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Abstract—Considering the needs for continuous availability of
information out of data generated in Cyber-Physical production
systems, we investigate the use of continuous stream processing as
a paradigm for generating useful information out of the data, to
support efficient and safe operation, as well as planning activities.

Our contributions and expected benefits: (i) we show possibil-
ities to automate and pipeline the validation and analysis of the
data, hence providing an automated way to improve the quality
of the latter and parallelizing the two phases; (ii) we show how
to induce lower latency in generating the desired information,
enabling it to be continuously made available, before whole
batches of data are gathered, in cost-efficient ways; (iii) besides
the automation of the above procedures that are commonly
done in a batch fashion and with significant manual effort
by the production system analysts, we show additional options
for configuring ways in which to automate deeper analysis of
the data; in particular, we provide evidences about how the
rich semantics of stream processing frameworks can ease the
development and deployment of data analysis applications in
production systems.

Moreover, using the problem of bottleneck detection as a
sample scenario, we illustrate the above in a concrete fashion,
on cost-efficient systems, that are plausible to have in existing
deployments. The experimental study is on a 2-year data-set
with more than 8.5 million entries, from a system including
more than 30 interconnected machines and it demonstrates the
benefits of the proposed methods, in providing timely and multi-
dimensional information from the data, enabling possibilities for
deeper analyses.

I. INTRODUCTION

New and upcoming production systems, empowered with
sensing and communication devices, generate a lot of data
that can be used to improve the functionality and resource
utilization of the system, as well as to react to risky situations.
To this end, the log of the system’s activities is provided
using the machine information captured by Manufacturing
Execution Systems (MES) [8]. MES provide massive amount
of raw data whose translation into smaller sets of valuable
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information is challenging for the production system ana-
lyst. The data is often characterized as Big Data and as
Doug Laney [9] (from Gartner, Inc) emphasized, “is high-
volume, high-velocity and/or high-variety information assets
that demand cost-effective, innovative forms of information
processing that enable enhanced insight, decision making, and
process automation”.

An additional challenge is given by the fact that data vali-
dation and quality improvement [1] need to be applied on the
data before performing different analysis. The data validation
commonly involves: (i) machine data extraction from MES,
(ii) data sanitization, and (iii) data organizing based on analysis
parameters. Out of the three generic steps, the sanitization
usually takes the longest time and includes operations such
as removing information outside the time interval of interest,
extreme outliers, and faulty signals. Identification of extreme
outliers and faulty signals and decisions to retain or remove
them before further analysis are highly subjective in nature
and depend on the analyst’s interpretation [3]. Therefore, sig-
nificant manual efforts are required for the analyst to validate
the data, which shows a demand of configurable automated
tools for data validation.

Challenges: The noisy and dynamic data that is generated,
often irregularly, from various sources requires constant val-
idation before the analysis procedure. At the same time, in
a production system, online MES data analysis is required
for live information to be leveraged in scenarios such as
failure detection. Currently, based on common methods in the
literature and in practice, the raw data is initially stored until,
later on, the system analyst triggers some analysis process.
However, this implies that the information about the data that
is processed most often comes with latency that is prohibitive
for taking timely decisions.

Contributions: In this paper, we design and implement
an analysis approach for production systems that addresses
the above mentioned challenges relying on the data stream
processing paradigm.

Data stream processing (aka data streaming) is an alterna-
tive to the traditional store-then-process paradigm. It defines
methods by which data is processed continuously, as they
are generated, so that the extracted information can enable
to react to changing conditions in a continuous fashion. We
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argue that stream processing enables configurable analysis to
provide options to the analyst to generate helpful information
for automating deeper parts of the analysis. Another advantage
of stream processing is that there is no need to store massive
data (if that is e.g. not needed or is sensitive) but only the
results of the validated data [6], [16], or even only the results
of the analysis if the rest is not needed or can be recovered
in critical scenarios through streaming data-provenance [12].
We provide the following contributions:

1) we propose an automated configurable streaming-based
method for data validation to sanitize and organize MES
data for further processes;

2) we show insights on continuous, low-latency data pro-
cessing as a methodology in production systems;

3) we also study the proposed approach through an im-
plementation of a streaming-based analysis on top of
an established Stream Processing Engine (SPE), Apache
Flink [4], on the problem of throughput bottleneck de-
tection, automating and dramatically enhancing the effi-
ciency of an established approach, i.e. the active period
method for bottleneck detection [13], [15].

