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Singular Value Decomposition

Krystal Bonaccorso

October 6, 2018

Abstract

A well-known theorem is Diagonalization, where one of the factors is

a diagonal matrix. In this paper we will be describing a similar way to

factor/decompose a non-square matrix. The key to both of these ways to

factor is eigenvalues and eigenvectors.

1 Introduction

The theory of singular value decomposition was established by mathemati-

cians named Eugenio Beltrami, Camille Jordan, James Joseph Sylvester, Er-

hard Schmidt, and Hermann Weyl. Beltrami, Jordan and Sylvester came to the

singular value decomposition through linear algebra in the late 1800s. Then in

the early 1900s Schmidt and Weyl came to singular value decomposition by inte-

gral equations. Singular value decomposition is a generalization of the spectral

decomposition, also known as factor analysis.

2 Eigenvectors and Eigenvalues

Singular Value Decomposition is related to eigenvectors and eigenvalues.

Definition: An eigenvector of an n x n matrix A is a nonzero vector ~x ∈ Rn
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such that A~x = λ~x for some scalar λ ∈ R.

Definition: A scalar λ is called an eigenvalue of A if there is a nontrivial solu-

tion, ~x of A~x = λ~x.

Example:

Let A =

 1 6

5 2

 , ~u =

 6

−5

 , and ~v =

 3

−2

.

Are ~u and ~v eigenvectors of A?

A~u =

 1 6

5 2


 6

−5

 =

−24

20

 = −4

 6

−5

 = −4~u

A~v =

 1 6

5 2


 3

−2

 =

−9

11

 6= λ

 3

−2



Therefore, ~u is an eigenvector with the eigenvalue of -4, but ~v is not a eigenvector

of A because A~v is not a multiple of ~v.

3 Diagonalization

The Diagonalization Theorem says that an n × n matrix A is diagonalizable if

and only if A has n linearly independent eigenvectors.

Example: Find a diagonal matrix D and a non-singular matrix P such that

A = PDP−1, if possible.

A =


2 0 0

1 2 1

−1 0 1
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Step 1: Find the eigenvalues

det(λI −A) =

∣∣∣∣∣∣∣∣∣∣
λ− 2 0 0

−1 λ− 2 −1

1 0 λ− 1

∣∣∣∣∣∣∣∣∣∣
= (λ− 2)2(λ− 1) = 0

Eigenvalues: λ = 1 and λ = 2.

Step 2: Find linearly independent eigenvectors.

λ = 1 : ~v1 =


0

−1

1



λ = 2 : ~v2 =


0

1

0

 , ~v3 =


−1

0

1


Step 3: Construct P and D using the eigenvectors and their corresponding

eigenvalues.

P =


0 0 −1

−1 1 0

1 0 1

 and D =


1 0 0

0 2 0

0 0 2


4 The Spectral Theorem

The Spectral Theorem for Symmetric Matrices states that an n x n symmetric

matrix A has the following properties:

1. A has n real eigenvalues, counting multiplicity.
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2. The dimension of the eigenspace for each eigenvalue λ equals the multi-

plicity of λ as a root of the characteristic equation.

3. The eigenspaces are mutually orthogonal, in the sense that eigenvectors

corresponding to different eigenvalues are orthogonal.

4. A is orthogonally diagonalizable.

Example: Let

A =


0 2 2

2 0 2

2 2 0



The characteristic polynomial of A is determined by det(λIA) = 0) giving us,

(λ+ 2)2(λ− 4)

so the eigenvalues are

λ1 = −2, λ2 = −2, andλ3 = 4.

