know
what move the other ’player’ has made.

Similar to the product combinator the new state needs to
hold components of both prior states. It should apply the
step function to them one at a time, alternating between
the two. In order to know which components turn it is to
advance we extend the product to also hold an index.

⇄S : Set → Set → Set
S1 ⇄S S2 = Fin 2 × S1 × S2

The control space for the interleaved process is the sum of the
two prior control spaces. If the value of the first component
is zero, we select the first control. If the value is one, we
select the second control.

one : Fin 2
one = suc zero

Figure 5. Illustration of two interleaved process. We want
to emphasise that the state holds components of both prior
states, but chooses to advance only one. The policy that
chooses what control to use can however inspect both com-
ponents.

⇄C : {S1 S2 : Set }
→ Con S1 → Con S2 → Con (S1 ⇄S S2)

(C1 ⇄C C2) (zero , s1 , s2) = C1 s1
(C1 ⇄C C2) (one , s1 , s2) = C2 s2

Defining a new step function in terms of the two previous
ones is done by pattern matching on the state. Specifically
we are interested in the first component, the index. If the
index is zero we apply the first step function to the second
component of the state, leave the last component unchanged
and increment the index by one. Similarly if the index is zero
we apply the second step function to the last component,
leave the second one unchanged and decrement the index
by one.

⇄sf : {S1 S2 : Set }
→ {C1 : Con S1 } → {C2 : Con S2 }
→ Step S1 C1 → Step S2 C2

→ Step (S1 ⇄S S2) (C1 ⇄C C2)

(sf1 ⇄sf sf2) (zero , s1 , s2) c = (one , sf1 s1 c , s2)
(sf1 ⇄sf sf2) (suc zero , s1 , s2) c = (zero , s1 , sf2 s2 c)
(sf1 ⇄sf sf2) (suc (suc ()) , ,)

Combining two processes to capture this interleaved be-
haviour is once again simply done by combining the compo-
nents componentwise.

⇄SDP : SDProc → SDProc → SDProc
SDP S1 C1 sf1 ⇄SDP SDP S2 C2 sf2
= SDP (S1 ⇄S S2) (C1 ⇄C C2) (sf1 ⇄sf sf2)

The final process behaves as illustrated in figure 5.
Defining a unit for the interleaved process is not possible.

Where the initial process would advance e.g five steps, the
interleaved process would need ten steps to take that com-
ponent to the same state. We can not give a generic process
that when interleaved with another process acts as a unit.

The way we define the interleaved combinator might not
be optimal. Combining more than two processes will pro-
duce potentially unexpected behaviour. If we combine three
processes using this combinator the resulting system would
be one where one of the processes advance half the time,
and the other two only a quarter of the time each.

TyDe’19, August 18, 2019, Berlin, Germany Robert Krook and Patrik Jansson

(a) If we interleave two processes and then interleave the resulting process with a third we get a situation like
this. They are not properly interleaved.

(b) This is the interleaved behaviour we might expect for three processes. A round robin behaviour that gives
the processes equally many turns.

Figure 6. Illustrations of why the interleaved combinator might not behave as one would expect. Again the two incoming
arrows illustrate that the policy that selects the control has access to all components and can base the choice of control on
them.

This does not necessarily mean that the combinator de-
scribed in Figure 6 is wrong, but rather that there is another
combinator we could implement that would have this other
behaviour.

8 Time dependent processes
Imagine a process where the state space can vary over time.
If we consider the example with the one dimensional co-
ordinate system, if the process is time dependent it could
disallow some states at certain points in time. Below we
illustrate how this is defined in Agda.

ConT : (N → Set) → Set1
ConT S = (t : N) → S t → Set

StepT : (S : N → Set) → ConT S → Set
StepT S C = (t : N) → (s : S t) → C t s → S (suc t)

record SDProcT : Set1 where
constructor SDPT
field
State : N→ Set
Control : ConT State
step : StepT State Control

The state is now dependent on a parameter t : N, which
allows the state to take on alternate forms. In section 9.1 we
illustrate what this means.

