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Tiivistelmä

Cantor konstruoi reaaliluvut ensimmäistä kertaa 1870-luvun alussa ja osoitti, että
ne muodostavat ylinumeroituvan joukon. Myöhemmin vuonna 1878 Cantor esitti
kontinuumihypoteesin, joka johti kuvailevan joukko-opin syntyyn sekä ensimmäiseen
tulokseen – Cantor–Bendixsonin lauseeseen.

Kaksi vuosikymmentä myöhemmin Cantorin työ sai huomiota Ranskassa. Rans-
kalaisten matematiikkojen Borelin, Bairen ja Lebesguen ideoissa mittateoriassa ja
funktioiden luokittelussa hyödynnettiin laajasti Cantorin ajatuksia. Tärkeimmäksi
yksittäiseksi ongelmaksi kuvailevassa joukko-opissa muodostui Lebeguen mittaon-
gelma: mitkä reaalilukujen osajoukot ovat Lebesgue mitallisia?

Vital näytti vuonna 1904 vedoten valinta-aksioomaan, että on olemassa reaalilukujen
osajoukko, joka ei ole mitallinen. Tämän tuloksen ja Zermelon vuonna 1908 esit-
tämien joukko-opin aksioomien myötä Lebesguen mittaongelma sai matemaattisen
näkökulman lisäksi myös filosofisen. Seuraavien vuosikymmenten aikana osoitet-
tiin, että Zermelon aksioomien avulla ei voida vastata moniin keskeisiin joukko-opin
kysymyksiin.

Banach ja Ulam onnistuivat kehittämään uusia aksioomia näiden ongelmien
ratkaisemiseksi. Osoittautui, että heidän esittämä yleisempi mittaongelma riippuu
voimakkaista suurten kardinaliteettien aksioomista. Täten Cantorin kardinaaliluku-
jen teorialle löytyi sovelluksia jopa reaalilukujen osajoukoille.

Avainsanat: kuvaileva joukko-oppi, Lebesguen mittaongelma, suurten kardi-
naalilukujen aksioomat.
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Abstract

Descriptive set theory has its origins in Cantor’s work on pointsets in the 1870s.
Cantor’s construction of real numbers and proof of the non-denumerability of real
numbers were the first results towards a new theory. Later, in 1878, Cantor formu-
lated his continuum hypothesis for the first time, which lead to the first result in
descriptive set theory: the Cantor-Bendixson theorem.

Two decades later, Cantor’s theory awoke interest in French analysts Borel, Baire
and Lebesgue. Their work on measure theory and classification of functions rested
heavily on Cantorian ideas. The most important problem for the development of
descriptive set theory was Lebesgue’s measure problem: which subsets of the real
line are Lebesgue measurable?

After Vitali’s impossibility result in 1904 and Zermelo’s axiomatization of set theory
ZFC in 1908 Lebesgue’s measure problem gained, in addition to its mathematical
framework, a philosophical one as well. This allowed for a better understanding of
the underlying situation and also proof-theoretic considerations. The limit to what
could be proved to be measurable in ZFC was soon achieved.

However, new ideas arose through the works of Banach and Ulam. Their more
general measure problem was identified as being dependant on strong axioms of
infinity, the large cardinals, which are still linked to real numbers. Cantor’s theory
of cardinal numbers had thus found applications even at the level of real numbers.

Keywords: descriptive set theory, Lebesgue’s measure problem, ZFC axioms, large
cardinals.
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Chapter 1

The origins of descriptive set
theory

1.1 Introduction

Descriptive set theory is the study of "well-behaved" subsets of the con-
tinuum1. It is said to have emerged in turn of the 20th century in works
of Émile Borel, Henri Lebesgue and René-Louis Baire. However, its actual
origins were in the period 1870-1885 when Georg Cantor worked on the prop-
erties of real numbers. It began with Cantor’s 1872 paper on trigonometric
series, where he defines real numbers as fundamental sequences of rational
numbers. Then, using his concept of limit point to define the sets of the
first species. After proving in 1874 that real numbers are non-denumerable,
Cantor formulated his continuum hypothesis for the first time. Later, in the
1880s, Cantor’s theory of pointsets advanced considerably with the publica-
tion of a series of six papers on the common title On infinite linear point
manifolds. These papers include his famous Grundlagen, which was the first
paper which concerned sets as an independent theory, and in which Cantor
describes for the first time perfect sets, that later play a crucial role in the
development of descriptive set theory.

1In other words descriptive set theory is the study of definable subsets of real numbers
that are measurable, satisfy the continuum hypothesis etc.
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In the following we present a chapter on Bernhard Riemann’s manifolds,
mention some development on pointsets before Cantor’s contribution, dis-
cuss Richard Dedekind’s role in Cantor’s line of thought and how Riemann
affected Cantor and Dedekind. Then we follow Cantor on the development
of pointset theory from 1870s to 1885. There are three important things that
are given special attention; Cantor’s work on trigonometric series did not
effect the discovery of pointset theory as much as is often written; Dedekind
was more concerned with his domains than real numbers during his corre-
spondence with Cantor; and finally that both Cantor and Dedekind worked
in Riemann’s tradition, albeit in different ways.

1.2 Set theory before Cantor

1.2.1 Riemann’s manifolds

In 1854 Riemann gave his famous Habilitations lecture "Über die Hypothesen
die der Geometrie zu Grunde liegen" ("On the hypotheses which lie at the
foundation of geometry"). Because the lecture was directed to people working
not only in mathematics but also in philosophy and physics it lacks a degree
of mathematical detail. Still, the lecture did not go unnoticed as it affected
many mathematicians and its impact, as we will discover, can be seen in
the works of Cantor and Dedekind, among others. It is also remarkable, as
Riemann notes in the beginning of the lecture, that there were no previous
labours on the topic, with the exception of hints in the works of Carl Gauss
and Johann Herbart2. In other words, it is safe to assume that most of the
ideas originated primarily from Riemann himself.

As Riemann notes in the introduction, the goal of the lecture was to
distinguish, in today’s terms, the topological and metric properties of the
space from each other. In the first part of the lecture that deals mostly
with topological properties of the space he defines the concept of a manifold

2The influence of Herbart on Riemann is not particularly clear and those interested
in the connection should see Scholz 1982a [32] for discussion. However, Riemann was
probably aware of Bolzano’s ideas with the paradoxes presented by infinite collections [1]
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which, as we shall see later, was adopted by Cantor. For Riemann, there
existed two varieties of manifolds: The discrete, which consists of points and
the continuous, which consists of elements.

“According as there exists among these specializations a continuous path

from one to another or not, they form a continuous or discrete manifold: the

individual specializations are called in the first case points, in the second case

elements, of the manifold” (Ewald [19] p.653).

It may be the case that Riemann defined the manifold to give a basis
for his work on geometry and function theory (especially Riemann surfaces).
This claim is supported by the fact that Riemann began using the term
"continuous manifold" (although without a satisfiable definition) in his 1851
dissertation [28]3.

Riemann does not focus in discrete manifolds on his lecture, nor later on
in his work, but it is clear that discrete manifolds can be seen as a concept
in foundations of mathematics. Furthermore, he does not rule out the
possibility that space itself might actually turn out to be a discrete manifold
instead of a continuous one.

“Notions whose specializations form a discrete manifold are so common

that, at least in the cultivated languages, any things being given, it is always

possible to find a notion in which they are included. (Hence mathematicians

might unhesitatingly found the theory of discrete magnitudes upon the postu-

late that certain given things are to be regarded as equivalent.)” (Ewald [19] p.653)

This conception of a discrete manifold gives undoubtedly a right to
call it a "set" as it seems to agree with Cantor’s definition of a set in 1883
as a “multiplicity which can be thought of as one, i.e. every totality of
determinate elements which can be united into a whole by some law” ([9]
p. 587). Riemann does not define the concept more precisely, and he seems

3This is further supported by the publication of Riemann’s manuscripts by Scholz in
1982b [33].
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to indicate that the concept is somewhat universal and that it might be
dependant on the framework one is working on. Unfortunately Riemann
does not go into the properties of discrete manifolds even though he remarks
that at least most things might turn out to be a part of a discrete manifold.

After briefly discussing discrete manifolds, Riemann notes

“On the other hand, so few and far between are the occasions for forming

notions whose specializations make up a continuous manifold, that the only simple

notions whose specialization form a multiply extended manifold are the positions

of perceived objects and colours. More frequent occasions for the creation and

development of these notions occur first in higher mathematics.” (Ewald [18]

p.653)

It is pretty clear that the more interesting of the two manifolds for
Riemann are the continuous ones because they arise from mathematical
concepts. The lack of more discussion about the discrete manifolds, even
though he explicitly remarks that the continuous manifolds are more rare,
is not surprising at all from the perspective of his earlier work. And as we
shall see later the continuous manifolds are the starting point of what later
became known as pointset theory or topology4.

Despite originating the concept of manifolds, Riemann did not attempt
to develop an independent theory of them, instead using them as a tool to
better understand geometry and space. Still, the impact on the development
of pointsets and set theory is significant as we will see in the works of many
mathematicians, especially Cantor and Dedekind.

1.2.2 The development of pointsets before 1870s

In the 19th century, mathematicians like Rudolf Lipschitz, Peter Dirirchlet,
Hermann Hankel and Riemann were developing the theory of trigonometric
series which was one of the main research subject of mathematical analysis.

4For the development of the concept of manifold in the direction how manifolds are
nowadays defined in differential geometry see Scholz [34].

4



This study was started by Jean-Baptiste Fourier who noticed that seemingly
arbitrary functions could be represented as trigonometric series. However,
Fourier’s work was not complete and many mathematicians were interested
in his findings continued his work. Particular interest were sufficient and
necessary conditions for a function to be represented as a trigonometric series.
This problem turned out to be non-trivial and many partial results were given
between years 1830 and 18705. Even though many results were successfully
proved, new questions arose.

Riemann was one of the first to start more rigorous research of trigono-
metric series already in 1850s but his approach was functional analytic and
no properties of the domain of a function was considered. Still, many im-
portant tools to analyze trigonometric series appeared, certainly the most
recognizable was the definition of Riemann integral, and thus mathematics
to continue the work was developed. Riemann’s work on trigonometric series
really appeared already in 1854 but was left unpublished until 1868 which
explains the slow development on the problem during the period 1854-1868.

One of the many papers that followed the publication of Riemann’s work
was Hankel’s thesis in 1870. His goal was to characterize those functions
that are useful and should be considered in analysis. That led Hankel to pay
particular interest in discontinuous functions and it was the definition of the
Riemann integral that allowed their study. In his work Hankel had to make
a distinction between point-wise discontinuity and total discontinuity. To
make this distinction, Hankel had to consider, in his words, how points lie
on the line. This required him to focus on the domain of the function6. Un-
fortunately, Hankel’s beginnings of a theory of pointsets were not developed
further, due to his early death in 1873.

A small step towards the topology of the real line was also taken by
Lipschitz who used concepts that are currently known as everywhere-dense

5See for example Dauben [13] or Grattan-Guinness [23] for early development on the
problem.

6Hankel used expressions "fill up the line" and "lie loosely" to describe this difference.
Good introduction to Hankel’s ideas is found in Dauben [13] p.23-29 or in his original
paper [25].
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and nowhere-dense sets7. However, he did not really study the structure of
the domain and only developed the concepts to understand the behaviour of
the function in its range.

