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Abstract

Purpose – The purpose of the paper is to examine the evidence of long–range de-
pendence behaviour in both house price returns and volatility for fifteen main regions
in Finland over the period of 1988:Q1 to 2018:Q4. These regions are divided geo-
graphically into forty–five cities and sub–areas according to their postcode numbers.
The studied type of dwellings is apartments (block of flats) divided into one–room,
two–rooms, and more than three rooms apartments types.
Design/methodology/approach – For each house price return series, both para-
metric and semiparametric long memory approaches are used to estimate the frac-
tional differencing parameter d in an Autoregressive Fractional Integrated Moving
Average (ARFIMA (p,d,q)) process. Moreover, for cities and sub–areas with signif-
icant clustering effects (ARCH effects), the semiparametric long memory method is
used to analyse the degree of persistence in the volatility by estimating the fractional
differencing parameter d in both squared and absolute price returns.
Findings – A higher degree of predictability was found in all three apartments types
price returns with the estimates of the long memory parameter constrained in the
stationary and invertible interval; implying that the returns of the studied types of
dwellings are long–term dependent. This high level of persistence in the house price
indices differs from other assets, such as stocks and commodities. Furthermore, the
evidence of long–range dependence was discovered in the house price volatility with
more than half of the studied samples exhibiting long memory behaviour.
Research limitations/implications – Investigating the long memory behaviour
in both returns and volatility of the house prices is crucial for investment, risk, and
portfolio management. One reason is that, the evidence of long–range dependence in
the housing market returns suggests a high degree of predictability of the asset. The
other reason is that, the presence of long memory in the housing market volatility
aids in the development of appropriate time series volatility forecasting models in this
market. The study outcomes will be used in modelling and forecasting the volatility
dynamics of the studied types of dwellings. The quality of the data limits the analysis
and the results of the study.
Originality/value – To the best of the authors’ knowledge, this is the first research
that assesses the long memory behaviour in the Finnish housing market. Also, it is
the first study that evaluates the volatility of the Finnish housing market using data
on both municipal and geographical level.
Keywords – House prices, Returns, Volatility, Long memory, Finland
Paper type – Research paper
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1 Introduction

The Finnish property investment market is booming. It amounted up to EUR 69.5 bil-
lion at the end of 2018; that is an increase of 9.1 per cent compared to the previous
year (Kaleva, 2019). In terms of property sector, currently, the residential properties are
the largest sector in the Finnish property investment market. They represented 29 per
cent of the total property investment market in 2018. The high demand for small and
well–located apartments boosts this strong residential property investment as young or
working–age population are moving towards urban areas. In 2018, up to 75 per cent of
the newly constructed dwellings were for studios and one–bedroom flats (Statistics Fin-
land, 2019). Moreover, according to the freshest statistics from 2016; housing consisted
50.3 per cent of the Finnish households’ total wealth (Statistics Finland, 2016). Therefore,
understanding the dynamics of the Finnish house prices, especially, investigating whether
the returns and volatility of those types of dwellings preferred by investors exhibit long
memory behaviour is crucial; for investment, risk, and portfolio management. One reason
is that, the evidence of long–range dependence in the housing market returns suggests a
high degree of predictability of the asset based on historical information. The other reason
is that, the presence of long memory in the housing market volatility is the key element
in the development of appropriate time series volatility forecasting models in this market;
which can have substantial impacts of macroeconomic activity.

Previous research has examined the evidence of long memory in either returns or
volatility of different assets classes; such as stocks (Hiemstra and Jones, 1997; Ólan, 2002;
Christodoulou-Volos and Siokis, 2006), commodity futures (Baillie et al., 2007), and energy
futures (Cunado et al., 2010). Moreover, the presence of persistence has been analysed
in real state returns and volatility (Elder and Villupuram, 2012), and in individual hous-
ing markets (Milles, 2011; Feng and Baohua, 2015). While previous studies in different
countries such as the United Kingdom and the United States have tested the evidence of
long memory in housing markets using data sets at the state or metropolitan level of the
family–home property type; for housing investment and portfolio allocation purposes; this
study uses the Finnish house price indices data on both metropolitan and geographical
level of the apartments in the block of flats property type which has increased its investors’
attractiveness in the Finnish residential properties sector.

The general purpose of the study is to provide to the investors, risk managers, pol-
icymakers, and consumers the information regarding diversifying a housing investment
portfolio across Finland and by apartment type; as many investors are often highly con-
centrated in narrow geographical regions such as Helsinki. In other words, the aim is to
answer the following research question: ”What type of apartments, geographically located
in which area of Finland, should be included in the investment portfolio to acquire the best
possible risk–return relationships?” This question is answered using appropriate modelling
and forecasting approaches to understand the dynamics of the market. Thus, specifically,
this article analyses the long–range behaviour in both returns and volatility of the Finnish
housing market by the size of the apartments; that is, single–room apartments, two–rooms
apartments, and apartments with more than three rooms. The study outcomes will be
used in modelling and forecasting the volatility dynamics of the studied types of dwellings.
Plus precisely, in an in–sample and out–of–sample forecasting test and performance com-
parison of different univariate time series models. The employed methodology is as follows.
For each house price return series, both parametric and semiparametric long memory ap-
proaches are used to estimate the fractional differencing parameter d in an Autoregressive
Fractional Integrated Moving Average (ARFIMA (p,d,q)) process. Moreover, for cities
and sub–areas with significant clustering effects (ARCH effects), the semiparametric long
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memory method is used to analyse the degree of persistence in the volatility by estimating
the fractional differencing parameter d in both squared and absolute price returns.

The study contributes to the literature by being the first attempt to assess the long
memory behaviour in the Finnish housing market. Also, it is the first study that evaluates
the volatility of the Finnish housing market using both municipal and geographical data
level of the investors’ favoured property type. Results reveal strong supportive evidence of
the long memory behaviour in both returns and volatility of the studied apartment types.
The high degree of persistence found in the house price returns differs from other assets,
such as stocks and commodities. For house price volatility, the strong evidence of long
memory is following other assets volatility dynamics. However, the degree of long–range
dependence found is much higher.

The remainder of the article is organised as follows. Section 2 reviews the relevant
literature. Section 3 describes the data and the methodology to be employed. Section 4
presents and discusses the results. Section 5 concludes the article.

2 Literature review

There has been extensive research on the housing market; whether the focus is on mod-
elling the price dynamics, capturing the price volatility, or investigating the presence of
substantial persistence in returns and/or volatility. The examination of these issues is
done on individual housing markets or across different housing markets. For instance, Lin
and Fuerst (2014) and Hossain and Latif (2009) examined Canadian house price volatility;
Lee (2009), Lee (2017), and Lee and Reed (2013) studied Australian house price volatil-
ity. Guirguis et al. (2007) have investigated house price and volatility spillovers between
two cities in the Spanish housing market, Madrid and Coslada; while Coskun and Ertugrul
(2016) modelled the volatility properties of the house price of Turkey, Istanbul, Ankara, and
Izmir. Apart from extensive studies on the house price volatility in developed countries;
the dynamic of the housing market in small countries such as the Cyprus island (Savva
and Michail, 2017) and developing countries such as Malaysia (Reen and Razali, 2016)
have also been studied. However, the United States (US) and the United Kingdom (UK)
are the two countries that have drawn more attention in terms of residential real state
studies.

Regarding modelling house price volatility; authors who have studied US house prices
include Dolde and Tirtiroglu (1997) who found evidence of time–varying volatility of the
house price in the towns in Connecticut and San Francisco area. Moreover, Dolde and
Tirtiroglu (2002) identified volatility shifts in the house price returns for four regions, and
concluded that these shifts were due to regional conditions rather than national economic
conditions. Miller and Peng (2006) and Milles (2008) investigated the evidence of ARCH
effects in home prices at the metropolitan statistical area (MSA) level and state level,
respectively. They found proof of ARCH effects in 34 MSAs out of 277 and 28 states out
of 50. Furthermore, studies such as Miao et al. (2011), Karoglou et al. (2013), Webb et al.
(2016), and Zhu et al. (2013) investigated different issues associated with shocks, price
jump, and risk–return relationships in the various US areas and cities throughout different
sample periods. The investigations of house price volatility in the UK include the works
of Milles (2010), Milles (2011b), Milles (2015), Tsai (2014), Willcocks (2010), and Morley
and Thomas (2011).

