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Abstract. This paper handles the popular Sudoku puzzle and studies how to
improve evolutionary algorithm solving by first pre-processing Sudoku solving
with the most common known solving methods. We found that the pre-
processing solves some of the easiest Sudoku’s so we do not even need other
methods. With more difficult Sudoku’s the pre-processing reduce the positions
needed to solve dramatically, which means that evolutionary algorithm finds the
solution much faster than without the pre-processing.

Keywords: Ant colony optimization � Cultural algorithms � Genetic algorithms
Hybrid algorithms � Puzzle solving � Sudoku

1 Introduction

In this paper we will report our newest developments with solving Sudoku’s with
evolutionary algorithms. This research project started as a hobby back in 2006 when we
published our first Sudoku paper [1]. Since then we have published other papers, and
got many citations to them and still many people inquire us of our Sudoku papers and
software. Therefore, we felt that now is time to update our Sudoku experiments.

This time we decided to program the most common Sudoku solving methods and
use them to pre-process Sudoku’s before applying evolutionary algorithms to solve
them. We also add some literature and background information that we have not
discussed in our earlier Sudoku papers.

According to Wikipedia [2], Sudoku, originally called Number Place, is a logic-
based, combinatorial number-placement puzzle (Fig. 1). The objective is to fill a 9 � 9
grid with digits so that each column, each row, and each of the nine 3 � 3 sub grids
that compose the grid (also called “boxes”, “blocks”, “regions”, or “sub squares”)
contains all of the digits from 1 to 9. The puzzle setter provides a partially completed
grid, which for a well-posed puzzle has a unique solution.

We will try to solve the Sudoku with different algorithms: Genetic Algorithms,
Cultural Algorithms and Genetic Algorithm/Ant colony optimization hybrid.

Genetic algorithms (GAs) [3] are computer based optimization methods that use the
Darwinian evolution [4] of nature as a model and inspiration.

Cultural algorithms (CAs) were introduced by Reynolds [5], they are a branch of
evolutionary computation methods, where algorithms include knowledge component,

AQ1

© Springer Nature Switzerland AG 2019
R. Matoušek (Ed.): MENDEL 2017, AISC 837, pp. 1–13, 2019.
https://doi.org/10.1007/978-3-319-97888-8_1

A
u

th
o

r 
P

ro
o

f



belief space. Cultural algorithm is usually an extension of conventional genetic algo-
rithm that has an added belief space. Ant colony optimization algorithm (ACO) [6] in
turn is a probabilistic technique for solving computational problems, which can be
reduced to finding good paths through graphs, ant colony also gather cultural
knowledge.

Hybrid algorithm [7, 8] refers to the combination of two or more algorithms. We
will use here the Genetic Algorithms/Ant colony optimization hybrid algorithm.

The pre-processing consists in filling sure number in different squares of the
Sudoku through several methods, we will use this pre-processing with every algorithm
that we have described before.

The objective of this study is to test if Genetic algorithms, Cultural algorithms and
Genetic algorithm/Ant colony optimization hybrid algorithm are efficient methods for
solving Sudoku puzzles; some Sudoku’s generate by our Genetic Algorithm and some
of them from a newspaper or website.

The document is organized as follows. In Sect. 1, we have included the objectives
of this study. In Sect. 2 we describe the Sudoku. In Sect. 3 we have defined the
different algorithms. In Sect. 4 we explain the result of the experiments and finally in
the Sect. 5 we say our conclusions.

2 Sudoku

Sudoku puzzles are related to Latin squares [9], which were developed by the 18th

century Swiss mathematician Leonhard Euler. Latin squares (Fig. 2) are square-grids of
size n � n where each of the character (numbers, letters, symbols…) from 1 through n
appears in every column and in every row precisely once (rank n Latin squares).

Magic squares [10] are square grids that are filled with (not necessarily different)
numbers such that the numbers in each row and column add to up to the same sum.

In the late 19th century a Paris-based daily newspaper, Le Siècle (discontinued)
published a partially completed 9 � 9 magic square that had 3 � 3 sub grids. The
object of the game was to fill out the magic square such that the numbers in the grids
also sum to the same number as in the rows and columns.