The experimental study is on a 2-year data-set with more
than 8.5 million entries, from an automotive production sys-
tem including more than 30 interconnected machines and
it demonstrates the benefits of the proposed methods, in
providing timely and multi-dimensional information from the
data, enabling possibilities for deeper analyses.

II. PRELIMINARIES

In this section, we describe key properties of data stream
processing. We also provide detailed analysis description of
throughput bottleneck detection as a case study.

A. Data Stream Processing

The data stream processing paradigm was motivated by
continuous processing of flows of data targeting data-
intensive applications for which the traditional store-then-
process paradigm is not suitable because of the analysis
latency or system memory limitations. In data streaming, a
query is used constantly on flow of data on the fly as input to
produce a continuous flow of data as output, therefore, causes
less latency by continuously producing the results without
waiting for the a batch of data to be available.

In addition to above, stream processing enables pipeline par-
allelism which can be exploited more by performing on multi-
core systems. The development of data streaming paradigm,
has lead to real-time processing and timeliness of the results
in applications (e.g. sensor readings) where the two steps of
capturing and processing data can be merged.

The flow of data, also called data stream, is a sequence of
data records, which are referred as tuples, that share a common
schema, for instance < ts, Ay, As, ..., A,, > where ts is the
creation timestamp and Ay, ..., A,, are the attributes of the tu-
ple. To deal with the tuples, SPEs are designed to provide high
level programming interfaces. They use continuous queries in
the form of Directed Acyclic Graphs (DAGs) where vertices

!
.
i J
Tuples from . i
temperature - |

Check the
warning condition

Output
tuples

sensors D v
Compute average Tl
temperature during
the last week for
each machine

Fig. 1: Sample query for temperature monitoring example

represent stream processing operators to enforce queries and
directed edges represent flow of data. An operator can be
stateless or stateful. Stateless operators perform actions based
on each tuple individually while stateful operators produce
results using several tuples, commonly over a window of data
which contain the most recent tuples. Windows are defined by
two parameters size, the length of the window, and advance,
the sliding amount (how much in time the window should go
forward). In the following, we overview definitions of some
of the basic streaming operators:

« Filter is a stateless operator, for each tuple produces zero
or one tuple by forwarding or discarding it based on a
filtering condition.

« Map is a stateless operator, transforms each tuple from
one schema to another and produces zero, one or more
tuples based on the mapping condition.

« Aggregate is a stateful operator, used to aggregate infor-
mation from multiple tuples over a window and produces
one tuple per window.

« Join is a stateful operator, used to match receiving tuples
from two streams using a given predicate function and
produces one tuple per matching.

In the following, we discuss an example of using stream
queries for a production system.

Temperature monitoring example: For each machine in the
production line, report a warning if the temperature of the
machine is two times higher than its average temperature over
the last week. Figure 1 presents a sample query to solve this
problem. As shown in the figure, the query receives tuples with
timestamp, unique machine id, and the machine’s temperature.
An Aggregate operator is, then, performed on incoming tuples
to compute the average temperature of each machine over a
window of size one week and produces tuples with an attribute
average temperature. Afterwards, a Join operator is used to
match the original tuples with calculated average ones based
on the machinelD attribute. The matched tuple contains both
attributes temperature and average temperature. Therefore, by
checking the warning condition in the Filter operator, if the
temperature is two times higher than the average, the tuple
will be forwarded to output otherwise it will be discarded.

B. Throughput bottleneck detection

In industrial practice, it is often required from the analysts
to monitor throughput of the production system, one of the
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Fig. 2: Active and inactive machine states (adopted from [13])

main indicators of system performance [5]. Throughput is
commonly affected by one or more machines in the production
system and these machines are thus referred to as throughput
bottlenecks. Bottlenecks need to be monitored on a real-time
basis to reduce the response time to implement improvement
actions and thereby facilitate real-time production control [18].