Regarding investigating whether house prices exhibit long–memory behaviour; Tsai
et al. (2010) studied the volatility persistence in the UK housing market by older and
newer homes. The authors employed the switch ARCH model and found a high magnitude
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of the high volatility regime for both the older and new housing market. In the US housing
market, Milles (2011) found that over half of the 62 studied MSAs exhibit long memory
in the conditional volatility, especially the West Coast MSAs. Elder and Villupuram
(2012) examined the evidence of long–term behaviour of house price for 14 city indices
and 10–city composite indices and found a higher degree of long–range dependence in
both house price returns and volatility. Barros et al. (2015) evaluated the long–range
dependence of house price volatility employing both data on state and metropolitan level.
They found stationary long memory behaviour in the studied sample; to encompass each
state and additional metropolitan areas; their analysis and results parallels to the Elder
and Villupuram (2012) findings.

The outcomes of the above studies suggest evidence of volatility clustering in housing
markets and long–range dependence in a limited number of countries. For Finland, there
have been no investigations of house price volatility in general and of the long–term depen-
dence behaviour in both returns and volatility in particular. Therefore, this paper aims
to extend the current literature on countries’ housing market volatility analysis. More-
over, in the literature, different studies employed data on the state, national, regional,
or metropolitan level. However, few studies have been undertaken on house price volatil-
ity series using cross–level data for the seek of comparative analysis. Hence, this article
attempts to fill that gap by using data on both metropolitan and geographical level for
housing market investment and portfolio allocation purposes. Furthermore, as pointed
out by Katsiampa and Begiazi (2019), few studies have attempted to analyse house price
dynamics by property type level; hence to extend the extremely limited literature, this
study uses data on apartments in the block of flats property type which has increased its
investors’ attractiveness in the Finnish residential properties sector.

3 Data and Methodology

Data

The study employs the Statistics Finland quarterly house price indices data of fifteen main
regions in Finland; throughout 1988:Q1 to 2018:Q4, for a total of 124 observations. The
studied regions are ranked according to their number of inhabitants. There are four re-
gions with more than 250,000 inhabitants: Helsinki, Tampere, Turku, and Oulu; of which
the three first make up the so–called growth triangle in Southern Finland, and Oulu is
the growth center of Northern Finland. Seven regions with more than 100,000 inhabi-
tants: Lahti, Jyväskylä, Kuopio, Pori, Seinäjoki, Joensuu, and Vaasa. Four regions with a
population number between 80,000 – 90,000: Lappeenranta, Kouvola, Hämeenlinna, and
Kotka. These regions are then divided geographically into cities and sub–areas according
to their postcodes number (see Table 8 in Appendix A); to form a total of forty–five cities
and sub–areas. The considered type of dwellings is apartments (block of flats) because
they are the most homogenous assets in the housing market compared to other housing
types, such as detached and terraced. Additionally, in Finland, flats are favored by in-
vestors. The apartments types are divided into single–room, two–rooms, and more than
three rooms apartments.

Tables 1–3 provide the summary statistics of the quarterly house price returns for
single–room, two–rooms, and more than three rooms flats respectively. Note that cities and
sub–areas without available data for at least 20 years (80 observations) have been removed
from the analysis. Over the studied period, Pori–area1 leads the one–room apartments
type group with the highest average return (1.33 percent per quarterly). Kuopio–area1
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follows with 1.32 percent per quarterly average return. Vaasa–area1, Lahti–area1, and
Helsinki–area1 come in third place with an average return of at least 1.2 percent per
quarterly. In terms of volatility dimension, Pori–area1 also recorded the highest risk
measure (standard deviation), followed by Lahti–area1. The largest cities, such as Helsinki
and Tampere, as well as Helsinki–area2, appear to be less volatile as they have the lowest
risk level; suggesting a less significance of the ARCH effects in these cities and area.
The Two–rooms apartments type group appears to have less quarterly average returns,
in general; compare to one–room and more than three rooms flats types. Helsinki–area1
scores the highest average return (1.30 percent per quarterly), followed by Helsinki–city,
Helsinki–area2, Tampere–area1, and Turku-area1 with at least 1.0 percent per quarterly
average return. Kotka–area2 leads the group in terms of risk measure. Same as in one–
room apartments type group, the biggest cities (Helsinki, Tampere, Turku, and Oulu)
and their surrounding areas seem to be less volatile. Helsinki–area1 also comes on top
with 1.29 percent per quarterly average return in the more than three rooms apartments
type group, followed by Lappeenranta–area2 and Tampere–area1. Hämeenlinna–area1,
Joensuu–area1, and Seinäjoki–city are the more volatile areas of the group.

The house price movement of a sample of the three most volatile cities/sub–areas in
each of the apartments categories over the studied period is shown in Figure 1. Those are
Pori–area1, Pori–city, Jyväskylä–area2 in one–room apartments type group; Kotka–area2,
Pori–area1, Kotka–area1 in two–rooms apartments type group; and Hämeenlinna–area1,
Joensuu–area1, Seinäjoki–city in more than three rooms apartments type group. Initial
evidence of volatility clustering effects is observed in all sample cities and sub–areas as
they exhibit high fluctuations with certain time periods of high volatility followed by low
volatility for other periods. A similar pattern is observed in all the graphs from the end of
the 1980s until mid–1993, the period that Finland experienced financial market deregula-
tion which induces a structural break in house price dynamics (Oikarinen, 2009a; Oikari-
nen, 2009b).

Methodology

The methodology employed in this study is presented as follows: first, we filter first order
autocorrelations from the returns with an ARMA model of appropriate order determined
by Akaike information criteria (AIC) and Bayesian information criteria (BIC). Thereafter,
we test ARCH effects on the ARMA filtered returns. Next, an analysis of long memory
behaviour in both returns and volatility is undertaken. That is, for each house price
return series, both parametric and semiparametric long memory approaches are used to
estimate the long memory parameter d of individual ARFIMA process. Lastly, for cities
and sub–areas with significant clustering effects (ARCH effects), the semiparametric long
memory method is used to analyse the degree of persistence in the volatility by estimating
the fractional differencing parameter d in both squared and absolute price returns. All
analysis was conducted in R (R Core Team, 2019).
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Cities/Sub–areas Abbrevations Mean Maximum Minimum Sd nobs
Helsinki–city hki 1.12 10.5 -9.1 3.5 124
Helsinki–area1 hki1 1.25 12.9 -8.7 4.1 124
Helsinki–area2 hki2 1.15 9.6 -9.0 3.6 124
Helsinki–area3 hki3 0.96 12.6 -12.6 4.1 124
Helsinki–area4 hki4 0.78 11.1 -12.0 4.3 124
Tampere–city tre 1.01 11.6 -10.9 3.9 123
Tampere–area1 tre1 1.12 13.7 -13.8 4.9 123
Tampere–area2 tre2 1.13 15.8 -16.1 5.9 119
Tampere–area3 tre3 0.91 17.6 -11.9 5.0 123
Turku–city tku 0.99 15.0 -9.6 4.4 124
Turku–area1 tku1 1.10 16.7 -11.7 5.5 124
Turku–area2 tku2 1.02 25.3 -19.3 6.9 111
Turku–area3 tku3 1.01 15.4 -23.0 6.4 114
Oulu–city oulu 0.79 12.6 -10.3 4.3 124
Oulu–area1 oulu1 0.81 16.0 -12.0 5.1 124
Oulu–area2 oulu2 0.89 16.8 -16.7 5.7 116
Lahti–city lti 0.80 17.6 -14.4 5.4 124
Lahti–area1 lti1 1.27 44.1 -24.6 8.1 109
Lahti–area2 lti2 0.55 17.9 -19.6 6.2 124

Jyväskylä–city jkla 0.87 14.3 -10.1 4.7 124
Jyväskylä–area1 jkla1 0.99 15.7 -13.0 5.1 124
Jyväskylä–area2 jkla2 1.13 31.1 -18.5 7.4 91

Pori–city pori 0.96 25.5 -23.5 7.6 124
Pori–area1 pori1 1.33 32.9 -23.6 8.7 100
Kuopio–city kuo 0.95 17.9 -11.7 4.4 123
Kuopio–area1 kuo1 1.32 18.9 -18.6 5.9 111
Kuopio–area2 kuo2 1.12 16.6 -17.0 6.7 87
Joensuu–city jnsu 0.88 17.1 -14.6 5.0 122
Joensuu–area1 jnsu1 0.93 18.7 -14.5 5.5 117
Vaasa–city vaasa 1.01 15.7 -14.8 6.8 121
Vaasa–area1 vaasa1 1.29 18.8 -15.9 7.6 105
Kouvola–city kou 0.39 16.5 -15.5 6.8 118

Lappeenranta–city lrta 0.68 13.5 -12.9 4.9 124
Lappeenranta–area1 lrta1 1.01 18.6 -18.4 6.9 97
Hämeenlinna–city hnlina 0.86 13.8 -15.7 5.9 124
Hämeenlinna–area1 hnlina1 1.07 13.3 -17.9 6.4 103

Kotka–city kotka 0.71 18.2 -11.8 5.7 121
Kotka–area1 kotka1 1.11 17.5 -14.3 6.9 95

Notes: This table presents summary statistics on the one–room flats price index returns.
Units are quarterly returns in percentage points. The sample is 1988:Q1 to 2018:Q4.