7 1 9 8 
3 6 

4 9 7 5 

1 9 
9 2 6 3 

8 2 

8 5 7 6 
6 7 

7 4 3 5 

3 7 1 5 9 4 8 6 2 
5 2 8 3 7 6 1 9 4 

4 9 6 2 8 1 7 3 5 

6 1 4 9 2 3 5 8 7 
9 8 2 7 1 5 6 4 3 
7 5 3 4 6 8 9 2 1 

8 4 5 1 3 9 2 7 6 
2 3 9 6 5 7 4 1 8 

1 6 7 8 4 2 3 5 9 

Fig. 1. Sudoku and its solution
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The name of the game is of Japanese origin, the word “SuDoku” is abbreviation of
“Suuji wa dokushin ni kagiru” that it means, “The digits must remain single”. It was
not until 1986 when the Japanese company Nikoli, Inc. started to publish a version of
the Sudoku at the suggestion of its president, Mr. Maki Kaji. He gave the game its now
famous name. Almost two decades passed before (near the end of 2004) The Times
newspaper in London started to publish Sudoku as its daily puzzle due to the effort of
Wayne Gould, who spend many years to develop a computer program that generates
Sudoku puzzles. By 2005, it became an international hit.

A complete Sudoku solution may be arrived at in more than one ways, as we can
start from any of the given clues that are distributed over the sub grids of a given
Sudoku (to be solved). There is no known technique that we surveyed to determine
how many different starting squares (the first square that we can fill) there are. Removal
of a single number given may generate another Sudoku different for which other
solutions may exist and the solution is no longer unique.

The puzzles require logic, sometimes intricate, to solve but no formal mathematics is
required. However, the puzzles lead naturally to certain mathematical questions. For
example: Which puzzles have solutions and which do not? If a puzzle has a solution, is it
unique? A couple of years ago it was proven that there has to be minimum of 17 givens in
order to Sudoku have unique solution [11]. With the experiments of our Sudoku puzzle
generator (yet unpublished paper), we have observed that there are several Sudoku’s that
do have two or more valid solutions even if the number of givens is 17 or more.

There could be Sudoku’s with multiple solutions, but those that are published in
newspapers usually have only one unique solution. Therefore, we can say that, a subset
of Sudoku puzzles may have one and only one valid solution, but in general, a Sudoku
might have two or more solutions as well. Sudoku is a combinatorial optimization
problem [12], where each row, column, and 3 � 3 sub squares of the problem must
have each integer from 1 to 9 once and only once. This means that the sum of the
numbers in each row and each column of the solution are equal to 45 and the multiply
of the numbers in each row and each column of the solution are equal to 9! (362880).

2.1 Pre-processing the Sudoku

To solve the Sudoku, we can pre-process it before applying some algorithm. The pre-
processing consists in filling sure number in different squares of the Sudoku through
several methods: full house, naked singles, hidden singles, lone rangers and naked pairs.

A B D C 

B C A D 

C D B A 

D A C B 

2 7 6 = 15

9 5 1 = 15

4 3 8 = 15

= = = 

15 15 15 15 15

Fig. 2. Examples of Latin square (left) and magic square (right)
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We used only these methods [13] because the many of the rest of methods take
more time than to solve the Sudoku, because they perform several checks.

After applying the pre-processing, we use the different evolutionary algorithms to
solve rest of the Sudoku, if it was not already solved.

The “Full house” method [3] consists in filling an empty cell where its value can be
deduced when its row, column or 3 � 3 block has eight numbers, so we can get the last
remaining number. In this example (Fig. 3), we check the central row and we know
that the only number missing from this row is {1}, so we can fill this square (marked
dark) with this number.

The “Naked singles” method [3] consist in filling an empty cell with the number not
present in the set union of those in the same row, column and 3 � 3 sub block. This
technique is applicable only when there is only one missing number. In this example
(Fig. 3), we check the central square (dark square) and we know that the set from its
row is {1, 3, 4, 8}, the set from its column is {1, 2, 6, 7, 8, 9} and the set from its 3 � 3
sub block is {2, 3, 6, 8}. We get a unique set joining all the sets and the result is {1, 2,
3, 4, 6, 7, 8, 9}. The only number missing from the set is {5}, so we can fill this square
with this number.