Even though the problems, especially on trigonometric series, suggested
to study the structure of pointsets, no one before Cantor was able to take
the step to study them in greater detail. Contemporary studies were directed
towards functional analysis and the theory of pointsets in their work was
never considered independently; the underlying concept of a pointset was
merely used as a tool to prove theorems in functional analysis.

1.3 Cantor’s early work

1.3.1 Cantor’s work on trigonometric series

Riemann’s work suggested8 the so called uniqueness theorem of trigonomet-
ric series:

If a function f(x) is representable as a trigonometric series:

f(x) =
a0
2

+
∑

(an sin(nx) + bncos(nx)),

is the representation unique?

In 1870, Eduard Heine was able to prove that the representation is
indeed unique, assuming uniform convergence and discontinuities only in
a finite number of points. Cantor was at that time interested in number
theory, which was also the topic of his doctoral dissertation but Heine
encouraged Cantor to generalize his result of the uniqueness theorem,
which made Cantor interested in mathematical analysis. Cantor was able
to generalize Heine’s result in 1870 to hold in cases where the series was
convergent for all the values of x in the domain.

7These concepts can be found in Lipschitz [26] or in English from Dauben [13] p.20-21.
8In his 1854 paper [30] Riemann constructed integrable functions with diverging

Fourier series and conversely functions with converging Fourier series but which were
not Riemann integrable.
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Cantor continued his work on trigonometric series in two subsequent pa-
pers. In the first paper, published in 1871, he suggested some improvements
to the result and was able to show that the convergence for all values of x
was not necessary. But the number of these exceptional points of x (where
f(x) did not converge) had to still be finite in finite intervals. In that pa-
per, he further anticipated that the theorem could still be further generalized
(Dauben [13] p.34-36).

1.3.2 Construction of real numbers

Some theory of pointsets was required to generalize the uniqueness theo-
rem to hold for infinite number of exceptional points of convergence. As
noted above, even the theory of irrational numbers was still in most parts
undeveloped. Consequently, Cantor realized that the so-called arithemetic
continuum needed to be somehow connected to the geometric continuum and
that new concepts had to be created.

Cantor published the second paper "Über die Ausdehnung eines Satzes
aus der Theorie der trigonometrischen Reihen" (On the generalization of a
theorem from the theory of trigonometric series) in 1872 [3] to first develop
the theory of real numbers and then to generalize the uniqueness theorem. In
the beginning of the paper he defines a domain B which consists of symbols
b which are fundamental sequences (in today’s terms Cauchy sequences) of
rational numbers9. When extending the standard arithmetic operations to
hold also for the symbols b Cantor started calling them numbers10. Now that
Cantor had defined the domain B, the same process could be done again to
form domain C which consisted of symbols c that are fundamental sequences
of the numbers b. Then continuing in the same fashion he also constructed
domains B,C, . . . , L where L was the result of λ iterations of the process.
But as Cantor himself points out all the elements of the domains B,C, . . . , L

9Cantor seemed to assume that the limit of these sequences actually exists. Russell’s
critique on this can be found in I. Grattan-Guinness [23] p.300.

10It seems that defining the elementary operations for the symbols b made Cantor call
them as numbers but Cantor did not justify this further and it seems that the symbols
were called numbers just out of convenience.
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could be equated and thus no new elements were formed. Cantor still needed
to prove that for each number b there was a unique point in the geometric
continuum (on the straight line). To this end, he recognized the need for an
axiom rather than a proof11.

Cantor was not the only one to realize the need for a more precise
treatment of real numbers, as Dedekind published in the same year 1872
his own construction of real numbers12. In the beginning of his article,
Dedekind quickly comments Cantor’s paper of 1872

“It seems to me that the axiom given in Section II of that paper agrees with
what I designate in Section III as the essence of continuity. But I am unable
to see the use of distinguishing real numbers of a yet higher type, even if
this is only done conceptually.”

Thus Cantor and Dedekind were both able to recognize independently
that the arithmetization of the continuum could not be done without an
axiom. Also Dedekind did not see a need for the domains beyond B as no
new elements appeared in the process but this exact conceptual difference
led Cantor to consider the higher orders of derived sets.

1.3.3 Derived sets of real numbers

What followed the construction of real numbers in the 1872 paper was Can-
tor’s key definition: Derived pointsets of the first species13. To define these
pointsets, Cantor first defined a limit-point of a point set P as “point of the
line for which in any neighbourhood (an interval that contains the point),

11Cantor formulates this axiom in [3] p.127. This axiom is nowadays often called
Cantor-Dedekind axiom and may be formulated as "The points on a straight line can be
put into a one-to-one correspondence with real numbers".

12Dedekind’s ideas were already presented by him in 1858 as he mentions in the preface
of his 1872 [14] but were not published (English translation of the paper can be found in
[19] p.765-779).

13For Cantor pointsets P [Punktmengen] were a given finite or infinite number of points
of a straight line [3] p.128 or in today’s terms subsets of real numbers.
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infinitely many points of P are found”. Bolzano-Weierstrass theorem14 states
that every infinite bounded pointset contains at least one limit point and thus
Cantor could as least "conceptually" take its set of limit points given which
he called “the first derived point set of P ” and denoted it by P ′. And then
if P ′ was infinite one could consider the set of its limits points and get the
second derived point set P ′′ and so on till P (v). Potentially, after v iterations,
the derived set P (v+1) may not exist, in which case Cantor described P as a
being of the vth kind. All the sets P which were of the vth kind for a finite
v Cantor named as the derived sets of the first species and the sets which for
this did not happen he named as the derived sets of the second species15.

Now that the derived sets of first species were defined, Cantor could
generalize the uniqueness theorem of trigonometric series; it was enough
that the series converges for all values x except for those that belong to the
derived point set of the first species. Or, in other words, as Cantor wrote in
the end of his 1872

“A discontinuous function F (x) which is non-zero or undetermined for all

values of x that correspond to points of a point set P of the vth kind in the

interval (0...(2π)), cannot be represented as a trigonometric series”.

At this point the derived sets do not play a big role outside of the
uniqueness theorem, but their importance will be made evident later in
Cantor’s theory of pointsets when the basic concepts of pointsets are
defined based on them. The above theorem seems to hint that Cantor was
considering of sets P that had non-empty derived set P (v) for any finite
v as early as 187216. But it was not before 1880 that Cantor published

14Cantor does not mention in his paper where he knew the theorem but it is plausible
that he heard of it from his teacher Karl Weierstrass (Moore [27] p.221-223).

15Cantor does not actually use the names "sets of the first species" or "sets of the
second species" before his 1879 [6] p.2 but we will use them here for convenience

16This observation is made in Grattan-Guinness [23] p.85 and actually Cantor says
in footnote in his 1880 [7] p.358 that he succeeded in finding the sequence already ten
years ago. However this is criticized in a footnote in [22] p.160 where Ferreirós notes that
Cantor had a habit to anticipate the dates of his findings. In either case, Cantor had found
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the sequence of derived sets of the second kind which included symbols of
infinity

P (∞), P (∞)′ = P (∞+1), P (2∞), P (∞n), P (∞∞), P (∞∞n
), P (∞∞∞

), . . . .

However, there is no question that an important transition in Cantor’s think-
ing occurred in 1872, which led Cantor to consider the infinite sets of real
numbers.

It is often written that the trigonometric series and the uniqueness theo-
rem plays a fundamental role in Cantor’s findings of the beginnings of pointset
theory. But as we can see from the above, the construction of real numbers
and the derived sets have nothing to do with trigonometric series, apart from
the fact that they offer a framework for their study. In addition, the amount
of detail and discussion about these concepts is much more what is needed for
the results about the trigonometric series. Further, Cantor even studied the
theory of irrational numbers in his paper "Über die einfachen Zahlensysteme"
(About the simple number systems) in 1869 [2], which shows his interest in
them before the papers on trigonometric series. His fundamental sequences
in 1872 follows Heine’s work on the same year, but the connection to real line
is only made by Cantor (Grattan-Guinness [23] p.82-83). It is clear that the
derived sets of real numbers arose as a concept more from the construction
of real numbers than from the uniqueness theorem because the idea in the
definition is similar to fundamental sequences. Most importantly, we will see
that in the following papers by Cantor the properties of real numbers and
pointsets are considered totally independently of trigonometric series.

1.4 Cantor-Dedekind Correspondence

1.4.1 Non-denumerability of real numbers

The first written contact between Cantor and Dedekind was made in 1872
when they exchanged their papers of irrational numbers17. And in April

something fundamental that he was able to use later in his theory.
17As Ferreirós points out in [22] p.172 Cantor and Dedekind stayed in the same hotel

in Switzerland in April 1872. This is often seen to be the beginning of their friendship,
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they began their famous correspondence18. The very first question that
Cantor sent during their correspondence was in November 1872:

“Take the totality of all positive whole-numbered individuals n and desig-

nate it by (n). And imagine say the totality of all positive real numerical

quantities x and designate it by (x). The question is simply, Can (n) be correlated

to (x) in such a way that to each individual of the one totality there corresponds

one and only one of the other? At first glance one says to oneself no, it is not

possible, for (n) consists of discrete parts while (x) forms a continuum. But

nothing is gained by this objection, and although I incline to the view that (n)

and (x) permit no one-to-one correlation, I cannot find the explanation which I

seek; perhaps it is very easy.”

Dedekind responded to Cantor that he could not answer the question
but sent Cantor a proof that a totality of all algebraic numbers can be
correlated with the totality (n) of all natural numbers. Cantor responded in
turn that Dedekind’s proof is approximately the same as his proof19 on the
fact that (n) can be correlated one-to-one with

(an1,n2,...,nν ).
20

Dedekind also wrote that Cantor’s question did not deserve effort
because it had no practical interest. But he had to change his opinion in
the 7th of December 1873 when Cantor gave his first proof that the totality
(x) cannot be correlated one-to-one with the totality (n). The proof that
Cantor provided was simplified after Dedekind’s suggestions, but the central
idea remained the same. The proof used topological properties of real

however we shall not speculate on the status of their relationship at that time, those
interested in it should read Ferreirós [20].

18The English translation of these letters can be found in Ewald [19] p.853-878.
19Even if Cantor claims that their proofs are approximately the same they have some

differences (see Ferreirós [22] p.179) and it is thus hard to believe that Cantor had come
up with the exact content of the theorem himself.

20Cantor means in today’s terms that (n) can be correlated one-to-one with ν-tuple
(n1, n2, . . . , nν) where each n is an integer.
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numbers21, namely Bolzano-Weierstrass theorem which already appeared in
Cantor’s 1872 article. Therefore, the first proof was not the famous proof by
diagonalization which appeared much later in 1891. Cantor published these
two theorems in 1874 with the title: On a property of the set of all real
algebraic numbers22. The title of the publication is rather strange because
an important property proven for Cantor was the difference between the
continuum and totalities like algebraic or rational numbers23. The title
and content of the paper was surely affected by Weierstrass who actually
encouraged Cantor to publish the paper but only "as long as it is related to
the algebraic numbers". As a result, the paper’s content closely resembles
another proof of the theorem of Liouville’s that there exist transcendental
numbers. But Cantor writes in a letter before 1874,

“there exists essential differences among the totalities and value-sets that I

was until recently unable to fathom.” (Ewald [19] p.846)

which is another clear implication that the most important part of
the paper for Cantor was, in later terms, the non-denumerability of real
numbers.