Table 1: One–room flats quarterly house price returns – Summary statistics (%).
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Cities/Sub–areas Abbrevations Mean Maximum Minimum Sd nobs
Helsinki–city hki 1.02 10.9 -8.8 3.2 124
Helsinki–area1 hki1 1.30 18.9 -14.2 4.8 124
Helsinki–area2 hki2 1.07 10.6 -8.3 3.3 124
Helsinki–area3 hki3 0.89 9.5 -10.7 3.7 124
Helsinki–area4 hki4 0.72 9.6 -9.7 3.6 124
Tampere–city tre 0.93 10.5 -8.5 3.1 124
Tampere–area1 tre1 1.07 12.7 -7.9 3.7 123
Tampere–area2 tre2 0.85 10.4 -15.5 4.4 123
Tampere–area3 tre3 0.81 11.4 -11.8 3.6 123
Turku–city tku 0.85 11.6 -8.3 3.4 124
Turku–area1 tku1 1.02 12.6 -11.6 4.2 124
Turku–area2 tku2 0.80 10.5 -12.2 4.6 124
Turku–area3 tku3 0.77 14.5 -8.3 4.7 124
Oulu–city oulu 0.70 9.2 -6.2 3.1 124
Oulu–area1 oulu1 0.73 11.3 -6.9 3.6 124
Oulu–area2 oulu2 0.67 11.9 -9.8 4.2 124
Lahti–city lti 0.58 10.9 -8.4 3.5 124
Lahti–area1 lti1 0.78 13.3 -10.8 4.5 124
Lahti–area2 lti2 0.46 11.9 -7.4 3.9 124

Jyväskylä–city jkla 0.67 9.4 -8.6 3.3 124
Jyväskylä–area1 jkla1 0.79 12.4 -9.6 3.8 124
Jyväskylä–area2 jkla2 0.55 20.5 -18.6 4.7 124

Pori–city pori 0.85 22.5 -15.5 5.2 124
Pori–area1 pori1 0.96 24.6 -17.4 6.4 124
Pori–area2 pori2 0.84 18.5 -15.9 6.3 122
Kuopio–city kuo 0.75 12.9 -12.3 3.5 124
Kuopio–area1 kuo1 0.96 16.7 -15.5 4.8 123
Kuopio–area2 kuo2 0.60 11.5 -9.3 3.7 124
Joensuu–city jnsu 0.76 14.8 -11.8 4.9 124
Joensuu–area1 jnsu1 0.80 16.8 -12.8 5.7 124
Seinajöki–city seoki 0.88 20.9 14.4 6.0 118
Vaasa–city vaasa 0.78 10.0 -8.6 4.1 123
Vaasa–area1 vaasa1 0.88 10.2 -9.3 4.3 121
Kouvoula–city kou 0.42 27.0 -18.0 5.6 124

Lappeenranta–city lrta 0.60 16.1 -10.8 3.9 124
Lappeenranta–area1 lrta1 0.72 21.1 -15.8 5.4 123
Lappeenranta–area2 lrta2 0.62 20.9 -17.9 5.7 122
Hämeenlinna–city hnlina 0.73 12.1 -14.4 4.5 124
Hämeenlinna–area1 hnlina1 0.76 14.1 -16.8 5.2 124

Kotka–city kotka 0.71 14.1 -10.5 5.1 124
Kotka–area1 kotka1 0.90 18.2 -16.1 6.4 121
Kotka–area2 kotka2 0.84 21.4 -23.7 8.1 96

Notes: This table presents summary statistics on the two–rooms flats price index returns.
Units are quarterly returns in percentage points. The sample is 1988:Q1 to 2018:Q4.

Table 2: Two–rooms flats quarterly house price returns – Summary statistics (%).
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Cities/Sub–areas Abbrevations Mean Maximum Minimum Sd nobs
Helsinki–city hki 1.01 12.9 -9.7 3.6 124
Helsinki–area1 hki1 1.29 15.3 -14.5 5.1 124
Helsinki–area2 hki2 1.02 13.9 -8.5 3.7 124
Helsinki–area3 hki3 0.83 12.4 -9.0 3.9 124
Helsinki–area4 hki4 0.72 12.7 -11.2 3.8 124
Tampere–city tre 0.94 11.7 -11.7 3.7 123
Tampere–area1 tre1 1.09 15.1 -14.6 4.7 123
Tampere–area2 tre2 1.07 12.4 -14.2 5.5 116
Tampere–area3 tre3 0.73 13.3 -12.0 3.5 123
Turku–city tku 0.85 13.4 -10.2 3.9 124
Turku–area1 tku1 1.08 16.8 -15.8 5.3 124
Turku–area2 tku2 0.84 16.6 -14.8 4.9 124
Turku–area3 tku3 0.76 12.6 -10.5 4.5 124
Oulu–city oulu 0.77 13.1 -12.4 3.8 124
Oulu–area1 oulu1 0.81 15.2 -14.6 4.6 123
Oulu–area2 oulu2 0.80 10.6 -13.5 4.5 123
Lahti–city lti 0.66 12.3 -11.5 4.4 124
Lahti–area1 lti1 0.84 16.9 -13.8 5.7 124
Lahti–area2 lti2 0.51 10.6 -11.0 4.5 124

Jyväskylä–city jkla 0.72 15.1 -9.3 4.4 124
Jyväskylä–area1 jkla1 0.79 17.0 -12.1 5.1 122
Jyväskylä–area2 jkla2 0.79 19.5 -17.4 6.3 122

Pori–city pori 0.88 16.6 -16.7 5.7 124
Pori–area1 pori1 1.02 18.2 -18.3 6.6 116
Kuopio–city kuo 0.69 14.61 -14.5 4.4 124
Kuopio–area1 kuo1 0.99 16.5 -27.9 6.9 115
Kuopio–area2 kuo2 0.62 16.7 -18.5 4.9 122
Joensuu–city jnsu 0.85 19.3 -18.2 6.2 124
Joensuu–area1 jnsu1 0.98 22.6 -19.8 7.2 108
Seinajöki–city seoki 1.06 27.5 -24.2 7.2 103
Vaasa–city vaasa 0.81 15.8 -15.4 5.1 123
Vaasa–area1 vaasa1 0.97 19.1 -13.8 5.9 116
Vaasa–area2 vaasa2 1.09 14.8 -20.4 6.9 82
Kouvoula–city kou 0.37 15.1 -13.9 6.7 121

Lappeenranta–city lrta 0.59 12.7 -15.7 5.5 121
Lappeenranta–area2 lrta2 1.14 23.7 -22.2 6.9 80
Hämeenlinna–city hnlina 0.80 22.0 -15.8 6.2 122
Hämeenlinna–area1 hnlina1 0.97 27.5 -16.2 7.4 108

Kotka–city kotka 0.69 21.6 -17.5 6.4 120

Notes: This table presents summary statistics on the more than three rooms flats price
index returns. Units are quarterly returns in percentage points. The sample is 1988:Q1 to
2018:Q4.

Table 3: More than three rooms flats quarterly house price returns – Summary statistics
(%).
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Figure 1: The house price movement of the most volatile cities/sub–areas.