The “Hidden singles” method [14] consists in filling an empty square if there is a
value that can be placed in only one cell of a row, column, or 3 � 3 sub block. Then,
this cell has to hold that value. In this example (Fig. 3), we check the fourth, and sixth
rows and we see that the number {6} is in the fourth and sixth row, but it is not in the
fifth one. This number must appear in the fifth row and in the left central 3 � 3 sub
block. Since number {6} is already in first and second column, there is only one empty
cell there where it fits (dark square), so it must hold this value, so we can fill this square
with the number {6}.

The “Lone rangers” method [14] consists in filling an empty square that seems to
have more than one possible candidate. Whereas a careful observation across the
possible candidate lists of row, column or 3 � 3 sub block neighbours of that empty
square reveals the exact candidate, because one of the values appear just in one cell of
the row, column or 3 � 3 sub block. In this example (Fig. 4), we check the third row
and we see that the number {6} only appears in one square of this row (with circle) like
a candidate, so we can fill this square with this number.

The “Naked pairs” method [14] consists in removing candidates from the candidate
list of squares. If two cells in a row, column or 3 � 3 sub block have the same pair of

2 7
8 9
3 6 8
8 6 4 9

6 9 2 7 8 5 3 4
1 3 2 5
9 1 2

4 9
4 8

5 3 7
6 1 9 5

9 8 6
8 6 3
4 8 3 1
7 2 6

6 2 8
4 1 9 5

8 7 9

5 3 7
6 1 9 5

9 8 6
8 6 3
4 8 5 3 1
7 2 6

6 2 8
4 1 9 5

8 7 9

Fig. 3. Examples of full house (left), naked singles (middle) and hidden singles (right)
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candidates then they cannot be housed in any other cell of the same row, column, or
3 � 3 sub block, and therefore they can be removed from their candidate lists. In this
example (Fig. 4), we check the central square and we see that two squares have the
same candidates (marked with circle) that they are {8, 9}, then we can delete these
numbers from the candidate lists of the other cells in the same sub block. Subsequently,
another technique might possibly be applied to deduce the value of a cell. For instance,
by the “Naked single”, so we get the number {5} is the number of the first square of
this 3 � 3 square because it is the only candidate number.

3 The Algorithms Used

We used different algorithms for solving the Sudoku’s. The first one is a Genetic
Algorithm [3], using crossover and mutation operators. The second one is a method that
pre-process the Sudoku before applying the Genetic Algorithm, filling the squares that
have only one possible value. The third one is a Cultural Algorithm [5]. The fourth one
is a method that pre-process the Sudoku before applying Cultural Algorithm. The fifth
one is a hybrid algorithm of Genetic Algorithm with the ant colony optimization [6]. The
sixth one is a method that pre-process the Sudoku before applying the hybrid algorithm.

The algorithms used are the same as in papers [15, 16] where we have explained
them with details. The algorithms used in [16] were used as a base and pre-processing
methods were programmed to the source codes used in that study. Also all GA, CA and
GA/ACO results without pre-processing are obtained with algorithms presented in [16].

3.1 Genetic Algorithms

Genetic Algorithms (GAs) [3] are computer based optimization methods that use the
Darwinian evolution [4] of nature as a model and inspiration. It can be defined also like
a search heuristic that mimics the process of natural selection.

This heuristic (also sometimes called a metaheuristic) is routinely used to generate
useful solutions to optimization and search problems. Genetic algorithms belong to the
larger class of evolutionary algorithms (EA), which generate solutions to optimization

Fig. 4. Examples of lone rangers (left), and naked pairs (right)
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problems using techniques inspired by natural evolution, such as inheritance, mutation,
selection and crossover.