21The idea of the Cantor’s proof is as follows: Assume that real numbers can be given
in a sequence ω1, ω2, . . . , ωv, . . . . Then it is enough to show that in any interval [α, β] a
number η can be found such that it does not appear in the given sequence. Denote the first
two numbers of the sequence that lie in the interval [α, β] by α′ and β′. And then again
denote the next two numbers of the sequence that lie in the interval [α′, β′] by α′′ and β′′.
Continuing in the same way we get a sequence of closed nested interval [α(k), β(k)]. Then
by the Bolzano-Weierstrass theorem we find a number η which belongs to the interval for
each k. If this number η were contained in the sequence, then one would have η = ωn.
But by construction this is not possible, so every real number cannot be a member of the
sequence.

22Originally appeared in Cantor [4] and English translation in Ewald [19].
23Cantor writes only very short in the paper [4] that “I have discovered the difference

between a so called continuum and any set like the totality of real algebraic numbers.”
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1.4.2 Dimension of a manifold

Now that Cantor knew that infinities came in different sizes it surely
made him consider whether there were infinities that differ from (n) or (x).
Perhaps higher dimensions would create pointsets of even higher cardinality?
Or maybe there is an infinite pointset strictly between (n) and (x)? Thus it
is no surprise that Cantor’s next question, which he wrote to Dedekind in
1874 was:

“Can a surface be one-to-one correlated to a line so that to every point of

the surface there corresponds a point of the line, and conversely to every point of

the line there corresponds a point of the surface?”

At first, Cantor seemed to believe that this question should be an-
swered negatively, as he wrote “here too one is so impelled to say no that one
would like to hold the proof to be almost superfluous”. But Cantor received
no answer from Dedekind before 187724 when he had already proved his
theorem to be true25. Cantor had also made many improvements to his
notations from 1874. He now used the word manifold to describe surfaces,
lines, etc., and thus it seems to agree mostly with Riemann’s definition of
continuous manifold. He also arrived at a rigorous definition of power which
was only implicit in his 1874 article.

“If two well-defined manifolds can be correlated to one another one-to-one

and completely, element for element, then I say that they have the same power.”

(Ewald [19] p.865)

Cantor had demonstrated more general theorem than what he sent in
24The reasons for a three year pause in the correspondence seems to be unknown but

to those interested some speculation is found in Dauben [13] p.54 and Ferreirós [22] p.186.
25This is when Cantor writes the famous phrase "je le vois, mais je ne le crois pas (I

see it, but I do not believe it)". This is often seen as a evidence that Cantor was surprised
of his findings but closer analysis indicates that it might describe his doubts about the
correctness of his proof (See Gouvêa [24]).
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1874. The theorem now claimed that a manifold of n-dimensions is of equal
power as a manifold of one dimension. These definitions and the proof were
published in his 1878 [5] and were followed by discussion by letters between
Cantor and Dedekind (Ewald [19] p.866-871) of the invariance of dimension
and the definition of dimension. After Cantor’s attempt in his 1879 paper
on the matter the issue seemed to be settled26 and Cantor did not consider
n-dimensional manifolds in his papers to come.

In the end of his 1878 article Cantor made final important claim that
“linear aggregates would consist of two classes”, the denumerable ν (where ν
runs through all positive numbers) and the continuous x (where x can take
all real values ≥ 0 and ≤ 1). This was, of course, the first formulation of his
continuum hypothesis. He also notes that he will study this question later,
and indeed between the years 1879-1884 the focus of his research was on
infinite numbers and topology of the real line.

1.4.3 Differences in the works of Cantor and Dedekind

As discussed earlier, Riemann originated the concept of continuous manifold
in 1854, which Cantor by 1878 had adopted. Dedekind surely recognized
the Riemannian aspect of Cantor’s work and he wrote to Cantor "I should
like to see the shorter and equally Riemannian word ’domain’ [Gebiet] given
clear preference over the clumsy word ’manifold [Mannigfaltigkeit]’" (Ewald
[19] p.870). In the same letter, Dedekind suggests Cantor to develop a more
rigorous foundation for the "theory of domains", and notes that he has some
definitions that seem to give a solid foundation. Here Dedekind most prob-
ably refers to his manuscript written before 187227 where he defined basic
concepts of real line topology, most notably the notion of open set which he

26Also Lüroth, Thomae, Jürgens and Netto published articles concerning this question
(See Dauben [13] p.70-72). While Cantor was not happy with these considerations his
proof was not also satisfactory and only in 1911 Luitzen Brouwer was able to settle the
issue completely.

27This manuscript was probably written during 1863-1866 as Ferreirós points out in
footnote in [21] p.28. The manuscript was published by Fricke, Noether and Ore in 1931
[17] p.352.
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called Körper. This concept however was not developed further by Dedekind
but it shows that he was certainly interested in advancing the subject before
his 1872 article.

An important difference between Cantor’s theory of irrational numbers, is
that Cantor does not concern himself with the foundations at all. Dedekind’s
entire 1872 paper can be viewed as an attempt to codify the continuum, but
Cantor constructs real numbers only because of his interest in irrational num-
bers. The lack of interest in foundations of mathematics actually continues
in Cantor’s work until 1884, and he develops new concepts only to prove
theorems of the continuum. This is exactly what Riemann did after defining
discrete and continuous manifolds, he did not develop an independent theory
of them, but instead used them as a basis for his theorems in differential
geometry. Thus it is clear that Cantor and Dedekind both worked in Rie-
mann’s tradition, but only Dedekind inherited this interest in foundations,
later leading to a publication of his theory of systems28. One reason for the
difference might be that Dedekind read Riemann much earlier, and that his
field of research was mostly algebra instead of analysis.

It is often said that Dedekind was academically interested in real num-
bers, maybe even as much as Cantor. However, this claim is probably untrue
and it is important to recognize the difference in Cantor and Dedekind
when it comes to real numbers. Dedekind’s 1872 article undoubtedly deals
with real numbers but it does not consider any properties of them. It is
also clear from his later work that he was not at any point afterwards
interested in real numbers or in their structural properties. As noted before,
the concepts of Dedekind’s 1872 paper was known to him from the 1850s,
long before his correspondence with Cantor. Already in the 1870s Dedekind
seems to be into his theory of systems, which he published in 1888 on the
title "Was sind und was sollen die Zahlen?" ("The nature and meaning of
numbers"). In this article Dedekind does not consider directly anything
about real numbers, and comments his earlier work on the theory of systems:

“Upon this unique and therefore absolutely indispensable foundation, as I

28The Systems seem to be really close to what Riemann meant by discrete manifolds.
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have already affirmed in an announcement of this paper, 3 must, in my judgment,

the whole science of numbers be established. The design of such a presentation I

had formed before the publication of my paper on Continuity, but only after its

appearance and with many interruptions occasioned by increased official duties

and other necessary labors, was I able in the years 1872 to 1878 to commit to paper

a first rough draft which several mathematicians examined and partial1y discussed

with me. It bears the same title and contains, though not in the best order,

all the essential fundamental ideas of my present paper, ...” (Dedekind [15] p.32)29

This indicates that the study of the continuum was not foremost in
Dedekind’s mind during the 1870s.

Cantor however was exactly the opposite and tried to find essential differ-
ences in the properties of the continuum and of the natural numbers. That
is exactly what led him to the concepts like limit-point, derived sets and to
look for an answer to the continuum hypothesis.

Another big difference in Dedekind’s and Cantor’s theories are their
definition of infinity. This difference is clear from Cantor’s 1878 paper,
where he writes in the first page that the power of a finite manifold (a
manifold that has finite number of elements) corresponds to the number of
its elements and thus a proper part of a finite manifolds always has a smaller
power than the manifold itself. However, he notes that this property does
not hold for infinite manifolds.

“But this relation ceases to hold entirely if the manifold is infinite (mani-

fold that consist of infinite number of elements); from the fact that an infinite

manifold M is a proper part of a manifold N , or can be fully assigned to the

manifold N , it can be by no means concluded that its power is smaller than the

power of the manifold N .” (Cantor [5] p.242)

This is in some sense a paradoxical property that a whole can have a
proper part that is of the same power. In today’s terms, this is known as
Dedekind-infiniteness. For Cantor, this was arguably a theorem of infinite

29The draft that Dedekind talks about can be found in Dugac [18] p.293-309.
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sets, even though he did not represent a proof30. Dedekind went one
step further by using it as a definition of infinity31. And at this point a
relevant question is if Dedekind-infiniteness should taken to be a theorem
or a definition. Using it as a definition has a key difference to Cantor’s
definition of infinite32 because it does not rely at all on the sequence of
natural numbers and so one can talk about infinite sets even before defining
the natural numbers.

1.5 Beginning of descriptive set theory

After his 1878 Cantor published six papers in Mathematische Annalen under
the common title Über unendliche, lineare, Punktmannigfaltigkeiten ("On
infinite linear point manifolds") that appeared during the years 1879-188433.
As Cantor notes in the preface of the fifth paper, the Grundlagen, all of the
six papers are highly connected to his articles in 1872 and 1874 which means
that most of the ideas were available to him before mid 1870s but now the
ideas were made more rigorous.

As noted above in the first of the papers [6] 1879 Cantor studied the
derived sets but this time independently of trigonometric series. Also in
page 2 he says that a pointset P which is entirely or partially in closed
interval [α, β] is said to be an everywhere dense pointset if every interval
in [α, β] contains a point of P . One property of everywhere dense pointsets
that Cantor proves on the next page is that they are necessarily of the second
species. As he already knew that there were at least two different sizes of
infinity, he remarked that the sets of the first species are all in the "class
of infinitely countable" and that the sets of the second species are either

30The first proof that any infinite set is Dedekind-infinite is by Zermelo who proved
this statement in 1904 using axiom of choice.

31This definition is published in his 1888 [16].
32Cantor defined a set to be finite if it can be one-to-one correlated with some number

and infinite if not.
33These papers are, in chronological order, [6], [7], [8], [9], [10] and [11]. A good

overview of the content of these papers are in Grattan-Guinness [23] p.92-97 or Dauben
[13] p.77-119.
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countable or have to same power as "continuous intervals". The classification
of pointsets with certain properties continued in the fourth paper [9] with the
notion of isolated pointset: A pointset P was called isolated if its intersection
with its derived setQ′ was empty. For example, Cantor noted that all isolated
pointsets are countable.

After these four papers appeared the Grundlagen [10]34, in which almost
all his results about pointsets appear, along with many important new ones.
Certainly the most interesting concept for the descriptive set theory is the
perfect set. Cantor called a set P to be perfect if it was equal to its derived
set P ′. Some properties of perfect sets were in the Grundlagen but more
detailed study of them appeared a year later in the sixth paper [11] of the
series. The most important result is the early version of Cantor-Bendixson35

theorem which says that any closed set 36 of the continuum can be written
as a disjoint union of a perfect set and a denumerable set. This result,
together with the observation that every perfect set is of the same power as
the interval [0, 1], gives the first result towards the solution of the continuum
hypothesis: at least no closed set can violate the continuum hypothesis. As
Cantor notes in [11] p.488, he believed that this kind of composition theorems
would ultimately solve the continuum problem.