Testing for ARCH effects

After filtering serial correlations from the returns series; the squared residual series are used
to check the autoregressive conditional heteroscedasticity, also known as ARCH effects. If
the null hypothesis of constant variance is rejected, then volatility modelling is required.
Two tests are available. The first test, called Portmanteau Q(m), is to examine whether
the squares of the residuals are a sequence of white noise. It is the usual Ljung–Box test on
the squared residuals, (see Mcleod and Li, 1983). The null hypothesis of the test statistic
is that ”there is no autocorrelation in the squared residuals up to lag m,” that is, the first
m lags of the autocorrelation function (ACF) of the squared residuals are zeros. A small
p–value (smaller than the considered critical value) suggests the presence of autoregressive
conditional heteroscedasticity (strong ARCH effects).
The second test is the Lagrange Multiplier test of Engle (1982), also known as ARCH–LM
Engle’s test. This test is to fit a linear regression model for the squared residuals and
examine that the fitted model is significant. It is equivalent to the usual F statistic for
testing γi = 0 (i = 1, ...,m) in the linear regression

ê2t = γ0 + γ1ê
2
t−1 + ...+ γmê2t−m + vt, t = m+ 1, ...N,

where ê2t is the estimated residuals, vt is the random error, m is a prespecified positive
integer, and N is the sample size. The null hypothesis of the test is that ”there are
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no ARCH effects,” that is, H0 : γ1 = .... = γm = 0, and the alternative hypothesis is
H1 : γi ̸= 0 (there are ARCH effects). Again, the null hypothesis is rejected if a p–
value smaller than the considered critical value is obtained at the specified number of
lags. The ARCH–LM tests were performed using the function ArchTest() from the FinTs
package (Graves, 2019).

Testing for long–range dependence in returns

The methodology employed is based on the concept of long–term dependence, also called
long memory or long–range persistence. This phenomenon describes time series processes
whose autocorrelation function (ACF) decays slowly to 0 at a polynomial rate as the
number of lag increases. One of the best–known classes of these processes, referred to
as the long–memory time series, is the Autoregressive Fractionally Integrated Moving
Average process of order (p,d,q), denoted by ARFIMA (p,d,q); proposed independently
by Granger and Joyeux (1980) and Hosking (1981).
An ARFIMA (p,d,q) can be represented as

Φ(B)(1−B)dXt = Θ(B)ut, t = 1, 2, ..., (1)

where ut is a white noise with E(ut) = 0, and variance σ2
u. B is the lag operator or

back–shift operator such that BXt = Xt−1. Φ(B) and Θ(B) denotes finite polynomials
of order p and q respectively with unit roots outside the unit circle. That is, Φ(B) =
1− ϕ1B − ....− ϕpB

p and Θ(B) = 1− θ1B − ...− θqB
q. The studied discrete valued time

series is denoted as Xt.
The estimation procedures of the fractional differencing parameter d can be classified

into two groups: parametric and semiparametric approaches. In the former group where
all the parameters (autoregressive, differencing, and moving average) are estimated simul-
taneously; the exact maximum likelihood estimation is used. The most commonly used
methods within this group are those proposed by Fox and Taqqu (1986) and Sowell (1992).
In the latter group, the most widely used estimator is the one developed by Geweke and
Porter-Hudak (1983), usually referred to as the GPH estimator. Two steps are followed in
the semiparametric estimation: first, the fractional parameter d is estimated alone, and
other parameters are estimated in the second step.
The parametric approach involves the challenge of choosing the appropriate ARMA spec-
ification as it requires an explicit identification and estimation of the p and q values,
parameters of Φ(B) and Θ(B) respectively. In the semiparametric method, however, the
estimation of the long memory parameter d may be done without a full specification
of the data generating process. Hence, in the long–range dependence analysis, differ-
ent researchers have considered different semiparametric estimators (Elder and Villupu-
ram, 2012; Christodoulou-Volos and Siokis, 2006) or a combination of both approaches
(Barros et al., 2015). Additionally, parametric procedures have been found to require heavy
computations, while semiparametric methods are easy to implement (Reisen et al., 2001).
Reisen et al. (2001) conducted a simulation study on the estimation of parameters in
ARFIMA processes; where they compared the performance of estimating all the ARFIMA
parameters based on Hosking’s algorithm (Hosking, 1981) and the parametric Whittle es-
timator proposed by Fox and Taqqu (1986). The semiparametric estimators used in the
study are the Geweke and Porter-Hudak (1983) estimator, Smoothed Periodogram esti-
mator by Reisen (1994), Robinson (Robinson, 1995a) estimator, and Robinson’s estimator
based on the smoothed periodogram. The results of the study indicated that regres-
sion methods (semiparametric) performed better than parametric Whittle’s approach. In
the light of the above research, this article employs both parametric and semiparametric
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estimators to analyse the presence of long memory in the house price returns. The semi-
parametric estimator used is the GPH estimator, while the parametric one is the Whittle
estimator. The GPH estimator, also known as the Periodogram estimator, is based on the
regression equation using the periodogram function as an estimate of the spectral density.
The Whittle estimator is due to Whittle (1953) with modifications suggested by Fox and
Taqqu (1986). This estimator is also based on the periodogram, and it involves the spectral
density function. The Whittle estimator is the value which minimises the spectral density
function. For more details, (see Fox and Taqqu, 1986; Beran, 1994; Dahlhaus, 1989).

The outcome of the estimation is assessed as follows: if d = 0 in Equation 1, the pro-
cess exhibits short memory; corresponding to stationary and invertible ARMA modelling.
The process is described as ”anti–persistence” if d ∈ (−0.5, 0). If d ∈ (0, 0.5), the process
is said to manifest long–range positive dependence or long memory as the decay of the
autocorrelation is hyperbolically slow. If d ∈ [0.5, 1), the process is mean reverting, even
though it is no longer covariance stationary. That is, shocks will disappear in the long run.
Finally, if d ≥ 1, the process is nonstationary without mean reversion. The estimations
of the GPH estimators were performed using the function fdGPH() in the fracdiff pack-
age (Fraley et al., 2015), while the Whittle estimators were estimated using the function
arfima.whittle() in the afmtools package (Contreras-Reyes and Palma, 2013).

Testing for long–range dependence in volatility

The presence of high persistence or long memory in the volatility of those cities and sub–
areas with significant ARCH effects is analysed using the semiparametric approach to
estimate the long memory parameter d in the squared and absolute price returns. For
volatility series, the autocorrelation of the squared and absolute returns exhibit similar
decay at high lags (Harvey, 1998); which justifies the use of the long memory parameter of
any of these metrics. For our purposes, we use both squared and absolute returns for the
seek of comparison of the estimated parameters; even though Wright (2002) claimed the
strong Monte–Carlo evidence support of using absolute returns, as squared returns can
cause a severe negative bias.

Previous studies have examined the persistence nature of the house price volatility em-
ploying different Generalized Autoregressive Conditional Heteroscedasticity (GARCH)–
type models (Milles, 2011). Within the GARCH–family models, the most used ones which
account for long memory in the conditional variance of the assets are Integrated GARCH
(IGARCH) model of Engle and Bollerslev (1986), Component GARCH (CGARCH) model
of Lee and Engle (1999), and Fractionally Integrated GARCH (FIGARCH) model of Bail-
lie et al. (1996). FIGARCH and CGARCH have been applied more often of late than the
IGARCH mainly because; in the IGARCH model, shocks persist forever, meaning that
the model implies infinite persistence on the conditional variance; and hence, it is too
restrictive (Tayefi and Ramanathan, 2012). The use of the above long memory GARCH–
types models, however, to measure the degree of house price volatility persistence can
be challenging to interpret as these models require to obtain convergent parameter esti-
mates in the conditional variance equation. Moreover, the results obtained from these
GARCH–types models are not directly comparable to the ones from the parametric or
semiparametric estimators. Therefore, as we aim to estimate the degree of long–range
dependence in the house price volatility; rather than modelling the process governing the
studied types of dwellings volatility dynamics, this article employs the semiparametric
method to examine the evidence of long memory in the volatility of the studied types
of dwellings. The semiparametric estimator used is the GPH estimator described above.
Again, the estimations of the GPH estimators were performed using the function fdGPH()
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in the fracdiff package (Fraley et al., 2015).