Substantial research efforts have been devoted to developing
algorithms for the bottleneck detection problem over the last
two decades. These algorithms make use of the machine
information captured by the MES [8]. For instance, Hopp
et al. [7] uses the machines utilization information to detect
the bottlenecks. In other works [2], [10], [14], the blockage
and starvation machine information are used to detect the
bottlenecks. Subramaniyan et al. [15] use machines’ active
states information to detect the bottlenecks based on active
period theory [13]. Yu et al. [17] improved the statistical
analysis of the bottlenecks. These algorithms are demonstrated
to detect the historical bottlenecks from the machine data
collected over a period of time (e.g. past hours, past shifts, past
days, etc.). In this paper, we study the throughput bottleneck
detection based on the active period theory [13], [15], which,
for self-containment, we paraphrase here from [13].

Active Period Method for Bottleneck Detection: The idea
behind the active period theory of bottleneck detection is to
measure the duration of machines being active. Therefore, the
machine states need to be classified during a production run
into those in active and inactive states, i.e. when the machine
is waiting for a part or a service or waiting for the removal of
a part, it is in an inactive state otherwise it is in an active state.
Moreover, consecutive active states are considered as one with
the duration equal to the sum of duration of the individual
active states. Figure 2 indicates an example of active and
inactive states of one machine. Let A,,, = {am1, @m2;s s Gmn }
be a set of active duration, where m € 1, ..., M is the machine
id and n € 1,...,N in the index of the measured active
duration. The active period percentage a,, is calculated as:

_ ZZLV:1 Amn

= N
The machine with the longest average active period is consid-
ered to be the bottleneck. In another words, the activity of the
machine with the highest average active period is interrupted
by the other machines the least, which in turn makes this
machine to effect the overall system throughput the most.

III. METHODOLOGY

In this section we describe the proposed architecture which
consists of two modules: data validation and bottleneck de-
tection. As mentioned earlier, regardless of the processing
application, analyzing MES data contains one major validating
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Fig. 3: Layout of the conventional bottleneck detection.

round. In order to support a configurable and automated
analysis architecture, it is necessary to automate both data
validating and processing rounds. To this end, we first pro-
vide a comparison between the streaming and conventional
analysis for the studied use-case. Later, we present the generic
automated and streaming-based validation module of the ar-
chitecture which can be used on MES data before applying any
analysis application. Finally, we describe the streaming-based
bottleneck detection module.

A. Conventional vs. Streaming Processing

Figure 3 overviews the conventional processing that is
commonly used for active period based bottleneck detection
algorithm. As shown in the figure, all tasks should be done
sequentially and manually by the system analyst. This causes
an unnecessary excessive latency to produce results. Another
disadvantage of conventional processing is that the procedure
is limited by the speed of storing the data since it is necessary
to first store all data and then run the analysis. However, as
discussed in Section II, due to the pipeline parallelism in the
stream processing, it is possible to pipline storing the data with
processing procedure. Furthermore, conventional processing is
sensitive to the time period of interest for which bottlenecks
need to be detected. Therefore, by increasing the time period,
the analysis takes even longer which is undesirable.

Here we discuss the role of the concept of the time period
(window) in stateful streaming data analysis in the context of
interest. l.e. using stream processing we can produce results
for different window sizes at the same time, hence revealing
bottlenecks at different levels of time-granularity.

Dependencies among machines in a pipeline make dynamic
throughput-bottleneck detection difficult and in need of dy-
namic, time-sensitive monitoring; e.g. if we think of machine
pipelines as directed graphs, removing a bottleneck from an
upstream machine can reveal another one, downstream. In
this regard, performing the bottleneck detection procedure on
different window sizes concurrently (from sec to hours, days,
weeks, months, etc), enables the utilization of identifying time-
varying bottlenecks. Moreover, Using windows with different

1330



granularity can make it possible to find regularities, depen-
dencies, correlations, seasonality and thus support not only
immediate reaction to risky situations, but also other operation
activities and planning (e.g. dynamic pipelines with parallel
machines schedules on a need basis to alleviate bottlenecks), to
reduce overall risks and related costs. For instance, comparing
the results of six consecutive one-hour windows with the
result of a six-hour window on the same data, can reveal
the dependencies of the minor bottlenecks in each one-hour
window with the major one in the six-hour window.