The importance of the perfect sets can also be seen in the definition of the
continuum. However, Cantor realized that the requirement that continuum
is a perfect set would not be enough. Thus he introduced the term connected
set37 and defined the continuum as a perfect connected set.

In this way, Cantor was able to establish that closed sets satisfy the
34Grundlagen was the first paper which concerns sets as an independent theory and it

contains the big ideas of ordinals and transfinite numbers along with a discourse about
the infinity. Thus it is one of the main reasons that Cantor is known as the founder of set
theory.

35This result was stated incorrectly in Grundlagen and together with I. Bendixson
Cantor refined the result.

36Closed set was defined as a set that contains its own derived set.
37" We call T a connected point-set if, for any two of its point t and t′ and for any

arbitrarily small number ε there always exists a finite Anzahl of points t1, t2, . . . , tv of T ,
such that the distances tt1, t1t2, t2t3, . . . , tvt′ are less than ε. " (Ewald [19] p.906)
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continuum hypothesis (to use the today’s terminology). But what is the
case for those sets that are not necessarily closed? This is the root of what
descriptive set theory is trying to answer. However, the developments on this
subject had to wait until the turn of the century and a change of scenery,
first to Paris, and then later to Moscow.
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Chapter 2

Lebesgue’s measure problem and
its development

2.1 Introduction

Cantor’s set theory and transfinite numbers did not receive a positive recep-
tion among the majority of mathematicians in his time, and as a result, many
rejected his philosophy of infinity. Fortunately, after his work was translated
to French, many French analysts laid interest in his findings. Three of the
most notable analysts were Borel, Baire and Lebesgue. Their work, which
used Cantorian ideas paired with new emerging mathematical principles,
gave rise to a subject that is now called descriptive set theory. Descriptive
set theory is a study of different sets of real numbers, their regularity prop-
erties and classifications. Some of the important examples of these concepts
that emerged in French at the turn of the century are Borel sets, Lebesgue
measurable sets and Baire classification.

Even though the theory was started by Borel, Baire and Lebesgue it is
important to realize that their main research lied elsewhere. However, they
were able to raise many important questions at the fundamental level of
mathematics and after their work, mathematicians began a deeper study of
their ideas. At the same time, interesting philosophical considerations started
to emerge as new principles like the axiom of choice were introduced.
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Eventually these studies by Cantor and French analysts led to the in-
troduction of three important regularity properties of sets of real numbers:
perfect set property, property of Baire and Lebesgue measurability. These
properties were under research, independently of other areas of mathematics,
after 1915 in Russia. Also, set theory got its first axiomatization in 1908,
which led to a different program, namely, to a study of real numbers within
the axioms of sets.

In this work I mostly study the origins and development of the Lebesgue’s
measure problem. It started with an intuitive definition of "size", that soon
– after a discovery of a non-measurable set – needed clarification. I study
thoroughly the early development on the two following questions:"Which
sets of real numbers are measurable?" and "How the definition of size should
be altered so we could attain a definition which allows us to measure more
sets while keeping the definition intuitive?". We shall assert that both of
these questions, surprisingly, lead to metamathematical considerations and
are connected to each other and to the theory of large cardinals.

2.2 Beginning of measure theory

2.2.1 Cantor’s set theory in France in 1880s

Cantor’s work during the 1880s received mixed responses among the math-
ematicians, but one individual that expressed interest in his discoveries was
Swedish mathematician Gösta Mittag-Leffler. He used Cantor’s concept of
derived sets in the proof of his theorem in complex analysis1. Mittag-Leffler
had also just found a new mathematical journal Acta Mathematica and be-
cause of his interest in Cantor’s work he began requesting new papers and
translations of some older papers in French from Cantor. With the help of
French mathematician Charles Hermite, seven papers were translated, but

1The theorem states roughly that given a set of poles (with orders) and Laurent
coefficients, it is possible to find a meromorphic function with corresponding poles and
Laurent coefficients. A good study of Mittag-Lefflers theorem and his usage of Cantor’s
theory is in [52].
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in the process much of the philosophical content was removed2. Despite this
loss of contextual richness, this made the papers more accessible to mathe-
maticians and, more importantly, his theory was now available also to the
French mathematical community.

Paul Tannery was among the first of these French mathematicians to
utilize these translations. He stated a theoretical interest in them, and he
claimed that he had proved the continuum hypothesis in his paper [51] (his
argument of course being incorrect). Also Henri Poincaré used Cantorian
ideas in his work on Fuchsian functions (automorphic forms) in [38] but the
difference to Tannery was that he only used the ideas as an additional tool
in his analysis instead of studying Cantor’s work as an independent subject.

Another French mathematician who used Cantor’s work a lot in his
analysis was Camille Jordan. His famous analysis course Cours d’Analyse
[16] contained some set theory which still did not get an independent
treatment. But Jordan introduced some properties of point-sets and defined
concepts like limit point, connectedness, interior, exterior and closed set.
More importantly, he introduced the term measurable set3. His definition
used the terms inner content ci(A) and outer content ce(A) of a set A which
we understand as a least upper bound of areas formed by squares inside A
and as a greatest lower bound of areas formed by squares that are allowed to
intersect the boundary of A. A set is called measurable if its inner content
and outer content are equal. Measurable sets were then used by Jordan in
integration theory and also for the concept of additivity of measure emerged
for the first time.

”Jordan showed that for any set E, if E = E1 ∪ E2 ∪ · · · ∪ En, where the

2It seems that Cantor’s theory was too abstract to Hermite and his colleagues (Moore
[33] p.95-96).

3Already five years before Jordan in 1887 [37] an Italian mathematician Giuseppe
Peano came up with the notion of measurable set which used approximately the same
ideas of inner and outer size as Jordan. Their measure is nowadays called Peano-Jordan
measure.
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Ep are mutually disjoint [Ek ∩ El = ∅ for all k 6= l], then

n∑
p=1

ci(Ep) ≤ ci(E) ≤ ce(E) ≤
n∑
p=1

ce(Ep).

Thus, if the sets Ep are measurable, their sum, E, is likewise measurable, and

c(E) =
∑n

p=1 c(Ep).” (Hawkins [14] s.94)

2.2.2 Lebesgue’s measure problem

Jordan’s work on a measure certainly affected the works of French analysts
Borel and Lebesgue, who were to develop measure theory towards more
preferable generality at the turn of the century. However, the initial motiva-
tion for Borel came from a different source, namely from complex analysis.
This is clear from Borel’s monograph Leçons sur la théorie des fonctions
1898 [6] in which the first section concerns measure-theoretic ideas and the
second section complex analysis. Borel used the axiomatic approach4 in his
definition of measure, and thus it differs from that of Jordan’s. The most
important thing that Borel postulated was the countable additivity of the
measure:

“When a set is formed of all the points comprised in a denumerable infinity
of intervals which do not overlap and have total length s, we shall say that the set
has measure s. When two sets do not have common points and their measures are
s and s′, the set obtained by uniting them, that is to say their sum, has measure
s+ s′.

More generally, if one has a denumerable infinity of sets which pairwise have no
common point and having measures s1, s2, · · · , sn, · · · , their sum . . . has measure

s1 + s2 + · · ·+ sn + · · ·

[countable additivity]. All that is a consequence of the definition of measure. Now
here are some new definitions: If a set E has measure s and contains all the points
of a set E′ of which the measure is s′, the set E−E′, formed of all the points of E
which do not belong to E′, will be said to have measure s− s′ . . ..

4This approach comes from Drach as Borel notes “This way of proceeding has great
analogies with the methods introduced by M. J. Drach, . . .” [6] p.48.
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The sets sets for which measure can be defined by virtue of the preceding

definitions will be termed measurable sets . . ..” (Borel [6] p.47-48, translation by

Hawkins [14] p.103)

The measurable sets that Borel introduced are what are now termed
Borel sets. Borel did not prove many results about measurable sets, but
he noted that every closed set is measurable, and that every countable set
necessarily has measure zero.

Lebesgue, who attended the École Normale Supérieure, as did Borel (and
also René-Louis Baire), completed his studies in 1897. Later, in his second
paper [20] he began to study measures, where he represents the measure
problem of the surfaces:

“The problem of measuring surfaces bounded by closed simple curves can

be posed as follows: Match each surface a number called area, such that two

equal surfaces have equal areas, and that the surface formed by the union of

a finite or infinite number of surfaces that have common portions of boundary

and do not overlap, has as its area the sum of the areas of the component surfaces.”

Lebesgue thus accepted Borel’s idea of countable additivity of mea-
sure, as opposed to just finite additivity. Still, Borel’s definition of measure
was not used and the theory lacked mathematical rigour.

In 1902, Lebesgue presented his thesis Intégrale, longueur, aire [21],
where in the first chapter the measure problem was generalized and also
the theory of measure received some much needed clarity. Lebesgue then
formulated the measure problem in the following manner:

“We propose to attach to each bounded set a non-negative number, which
we shall call its measure, that satisfy the following conditions:

(i) There exists a set whose measure is not zero,

(ii) Two equal sets have the same measure [translation invariance5],

5The translation invariance can be stated in modern notation, for a measure m and a
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(iii) The measure of the union of a finite number or a countable infinity pairwise
disjoint sets, is the sum of the measures of these sets.” (Lebesgue [21] p.236)

Immediately after formulating this measure problem, Lebesgue notes that
“We will solve this problem of measure only for sets which we will call mea-
surable”. First, Lebesgue defines the outer measureme(A) of a bounded set A
as the greatest lower bound of the sum of countably many intervals covering
the set and then the inner measure mi(A) of a set A is defined as

mi(A) = b− a−me([b, a]− A).

A set is then called measurable if mi(A) = me(A).
If then a measure m, that satisfies the conditions (i)-(iii) and also by con-

vention m([0, 1]) = 1, is definable, the outer measure me must by definition
be greater than or equal to m. For the inner measure, we arrive at

mi(A) = b− a−me([b, a]− A) ≤ b− a−m([b, a]− A) = m(A).

Thus, we have arrived at the inequalitymi(A) ≤ m(A) ≤ me(A). This means
that for measurable sets, m(A) has to be equal to both the inner and the
outer measure. As such, the measure problem has an unique solution for the
measurable sets.

Lebesgue then showed that the condition (iii) holds for measurable sets,
and thus the measure problem was solved at least for the measurable sets.
But to show the condition (iii), he first had to demonstrate that countably
many disjoint measurable sets in measurable. This result, however, requires
the axiom of choice6 (Moore [35] p. 137) which was not properly formulated
before 1904 and, as we shall discover, will play a more crucial role in the
measure problem than initially expects.

real number x, such that
m(A+ x) = m(A),

where A+x = {a+x | a ∈ A}. Also, we will later discuss about measures in n-dimensional
spaces and in that context this condition should be understood as ”all congruent sets have
equal measure”.

6The axiom of choice states that there exists a function f (called the choice function),
defined on any family of non-empty sets X, such that for every set A ∈ X, f(A) ∈ A.
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Next, Lebesgue proved some properties of the measure and concluded
that all Jordan-measurable sets are measurable and that also every Borel set
is measurable. He also argued that there are measurable sets that are not
Borel sets7. Since there exists a perfect set that is measurable (and so every
subset of it is also measurable), and because there are as many Borel sets as
there are real numbers, there are more measurable sets than Borel sets.