4 Results and discussions

Testing for ARCH effects

Table 4 displays the p–values and their lag orders (in parentheses) of the two tests employed
to investigate whether there is volatility clustering in each house price return series. Those
tests are the Ljung–Box (LB) test and the Engle’s Lagrange Multiplier (LM) test. The
null hypothesizes of no serial correlation in squared residuals of the LB test and no ARCH
effects of the LM test are rejected; in twenty–eight out of thirty–eight studied cities and
sub–areas in the one–room flats category; in twenty–nine out forty–two in the two–rooms
flats category; and in thirty–three out of forty in the more than three rooms flats category.
Thus, strong evidence of volatility clustering (ARCH) effects is evident in over half of the
cities and sub–areas in all three apartments types.
In some cases, one of the tests is inconclusive; for instance, in the case of Tampere–area1
(in the one–room flats category) and Turku–area2 (in the two–rooms flats category), the
Portmanteau test is inconclusive (we fail to reject the null hypothesis because of the higher
p–values); however, the Lagrange Multiplier values are statistically significant. Similarly,
in the case of Lahti–area1 (in the more than three rooms flats category), this time, however,
it is the Lagrange Multiplier test which is inconclusive. In these cases, the autocorrelation
function (ACF) and partial autocorrelation function (PACF) plots of the squared residuals
(Figure 2) are used to show that there might be some autocorrelations left even though
the significance might be small.

Testing for long–range dependence in returns

Table 5 gives the GPH estimates of the fractional differencing parameter d in the house
price returns with their standard errors (in parentheses). Results reveal strong evidence
of long–range dependence in most return series in all three apartment type categories. In
approximately 68% (twenty–six out of thirty–eight) of the return series, in the one–room
flats group; there is long–range positive dependence with values of d in the stationary and
invertible interval (d is varying from 0.045 to 0.445). An anti–persistence behaviour is
present in nine returns series; which implies a relatively quick dissipate of shocks in the
house price returns. Three house price returns series (marked in bold) are mean reverting;
however, they may no longer be covariance stationary as the estimates of the long memory
parameter are greater than 0.5. Those return series are Turku–area3 (d = 0.665), Kuopio–
area1 (d = 0.529), and Kotka–area1 (d = 0.510). In these three sub–areas, shocks will
wear off in the long run. Approximately 83% (thirty–five out of forty–two) and 77.5%
(thirty–one out of forty) of the return series exhibit stationary long memory behaviour
in the two–rooms and the more than three rooms flats category, respectively. Further, in
the two respective groups, seven out of forty–two cities/sub–areas and nine out of forty
cities/sub–areas display long–range negative dependence or anti–persistence behaviour;
which implies unpredictability of future returns based on historical returns.

Table 6 presents the Whittle estimates of the long memory parameter d with their p–
values (in parentheses). The evidence of long–range dependence (d ∈ (0, 0.5)) is observed
for most of the cities and sub–areas. Plus precisely, 80% (thirty out of thirty–eight), 83%
(thirty–five out of forty–two), and 77.5% (thirty–one out of forty) return series exhibit long
memory behaviour in the one–room, the two–rooms, and the more than three rooms flats
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One room flats Two rooms flats Three rooms flats
Regions Cities/sub–areas LB p–values LM p–values LB p–values LM p–values LB p–values LM p–values

Helsinki

hki 0.01724**(1) 0.01873**(1) 0.00037***(1) 0.00046***(1) 0.01916**(6) 0.01009**(6)
hki1 0.04039**(1) 0.04302**(1) 0.02057**(4) 0.05578*(4) 0.00343***(2) 0.00367***(2)
hki2 0.01778**(2) 0.01814**(2) 0.00361***(1) 0.00414***(1) 0.732 0.7356
hki3 0.4441 0.5261 0.04761**(6) 0.03667**(12) 0.00744***(16) 0.03479**(16)
hki4 0.01691**(2) 0.01927**(2) 0.08855*(3) 0.08347*(3) 0.03538**(1) 0.03665**(1)

Tampere

tre 0.4679 0.8395 0.7761 0.7786 0.07745*(1) 0.08072*(1)
tre1 0.4878 0.0309**(11) 0.04128**(15) 0.07986*(15) 0.01222**(1) 0.0127**(1)
tre2 0.992 0.7463 0.00801***(6) 0.00853***(10) 0.02761**(7) 0.05303*(7)
tre3 0.09774*(1) 0.04147**(3) 0.2478 0.2204 0.0353**(11) 0.01721**(11)

Turku

tku 0.00579**(10) 0.00826**(10) 0.06687*(3) 0.08406*(3) 0.04951**(1) 0.04706**(1)
tku1 0.06488*(5) 0.02419**(5) 0.5635 0.5692 0.07016*(1) 0.06882*(1)
tku2 0.07601*(1) 0.08109*(1) 0.1173 0.0827*(16) 0.05191*(1) 0.05502*(1)
tku3 0.08333*(15) 0.0791*(15) 0.09212*(2) 0.103 0.00029***(1) 0.00035***(1)

Oulu
oulu 0.00641**(1) 0.00589**(1) 0.3195 0.3242 0.00691***(4) 0.00947***(4)
oulu1 0.08368*(1) 0.08781*(1) 0.5811 0.5853 0.06343*(9) 0.07595*(11)
oulu2 0.03907**(1) 0.03648**(1) 0.08702*(11) 0.7267 0.25 0.2545

Lahti
lti 0.00397**(1) 0.00437**(1) 0.05585*(2) 0.08992*(13) 0.003756***(1) 0.003697***(1)
lti1 0.00154**(1) 0.00185**(1) 0.4088 0.412 0.03861**(16) 0.3479
lti2 0.9878 0.588 0.9908 0.9995 0.9251 0.9793

Jyväskylä
jkla 0.02683**(2) 0.00648**(2) 0.01422**(1) 0.00958***(1) 0.07133*(1) 0.07546*(1)
jkla1 0.01705**(2) 0.00302**(2) 0.02106**(1) 0.02135**(1) 0.04016**(18) 0.08492*(18)
jkla2 0.5235 0.03161**(9) 5.42∗10−7***(1) 6.57∗10−7***(1) 0.00879***(1) 0.00968***(1)

Pori
pori 0.01178**(2) 0.01481**(2) 0.00783***(14) 0.00057***(11) 0.8245 0.8272
pori1 0.01847**(2) 0.02341**(2) 0.03601**(14) 0.02325**(7) 0.0135**(1) 0.01498**(1)
pori2 – – 0.03395**(1) 0.03511**(1) – –

Kuopio
kuo 0.02197**(2) 0.02043**(2) 0.02826**(3) 0.01974**(3) 9.37∗10−5***(3) 8.99∗10−5***(3)
kuo1 0.0332**(2) 0.0343**(2) 0.00983***(3) 0.00361***(3) 0.00570***(1) 0.00651***(1)
kuo2 0.01171**(1) 0.01355**(1) 0.7606 0.7552 0.05511*(3) 0.06738*(3)

Joensuu
jnsu 0.9552 0.8945 0.4816 0.4866 0.3902 0.3952
jnsu1 0.02472**(1) 0.0229**(1) 0.06071*(15) 0.1541 0.09813*(17) 0.1872

Seinäjoki seoki – – 0.02307**(2) 0.02324**(2) 0.07986*(14) 0.2042

Vaasa
vaasa 0.7668 0.7694 0.06089*(1) 0.06419*(1) 0.09783*(1) 0.1031
vaasa1 0.8042 0.8075 0.2579 0.264 0.0145**(1) 0.01613**(1)
vaasa2 – – – – 0.00897***(2) 0.01832**(2)

Kouvola kou 0.8457 0.8458 0.00059***(1) 0.00065***(1) 0.9867 0.9868

Lappeenranta
lrta 0.01867**(1) 0.02028**(1) 0.00166***(1) 0.00196***(1) 0.06448*(2) 0.06807*(2)
lrta1 0.02763**(1) 0.03062**(1) 0.00393***(1) 0.00452***(1) – –
lrta2 – – 0.9146 0.916 0.00360***(1) 0.00450***(1)

Hämeenlinna
hnlina 0.00286**(1) 0.00331**(1) 0.08782*(6) 0.08461*(6) 0.8803 0.8821
hnlina1 0.9694 0.9699 0.03765**(6) 0.03006**(6) 0.02362**(7) 0.01233**(4)

Kotka
kotka 0.117 0.08195*(3) 0.1482 0.109 0.0379**(3) 0.02734**(3)
kotka1 0.8425 0.8342 0.4851 0.04158**(7) 0.04078**(1) 0.04221**(1)
kotka2 – – 0.1751 0.1834 – –

Notes: This table reports the p–values from the Portmanteau (Ljung–Box) and Lagrange
Multiplier tests. The values in parentheses are the lag orders of each test. *, **, and ***
indicate respectively 10%, 5%, and 1% levels of significance.