When solving Sudoku’s we need to use a GA that is designated for combinatorial
optimization problems. That means that it will not use mutations or crossovers that
could generate illegal situations, like: rows, columns, and sub squares would contain
some integer from {1, …, 9} more than once, or some integers would not be present at
all. In addition, the genetic operators are not allowed to move the static numbers that
are given in the beginning of the problem (givens), so we need to represent the Sudoku
puzzles in GA program so that the givens will be static and cannot be moved or
changed with genetic operations.

The crossover operation is applied so that it exchanges whole sub blocks of nine
numbers between individuals, thus, the crossover point cannot be inside a building
block. The mutations contrarily are applied only inside a sub block.

We use the technique of Swap mutation. In swap mutation, the values in two
positions are exchanged. In this example (Fig. 5), we change the numbers 2 and 5.
Each time mutation is applied inside the sub block (3 � 3 blocks), the array of givens
is referred. If it is illegal to change that position, we randomly reselect the positions and
we recheck until legal positions are found. We are using the mutation strategy of swap
mutation with an overall mutation probability of 0.12. In swap mutation, the values in
two positions are exchanged.

3.2 Cultural Algorithms

Cultural algorithms (CAs) were introduced by Reynolds [5], they are a branch of
evolutionary computation methods, where algorithms includes knowledge component,
belief space. A CA is usually an extension of conventional GA that has added belief
space.

The belief space of a cultural algorithm is divided into distinct categories. These
categories represent different domains of knowledge collected from the search space.
Belief space could collect, e.g. domain specific knowledge, situational knowledge,
temporal knowledge, or spatial knowledge. Belief space acts as an extra reproduction
component that somehow affects to the generation of new individuals.

If we compare our CA with GA, the main difference is that we added a belief space
model, which in this case is simple: it is a 9 � 9 � 9 cube, where the first two
dimensions correspond to the positions of a Sudoku puzzle, and the third dimension
represents the nine possible digits for each location.

After each generation, the belief space is updated if:

(1) The fitness value of best individual is 2 (two numbers in wrong positions).
(2) The best individual is not identical with the individual that updated the belief

space the previous time.

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 

Fig. 5. Swap mutation

6 P. R. Amil and T. Mantere

A
u

th
o

r 
P

ro
o

f



The belief space is updated so that the value of the digit that appears in the best
Sudoku solution is incremented by one in the belief space. This model also means that
the belief space is updated only with near-optimal solutions.

The belief space collects information from the near-optimal solutions (only two
numbers in “wrong” positions), and this information is used only in the population re-
initialization process. When the population is reinitialized, positions that have only one
non-zero digit value in the belief space are considered as givens. These include the
actual givens of the problem, but also so called hidden givens that the belief space have
learned, that is, those positions that always contain the same digit in the near-optimal
solutions. This also connects the reinitialized population to the previous generations,
since the new initial population is not formed freely.

3.3 GA/ACO Hybrid Algorithm

In computer science and operations research, the Ant Colony Optimization algorithm
(ACO) is a probabilistic technique for solving computational problems, which can be
reduced to finding good paths through graphs, initially proposed by Marco Dorigo
1992 in his PhD thesis [6]. The original idea was to search for an optimal path in a
graph based on the behaviour of ants seeking a path between their colony and a source
of food. The method has since diversified to solve a wider class of numerical problems,
and simulating on various aspects of the behaviour of ants. The basic idea is that ants
leave trail of pheromone, which is stronger, if the path is good.

In our Genetic Algorithm/Ant colony optimization hybrid algorithm, the GA part
acts as a heuristic global searcher that generates new paths and most of the new
individuals, the GA also finds the initial population for this hybrid. The ACO part acts
like a greedy local searcher that tries quickly to converge into the strongest path. In
addition, ACO collects cultural information stored in pheromone trails and it inserts
new individuals generated by ACO, that is, by weighted random generator, where
weights are proportionate to the pheromone strength. The ACO parts act in this hybrid
algorithm somewhat similarly as a belief space in CAs.

In our algorithm, we generate the initial generation randomly. After each genera-
tion, the old pheromone paths are weakened 10%. Then the best individuals update the
pheromone trails by adding strength value.