A time independent process can be embedded as a time de-
pendent process. The embedding is a process that disregards
the time parameter.

embed : SDProc → SDProcT
embed (SDP S C sf)
= SDPT (λ → S) (λ → C) (λ → sf)

9 A discussion on the Fin type
Before we move on to an example of a time dependent pro-
cess, we need to briefly present the Fin type and its proper-
ties. The Fin n type (for any natural number n) has exactly n
elements.

data Fin : N→ Set where
zero : {n : N} → Fin (suc n)
suc : {n : N} (i : Fin n) → Fin (suc n)

From this definition we see that zero is an element of Fin n
for any n > zero. The constructor suc takes an element of
type Fin n and returns an element of type Fin (suc n). We
illustrate the type for a couple of different n’s in figure 7.
We illustrate what the suc constructor does in figure 8a.

It takes an element of type Fin n, and returns the sucessor
element of type Fin (suc n).

What if we want an element of the sucessor type without
using the suc constructor? We might wish to simply ’pro-
mote’ the type of an element. In figure 8d it becomes clear
that all elements of type Fin n are also elements of Fin (suc n).

An Algebra of Sequential Decision Problems TyDe’19, August 18, 2019, Berlin, Germany

Figure 7. An illustration of the Fin n type. We emphasise
that there are exactly n inhabitants of Fin n.

To do this promoting we use the function inject1, which is
illustrated in figure 8b.

inject1 : ∀ {m} → Fin m → Fin (suc m)

inject1 zero = zero
inject1 (suc i) = suc (inject1 i)

Now, what if we find ourselves in a situation where we
have an element of type Fin (suc n), and wewant to return its
predecessor, but of the sucessor type Fin (suc (suc n))? What
we want to do is given an element suc x, return x. We can’t
do this as is since the element suc x is of type Fin (suc n), the
element x is of type Fin n. To get the proper type we need
to invoke inject1 twice, which is illustrated in figure 8c.

9.1 Time dependent example
Looking back at the time independent example, we reflect on
the choice of state. The natural numbers seemed, and were,
a reasonable choice. With the time dependent process at our
disposal however we notice a source of ineffectiveness.
We consider the case where the process is always evalu-

ated with zero as the initial state. After 1 step we could either
have stayed or we went right, meaning the state is now zero
or suc zero. After 2 steps we could have gone left, stayed or
gone right. In figure 9 this edge case is illustrated, and we
note that the number of possible states after n steps is n + 1.

Figure 9. In the edge case the state space grows slower, as
we initially can not decrement the state.

If we consider the example from earlier but restrict it to
starting in state zero, we could define this process as follows.

1d-state : N→ Set
1d-state n = Fin (suc n)

The Agda type Fin n is a type with at most n elements.
Using this type gives us a more precise definition of what
the possible states are.

The controls are identical to those in the time independent
case.

1d-control : (n : N) → 1d-state n → Set
1d-control n zero = ZAction
1d-control n (suc x) = SAction

The step function says the same thing as in the previous
example, but it says it a little differently. If the state is zero
there is only two available controls, and we update the state
like we did previously. However, if the state is greater than
zero we need to change the types as described in section 9.
For the left control the result has to be injected twice, and
for the stay control it has to be injected once.

1d-step : (n : N) → (x : 1d-state n)
→ (y : 1d-control n x) → 1d-state (suc n)

1d-step n zero ZS = zero
1d-step n zero ZR = suc zero
1d-step n (suc x) SL = inject1 (inject1 x)
1d-step n (suc x) SS = inject1 (suc x)
1d-step n (suc x) SR = suc (suc x)

Now the entire system has been defined and we can package
it as a SDProcT .

finsystem : SDProcT
finsystem = SDPT 1d-state 1d-control 1d-step

10 Combinators for the Time Dependent
Case

Before we move on we want to highlight that the state now
is dependent on the natural numbers. The controls of these
time dependent processes are time dependent themselves.
We capture this reasoning in the definition of Con′.

Con′ : Con N→ Set1
Con′ S = (t : N) → Con (S t)

Now on to the product combinator for the time dependent
case. To combine two states that are time dependent we
compute a new time dependent state that is the product of
applying the prior states to the time.

×S : (S1 S2 : Con N) → Con N
s1 ×S s2 = λ t → s1 t × s2 t

The product combinator for two controls should produce
a new Con′ on S1 ×S S2 defined in terms of two controls
Con′ S1 and Con′ S2 . The defining equation is similar to the
time independent case, but the extra parameter time is given
as the first argument.

TyDe’19, August 18, 2019, Berlin, Germany Robert Krook and Patrik Jansson

(a) (b) (c) (d)

Figure 8. Illustrations of how to embed elements of type Fin n in the sucessor type Fin (suc n).