Next, to find the eigenvectors corresponding to λ1 and λ2, we solve the linear

system (−2I −A)x = 0


−2 −2 −2

−2 −2 −2

−2 −2 −2




x1

x2

x3

 =


0

0

0



4



The eigenvectors will be:

~v1 =


−1

1

0

 and~v2 =


−1

0

1



We can see that ~v1 and ~v2 are not orthogonal, since ~v1 · ~v2 6= 0. We can use the

Gram-Schmidt process. We will let

~y1 = ~v1 =


−1

1

0


and

~y2 = ~v2 = ~v2 −
~x2 · ~y1
~y1 · ~y1


− 1

2

− 1
2

1


Let

~y∗2 = 2~y2 =


−1

−1

2


Now the set ~y1 and ~y∗2 is an orthogonal set of eigenvectors. After normalizing

there vectors, we obtain


− 1√

2

1√
2

0

 and


− 1√

6

− 1√
6

2√
6
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Now we will find the eigenvector that corresponds to the eigenvalue 4, using the

equation (4I −A)x = 0


4 −2 −2

−2 4 −2

−2 −2 4




x1

x2

x3

 =


0

0

0



The eigenvector will be

~v3 =


1

1

1


After normalizing this vector we will get,

~v3 =


1√
3

1√
3

1√
3


Now we will create P, which is made up of the columns being the eigenvectors

we found.

P =


− 1√

2
− 1√

6
1√
3

1√
2
− 1√

6
1√
3

0 2√
6

1√
3


Now we can also find D, by using the eigenvalues that correspond to the eigen-

vectors we have in P.

D =


−2 0 0

0 −2 0

0 0 4
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We will also have to find P−1 which is the same as PT .

PT =


− 1√

2
1√
2

0

− 1√
6
− 1√

6
2√
6

1√
3

1√
3

1√
3


Putting them all together in the equation A = PDPT . We will get

A =


− 1√

2
− 1√

6
1√
3

1√
2
− 1√

6
1√
3

0 2√
6

1√
3



−2 0 0

0 −2 0

0 0 4



− 1√

2
1√
2

0

− 1√
6
− 1√

6
2√
6

1√
3

1√
3

1√
3


5 The Singular Value Decomposition

The decomposition of an m× n matrix A includes an m× n “diagonal” matrix

Σ of the form

Σ =

 D 0

0 0


where D is an r × r diagonal matrix.

Definition: The number of linearly independent rows or columns is called the

rank.

Definition: A diagonal matrix is a matrix where the entries aij = 0 if i 6= j.

Definition: An orthogonal matrix means Q−1 = QT .

Theorem: Let A be an m×n matrix with rank r. Then there exists an m×n

matrix Σ where the diagonal entries in D are the first r singular values of A,

σ1 ≥ σ2 ≥ · · · ≥ σr > 0, where σi is the square root of an eigenvalue of ATA,

and there exists an m×m orthogonal matrix U and an n×n orthogonal matrix

V such that

A = UΣV T .
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Proof: To determine V and Σ we consider the matrix ATA.

(1) ATA is a positive semi-definite symmetric n× n matrix. Therefore, ATA =

QΛQT , where Q is an orthogonal matrix of eigenvectors and Λ is a diagonal

matrix of non-negative eigenvalues of ATA.

(2) If A = UΣV T then

ATA = V ΣTUTUΣV T = V (ΣTΣ)V T

Therefore we take V = Q and Σ to have diagonal component D consisting of

the square roots of the diagonal entries of Λ.

To determine U note that AAT = PΛPT , with the same Λ since if ATA~v = λ~v,

then AATA~v = λA~v .

AAT = UΣV TV ΣTUT = U(ΣΣT )UT

Therefore, we take U = P , the eigenvectors of AAT .

More precisely, we can take the columns of U to be ~ui =
A~vi
σi

.

These are orthogonal since

(
A~vi
σi

)T (
A~vj
σj

)
=
~vTi A

TA~vj
σiσj

=
~vTi σ

2
j~vj

σiσj
=
σj
σi
~vTi ~vj = 0

since vi and vj are orthogonal.

Thus when A is a non-square matrix, A = UΣV T , where U consists of eigen-

vectors from AAT , V consists of eigenvectors from ATA and Σ is an non-square

matrix with a diagonal component. Moreover, we have the eigen-esque equation:

A~vi = σi~ui, i = 1, ..., r

Proposition: The symmetric matrices ATA and AAT have the same eigenval-
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ues.