3.4 Fitness Function

To design a fitness function that would aid a GAs, CAs or hybrid algorithms search is
often difficult in combinatorial problems. In this case, we decided to use to a simple
fitness function that penalizes different constraint violations differently.

The condition that every 3 � 3 sub block contains a number from 1 to 9 is
guaranteed intrinsically, because of the chosen solution encoding. Penalty functions are
used to evaluate the other conditions. Each row and column of the Sudoku solution
must contain each number {1, …, 9} once and only once. This can be transformed to a
set of inequality constraints.
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Fitness function is combined of three different rules (Eqs. 1–3). The first part
(1) requires that all digits {1,…, 9} must be present in each row and column, otherwise
penalty Px is added to the fitness value.

Px ¼
X8

i¼ 1

X8

j¼ 1

X9

ii¼ i þ 1

X9

jj¼ j þ 1

xi;j � xii;j
� � þ xi;j � xi;j

� �� � ð1Þ

ð2Þ

Pg ¼
X9

i¼ 1

X9

j¼ 1

xij � gij
� � ð3Þ

Equation (1) count the missing digits in each row (xi) and column (xj). In the
optimal situation, all digits appear in all the row and column sets and value of this
fitness function part becomes zero. The second part of the fitness function (2) is for
aging the best individual, it increments its fitness value by one on each generation,
when it remains the best. This is easy to perform since our sorting algorithm only sorts
indexes, if the same individual remains best, also, the index to it remains same.

The third component (3) of the fitness function requires that the same digit (xij) as
some given (gij) must not appear in the same row or column as that given. Otherwise,
penalty Pg is added.

Note, due to lack of space we do not explain all the details about the old versions of
our GA, CA and GA/ACO Sudoku solvers in this paper. Instead, we are trying to
summarize the main details needed in order to follow this paper separately from our
previous papers. Those who are interested to learn more can are encouraged to read
[15, 16]. Our genetic encoding is also explained in our Sudoku webpage [17]. Algo-
rithms in this paper are identical to those in [16, 17] with the exception of added pre-
processing part.

4 Experiments

We test five Sudoku puzzles taken from the newspaper Helsingin Sanomat marked with
their difficulty rating 1–5 stars, where 1 star is the easiest. We test four Sudoku’s taken
from newspaper Aamulehti, they are marked with difficulty ratings: Easy, Challenging,
Difficult, and Super difficult and we also tested three Sudoku’s made with Genetic
Algorithms from the Sudoku webpage [17] marked with difficulty ratings: Easy (GA-
E), Medium (GA-M), Hard (GA-H).

We tried to solve each of the ten Sudoku puzzles 100 times. The stopping condition
was the optimal solution found, which was always found with maximum seven hun-
dred thousand trials (fitness function calls) for GA and CA, and four million trials for
GA/ACO hybrid algorithm.
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To compare which method is better, we will use the generations required to find the
solution and the time spent in seconds. For this reason, we will get from each execution
of the code the minimum, maximum and average of generations and the minimum,
maximum and average of the time spent.

We done every test with a laptop with Windows 8 and the following hardware: Intel
core i5-4200U 1.6 GHz with turbo boost up to 2.6 GHz, 4 GB DDR3 of Memory ram
and 750 GB of capacity of Hard disk.

4.1 Genetic Algorithm

The results of the GA are given in Table 1 where the columns (left to right) stand for:
difficulty rating, number of givens, minimum, maximum and average of the generations
and minimum, maximum and average of the time required (in seconds) to solution.

Table 1 shows that the difficulty ratings of Sudoku’s correlate with their GAs
hardness. Therefore, the more difficult Sudoku’s for a human solver seem to be also the
more difficult for the GAs. The Easy from Aamulehti was the most easiest to solve in
general. In addition, the average of the generations and the time needed to find the
solution increased somewhat monotonically with the rating. The puzzles Difficult and
Super Difficult of Aamulehti were much more difficult than any of the puzzles in
Helsingin sanomat.