The theory of measures that Lebesgue had developed was thus an exten-
sion of Borel’s, and the definitions behind it came from very natural ideas.
As we have seen, the idea of Lebesgue’s measure rose from the need of a
generalisation of the notion of length and area. Indeed the conditions of
Lebesgue measure says, in informal terms, for example, that the measure of
an interval is its length, the measure of a set is independent of the location
of the set, and that a measure of a set can be calculated if the measures of
its disjoint parts are known. Thus, it is of no surprise that this theory had
many applications, and for Lebesgue the most important among them was
the integration theory that he developed in his dissertation.

At this point it is important to reflect on the development of the the-
ory of real numbers back to its origins. Cantor started the theory of real
numbers in 1870s by first proving the non-denumerability of real numbers,
then formulating the continuum hypothesis and later adding more rigour
to the theory with additional definitions about pointsets. It was another
twenty years before Cantor’s theory finally got the attention and applica-
tions it deserved in the works of Borel and Lebesgue. However, the theory
still lacked independent considerations and further development, and as a
result the structure of real numbers was not still well understood. The thing
that Cantor really understood, perhaps better than contemporary the French
analysts, was that the theory needed the stronger foundation of set theoretic
considerations, which he created precisely for this reason. Indeed, the two
subjects, theory of real numbers and set theory, cannot be separated, as they
are in some sense symbiotic: to understand the properties of real numbers

7Here again the axiom of choice is crucial, because if it were false, it could happen
that there are as many measurable sets as there are Borel sets. See Moore [35] for a much
deeper analysis of the role of the axiom of choice in the Lebesgue’s measure problem.
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completely, one has to use set theoretical ideas. The emergence of these
regularity properties of real numbers in France, especially the Lebesgue mea-
surability, whose development we will closely follow, is just further evidence
of the relationship between set theory and real numbers. Thus we shall see,
that all the regularity properties of real numbers, are very deeply connected
to set theory, with Cantor able to foresee this as early as the 20th century.

2.2.3 Vitali’s non-measurable set

Lebesgue’s measure problem was settled for the measurable sets, but the
question whether Lebesgue measure could measure every subset of the real
line remained open8. Stated differently, are there sets that are not Lebesgue
measurable?

Lebesgue was not the only one that developed measure theory from
the works of Jordan and Borel. Italian mathematician Giuseppe Vitali,
who worked in integration theory, developed a definition that is equal to
Lebesgue’s outer measure, and also discovered the measurable sets (Vitali
1904 [54]). However, he did not generalize the notion of the integral and af-
ter reading Lebesgue’s work, Vitali published articles concerning Lebesgue’s
theory.

During the same period, German mathematician Ernst Zermelo published
a proof [58] that every set can be well-ordered. The proof used a seemingly
new, but questionable mathematical principle: the axiom of choice. How-
ever, this axiom was not actually new, because as noted above, it was used
for example by Lebesgue and many other analysts9. The use of the axiom of
choice was not made explicit before, and therefore Zermelo was the first to
formulate it properly. Still, it was clear from the many implicit applications
of the principle that it seemed to be a crucial part of the theory. It could
even be considered as an inseparable part of it. Still, the axiom of choice pro-
voked various reactions among mathematicians, and caused one of the most

8Such a measure is said to be total.
9Cantor seemed to accept axiom of choice already in 1880s as he stated in the Grund-

lagen [10] as ”a law of thought” that every set could be well-ordered.
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famous discussions among mathematicians on the validity of a mathematical
principle in history (see Moore [34] for a through discussion of the axiom
of choice). Even though the axiom was controversial in the mathematical
community, its importance to the theory of real numbers cannot be under-
estimated10. As such, the metamathematical considerations were introduced
into the theory of real numbers by adapting the axiom of choice.

The axiom of choice was involved even the Lebesgue’s measure problem.
Indeed, in 1905 [55], using the newly discovered principle, Vitali was able
to show that the measure problem had no solution by constructing a non-
measurable set, which is today known as a Vitali set. The proof used the
following idea: Define an equivalence relation ∼ in the interval [0, 1] such
that x ∼ y if and only if x − y is a rational number. Using the axiom of
choice we can select an element p from each equivalence class A∼. Name the
set of elements p as B. Because the measure is translation invariant, the
translates B + q (here q is a rational number in the interval [−1, 1]) all have
the same measure. Also, the sets B+ q cover the interval [0, 1], and each has
to be a subset of the interval [−1, 2]. Therefore, the sum of their measures is
between 1 and 3, and thus each translate cannot be of measure zero or have
a positive measure. Vitali was well aware that the axiom of choice was not
accepted by all mathematicians, and as a result, he noted in the end that
“the possibility of measuring all the subsets of real line and ordering it cannot
coexist”.

After Vitali’s impossibility result, two important questions arose that we
shall consider thoroughly the rest of this work:

(I) If we accept the axiom of choice which sets of real numbers are mea-
surable?

(II) How should we weaken the conditions on the Lebesgue’s measure prob-
lem to get a measure that is total and still intuitive?

10Many mathematicians commented on the validity of the axioms. These include Haus-
dorff, Baire, Borel, Lebesgue, Poincaré, König, Peano and Brouwer among others (Moore
[34]).
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Both of these questions were studied by various mathematicians in the coming
years. I will refer in the following to these questions simply with (I) and (II).

2.3 Measurability of sets of real numbers

2.3.1 Baire Classification

To understand the development on the question (I), we need to start from
Baire’s thesis [2] and his classification of functions. This classification,
called the Baire’s classification, starts with class 0 which contains all the
continuous functions. The functions in the next class are those discontinuous
functions that are pointwise limits of the sequences of the functions from
the class 0. The class 2 is then those functions that are not in the class 0
or 1 but can be represented as a pointwise limit of the functions from those
classes. In the same fashion one gets a class for every finite number n:

“A function is said to be of class n if it is the limit of a sequence of func-

tions belonging to the classes 0, 1, 2, . . . , n − 1 and if it does not itself belong to

one of these classes.” (Baire [1] p. 1622)

Baire does not stop at finitely numbered classes, but immediately continues
by using transfinite numbers.

“We can go further, using the notion of transfinite number. If we have a

sequence of functions, each of which belongs to one of the classes 0, 1, 2, . . . , n, . . .

and if there exists a limit function which does not belong to any of these classes,

we will say that it belongs to class ω. We give the possibility of the existence of

functions belonging to class α, where α is any transfinite number of the second

class of numbers.” (Baire [1] p. 1622)

Those functions that belong to some Baire class are currently known
as Baire functions. Some of the more obvious questions concerning the
Baire functions were immediately answered by Baire: The Baire functions
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are closed under pointwise limits and there are functions that are not Baire.
In fact, Baire showed that the set of all Baire functions has the cardinality
of the continuum and thus form only a very small portition of all the real
functions. One might suspect that perhaps after a particular Baire class, all
the classes are empty i.e. that the Baire hierarchy of functions is not proper.
However, Lebesgue managed to show in 1904 [22] that this is not the case,
and therefore, all the classes are non-empty.

The following year, Lebesgue published the memoir [23] which established
an important connection between Borel sets and Baire functions11. It was
determined that the Borel sets are exactly the pre-images of Baire functions
and thus the hierarchy of Borel sets is as follows: A set is of class n if there is
an interval such that the set is a pre-image of the interval by a Baire function
of a class n, and also that it is not a pre-image of a Baire function that is of
class less than n. We immediately notice, that because the Baire hierarchy
is proper, so is the Borel hierarchy.

Another important result that Lebesgue notes in the end of his memoir
is that there exists a Lebesgue measurable set that is not a Borel set12. This
result is a little step towards the solution of question (I) because there exists
a measurable set that is not a Borel set. More general sets than Borel sets are
exhausted by the measurable sets which, leads us to an error of Lebesgue’s
in his memoir and to the study of Analytic sets.

11Both Borel and Baire published books the same year but neither of them noticed the
connection between Borel sets and Baire functions. For Lebesgue’s result of this connection
and for the characterization of the Baire functions see Medvedev [32] p.163 - 167.

12One example of such a construction is the following example which is due to Luzin
[28]. Let A be a set of irrational numbers with continued factor representation

a0 +
1

a1 +
1

a2 +
1

· · ·

such that there exists an infinite subsequence ank , where each ank divides ank+1
. Then A

is a non-Borel set that is measurable. Actually more is true: the set is also an example of
an non-Borel set that is analytic (see next page for the definition of analytic set).
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2.3.2 Analytic and projective sets

Lebesgue wrote in p.192 of his memoir that “The part of this set for which
we have α ≤ y ≤ β is therefore Borel measurable, and thus is its projection
on the manifold . . .”. By projection of a set B ⊂ Rn+1 we mean the set

A = {〈x1, x2, . . . , xn〉 | ∃b : 〈x1, x2, . . . , xn, b〉 ∈ B}.

This seemingly obvious claim by Lebesgue, that a projection of a Borel set is
also a Borel set, is not necessarily true. And this, rather fortunate mistake,
was noticed by Russian mathematician M. Suslin which led him to consider
A-sets, now termed Analytic sets.

During 1915-1916, Nikolai Luzin and Wacław Sierpinski held seminars
on many different topics in analysis. Among these was a seminar where the
subject was the structure of Borel-measurable sets. Pavel Aleksandrov, a
student of Luzin, who studied the Borel hierarchy was able to prove, for
example, that each uncountable Borel set contains a perfect set13 and thus
has the cardinality of the continuum. The proof involved an operation called
A-operation14. Mikhail Suslin, who attended the seminar noticed that the A-
operation actually led to a larger class of sets than the Borel sets, namely the
analytic sets, which are the projections of the countable intersections of open
subsets of real numbers. (Cooke [7] p.311.) Suslin’s 1917 sole publication [50]
(he died in 1919) had a core assertion that a set is a Borel set if and only
if, it and also its complement, are analytic. A note was added to the article
by Luzin showing that every analytic set is Lebesgue measurable. Thus the
class of Lebesgue measurable sets attained a new boundary and a natural

13In today’s terms a set is said to have a perfect set property if it is either countable or
has a non-empty perfect subset.

14A defining system is a family {Xs}s of sets indexed by finite sequences s of integers.
The operation A({Xs}s) is then defined to be:

x ∈ A({Xs}s) iff (∃f : ω → ω)(∀n ∈ ω)(x ∈ Xf |n)

where f |n is the sequence determined by the first n values of f . Then X ⊂ R is called
analytic iff X = A({Xs}s) for some a defining system that consists of closed sets of reals
(Kanamori [17] p.247).
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question arose – can this boundary be taken a step further? Thus, a more
complicated subsets of real numbers had to be considered.

There are two natural ways to attempt to move the boundary: to use
the A-operation or to use projections. The latter is more interesting to the
later development of the theory, but one result of the former is due to Luzin
and Sierpinski. They proved in 1918 [25] that the Lebesgue measurable sets
are closed under the A-operation, and thus iterating the A-operation on the
analytic sets gives an extended class of Lebesgue measurable sets. Following
that, their study on co-Analytic sets (complements of analytic sets), led them
to take projection and complementation as the basic operations instead of
using the A-operation. Using these operations on Borel sets Luzin and Sier-
pinski introduced in 1925 [26] and [41] the projective hierarchy. For clarity,
we shall use more modern notation of projective hierarchy. A subset A of real
number is projective if it belongs to Σ1

n for some natural number n. More
precisely, a subset A of real numbers is

• Σ1
1 iff A is analytic,

• Π1
1 iff A is co-analytic,

• Π1
n iff the complement of A is Σn

1 ,

• Σ1
n+1 iff A is a projection of some set that is Π1

n,

• ∆1
n iff A is Σ1

n and Π1
n.