Suppose

ATA~v = λ~v

Applying A to both sides gives,

AATA~v = Aλ~v

which is equivalent to

AAT (A~v) = λ(A~v)

A similar argument shows that if λ is an eigenvalue of AAT with eigenvector

~u, then λ is an eigenvalue of ATA with eigenvector AT~u. Note this proof also

shows a relationship between the eigenvectors of ATA and AAT . In fact, if ~v is

an eigenvector of ATA then A~v is an eigenvector of AAT .

Definition: A symmetric matrix A is called positive semidefinite if all of its

eigenvalues are non-negative.

Proposition: The matrix ATA is a positive semidefinite matrix.

Suppose

ATA~v = λ~v

Take the magnitude of A~v and square it. This means the vector will be dotted

with itself.

||A~v||2 = A~v ·A~v

When taking a dot product it’s the transpose of the vector times the vector.

= (A~v)T (A~v)

The transpose of a product is the product of the transposes in the reverse order,
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gives

= (~vTAT )(A~v)

Next, using associativity to regroup and using the fact λ is a eigenvalue of ATA

with eigenvector ~v, i.e. ATA~v = λ~v, gives

(~vTAT )(A~v) = ~vT (ATA~v) = ~vT (λ~v)

Since scalars commute with matrices, we can rewrite the equation so that λ is

in the front:

= λ~vT~v

The dot product of a vector is the transpose times itself, which is what we have

above, so this equals

= λ~v · ~v

This is the magnitude of the vector:

= λ||~v||2.

Thus we have

||A~v||2 = λ||~v||2.

Since the squares are non-negative, we can conclude that

λ ≥ 0,

and hence ATA is positive semidefinite.

Example: Construct a singular value decomposition of A =

 4 11 14

8 7 −2


Step 1: Compute ATA
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ATA =


4 8

11 7

14 −2


4 11 14

8 7 −2

 =


80 100 40

100 170 140

40 140 200


Step 2: Use the equation det(λI − ATA) = 0 to find the eigenvalues of ATA.

Consider the matrix 1
10 (ATA)

det(λI −ATA) = det


λ− 8 −10 −4

−10 λ− 17 −14

−4 −14 λ− 20



= λ− 8

∣∣∣∣∣∣∣
λ− 17 −14

−14 λ− 20

∣∣∣∣∣∣∣+ 10

∣∣∣∣∣∣∣
−10 −14

−4 λ− 20

∣∣∣∣∣∣∣− 4

∣∣∣∣∣∣∣
−10 λ− 17

−4 −14

∣∣∣∣∣∣∣
= (λ− 8)(λ− 17)(λ− 20)− 196 + 10((−10)(λ− 20)− 56)− 4(140 + 4(λ− 17))

= λ3 − 45λ2 + 324λ = λ(λ2 − 45λ+ 324)

The eigenvalues would equal 36, 9 and 0, but now multiply them by 10 to get

eigenvalues for ATA.

λ1 = σ2
1 = 360, λ2 = σ2

2 = 90 and λ3 = 0.

Step 3: Use the equation (λI−ATA) = 0 to find the eigenvectors of the matrix

above.

Consider the the equation 1
10 (λI − ATA) = 0. When distributing the 1

10 into

the parentheses we would get the equation (λI10 −
ATA
10 ).

(36I − ATA

10
) =


28 −10 −4

−10 19 −14

−4 −14 16

 = 0

When (36I − ATA
10 ) is put into row reduced echelon form, it gives us:
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1 0 − 1

2

0 1 −1

0 0 0

 = 0

Where x1 = t
2 x2 = t and x3 = t. If we let t = 2. Therefore x1 = 1, x2 = 2

and x3 = 2. We will have to divide by 3 to normalize (length = 1) the vector.