×C : {S1 S2 : Con N}
→ Con′ S1 → Con′ S2 → Con′ (S1 ×S S2)

(C1 ×C C2) time (s1 , s2) = C1 time s1 × C2 time s2

Again we capture the type of the step function in a type Step.
Step accepts a state and a control and returns a type. The type
is that of the step function for time dependent processes.

Step : (S : Con N) → Con′ S → Set
Step S C = (t : N) → (s : S t) → C t s → S (suc t)

Combining two such step functions is similar to the time
independent case. The only different is that we have an extra
parameter time, and we must apply the step functions to this
time parameters.

_×sf _ : {S1 S2 : Con N}
→ {C1 : Con′ S1 } → {C2 : Con′ S2 }
→ Step S1 C1 → Step S2 C2

→ Step (S1 ×S S2) (C1 ×C C2)

(sf1 ×sf sf2) time state control
= sf1 time (proj1 state) (proj1 control) ,

sf2 time (proj2 state) (proj2 control)

Finally, combining two time dependent sequential decision
processes is done by applying the combinators component-
wise.

×SDP : SDProcT → SDProcT → SDProcT
SDPT S1 C1 sf1 ×SDP SDPT S2 C2 sf2
= SDPT (S1 ×S S2) (C1 ×C C2) (sf1 ×sf sf2)

Just as the product combinator, the defining equation for
the coproduct combinator is similar to its time independent
counterpart. The difference is again that the parameters are
applied to the time.

⊎S : (S1 S2 : Con N) → Con N
s1 ⊎S s2 = λ t → s1 t ⊎ s2 t

The time dependent sum combinator for controls pattern
matches on what injection was used, and applies the associ-
ated control to the time and the state.

⊎C : {S1 S2 : Con N}
→ Con′ S1 → Con′ S2 → Con′ (S1 ⊎S S2)

(C1 ⊎C C2) time = λ {(inj1 s1) → C1 time s1;
(inj2 s2) → C2 time s2 }

Combining the step functions to produce one defined for
the new process is, similarly to the time independent case,
done by pattern matching on the state. If the state is injected
with the first injection, we apply the first step function, and
similarly for the second injection.

_⊎sf _ : {S1 S2 : Con N}
→ {C1 : Con′ S1 } → {C2 : Con′ S2 }
→ Step S1 C1 → Step S2 C2

→ Step (S1 ⊎S S2) (C1 ⊎C C2)

(sf1 ⊎sf sf2) time (inj1 s1) c = inj1 (sf1 time s1 c)
(sf1 ⊎sf sf2) time (inj2 s2) c = inj2 (sf2 time s2 c)

Again we combine two processes by applying the component
combinators componentwise.

⊎SDP : SDProcT → SDProcT → SDProcT
SDPT S1 C1 sf1 ⊎SDP SDPT S2 C2 sf2
= SDPT (S1 ⊎S S2) (C1 ⊎C C2) (sf1 ⊎sf sf2)

To combine two time dependent processes into a yielding
coproduct we begin by describing the component that relates
the states in one process to states in the other.

⇄ : (S1 S2 : Con N) → Set
s1 ⇄ s2 = ((t : N) → s1 t → s2 (suc t)) ×

((t : N) → s2 t → s1 (suc t))

The first change from the coproduct combinator is again
that the control space is extended to contain also the nothing
constructor.

_⊎m
C _ : {S1 S2 : Con N}

→ Con′ S1 → Con′ S2 → Con′ (S1 ⊎S S2)
(C1 ⊎m

C C2) time (inj1 s1) = Maybe (C1 time s1)
(C1 ⊎m

C C2) time (inj2 s2) = Maybe (C2 time s2)

In contrast to the coproduct case, the new step function will
switchwhich process is executing if the control is the nothing
constructor, and otherwise, depending on which injection
was used, apply one of the previous step functions.