The basic properties were soon established and proved for the projective
hierarchy. Luzin and Sierpinski used Cantor’s diagonal argument in 1925 to
prove that the hierarchy was proper and Sierpinski showed in 1928 [42] that
the classes are closed under countable unions and intersections.

The next step in the theory of projective sets was to try to prove the
basic regularity properties15 for them. However these investigations faced
heavy problems even at the bottom level of the projective hierarchy. The
Σ1

1 sets were known to satisfy all the basic regularity properties but for
15The term basic regularity properties means the properties that were mentioned in the

introduction: The property of Baire, perfect set property and Lebesgue measurability.
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the sets Π1
1 the perfect set property could not be proved. The Lebesgue

measurability of these sets did not reach much further: because a com-
plement of a measurable set is also measurable the sets Π1

1 were at least
Lebesgue measurable, but again, the establishment of Lebesgue measura-
bility of Σ1

2 was problematic. Luzin notes this at the end of his [27] as follows:

“But these difficulties increase when one considers the projective sets of

class two [Σ1
2]: one does not know and one will never know if the projection

of a two-dimensional co-analytic set (that is uncountable) has the power of the

continuum, . . . or even if it is measurable.” (Luzin [27] p.1818-1819)

This forward-looking note refers to the metamathematical considera-
tions that were starting to become increasingly prevalent as a result of
axiomatization of set theory. The note by Luzin might have meant that they
were potentially lacking the principles to prove the properties of projective
sets. Indeed, this was verified by Kurt Gödel in the 1930s, leading us into
a completely different facet of the problem: Lebesgue, Vitali, Luzin etc.
were all analyzing real numbers and not the principles in the theory, where
Gödel was instead interested in the metamathematics behind the theory,
and analyzed the proof system.

Before going into Gödel’s work, we should compare the work of the Rus-
sian school to the French analysts, and also reflect back on Cantor. The
regularity properties that arose in France were studied by the Russian school
in greater depth. Their point of view was completely different, as for the first
time, the sets of real numbers and their properties were the main focus of
study. It is reasonable to say that the subject they studied was descriptive
set theory. However, the similarity of the approach to Cantor’s studies was
notable, as both the Russian school and Cantor had the same goal: to prove
the regularity properties for as many sets of real numbers as possible. Indeed,
Cantor was the one that proved that every closed set of real numbers has
the perfect set property (a result that is clearly about descriptive set theory)
and he thought and tried to generalize the result to hold on larger class of
sets of real numbers than the closed sets. In a sense, Cantor had the correct
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idea for proceeding but did not have the French school’s analytical tools the
theory needed to be further developed. Cantor was perhaps too optimistic as
he was trying to prove that the perfect set property (and so the continuum
hypothesis) holds for all the sets of real numbers. This, as we shall see in the
next chapter, was beyond the ability of standard principles that Cantor had
available to him.

2.4 The limits of the principles

Before 1908, many "paradoxes"16 of set theory arose and, together with a
need for a theory where well-ordering theorem could be proved, served as
a motivation to axiomatize the theory17. Indeed, in 1908 [59] Zermelo pre-
sented his first formulation of the axioms of set theory. We shall not review
the axioms and their development in detail here except on one crucial point.
To ease the notation, we will refer to the axioms with abbreviation ZF ,
the Zermelo-Fraenkel set theory without the axiom of choice, and by ZFC
when the axiom of choice is included. In his axiomatization Zermelo used a
term definite proposition that was not clearly defined before Thoralf Skolem’s
famous paper in 1922 [44], in which he adopts the first-order logic as the fun-
damental language to study set theory. Skolem defines definite proposition as
“finite expression constructed from elementary propositions of the form a ∈ b
or a = b by means of the five proposition mentioned [conjuction, disjunc-
tion, negation, universal and existential quantifications]”. This rather simple
observation was, however, crucial to the study of projective sets because it
enabled Kazimierz Kuratowski and Alfred Tarski in 1931 [19] to notice the
connection between descriptive set theory and logic. The basic set theoret-
ical operations corresponded to the logical connectives and the existential

16Here I refer to the famous paradoxes like Russell’s paradox and Burali-Forti’s paradox.
The use of quotation marks refers to the fact that these paradoxes were later to describe
properties of sets rather than to be actual paradoxes. For example, Russell’s paradox can
be understood to describe that the universe of sets cannot possibly be a set itself.

17Needles to say, these two were not the only motivations for Zermelo to axiomatize set
theory, see Moore [36] p. 149-160.
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quantifier to projection. Thus, the projective sets could be studied using
first order logic.

Gödel, who published his well-known incompleteness theorems in 1931
aimed to prove that generalized continuum hypothesis and the axiom of
choice cannot be disproved using the axioms of ZF . This led him to de-
fine L, the constructible universe of sets. In the following we will discuss
about Gödel’s ideas only informally. The idea of the constructible universe
is based on Zermelo’s cumulative hierarchy of sets (Zermelo [60]). Zermelo’s
hierarchy consists of levels Vα, where α is an ordinal number, defined by
transfinite induction.

• V0 = ∅,

• Vα+1 = P(Vα), where P(Vα) is the power set of Vα or in other words it
is the set of all the possible subsets of the set Vα,

• and Vβ =
⋃
α<β Vα when β is a limit ordinal18.

Gödel defined his levels of constructible sets ([9] p.27) Lα in the same
fashion differing only in the definitions of successor states: The subsets of
Lα that are in Lα+1 are those that are definable by a first-order formula of
set theory, having parameters from Lα and the quantifiers are interpreted as
ranging over Lα. A set is called constructible if it belongs to some Lα, and
finally the totality of all the constructible sets i.e. the constructible universe,
is called L. Thus, Zermelo’s idea of cumulative hierarchy and Skolem’s idea
of using the language of first-order logic were combined. Indeed, Gödel
showed that all the axioms of ZF , the generalized continuum hypothesis,
and the axiom of choice hold in L. He showed that the claim that every
set is constructible (often referred as V = L) holds in L and also proves
that under these assumptions the above mentioned axioms hold (Solovay
[48] p.10). This was Gödel’s main goal, but as he notes, he actually proved
a result about the measurability of Σ1

2 sets as the following assertion also
cannot be disproved within ZFC.

18Limit ordinal is an ordinal number that is not a successor of any smaller ordinal
number.
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“The existence of linear non-measurable sets such that both they and their

complements are one-to-one projections of two-dimensional complements of

analytic sets.” (Gödel [9] p.26)

It is important to make a difference in the approaches by Gödel and
the French and Russian analysts. Gödel proved that the standard principles,
ZFC, cannot prove that the ∆1

2 sets are measurable. Or in a more
convenient terms, that there exists a model of ZFC where non-measurable
∆2

1 sets exist. Thus, in terms of the projective hierarchy, the boundary of
Lebesgue measurability had hit its limit at the bottom of the hierarchy, at
least under the axioms of ZFC.

Nevertheless, for the first time, mathematicians were able to base their
theory on the axioms of ZFC. Gödel had proven that these axioms cannot
answer many of the questions pertaining to simple sets of real numbers,
or settle questions on the very low level of Cantor’s hierarchy of infinite
cardinals. Thus one is led to think that set theory is more than the axioms
of ZFC, as it seems, that ZFC does not contain the entire truth of sets. We
will discuss this point in more detail below, where we mention multiple ways
to strengthen the theory19 of ZFC by introducing a notion of large cardinal
which naturally arises from the measure problem.

A good way to understand why the introduction of ZFC was necessary
is to refer back again to the ideas of Cantor. As noted before, it was Cantor
who realised that to understand the structure of the real line, set theory
must be involved. That said, the set theory that Cantor studied was much
more informal than ZFC. In this case, the informality might not have been
a negative. This is because mathematicians studying set theory after Cantor
were limited by the axioms of ZFC. Thus, Cantor’s informal definitions
about sets allowed him to study the problems about real numbers much more
freely. It is also important to realise that because set theory was not properly

19The phrase "strengthen our theory" is used here informally. It means to add new
axioms to ZFC so that the theory ZFC+′′new axiom′′ is consistent (under the assumption
that ZFC is itself consistent), and that this new theory can prove more than ZFC alone.
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formalized, Gödel’s independence results would not have been possible for
Cantor to study. One may say that Cantor created set theory and realised
its importance to real numbers, Zermelo axiomatized it and made it more
formal and Gödel brought it back to the subsets of the real line as a different
discipline than it was originally. This does not mean that Cantor was working
on something more modest than Zermelo or Gödel. Rather, it is actually
more reasonable to think that he had much more under investigation, as he
was not limited by any particular set of axioms.

Considering the question (I) of the measure problem, we cannot consider
it as answered, because as noted in the last section, the projective sets are
simple subsets of real numbers and we still do not know if they are Lebesgue
measurable or not. There are two rather obvious ways to approach the ques-
tion. The first is to weaken the conditions of the measure that brings us to
the question (II). The second is to modify our underlying principles20. We
will first discuss the development of the former, but we will notice that both
approaches are connected.

2.5 Modified measure problem

2.5.1 Finitely additive measures

There are a few ways to weaken the requirements of the measure problem.
We shall consider two cases, weakening the countable additivity to finite ad-
ditivity21 or removing the translation invariance. The earliest considerations
on this problem go back to 1914 to Germany when Felix Hausdorff started
to analyze Lebesgue’s measure problem in n-dimensional space. In his [11]
Hausdorff weakens the requirement of countably additivity and considers
measures that are only finitely additive. Intuitively replacing the countably
additivity by finite additivity does not change the problem much because it

20Taking this path takes us quickly to the large cardinals, and as we will see, while we
seek an answer to question (II), the large cardinals will still play a big part.

21Finite additivity simple means that the measure of the union of finitely many disjoint
sets is the sum of the measure of these sets.
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preserves mostly the natural geometric form of the measure and it is still
applicable to at least some parts of analysis. However, resting heavily on the
axiom of choice, Hausdorff managed to prove that no such measure is possi-
ble for n ≥ 3. The proof is based on a decomposition of a sphere, or more
precisely, on the contradiction that “a half of a sphere and a third of a sphere
can be congruent” (Hausdorff [11] p.469). This paradoxical decomposition is
now termed the Banach-Tarski paradox22. In this case, if the dimension of
the underlying space is 3 or more, no progress is possible, but for the cases of
line or the plane this limitation may give us new results. However, Hausdorff
was not able to settle the problem for these cases n = 1 or n = 2.

Hausdorff’s ideas turned out the be fruitful, as Polish mathematician Ste-
fan Banach continued his work on the measure problem in 1923 [3]. Banach
managed to show that the answer for the two remaining cases is positive and
so such a measure existed for a line and plane, with this measure extending
the Lebesgue measure23. In the following years, the difference between the
cases, when the dimension is 1 or 2 and when it is greater or equal to 3, was
studied, and it turned out that the reason for the difference lies in the group
of motions that is present in the higher dimensions24.