~v1 =


1
3

2
3

2
3


To find the next eigenvector we use

(9I − ATA

10
) =


1 −10 −4

−10 −8 −14

−4 −14 −11

 = 0

When (9I − ATA
10 ) is put into row reduced echelon form, it gives us:


1 0 1

0 1 1
2

0 0 0

 = 0

Where x1 = -t x2 = -t
2 and x3 = t. If we let t = 2. Therefore x1 = -2, x2 = -1

and x3 = 2. We will have to divide by 3 to normalize (length = 1) the vector.

~v2 =


− 2

3

− 1
3

2
3
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To find the next eigenvector we use

(0I − ATA

10
) =


−8 −10 −4

−10 −17 −14

−4 −14 −20

 = 0

When (0I − ATA
10 ) is put into row reduced echelon form, it gives us:


1 0 −2

0 1 2

0 0 0

 = 0

Where x1 = 2t x2 = -2t and x3 = t. If we let t = 1. Therefore x1 = 2, x2 = -2

and x3 = 1. We will have to divide by 3 to normalize (length = 1) the vector.

~v3 =


2
3

− 2
3

1
3


Step 4: Create the matrix V, whose columns are the eigenvectors of ATA.

V =

[
~v1 ~v2 ~v3

]
=


1
3 − 2

3
2
3

2
3 − 1

3 − 2
3

2
3

2
3

1
3


Step 5: To find the singular values of A, take the square roots of the eigenvalues

of ATA.

σ1 = 6
√

10, σ2 = 3
√

10, σ3 = 0

Step 6: Make a matrix D with the non-zero singular values in the diagonal and
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then create the pseudo-diagonal matrix Σ containing D and block matrices of

zeros.

D =

6
√

10 0

0 3
√

10

 ,Σ =

[
D 0

]
=

6
√

10 0 0

0 3
√

10 0


Step 7: Create the matrix U, whose columns are the eigenvectors of AAT . Find

~u1 and ~u2 by putting the eigenvector that corresponds with it over the singular

value to normalize (length = 1) that vector.

~u1 =
1

σ1
A~v1 =

1

6
√

10

18

6

 =

 3√
10

1√
10



~u2 =
1

σ2
A~v2 =

1

3
√

10

 3

−9

 =

 1√
10

− 3√
10



U =

 3√
10

1√
10

1√
10

− 3√
10


Step 8: Put all of the pieces into the equation A = UΣV T . PUT the ~u1 and

~u2 together to get the matrix U, put Σ next to it and finally transpose V.

A =

 3√
10

1√
10

1√
10
− 3√

10


 6

√
10 0 0

0 3
√

10 0




1
3

2
3

2
3

− 2
3 − 1

2
2
3

2
3 − 2

3
1
3


6 Applications

Singular value decomposition is a very useful decomposition. One of the ap-

plications is singular value decomposition is called data compression. This is

where you consider some matrix A with rank five hundred. If we had to encode
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this matrix on a computer it would take a lot of memory. We might want to

approximate this matrix with rank one hundred. We can prove this by taking

the n largest singular values of A, replacing the rest with zero and recomputing

UΣV T gives you the best n rank approximation to the matrix. Also the total

of the first n singular values divided by the sum of all the singular values is

the percentage of information that those singular values contain. This yields a

weird and quick algorithm for matrices and we can use SVD. We will drop all

byt a few singular values and then recompute the approximated matrix. Since

we only need to store the columns of U and V that get used, we greatly reduce

the memory usage. We can use this by converting a picture of a tiger to black

and white and then treating this tiger as a matrix, where each element is the

pixel intensity at the relevant location. It is easier to graph the singular values

of the tiger picture. When we graph the singular values you can see that just

fifty of the singular values already make up over 70 percent of the information

contained in the tiger picture. The last thing that will have to be done is that

we will have to take some approximations and plot them to see what is the best

one to use to form the tiger picture clear. By using SVD, we are able to com-

press a 500x800 pixel image into a 50x500 matrix (for U), 50 singular values,

and a 80x50 matrix (for V ).

7 Conclusion

The singular value decomposition is used to factor a rectangular matrix. The

key to the SVD is to apply the spectral theorem to the symmetric matrices ATA

and AAT . SVD are used in statistics, machine learning, and computer science.
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