Table 4: ARCH effects tests results.

group respectively. Considering the semiparametric approach (GPH estimator), an obser-
vation of the results reveals a geographical pattern regarding which cities and sub–areas
exhibit long–term dependence in the returns series; densely populated regions Helsinki,
Tampere, Turku, and Oulu display long memory behaviour in all three studied types of
apartments. Except for Turku–area1, Oulu–city, and Oulu–area2 in the one–room flats
category where the anti–persistence behaviour is observed and Turku–area3 with the long
memory parameter greater than 0.5.

Similar results of high degrees of persistence in the house price returns were found in
the United States house prices indices by Elder and Villupuram (2012) on the metropolitan
level. Their estimates of the fractional differencing parameter d were restricted between
0 and 0.5, and even higher than 0.5 in some cities. Moreover, a similar conclusion to
Elder and Villupuram’s can be drawn in case of the Finnish housing market. That is,
this high level of persistence in the house price indices differs from other assets, such
as stocks, energy futures, and metal futures. Energy and metal futures assets classes
generally display anti–persistence and modest long memory behaviour as documented by
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Figure 2: ACF and PACF of the squared residuals.

Barkoulas et al. (1999), Crato and Ray (2000), and Elder and Jin (2009). Also, stocks
assets have been found to have the fractional differencing parameter d in the interval of
-0.2 to 0.2, see Barkoulas and Baum (1996), Lo (1991), and Hiemstra and Jones (1997).
Therefore, as stressed by Elder and Villupuram (2012), the long memory in real estates
index returns is notable, and it is a relevant feature for issues such as constructing hedge
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ratios for risk management. It is worth mentioning again the challenge of specifying the
appropriate ARMA (p,q) order in the parametric approach as different lag orders lead to
varying estimations of the long memory parameter.

Testing for long–range dependence in volatility

Table 7 displays the estimates of the fractional differencing parameter in both squared and
absolute returns of house prices in all three apartment types with their standard errors (in
parentheses). As with house price returns, results indicate very persistent long memory
for house price volatility. In the one–room flats group, the d estimates in squared and
absolute returns place respectively, nineteen and eighteen out of twenty–eight cities/sub–
areas into the stationary and invertible interval (d ∈ (0, 0.5)); which implies stationary
long memory behaviour. An anti–persistence behaviour is present in four (for d in squared
returns) and five (for d in absolute returns) cities/sub–areas; which implies a relatively
quick disappearance of shocks in house price volatility. Both squared and absolute returns
estimate equally place five cities/sub–areas into the interval of d between 0.5 and 1; where
shocks in the house price volatility will disappear in the long run.

In the two–rooms flats category, for d estimates in both squared and absolute returns,
twenty–five out of twenty–nine cities/sub–areas have long–range positive dependence with
values of d in the stationary and invertible interval. Two and three cities/sub–areas,
for d estimates in squared and absolute returns respectively, display long–range negative
dependence. Further, in the two respective estimates, the house price volatility of two
and one cities/sub–areas are mean–reverting but no longer covariance stationary. There
is an exception in the more than three rooms flats group, the d estimate in two sub–areas
(marked in bold) is higher than one; implying that the house price volatility process in these
two sub–areas is nonstationary without mean reversion. Those sub–areas are Vaasa–area2
and Kotka–area1. Otherwise, up to twenty–four cities/sub–areas in this category exhibit
stationary long memory behaviour; two cities/sub–areas are anti-persistent; and up two
seven cities/sub–areas are mean–reverting. Regarding overall comparison, an inspection
of the results of both squared and absolute returns fails to reveal any regional pattern as
regards to the degree of persistence in volatility. However, there is some evidence to suggest
that regions such as Helsinki–city, Jyväskylä–city, Kuopio–area1, and Hämeenlinna–area1
come on top in terms of house prices volatility persistence in at least two out three types
of apartments. Moreover, the estimated d parameters for squared and absolute returns
are quite close in most of the cases. However, there are cases where the two estimated
parameters place the corresponding city or sub–area into two different intervals. For
instance, Turku–area2 (in the one–room flats), d estimate for absolute returns puts it into
the stationary and invertible range while the one for squared returns puts it into the mean–
reverting, no longer covariance stationary interval. Therefore, as the estimated parameters
will be considered in modelling and forecasting house price volatility of the studied types
of apartments; both estimates will be used in the recognised model and assessing the best
one will be based on the information criteria or other tools for models specification.

In summary, in twenty–eight, twenty–nine, and thirty–three cities/sub–areas which
exhibited significant ARCH effects in the one–room, two–rooms, and more than three
rooms flats group respectively; over half exhibit long memory in the house price volatility.
Moreover, contrasting with other asset classes; such as stocks, for example, Cotter and
Stevenson (2008) reported an estimate of the parameter d equalling 0.42 for volatility
persistence of the S&P 500 index. Therefore, the higher estimates of long–run dependence
found in our study suggest that persistence in house price volatility is much stronger than
for stock prices.
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d estimates (GPH)
Regions Cities/Sub–areas One room flats Two rooms flats Three rooms flats

Helsinki

hki 0.140 (0.274) 0.155 (0.274) 0.121 (0.274)
hki1 0.123 (0.273) 0.150 (0.274) 0.107 (0.274)
hki2 0.140 (0.273) 0.178 (0.274) 0.117 (0.274)
hki3 0.120 (0.273) 0.094 (0.274) 0.147 (0.274)
hki4 0.232 (0.274) 0.166 (0.274) 0.146 (0.274)

Tampere

tre 0.169 (0.273) 0.245 (0.274) 0.245 (0.274)
tre1 0.164 (0.273) 0.160 (0.274) 0.091 (0.274)
tre2 0.271 (0.293) 0.252 (0.274) 0.221 (0.293)
tre3 0.066 (0.274) 0.273 (0.274) 0.426 (0.274)

Turku

tku 0.071 (0.274) 0.118 (0.274) 0.209 (0.274)
tku1 -0.008 (0.274) 0.035 (0.274) 0.190 (0.274)
tku2 0.264 (0.293) 0.168 (0.274) 0.265 (0.274)
tku3 0.665 (0.293) 0.110 (0.274) 0.142 (0.274)

Oulu
oulu -0.017 (0.274) 0.282 (0.274) 0.313 (0.274)
oulu1 0.058 (0.274) 0.378 (0.274) 0.264 (0.274)
oulu2 -0.605 (0.293) 0.081 (0.274) 0.187 (0.274)

Lahti
lti 0.436 (0.274) 0.233 (0.274) 0.321 (0.274)
lti1 0.445 (0.293) 0.147 (0.274) 0.267 (0.274)
lti2 0.208 (0.274) 0.331 (0.274) 0.347 (0.274)

Jyväskylä
jkla 0.045 (0.274) 0.095 (0.274) 0.341 (0.274)
jkla1 -0.005 (0.274) 0.102 (0.274) 0.499 (0.274)
jkla2 -0.509 (0.317) 0.087 (0.274) 0.390 (0.274)

Pori
pori -0.124 (0.274) -0.063 (0.274) 0.098 (0.274)
pori1 0.059 (0.317) -0.280 (0.274) -0.272 (0.293)
pori2 – -0.074 ( 0.274) –

Kuopio
kuo -0.107 (0.274) 0.037 (0.274) 0.190 (0.274)
kuo1 0.529 (0.293) -0.166 (0.274) -0.198 (0.293)
kuo2 -0.154 (0.318) 0.176 (0.274) 0.215 (0.274)

Joensuu
jnsu 0.056 (0.274) 0.291 (0.274) 0.230 (0.274)
jnsu1 0.311 (0.293) 0.287 (0.274) -0.065 (0.293)

Seinäjoki seoki – -0.358 (0.293) -0.551 (0.293)

Vaasa
vaasa 0.101 (0.293) 0.188 (0.274) 0.077 (0.274)
vaasa1 -0.327 (0.293) 0.174 (0.293) -0.160 (0.293)
vaasa2 – – -0.296 (0.318)

Kouvola kou 0.053 (0.293) 0.401 (0.274) 0.370 (0.293)

Lappeenranta
lrta 0.174 (0.274) 0.186 (0.274) 0.089 (0.293)
lrta1 0.424 (0.317) 0.247 (0.274) –
lrta2 – -0.027 (0.274) -0.686 (0.347)

Hämeenlinna
hnlina 0.281 (0.274) 0.425 (0.274) 0.197 (0.274)
hnlina1 0.068 (0.293) 0.401 (0.274) -0.171 (0.293)

Kotka
kotka 0.248 (0.293) 0.116 (0.274) 0.0813 (0.293)
kotka1 0.510 (0.317) 0.216 (0.293) -0.307 (0.347)
kotka2 – -0.329 (0.317) –

Notes: This table reports the GPH estimates of the long memory parameter d in the house price
returns. The values in parentheses are their standard errors. If d ∈ (−0.5, 0), the series is described
as ”anti–persistence”. If d ∈ (0, 0.5), the process manifests the long–range dependence. If d ∈ [0.5, 1),
the process is mean reverting, even though it is no longer covariance stationary.