2.5.2 Measurable cardinals

Later, in 1929, Banach was studied another generalization of the measure
problem. He wanted to keep the countable additivity and instead gave
up the translation invariance requirement, but he still worked within the
interval [0, 1]. In a joint work with Kuratowski, Banach published that the
measure problem did not have a solution even on this weaker form, at least

22The word paradox is often used to describe the discovery of Banach and Tarski.
However the paradoxical nature of the statement disappears when one realizes that the
decomposition of the sphere includes non-measurable sets.

23By saying that a measure extends Lebesgue measure we mean that if a set is Lebesgue
measurable it is also measurable in the sense of this new measure, and also that the new
measure and Lebesgue measure agree for Lebesgue measurable sets.

24See Wagon [56] for a proof of Banach’s theorem on the Hausdorff’s measure problem,
and a detailed treatment of the Banach-Tarski paradox and the underlying motions.
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if the continuum hypothesis is true:

“. . . we shall prove, assuming the continuum hypothesis, that the more gen-

eral measure problem which is obtained by omitting condition I [translation

invariance] and adding the condition that if X consists of a single point m(X) = 0

(a condition which obviously results from I and II [countable additivity]) - has no

solution.”25 (Banach and Kuratowski [4] p.1)

Hausdorff’s work in 1914 motivated Banach further generalizations,
but at this point a core concept was still missing. In 1930, Banach came to
realize that without the translation invariance, some of the geometric notion
of the measure is lost, and it is natural to consider the problem in a different
domain than the interval [0, 1]. This was a key observation, as indeed
the main property one measures without the translation invariance is the
cardinality of the set because in this case it is impossible to distinguish the
difference between the sets of the same cardinality. The next generalization
of the problem is the case where sets of arbitrary cardinality are consid-
ered, rather than just the unit interval [0, 1]. On the other hand, as the
considered set now has arbitrary cardinality, the countable additivity seems
too restrictive and it becomes natural to consider more general forms of
additivity. The most straightforward generalization of countable additivity
is the notion of κ-additivity: a measure is said to be κ-additive (where κ is a
cardinal number) if for any pairwise disjoint sequence Aα (α < λ) of subsets
of κ of length λ < κ, the measure of the union of these subsets is the sum of
the measures. Indeed, under this terminology, ℵ1-additivity is equivalent to
countable additivity so the definition seems reasonable26.

Now that the measure problem had achieved a more general framework
by introducing arbitrary sets, much richer theory was possible. The first

25The condition that a singleton set has measure zero is to ensure that a trivial solution
to the problem is excluded.

26Much more general forms of additivity cannot be required because if the set of car-
dinality κ is represented as a sum of singletons, and the measure is assumed to be more
than κ additive, then the measure of the set is 0.
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result in this setting was proved by Banach: without the restriction to the
unit interval and with the generalized notion of additivity he proved in 1930,
under the assumption of generalized continuum hypothesis27, that

“If an ℵξ-additive measure can be defined in a set E [the cardinality of E

is assumed to be ℵξ], then ℵξ is an weakly inaccessible cardinal number28.”

(Banach [5] s.98)

This result was achieved by some generalizations of the Lebesgue’s
measure problem: firstly by leaving out a part of the geometrical form
of the measure when reducing the translation invariance29, secondly by
allowing more general sets than the subsets of real numbers and, thirdly,
by using a more general notion of additivity. Thus, it may seem that the
original goal of the measure problem has somehow been changed, as the
question is no longer solely about the subsets of real numbers – or at least
not directly. Indeed, the problem is now not just about the measure on
the subsets of real numbers but rather about the measures on the cardinal
of real numbers. Thus, instead of analysing the unit interval [0, 1], we are
analyzing the cardinal of real numbers 2ℵ0 , in the hopes of getting an answer
to the original measure problem.

As is often the case with set theoretic principles, the generalized con-
tinuum hypothesis was not accepted by every mathematician, and it was a
key factor in Banach’s argument. Fortunately, soon it turned out that the
assumption of the generalized continuum hypothesis was not in fact needed,
as Polish mathematician Stanisław Ulam continued the work of Banach, and

27The generalized continuum hypothesis states that 2ℵα = ℵα+1 for any ordinal number
α.

28And uncountable cardinal number is said to be weakly inaccessible if it is not a
successor of any other cardinal number and not a sum of smaller number of smaller cardinal
numbers. So in a sense it cannot be broken into a smaller collection of smaller parts.

29Indeed, not all of the natural geometrical interpretation of the measure is gone. On
one hand, the translation invariance is a geometric notion, but on the other hand, as the
reader will notice, the generalisation of the measure still implies many geometric properties
and is related to the standard Lebesgue measure.
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improved the result (See Ulam [53]). Needless to say, this again opened up
many avenues of further research. Ulam’s and Banach’s key result can be
stated as follows: the cardinal of the set A that satisfies the measure problem,
as defined by Banach, must be weakly inaccessible. Ulam was also able to
show another result that is interesting for the measure problem, as he proved
that in order to have a solution to it, a weakly inaccessible cardinal must
exist that is less or equal to 2ℵ0 . In other words,

ℵ0 < κ ≤ 2ℵ0 ,

where κ must be weakly inaccessible30. Hence, if the measure problem has a
solution the continuum hypothesis must be violated. We return to this issue
later.

To further the discussion, we adopt the modern terminology for Ulam’s
results. The cardinals that Banach and Ulam represented (the cardinals that
satisfy the measure problem) are now identified as measurable cardinals, or
more precisely:

A cardinal κ is called measurable cardinal if and only if there exists a
κ-additive, non-trivial, 0− 1-valued measure on κ.

A cardinal κ is called real valued measurable cardinal if and only if
there exists a κ-additive, non-trivial measure on κ.

These definitions and Ulam’s results imply that a real valued measur-
able cardinal must be weakly inaccessible, all measurable cardinals are real
valued measurable and a measurable cardinal is strongly inaccessible31.

Cardinal notions, like measurable cardinal and strongly inaccessible car-
dinal, are currently called large cardinals. What are large cardinals? Infor-
mally, we mean a cardinal number that is large in the sense that it cannot

30Solovay improved Ulam’s result in [47] so that κ is the κth weakly inaccessible cardinal
and that κ is also weakly Mahlo.

31Strongly inaccessible cardinal is a cardinal that is weakly inaccessible and not a
product of smaller amount of smaller cardinals.
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be constructed in ZFC, i.e., that it cannot be reached by building up with
the the standard operations defined in ZFC. In a sense, large cardinals are
thus "above" ZFC. It was noted above that ZFC can be strengthened and,
indeed, the theory formed by adding a large cardinal axiom (postulating ex-
istence of a large cardinal) adds consistency strength to ZFC. The theory
ZFC + "a large cardinal ℵ exists" proves the consistency of ZFC. This
was discovered first by Zermelo in 1930 [60], as he showed that ZFC+"there
exists an inaccessible cardinal" proves the consistency of ZFC.

Banach and Ulam discovered a framework for a far-reaching theory by
introducing large cardinal notions. By analysing the measurable cardinals,
we may find an answer to simple questions of real numbers: which subsets
of real numbers are measurable? With this question on mind, we now turn
ourselves to a new aspect of the problem, to measures on cardinals and to
large cardinals. It is also important to recall that we are going to work with
axioms that are "much above" the axioms of ZFC, and continue to attempt
to answer questions that are seemingly at the low level of the set theoretic
universe, i.e. the questions about real numbers32. This important matter
shall be discussed in more detail below.

2.5.3 The consistency results in the measure problem

Turning back to the measure problem we can ask, using the new notions of
large cardinals, if the cardinal of real numbers 2ℵ0 is a measurable cardinal.
Surely not, as 2ℵ0 is not strongly inaccessible because it can be reached
from below (from natural numbers) using the power set operation. This
is because if there is a measurable cardinal κ, it is actually much "bigger"
than inaccessible cardinals by Robert Solovay’s result: he showed that there
must exists κ strongly inaccessible cardinals less than κ33. This shows that

32When stating that large cardinals are "above" ZFC or that real numbers are at low
level of the set theoretic universe, we need to do so with care, because large cardinals are
connected to real numbers and to their properties. Thus I use quotation marks when I
informally refer to the ”size” of the large cardinals. To avoid confusion, we encourage the
reader to think large cardinals only as a way to strengthen the theory of ZFC.

33See footnote 30.
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there indeed is a "cap" between the cardinal of real numbers and the first
measurable cardinal. Thus we can state informally that 2ℵ0 is not even close
of being measurable.

The cardinal of real numbers 2ℵ0 cannot be a measurable cardinal, but
can it still be a real valued measurable cardinal? In a sense this is true, or at
least in some of the cases it may be true. We shall consider two such cases
which were both solved by Solovay in late 1960s.

The first case is to work without the axiom of choice. In this case Solovay
managed to build a model of

ZF + DC + "All sets of real numbers are Lebesgue measurable" (Solovay
[46]),

where DC denotes the axiom of dependent choice34. Thus it might
be the case that 2ℵ0 is a real valued measurable cardinal. To prove the
result, Solovay had to postulate the existence of a strongly inaccessible
cardinal35, which is still a fairly mild assumption (with respect to consistency
strength) at least in terms of large cardinal axioms. However, it is still
much more than was available or agreeable at the beginning of the century,
and so the leap to this result is huge for the first mathematicians attacking
the measure problem, even if they would have had the tools available.
The conclusion of this result would be intriguing to them, as the result
actually implies that the axiom of choice is needed for the existence of a
non-measurable set36. Therefore, the axiom of choice is no longer sufficient
but also necessary.

But if we do not give up the axiom of choice, and hence start from
ZFC, can we arrive at an answer? The answer is affirmative, as Solovay
constructed a model for

34Dependent choice is a weaker form of the axiom of choice which is sufficient to develop
most of the real analysis. A discussion about different choice principles can be found in
[34]

35The existence of a strongly inaccessible cardinal is necessary for the Solovay’s model,
see Shelah [40].

36This result is of course assuming that the measure is still translation invariant.
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ZFC + "Lebesgue measure has a countable additive extension µ de-
fined on every set of reals".

To achieve these results, Solovay had to assume more than the consis-
tency of ZFC and an existence of a inaccessible cardinal, as he postulated
the existence of a measurable cardinal. As the measurable cardinals are
very large, compared to the inaccessible cardinals, the leap becomes even
bigger. We should not blindly accept the result from the philosophical
point of view, but should instead consider whether the assumption of the
existence of measurable cardinal could be weakened. Unfortunately, this
is not possible, because Solovay’s result was in fact an equiconsistency
result, i.e., two theories were shown to have equal consistency strength.
More precisely, two theories ZFC+ "A" and ZFC+ "B" are said to be
equiconsistent if the consistency of ZFC+ "A" implies the consistency of
ZFC+ "B" and vice versa. Solovay’s results thus imply that the following
theories are equiconsistent.

(I) ZFC+"there exists a measurable cardinal"

(II) ZFC+"Lebesgue measure has a countable additive extension µ defined
on every set of reals"

(III) ZFC+"there exists a real valued measurable cardinal"

As a result, the existence of a measurable cardinal has to be postulated if we
hope to extend the Lebesgue measure to every subset of real numbers. And
hence, the axiom of the measurable cardinal is essentially connected to the
measure problem. This might not be surprising, as the reader may recall,
that measurable cardinals emerged from the measure problem in a natural
way. Still, the result might seem a bit unintuitive, as measurable cardinals are
”much larger” than the cardinal 2ℵ0 of real numbers. The key observation to
make, is that the cardinalities of the sets are not the most important factor,
and instead it is their measures which expose the resemblance. This similarity
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can be seen already in Solovay’s work, as he showed how to transform the two-
valued measure on the cardinal κ to the Lebesgue measure on real numbers
and the other way around. Stated differently, he showed that the two notions
of measure are inseparable (N. Goldring [10] p.182.)