Besides other benefits, it is possible to highlight the possi-
bilities of cost-efficiency in data processing, since the afore-
mentioned process can be executed by minimal SPEs, such as
e.g. Liebre, that has been shown that it can conduct substantial
amount or computation, also on embedded devices, without
unnecessary extra costs [11].

B. Data Validation

As discussed in Section I, the data validation round con-
tains three steps; reading data from MES file, sanitizing, and
organizing data based on analysis parameters. Figure 4 shows
the layout of the proposed validation module by means of the
stream processing operators. The module receives flow of MES
data as input and produces a flow of sanitized and organized
data which is ready to be fed to any analysis application.

To start composing streaming-based queries on MES data,
we need to define a sequence of tuples that share a common
schema and for that we need to know more about MES data.
Each MES data record carries several attributes among which
we are intrested in a few one including the creation timestamp,
id of the production machine, ANDON lights, and the period
during which the data is valid. Table I shows an example MES
record of the production line. As shown in the table, each
machine has four different ANDON lights which the MES
collects and stores. At any instance of time, one or several
of lights may be on for each machine. The combination of
ANDON lights are used to represent the machine state (active
or inactive) as shown in Table II. Using the above mentioned
attributes of MES data record, we use the following schema
for tuples:

< ts,machinel D, red, yellow, green, white, duration >

where ts is the creation timestamp of the tuple, machinel D
shows the id of the production machine, red, yellow, green,
and white are ANDON lights, and finally duration indicates
the alidity time interval of the data.

timestamp machinelD | duration ANDON lights
rlylg]w

2015-09-17 12:57:14 M1 273 1|10/ O0
2015-09-17 12:58:20 M2 10 oO|0|1]O0
2015-09-17 12:58:30 M2 382 o1 |1]0
2015-09-17 13:01:47 Ml 85 11 /10]0

TABLE I: Example MES record of two different machines in
a production line

ANDON light
yellow
green
white
yellow+white
red
no light
green+yellow
green+white
green+yellow+white

Status State

producing active

down active

blocked / starved / idle | inactive

TABLE II: Machine states with different combination of
ANDON lights being on

In addition to MES data, the validation module requires
configuration parameters such as scheduled hours and win-
dows. Scheduled hours indicate the time during a day that the
production line is active (e.g. from 06:00am till 11:59pm on
Mondays) and windows show the time granularity within the
scheduled hours that the user seeks to identify the bottleneck
through (e.g. 6 hours). Figure 5 shows a sample scheduled
hours and how the hours of the day are divided into windows.
The validation module starts working as soon as it receives
the initial values for the configurations. It then keeps working
with these configurations as long as there is no update on
them. Once user changes the configurations, the module starts
working with the new values.

The first step in the validation module is extracting machine
data from MES. In order to do so, as shown in Figure 4, a
Map operator is used to transform the initial schema of tuples
into a new one;

< ts, machinel D, active, duration >

where active is a Boolean attribute that indicates if the
machine is active or not. The value of the active attribute is
computed using Table I and based on ANDON light attributes
presented in the tuple. After transforming the tuples, a Filter
operator is used to discard all the tuples that contain FALSE
as the value of the active attribute.

The second step is to sanitize data by filtering out the noise.
In order to detect noise, a Join operator is used to match the
MES data with scheduled hours on timestamp attribute and
eliminate the tuples that do not match, i.e, are outside the
scheduled hours. In a special case, if the production line is
active all the time, the scheduled hours will be 24 hours and
all the data tuples will be forwarded by the join operator since
no tuple is considered as noise. The operator keeps the schema
as before.

The third step is to organize data and prepare it for further
analysis. For this purpose, we use a Map operator which either
forward or splits the tuples. If a tuple lies in more than one
window, due to its duration attribute, The Map operator splits
the tuple into two or more with the same schema as before
but updated ts and duration.