The results with pre-processed GA, also are given in Table 1, are obtained by first
pre-processing 5 times (with 5 times the most of the Sudoku’s are solved or it is not
possible to find any more sure number) and later we use the Genetic Algorithms to
solve the Sudoku’s.

With respect to the results obtained without pre-processing, we can see that if we
use the pre-processing of the Sudoku, we reduce drastically the generations needed to
solve all Sudoku’s. We reduce drastically the time spent also because the average of the
time of every test is less than 1 s. For the Sudoku’s that we put inside of the Easy and
Medium group, only the pre-processing was enough to solve the Sudoku, so their
generations needed and the time spent is very similar in all of them.

Table 1. Results of GA and GA with pre-processing.

Difficulty Genetic algorithm GA with pre-processing
rating Givens Min. geneMax. geneAvg. geneMin. timeMax. timeAvg. TimeMin. geneMax. geneAvg. geneMin. timeMax. timeAvg. Time
1 star 33 14 95 23 0.036 0.246 0.062 1 1 1 0.022 0.045 0.035
2stars 30 24 2217 355 0.059 5.326 0.836 1 1 1 0.023 0.046 0.035
3 stars 28 36 1838 405 0.084 4.162 0.927 1 1 1 0.023 0.046 0.035
4 stars 28 39 6426 1139 0.088 15.016 2.701 8 363 92 0.025 1.099 0.289
5 stars 30 59 14805 2837 0.165 35.248 6.831 1 234 20 0.023 1.955 0.166
Easy 36 9 33 19 0.026 0.088 0.052 1 1 1 0.022 0.046 0.035
Challengi 25 38 3595 628 0.082 8.903 1.425 1 1 1 0.023 0.046 0.035
Difficult 23 88 44168 6093 0.197 102.103 13.890 6 379 55 0.059 3.629 0.538
Super diff 22 115 30977 7814 0.250 66.997 17.672 9 213 62 0.054 1.482 0.395
GA-E 32 15 291 74 0.038 0.700 0.187 1 1 1 0.022 0.045 0.035
GA-M 29 35 4436 893 0.083 10.360 2.110 1 1 1 0.023 0.046 0.035
GA-H 27 50 27143 4989 0.118 63.442 12.193 4 654 149 0.026 4.241 0.935
Avg. Gen+sum time 43.50 11335.33 2105.75 1.226 312.591 58.886 2.92 154.17 32.08 0.345 12.726 2.568
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In the other hand, when we solve Sudoku’s that we consider inside of the level
Hard, the pre-processing basically changes their difficulty to Easy level, so when we
solve those Sudoku’s with the Genetic Algorithms, we do not need many generations.

With respect to the Sudoku’s with 4 stars, after the pre-processing, it is still rela-
tively difficult to solve, but easier than the 5 stars, difficult and super difficult Sudoku’s.

4.2 Cultural Algorithm

The results given in Table 2 are using Cultural Algorithms. The columns used are the
same than the Table 1. The results obtain with this algorithm are very similar to the
results obtain with the Genetic Algorithms; in the most of the Easy and Medium
Sudoku’s this algorithm is a little bit better than the GAs one, but in the most of the
hard Sudoku’s the GA is a little bit better that CA. Both algorithms have similar
average of the generation, average of the time spent, minimum generations and min-
imum time but the CA has better maximum generations and maximum time spent than
the GA.

The results with CA and pre-processing are also given in Table 2. They are
obtained using first the pre-processing 5 times and after that CA to solve rest of the
Sudoku. The columns used are the same than the Table 1. The results obtained with
this algorithm are a little bit better than the results with the pre-processed GA, but there
is not a significant difference.

4.3 Hybrid Algorithm of GA and Ant Colony Optimization

The results showed in Table 3 are got by using a hybrid algorithm of Genetic algo-
rithms and Ant colony optimization algorithm. The columns are same as in Table 1.

The results show that the average of the generations needed is less than with the GA
or CA with every Sudoku tried. On the other hand, the average time spent is longer
than with GA or CA, but it is not a great difference. GA/ACO hybrid uses more time

Table 2. Results of CA and CA with pre-processing.