2.6 Large cardinals and the measure problem

The results so far have been merely consistency results, i.e., results in prop-
erties which can be proved or cannot be proved with certain selection of
axioms. Hence, these results do not imply the existence of such elements in
the universe of sets. On the other hand, we can still learn a lot from con-
sistency results, with Gödel’s result ending the search of more measurable
sets than the analytic sets in the projective hierarchy (in terms of the axioms
of the ZFC alone). As with the large cardinals, we were able to proceed
in the measure problem, at least when considering the consistency results.
Large cardinals may also help us to proof that more sets than the analytic
sets are measurable in the universe of sets. However, before taking this step
it is reasonable to consider if postulating an existence of a large cardinal is
too strong an axiom, and perhaps one could improve the results without any
large cardinal notions.

Using large cardinal axioms is not tempting at first, and the hope is
that all the sets in the projective hierarchy can be proved to be measurable
without relying on such axioms. We could try to achieve this by adding
axioms to ZFC in such a way that our new theory is equiconsistent with it.
This new theory would be of the same consistency strength as ZFC, and so
the added axioms are not large cardinal axioms because a commonly agreed
property for all large cardinal axioms is that they add consistency strength
to ZFC.

As we noted earlier, more than analytic sets could be proven to be mea-
surable in ZFC iterating Suslin’s A-operation, but this does not help prove
that more sets in the projective hierarchy are measurable. Still, using only
the axioms of ZFC one can proceed forwards somewhat: R. Solovay proved
that the sets that are provably in ∆1

2 (so not all ∆1
2 sets, only those that are
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provably in it) are Lebesgue measurable37. Nonetheless, by Gödel’s result
the provability requirement cannot be removed, and therefore this is the best
result we can hope for.

In terms of the ZFC axioms, the measure problem is solved. This is
still not enough, as we know nothing about the measurability of the sets in
higher levels of the projective hierarchy. The information we have gathered
along the way is also useful – we know we must seek new axioms to answer
the questions about the measure problem. Of course, these new axioms do
not have to be axioms that add consistency strength to ZFC. However, if
they do not, we cannot advance much further. An example of an axiom,
that does not add consistency strength to ZFC (and thus is not a large
cardinal axiom), and proves that more set than analytic sets are measurable,
is Martin’s Axiom38. From this and from the negation of the continuum
hypothesis, it follows by Donald Martin’s and Solovay’s result [30], that every
Σ1

2 set is Lebesgue measurable. The climb in the projective hierarchy still
stops quickly as Saharon Shelah showed that the measurability of Σ1

3 set
proves the consistency of ZFC. As a result, we must add axioms that increase
the consistency strength to ZFC to prove more sets to be measurable, and
large cardinal axioms seem to be a natural way to accomplish this.

A result that supports the use of large cardinal axioms further is that
assuming the measurability of Σ1

3 sets implies the existence of inaccessible
cardinal in L. This result, stemming from Shelah, tells us the following: it
is not only that we need to add more consistency strength to the theory to
prove more sets to be measurable, but also that assuming more sets to be
measurable gives rise to a theory where large cardinals may indeed exist.

However, it is not immediately apparent that the large cardinal axioms
37A set E is provably in ∆1

2 if there is a real number a, Σ1
2 formula φ and Π1

2 formula
Φ such that A = {x |φ(x, a)} = {x |Φ(x, a)}. And in addition ZFC proves that the two
formulas are equivalent.

38The exact statement of Martin’s axiom can be found in Jech [15] p. 230. Informally it
says that cardinals that are below 2ℵ0 behave in some sense like ℵ0. Martin’s axiom is also
implied by continuum hypothesis and consistent with ZFC+"the negation of continuum
hypothesis". Thus many results that are implied by continuum hypothesis follow also from
Martin’s axiom, see Fremlin [8].
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offer any solution to the measure problem, but the above discussions
certainly hints to that direction. A logical place to start is from measurable
cardinals, as they arose from the measure problem. This was also the
starting point for Solovay who was the first to attain a result towards the
solution of measure problem using large cardinals:

Assuming the existence of a measurable cardinal all Σ1
2 and Π1

2 sets
are Lebesgue measurable.39

This represents not only a consistency result, but also a result con-
cerning the truth in the set theoretic universe where measurable cardinals
exists. This means that we can finally declare that we have progressed the
limit of what can be proved: more than analytic sets can now be measurable.
At this point, one should recall how large the gap between Luzin’s result of
measurability of analytic sets and the Solovay’s measurability result of Σ1

2

sets is, necessitating the emergence of an entirely new theory.
At first blush, Solovay’s result might not seem remarkable, because as

discussed earlier, the same result followed from a theory that is equiconsistent
with ZFC. In fact, the true importance of Solovay’s result is that large
cardinals offer us a way to proceed the climb in the projective hierarchy.
And, as proved by Jack Silver [43], the result of Solovay’s is optimal, as
the existence of a measurable cardinal is not enough to prove the Lebesgue
measurability of ∆1

3 sets. As such, we cannot hope for a generalization of
Solovay’s result in terms of measurable cardinals, and new large cardinal
notions should instead be considered.

Indeed, by introducing the notion of the Woodin cardinal, one is able to
proceed as Shelah and Hugh Woodin were able to prove that

Assuming the existence of infinitely many Woodin cardinals, all the
sets in projective hierarchy are Lebesgue measurable. (Shelah and Woodin

39For Solovay’s arguments on establishing the perfect set property for the Σ1
2 sets see

his 1969 [45]. The same arguments also establish the measurability, more details can be
found in Kanamori [18] p.178.
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[39])

This assertion finally brings us to the end of the climbing in the pro-
jective hierarchy, and also clearly shows that the large cardinals provide us
the tools to achieve this.

What exactly are the Woodin cardinals, and are they essentially con-
nected to the measure problem, as measurable cardinals were? This indeed
is the case, but it might be hard to extract this from the definition of a
Woodin cardinal, as it is technically challenging. The standard definition
includes mappings that are called elementary embeddings40. These mappings
are functions between two structures that are both total and truth-preserving.
In set theory, these elementary embeddings primarily occur between the uni-
verse of all sets V and some transitive class M41,42. Although it may seem
that embeddings are entirely separate from measures, there is in fact a way to
obtain measures from elementary embeddings, and vice versa. For example,
the definition of a measurable cardinal could also be presented in terms of
elementary embeddings: a cardinal κ is measurable if and only if there exists
a transitive set M and a non-trivial (not identity) embedding j : V → M

with κ as its critical point (a critical point of an embedding j is an ordinal
κ such that j(α) = α for all α < κ and j(κ) 6= κ)43.

These two notions, the measurable cardinal and Woodin cardinal, are
indeed related, as Woodin cardinals are generalizations of measurable car-
dinals. There are at least two ways to investigate this generalization: the

40See Kanamori [18] p. 360 for the definition of Woodin cardinal.
41A class or a set M is said to be transitive if and only if every element of M is also a

subset of M .
42To be more precise let V be the universe of all sets andM some transitive class. Then

j : V →M is an elementary embedding iff

V |= φ(a1, . . . , an)⇒M |= φ(j(a1), . . . , j(an)),

where φ(a1, . . . , an) is a formula of language of set theory.
43To get a measure from elementary embedding set µ(A) = 1 ⇔ k ∈ j(A) ∀A ⊂ κ.

And conversely, to get embeddings from measures, one uses the ultrapower construction
(J. Steel [49]).
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first is to discern that Woodin cardinals are limits of measurable cardinals
(however, they are not measurable themselves), and the second is to consider
that we are aware of multiple measures that measure smaller cardinals44.

It is also known, by result of Martin and John Steel [31], that assuming
only finitely many Woodin cardinals exists, is not enough to prove that all the
projective sets are Lebesgue measurable. More precisely, they proved that the
existence of finitely many Woodin cardinals is consistent with the existence
of a non-measurable Σ1

n+2 set. This means, at least to some extent, that
the assumption of infinitely many Woodin cardinals is optimal. Also, some
results considering more complicated sets of real numbers than projective sets
are known. Under even stronger large cardinal hypothesis, the existence of
a supercompact cardinal, all the sets in L(R) are measurable (Woodin [57]).
In other words, the existence of a supercompact cardinal guarantees that all
the "naturally" definable sets of real numbers are Lebesgue measurable.

These results might make one believe that large cardinals eventually pro-
vide us with a framework to prove the existence of a total (non-translation
invariant) measure. This however is not true, as we have already discussed
that the existence of such a measure violates the continuum hypothesis, and
by Azriel Levy’s and Solovay’s result, large cardinals do not affect the status
of continuum hypothesis (Levy and Solovay [24]).

Now that we have concluded our search for truth concerning the Lebesgue
measurability of simple definable subsets of real numbers, we can confidently
state, that we have found one of the most remarkable connections between the
"small" sets (subsets of real numbers) and very "large" sets (large cardinals).

2.7 Conclusion

Lebesgue’s natural question about the measurability of the subsets of
real numbers awoke questions following Vitali’s result of existence of non-
measurable sets. Two decades later, the problem of measuring sets was re-

44In the definition of the Woodin cardinal we have many different elementary embed-
dings with critical points that are strictly less than the Woodin cardinal. Thus we have
multiple measures that measure smaller cardinals.
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vealed to be present in a very simple subsets of real numbers, namely, in the
projections of analytic sets. This, together with the axiomatization of set
theory, allowed mathematicians to obtain a clearer view into the underlying
situation. It was revealed that some key ideas about the universe of sets were
missing, which ultimately led to the considerations of large cardinal axioms.

The theory of large cardinals emerged in a natural way to the measure
problem, and the analysis of the measure problem (questions I and II) led to
an area of study that was entirely different than what originally expected45.
The analysis on the question (I) culminated in the Solovay’s result: assuming
existence of a measurable cardinal, the sets Σ1

2 are Lebesgue measurable.
And the analysis on the question (II) in Solovay’s result on the consistency
strength of the theory, with extensions of Lebesgue measure.

The two questions were thus seen to be connected, on a very deep level
of the theory: in the large cardinal axioms. The set theoretic universe, as
the French analysts understood it, was upturned. We should not restrict
ourselves to the standard axioms of ZFC, as it clearly does not capture
the whole truth about sets, and instead one should search within the large
cardinal axioms to obtain more answers to simple questions concerning real
numbers46. However, this does not mean that the two are separate, or that
they must be far apart, because as we have seen, real numbers and the large
cardinals are certainly connected.

45I have not touched in this thesis the questions of the existence of measurable cardinals
or even any large cardinal. For a standard discussions about this reader should see for
example Kanamori [18] or Penelope [29]. For another perspective in terms of Cantor’s
Absolute the reader should see Hauser [13]

46If one tends to think large cardinals as something "huge" the last statement could
be informally stated as: The answers we are looking cannot be found when looking at the
things in ZFC, which we can understand as looking from "below", but rather we should
take a new viewpoint on the sets of real numbers and seek an answer from "above".
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