The validation module outputs a flow in which tuples lie
in only one window. Furthermore, it improves the quality of
the data and facilitates the processing procedure which in turn
provides the real-time analysis.
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Fig. 4: Layout of the proposed architecture to validate stream of data and detect the bottleneck.
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Fig. 5: Example scheduled hours and determined time intervals

C. Bottleneck Detection Module

The validation module is be followed by an analysis module
which receives a flow of sanitized and organized data and
continuously perform the bottleneck detection procedure. To
perform the bottleneck detection procedure based on the active
period percentage, we use an Aggregate operator to group
all tuples with the same machinelD in the same window
and then calculate the active period percentage. The output
tuples of the Aggregate operator have a schema composed by
attributes

< ts,machinel D, active Percentage >

which shows the active period percentage of a specific machine
over a specific window (indicated by ts).

After computing active period percentage for all machines
in the window, the final step is to find the machine with the
maximum value and report it as the bottleneck of the window.
For this purpose, another Aggregate operator is used to find
the maximum.

The result of the analysis module is a stream of data
in which each tuple indicates the bottlenecks over the user
specified window. These results can be used immediately for
urgent actions or can be stored for further analysis.

IV. EXPERIMENTAL STUDY — EVALUATION AND
DISCUSSION

To test and evaluate the performance of the proposed
architecture, a real-world MES data from a production line in

M19 || M18 || M17 || M16 || M15

w21 | m22 | m23 m M25 m14 w12 | m11
M26
[w27]

_

IWIIWIWIIWIIWIIWII

Flow

G1
[ | ]

Conveyor ~ Gantry

M33

Machine

Fig. 6: Layout of the production line

an automotive manufacturing company in Sweden consisting
of parallel machines was taken. Figure 6 shows the studied
production system including 33 machines and 6 gantries. The
gantries transport the material between the parallel machines.
Each machine (as well as the gantries) in the production line
is connected to MES in order to monitor the machine status
during the production run. The MES data for each machine
was collected for the period of two years (from September
2014 to September 2016). The total number of data tuples
coming from 39 sources is more than 8.7 million.

The architecture has been implemented in Java on top of
Apache Flink, and executed on a 2.10 GHzIntel(R) Xeon(R)
E5-2695 system with 38 cores on two sockets (18 cores per
socket) and 64 GB memory in total. In our implementation,
each of streaming operator is assigned to a processing thread
to leverage pipeline parallelism.

In order to identify the bottlenecks on a real-time basis, it is
important to reduce the analysis latency. The analysis latency
is the timestamp differences of the result tuple for a window
and the latest input tuple that produced it. Figure 7 presents
the average latency to find the bottleneck over a window for
different window sizes. As shown in the figure, regardless of
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the window size, it takes less than 1 second on average to
validate the data and detect the bottleneck, which gives more
time to the domain experts operating accurately.

Moreover, in order to study the advantage of having config-
urable analytics, we run the experiments on the same dataset
with two different window sizes; 1-day and 1-shift (one shift
is six hours). We then, keep track of the first occurrence of the
bottleneck of the day in any of the shifts from the first shift
in the morning till the third shift in the evening (Each day
includes three shifts). Figure 8 shows the number of times (in
percentage) that the bottleneck of the day was also a bottleneck
in any of the three shifts. As shown in the figure, 67% of the
time, the bottleneck of the day was a bottleneck during the first
shift. Considering the results of Figure 7, since it only takes
a few milliseconds to process data of one shift (six hours), it
is possible to run the analytics during the shifts changeovers
and act based on the analysis results in the new shift.

V. CONCLUSION

We have discussed the stream processing paradigm in the
processing of production system data, as an approach that can
facilitate automation and provisioning of information useful

to detect risks, react to situations and increase effectiveness.
Stream processing enables also pipeline parallelism in the
data processing, enhancing timeliness, too. Besides illustrating
the usage of our methodology on an established method for
bottleneck detection, with a large volume of real-system data,
we highlighted that the proposed streaming data technique can
be coupled with other bottleneck detection algorithm proposed
in [7], [10], [14], [15], as well as other problems of continuous
monitoring.
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