⊎m
sf : {S1 S2 : Con N}

→ {C1 : Con′ S1 } → {C2 : Con′ S2 } → S1 ⇄ S2
→ Step S1 C1 → Step S2 C2

→ Step (S1 ⊎S S2) (C1 ⊎m
C C2)

⊎m
sf sf1 sf2 time (inj1 s1) (just c1) =
inj1 (sf1 time s1 c1)

An Algebra of Sequential Decision Problems TyDe’19, August 18, 2019, Berlin, Germany

⊎m
sf (r1 ,) sf1 sf2 time (inj1 s1) nothing =
inj2 (r1 time s1)

⊎m
sf sf1 sf2 time (inj2 s2) (just c2) =
inj2 (sf2 time s2 c2)

⊎m
sf (, r2) sf1 sf2 time (inj2 s2) nothing =
inj1 (r2 time s2)

Again we provide an infix operator to be consistent.

syntax ⊎m
sf r sf1 sf2 = sf1 ⟨ r ⟩ sf2

To create a yielding coproduct we use the same combinator
for the state space, but use the new modified combinators
for the control space and step function.

⊎m
SDP : (p1 p2 : SDProcT) → (#st p1) ⇄ (#st p2)

→ SDProcT
⊎m
SDP (SDPT S1 C1 sf1) (SDPT S2 C2 sf2) r
= SDPT (S1 ⊎S S2) (C1 ⊎m

C C2) (sf1 ⟨ r ⟩ sf2)

When we try to implement the interleaved combinator
for the time dependent case we run into some problems. The
main problem is that since the step function only advances
one of the state components, the other one will be of the
wrong type. At time n one of the components get advanced
to a state in time suc n, while the other is not changed at all.

11 Policy Combinators
Now that we have a way of reusing sequential decision
processes to create more sophisticated processes, we want
to reuse existing policy sequences also. As the function
trajectory which observes a process accepts a process and a
policy sequence as input, this would simplify combining and
observing processes without having to write any new policy
sequences. We start by combining single policies.

We remind the reader that a policy is defined in terms of
a state and a control.

P : (S : Set) → (C : S → Set) → Set
P S C = (s : S) → C s

Apolicy for a product process defined in terms of two policies
for the individual processes, is created by taking a pair of
the two previous policies applied to the components of the
state.

×P : {S1 S2 : Set } {C1 : Con S1 } {C2 : Con S2 }
→ P S1 C1 → P S2 C2

→ P (S1 × S2) (C1 ×C C2)

(p1 ×P p2) (s1 , s2) = p1 s1 , p2 s2

A policy for the sum of two processes is defined by pattern
matching on the state. If the pattern matches on the left
injection, we can reuse the previous policy defined on that
state. Similarly, if the pattern matches on the right injection
we can reuse the given policy for the other process.

⊎P : {S1 S2 : Set } {C1 : Con S1 } {C2 : Con S2 }
→ P S1 C1 → P S2 C2

→ P (S1 ⊎ S2) (C1 ⊎C C2)

(p1 ⊎P p2) (inj1 s1) = p1 s1
(p1 ⊎P p2) (inj2 s2) = p2 s2

Reusing policies for the yielding coproduct is similar to that
of the regular coproduct. The only difference is that when
reusing the old policy the result must be wrapped in the just
constructor.

_⊎m
P _ : {S1 S2 : Set } {C1 : Con S1 } {C2 : Con S2 }

→ P S1 C1 → P S2 C2

→ P (S1 ⊎ S2) (C1 ⊎m
C C2)

(p1 ⊎m
P p2) (inj1 s1) = just (p1 s1)

(p1 ⊎m
P p2) (inj2 s2) = just (p2 s2)

To combine two policies for an interleaved process we re-
call that the control space changes when the index changes.
When the index is 0 the control space is that of the first pro-
cess, and when it is 1 the control space is that of the second
process. Similarly, in order to reuse the two previous policies
we must then pattern match on the state and see what the
index is. If the index is zero, we reuse the first policy. If it is
suc zero, we reuse the second policy.

⇄P : {S1 S2 : Set }
{C1 : Con S1 } {C2 : Con S2 }

→ P S1 C1 → P S2 C2

→ P (S1 ⇄S S2) (C1 ⇄C C2)

(p1 ⇄P p2) (zero , s1 ,) = p1 s1
(p1 ⇄P p2) (suc zero , , s2) = p2 s2
(p1 ⇄P p2) (suc (suc ()) ,)

12 A note on Policies
With these policy combinators defined, we make a few ob-
servations. These observations intend to illustrate some of
the meanings behind policies.