Table 5: Estimates of fractional differencing parameter (GPH).
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d estimates (Whittle)
Regions Cities/Sub–areas One room flats Two rooms flats Three rooms flats

Helsinki

hki 0.194 (0.188) -0.281 (0.057) 0.256 (0.084)
hki1 0.037 (0.801) 0.179 (0.224) 0.362 (0.014)
hki2 0.315 (0.032) 0.296 (0.045) 0.198 (0.180)
hki3 0.265 (0.072) 0.499 (0.000) 0.377 (0.011)
hki4 0.468 (0.001) -0.166 (0.260) 0.499 (0.001)

Tampere

tre -0.345 (0.020) -0.195 (0.187) 0.426 (0.004)
tre1 0.033 (0.820) 0.382 (0.010) 0.251 (0.091)
tre2 0.247 (0.101) 0.044 (0.762) 0.305 (0.046)
tre3 -0.377 (0.011) 0.195 (0.189) -0.344 (0.021)

Turku

tku -0.523 (0.000) 0.307 (0.037) 0.499 (0.001)
tku1 0.185 (0.210) 0.327 (0.027) 0.151 (0.305)
tku2 0.055 (0.721) 0.078 (0.594) -0.369 (0.013)
tku3 0.178 (0.247) 0.499 (0.000) 0.090 (0.543)

Oulu
oulu 0.235 (0.112) 0.309 (0.036) 0.406 (0.006)
oulu1 0.034 (0.816) 0.324 (0.028) -0.333 (0.024)
oulu2 0.102 (0.502) -0.016 (0.909) 0.036 (0.810)

Lahti
lti 0.116 (0.432) 0.499 (0.000) 0.091 (0.539)
lti1 0.014 (0.929) 0.405 (0.006) 0.149 (0.312)
lti2 0.092 (0.534) 0.183 (0.217) 0.404 (0.006)

Jyväskylä
jkla 0.091 (0.535) 0.209 (0.158) 0.136 (0.356)
jkla1 0.025 (0.865) 0.248 (0.093) 0.277 (0.063)
jkla2 -0.108 (0.533) -0.207 (0.161) 0.147 (0.323)

Pori
pori -0.045 (0.758) 0.312 (0.035) -0.002 (0.984)
pori1 0.064 (0.695) 0.245 (0.097) -0.054 (0.722)
pori2 – 0.187 (0.208) –

Kuopio
kuo 0.111 (0.455) 0.437 (0.003) 0.041 (0.777)
kuo1 0.241 (0.122) 0.043 (0.769) 0.005 (0.974)
kuo2 -0.040 (0.819) 0.147 (0.319) 0.299 (0.045)

Joensuu
jnsu 0.169 (0.257) 0.281 (0.057) 0.026 (0.857)
jnsu1 0.209 (0.170) 0.311 (0.035) 0.001 (0.990)

Seinäjoki seoki – 0.029 (0.846) -0.583 (0.000)

Vaasa
vaasa -0.008 (0.952) -0.132 (0.373) 0.255 (0.085)
vaasa1 -0.306 (0.056) 0.115 (0.441) -0.021 (0.886)
vaasa2 – – -0.127 (0.484)

Kouvola kou 0.189 (0.212) 0.074 (0.614) 0.244 (0.102)

Lappeenranta
lrta 0.073 (0.620) 0.093 (0.527) 0.201 (0.181)
lrta1 0.017 (0.914) 0.065 (0.659) –
lrta2 – 0.125 (0.401) -0.153 (0.409)

Hämeenlinna
hnlina 0.293 (0.047) -0.387 (0.008) 0.241 (0.106)
hnlina1 0.294 (0.069) 0.354 (0.016) 0.021 (0.891)

Kotka
kotka 0.279 (0.063) 0.355 (0.016) 0.300 (0.046)
kotka1 0.259 (0.125) 0.015 (0.918) 0.171 (0.365)
kotka2 – 0.032 (0.848) –

Notes: This table reports the Whittle estimates of the long memory parameter d in the house
price returns. The values in parentheses are their standard errors. If d ∈ (−0.5, 0), the series is
described as ”anti–persistence”. If d ∈ (0, 0.5), the process manifests the long–range dependence.
If d ∈ [0.5, 1), the process is mean reverting, even though it is no longer covariance stationary.

Table 6: Estimates of fractional differencing parameter (Whittle).
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One room flats Two rooms flats Three rooms flats
Regions Cities/sub–areas d – Squared returns d – Absolute returns d – Squared returns d – Absolute returns d – Squared returns d – Absolute returns

Helsinki

hki 0.696 (0.274) 0.536 (0.274) 0.327 (0.274) 0.381 (0.274) 0.334 (0.274) 0.410 (0.274)
hki1 0.381 (0.274) 0.439 (0.274) 0.278 (0.274) 0.229 (0.274) 0.685 (0.274) 0.654 (0.274)
hki2 0.493 (0.274) 0.535 (0.274) 0.652 (0.274) 0.646 (0.274) – –
hki3 – – 0.113 (0.274) 0.017 (0.274) 0.396 (0.274) 0.565 (0.274)
hki4 0.742 (0.274) 0.631 (0.274) -0.056 (0.274) -0.0411 (0.274) 0.024 (0.274) 0.029 (0.274)

Tampere

tre – – – – 0.501 (0.274) 0.353 (0.274)
tre1 0.378 (0.274) 0.182 (0.274) 0.178 (0.274) 0.306 (0.274) 0.236 (0.274) 0.296 (0.274)
tre2 – – 0.374 (0.274) 0.225 (0.274) 0.166 (0.293) 0.241 (0.293)
tre3 0.152 (0.274) 0.247 (0.274) – – 0.157 (0.274) 0.257 (0.274)

Turku

tku 0.106 (0.274) -0.044 (0.274) 0.168 (0.274) 0.262 (0.274) 0.345 (0.274) 0.331 (0.274)
tku1 0.083 (0.274) -0.116 (0.274) – – 0.366 (0.274) 0.405 (0.274)
tku2 0.721 (0.293) 0.347 (0.293) 0.137 (0.274) 0.085 (0.274) 0.511 (0.274) 0.393 (0.274)
tku3 0.217 (0.293) 0.184 (0.293) 0.156 (0.274) 0.20 (0.274) 0.571 (0.274) 0.541 (0.274)

Oulu
oulu -0.146 (0.274) -0.193 (0.274) – – 0.480 (0.274) 0.365 (0.274)
oulu1 0.017 (0.274) 0.019 (0.274) – – 0.635 (0.274) 0.423 (0.274)
oulu2 0.006 (0.293) 0.449 (0.293) 0.013 (0.274) 0.125 (0.274) – –

Lahti
lti 0.025 (0.274) 0.087 (0.274) 0.125 (0.274) 0.163 (0.274) 0.036 (0.274) -0.048 ( 0.274)
lti1 0.354 (0.293) 0.853 (0.293) – – 0.123 (0.274) 0.005 (0.274)

Jyväskylä
jkla 0.151 (0.274) 0.257 (0.274) 0.320 (0.274) 0.343 (0.274) 0.305 (0.274) 0.414 (0.274)
jkla1 -0.072 (0.274) -0.049 (0.274) 0.559 (0.274) 0.409 (0.274) 0.312 (0.274) 0.396 (0.274)
jkla2 0.304 (0.317) 0.391 (0.317) 0.073 (0.274) 0.240 (0.274) -0.261 (0.274) 0.253 (0.274)

Pori
pori -0.142 (0.274) -0.218 (0.274) 0.078 (0.274) 0.188 (0.274) – –
pori1 0.135 (0.317) 0.184 (0.317) 0.0009 (0.274) -0.021 (0.274) 0.362 (0.293) 0.252 (0.293)
pori2 – – 0.355 (0.274) 0.150 (0.274) – –

Kuopio
kuo 0.363 (0.274) 0.315 (0.274) 0.147 (0.274) 0.243 (0.274) 0.202 (0.274) 0.296 (0.274)
kuo1 0.309 (0.293) 0.288 (0.293) 0.316 (0.274) 0.391 (0.274) 0.358 (0.293) 0.411 (0.293)
kuo2 0.757 (0.318) 0.626 (0.318) – – 0.159 (0.274) 0.137 (0.274)

Joensuu jnsu1 -0.123 (0.293) 0.008 (0.293) -0.133 (0.274) 0.003 (0.274) -0.421 (0.293) -0.184 (0.293)
Seinäjoki seoki – – 0.249 (0.293) 0.428 (0.293) 0.255 (0.293) 0.218 (0.293)

Vaasa
vaasa – – 0.338 (0.274) 0.327 (0.274) 0.140 (0.274) 0.105 (0.274)
vaasa1 – – – – 0.331 (0.293) 0.109 (0.293)
vaasa2 – – – – 1.05 (0.318) 1.22 (0.318)

Kouvola kou – – 0.360 (0.274) 0.432 (0.274) – –

Lappeenranta
lrta 0.539 (0.274) 0.426 (0.274) 0.158 (0.274) 0.242 (0.274) 0.199 (0.293) 0.299 (0.293)
lrta1 0.403 (0.317) 0.422 (0.317) 0.096 (0.274) -0.332 (0.274) – –
lrta2 – – – – 0.884 (0.347) 0.722 (0.347)

Hämeenlinna
hnlina 0.072 (0.274) 0.146 (0.274) 0.274 (0.274) 0.089 (0.274) – –
hnlina1 – – 0.408 (0.274) 0.362 (0.274) 0.459 (0.293) 0.470 (0.293)

Kotka
kotka 0.157 (0.293) 0.235 (0.293) – – 0.933 (0.293) 0.732 (0.293)
kotka1 – – 0.365 (0.293) 0.390 (0.293) 1.26 (0.347) 0.679 (0.347)

Notes: This table reports the estimates of the long memory parameter d in both squared and
absolute returns of house prices. The values in parentheses are their standard errors. If d ∈ (−0.5, 0),
the series is described as ”anti–persistence”. If d ∈ (0, 0.5), the process manifests the long–range
dependence. If d ∈ [0.5, 1), the process is mean reverting, even though it is no longer covariance
stationary. If d ≥ 1, the process is nonstationary without mean reversion.

Table 7: Estimates of d in the Squared and Absolute returns house prices.

5 Conclusion

The presence of long memory in the asset returns implies that the considered asset returns
may be predictable at long horizons; which is why investigating this issue is crucial in
the development of appropriate time series forecasting models in the financial market.
With this motivation, this study examines the persistence or long memory behaviour of
the house price returns and volatility for fifteen main regions in Finland. The study
employs both parametric and semiparametric long memory approaches to estimate the
degree of long–range dependence in both returns and volatility. The results reveal strong
supportive evidence of long memory in the returns; suggesting that the house price return
series, contrary to other asset classes such as stocks, are strongly autocorrelated and hence
highly forecastable. Moreover, in the majority of the cities and sub–areas with significant
clustering effects, the long memory behaviour was found in the volatility using either
squared or absolute returns. The evidence of high degree of persistence found in the house
price volatility is essential higher than that exhibited by other assets categories.

In the standpoint of developing appropriate time series volatility forecasting models
in this housing market; for further research, these results will be used in modelling and
forecasting the volatility dynamics of the studied types of dwellings. That is, for cities and
sub–areas with no significant ARCH effects, meaning those cities with constant mean and
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variance, and with long–range dependence in the returns; a short memory ARMA (p,q)
model and a long memory ARFIMA (p,d,q) model will be used to examine which model
leads to the best results in modelling house price returns. The long memory parameter d
estimated in the house price returns will be incorporated in the ARFIMA (p,d,q) estima-
tion procedure. However, as the model which fits better does not necessarily mean it will
forecast well, an in–sample and out–of–sample forecasting performance of both univari-
ate models will be assessed. Furthermore, for those cities and sub–areas with significant
ARCH effects, and exhibiting long memory behaviour in the volatility; a short memory
GARCH model will be employed to capture the house price volatility dynamics, and it
will be compared to the other GARCH–type models which account for long memory in the
conditional variance such as the Fractionally Integrated GARCH (FIGARCH) model, and
the Component GARCH (CGARCH) model. Again, long memory parameter d estimated
in the house price volatility will be incorporated in the FIGARCH estimation procedure,
and a forecasting test will be performed to provide information regarding which forecasting
methods delivers superior volatility forecasts of the studied types of apartments.

Appendices

A

Regional division of quarterly house price index data
Cities/Sub–areas Abbreviations for cities and sub–

areas
Postcode numbers

Helsinki hki City area
Helsinki–area1 hki1 100, 120, 130, 140, 150, 160, 170,

180, 220, 260
Helsinki–area2 hki2 200, 210, 250, 270, 280, 290, 300,

310, 320, 330, 340, 500, 510, 520,
530, 540, 550, 560, 570, 580, 590,
610, 810, 850, 990

Helsinki–area2 hki3 240, 350, 360, 370, 400, 430, 440,
440, 620, 650, 660, 670, 680, 690,
730, 780, 790, 800, 830, 840, 950

Helsinki–area4 hki4 Other postcodes
Tampere tre City area
Tampere–area1 tre1 33100, 33180, 33200, 33210,

33230, 33240, 33250, 33500,
33540

Tampere–area2 tre2 33270, 33400, 33530, 33560,
33610, 33700, 33730, 33820,
33900, 34240

Tampere–area3 tre3 Other postcodes
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Regional division of quarterly house price index data
Cities/Sub–areas Abbreviations for cities and sub–

areas
Postcode numbers

Turku tku City area
Turku–area1 tku1 20100, 20500, 20700, 20810,

20900
Turku–area2 tku2 20200, 20250, 20300, 20380,

20400, 20520, 20720, 20880,
20960

Turku–area3 tku3 Other postcodes
Oulu oulu City area
Oulu–area1 oulu1 90100,90120, 90130, 90140,

90230, 90400, 90410, 90420,
90510

Oulu–area2 oulu2 Other postcodes
Lahti lti City area
Lahti–area1 lti1 15100, 15110, 15140, 15160,

15320, 15340, 15610, 15850,
15900

Lahti–area2 lti2 Other postcodes
Jyväskylä jkla City area
Jyväskylä–area1 jkla1 40100, 40200, 40500, 40520,

40530, 40600, 40700, 40720
Jyväskylä–area2 jkla2 Other postcodes
Pori pori City area
Pori–area1 pori1 28100, 28130, 28300, 28430,

28540, 28660, 28900
Pori–area2 pori2 Other postcodes
Kuopio kuo City area
Kuopio–area1 kuo1 70100, 70110, 70300, 70600,

70800, 70840
Kuopio–area2 kuo2 Other postcodes
Joensuu jnsu City area
Joensuu–area1 jnsu1 80100, 80110, 80200, 80220
Joensuu–area2 jnsu2 Other postcodes
Seinajöki seoki City area
Vaasa vaasa City area
Vaasa–area1 vaasa1 65100, 65170, 65200, 65410
Vaasa–area2 vaasa2 Other postcodes
Kouvola kou City area
Lappeenranta lrta City area
Lappeenranta–area1 lrta1 53100, 53130, 53500, 53600,

53900, 55330
Lappeenranta–area2 lrta2 Other postcodes
Hämeenlinna hnlina City area
Hämeenlinna–area1 hnlina1 13100, 13130, 13200, 13220,

13270
Hämeenlinna–area2 hnlina2 Other postcodes
Kotka kotka City area
Kotka–area1 kotka1 48100, 48210, 48310, 48710
Kotka–area2 kotka2 Other postcodes

Source: Statistics Finland

Table 8: Regional division by postcode numbers.
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