12.1 Product State Policies
Recall a policy for a product state. The type of this pol-
icy is (s : State) → Control s, where State is the type
of states and Control is the type family of controls. Since
s is a product , the signature actually is something like
((a , b) : A × B) → Control (a , b). We know from currying
that this is the same as (a : A) → (b : B) → Control (a , b).
In the case of the product combinator the control space

was the product of the separate state components control
spaces. Where a policy for the individual process would base
the choice of control on the state, the policy for a product
process will select a control for the same state component,
but base the choice on both state components.

In the case of the interleaved process we related the situa-
tion to that of a game, where players take turns making their

TyDe’19, August 18, 2019, Berlin, Germany Robert Krook and Patrik Jansson

moves. In such a scenario a policy could be something of a
game leader, making the best choices for each component
based both components. The policy can, after all, make a
decision for one of the components based on the state of
both components.

12.2 Sum state implies Product Policy
Another interesting observation to make is that a policy for
a process with a sum state, e.g a policy for a coproduct, is a
pair of policies for the separate processes. We can make this
concrete with the following two definitions.

⊎ 7→ × : {S1 S2 : Set }
{C1 : Con S1 } {C2 : Con S2 }

→ P (S1 ⊎ S2) (C1 ⊎C C2)

→ P S1 C1 × P S2 C2

⊎ 7→ × policy = (λ s1 → policy (inj1 s1)) ,
λ s2 → policy (inj2 s2)

× 7→ ⊎ : {S1 S2 : Set }
{C1 : Con S1 } {C2 : Con S2 }

→ P S1 C1 × P S2 C2

→ P (S1 ⊎ S2) (C1 ⊎C C2)

× 7→ ⊎ (p1 , p2) = λ {(inj1 s1) → p1 s1;
(inj2 s2) → p2 s2 }

Then we can further solidify this statement by showing that
they are equal by functional extensionality.

∀⊎ 7→ × : {S1 S2 : Set }
{C1 : Con S1 } {C2 : Con S2 }
(p : P (S1 ⊎ S2) (C1 ⊎C C2))

→ (state : S1 ⊎ S2)
→ × 7→ ⊎ (⊎ 7→ × p) state ≡ p state

∀⊎ 7→ × (inj1) = refl
∀⊎ 7→ × (inj2) = refl

13 Conclusions and future work
We have shown that sequential decision processes can quite
comfortably be combined. Things start to get interesting
when we consider writing new policies rather than combin-
ing existing policies. As exemplified in section 11 a policy
for a product state is essentially a policy for one process
parameterised over another. This becomes particularly in-
teresting when we look at the interleaved process where
we only wish to advance one component but we now have
information about the other also. Using backwards induction
to compute optimal policy sequences could perhaps use this
extra information to produce very clever sequences.

There are many avenues left to explore for future work.
• Here we have mainly focused on sequential decision
processes, and not so much on problems. It is not en-
tirely clear how problems should be combined. The

problems need to offer the same type of reward, nor-
malised to some range and then combined in some
way. Even when the type of the reward is the natural
numbers, combining them is not unambiguous as there
are many ways to combine natural numbers.

• There are definitely many more combinators than
those presented by us in this text. Here we focused
mainly on generic combinators that required no addi-
tional information and then briefly touched the yield-
ing coproduct, which did require additional informa-
tion in order to switch processes.

• Both processes and problems can be parameterised
over a monad. A processes step function can e.g pro-
duce a list of possible next states and associate a prob-
ability to each of them. Modeling such uncertainties
vastly increases the amount of problems that can be
modeled using this framework. When combining pro-
cesses like these combining the step functions becomes
less trivial.

• Many claims and ideas in this text has been described
but not formalised. As an example the notion of a unit
and its properties could be formalised, and then the
units presented here could be proven to be correct
units. We are also interested in implementing an n-ary
combinator for the interleaved combinator, as well as
an interleaved combinator for the time dependent case.

	1 Introduction
	2 Sequential Decision Problems
	3 The Product Combinator
	4 Wrapping up
	References
	5 Technical Report
	6 Example
	7 Combinators for sequential decision processes
	7.1 Coproduct
	7.2 Yielding Coproduct
	7.3 Interleaving processes

	8 Time dependent processes
	9 A discussion on the Fin type
	9.1 Time dependent example

	10 Combinators for the Time Dependent Case
	11 Policy Combinators
	12 A note on Policies
	12.1 Product State Policies
	12.2 Sum state implies Product Policy

	13 Conclusions and future work