Difficulty Cultural algorithm CA with pre-processing
rating Givens Min. geneMax. geneAvg. geneMin. timeMax. timeAvg. TimeMin. geneMax. geneAvg. geneMin. timeMax. timeAvg. Time
1 star 33 10 68 25 0.027 0.173 0.065 1 1 1 0.031 0.042 0.035
2stars 30 24 1240 362 0.056 2.878 0.841 1 1 1 0.032 0.038 0.035
3 stars 28 31 2411 445 0.071 5.390 1.005 1 1 1 0.032 0.039 0.035
4 stars 28 34 5810 908 0.081 13.333 2.132 9 362 87 0.027 1.06 0.259
5 stars 30 31 9129 2301 0.076 21.542 5.422 1 208 18 0.008 1.709 0.142
Easy 36 10 30 18 0.028 0.076 0.049 1 1 1 0.031 0.039 0.035
Challengi 25 40 10266 792 0.087 22.629 1.762 1 1 1 0.032 0.038 0.035
Difficult 23 80 26094 5829 0.170 56.193 12.651 6 230 51 0.039 2.124 0.486
Super diff 22 116 34207 8603 0.250 72.975 18.421 7 253 59 0.065 2.387 0.552
GA-E 32 19 329 84 0.047 0.781 0.204 1 1 1 0.031 0.039 0.035
GA-M 29 28 4059 779 0.064 9.394 1.815 1 1 1 0.032 0.04 0.035
GA-H 27 39 24083 5331 0.090 55.619 12.272 8 796 163 0.048 4.886 1.024
Avg. Gen+sum time 38.50 9810.50 2123.08 1.047 260.983 56.639 3.17 154.67 32.08 0.408 12.441 2.708
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per one trial than GA or CA. This might still be considered the best method without
pre-processing.

The results showed in Table 3 (right) are using first the pre-processing 5 times and
after that, we use a hybrid algorithm of Genetic Algorithms and Ant colony opti-
mization algorithm. The columns used are the same as the Table 1.

Now, with pre-processing, we also obtain smaller average of the generations than
with pre-processed GA or CA, but again we obtain longer average of the time spent
than those algorithms for the Sudoku’s that we consider as Hard level. For the rest of
the Sudoku’s (Easy and Medium level), we need the same number of generations but
more time.

In the end of each Tables 1–3, we have calculated the average of the generations
and the sum of the time spent to solve the different Sudoku’s. According to these
results, we can say that the best algorithm (without using the pre-processing) is
GA/ACO hybrid algorithm because this algorithm need fewer generations to solve
every level of difficulty but this algorithm has a problem. This problem is that it needs
more time to solve the Sudoku but it is not a great difference.

The next best algorithm is GA because needs less generations to solve every level
of difficulty and it needs less time also in every level of difficulty except in the Hard
level, although the difference between GA and CA is not as high as the difference
between GA/ACO and GA. Therefore, the worst algorithm studied was CA.

About the pre-processing, there are not differences between solving Sudoku’s with
GA, CA or GA/ACO in Easy or Medium level. For Hard level, GA/ACO is the best
algorithm with slightly more time than GA but less time spent than CA. GA uses the
same generations as CA but it needs slightly less time (thanks to no belief space
updates) to solve the Sudoku’s. So, GA is a little bit better than CA when we use pre-
processing.

Table 3. Results of GA/ACO without and with pre-processing.

Difficulty Genetic algorithm/Ant colony hybrid GA/ACO hybrid with pre-processing
rating Givens Min. geneMax. geneAvg. geneMin. timeMax. timeAvg. TimeMin. geneMax. geneAvg. geneMin. timeMax. timeAvg. Time
1 star 33 10 50 22 0.043 0.309 0.082 1 1 1 0.04 0.061 0.044
2stars 30 28 2199 199 0.098 7.531 0.794 1 1 1 0.037 0.051 0.043
3 stars 28 37 3280 347 0.135 12.458 1.235 1 1 1 0.038 0.061 0.046
4 stars 28 38 6438 905 0.132 22.925 3.391 6 229 71 0.027 1.431 0.399
5 stars 30 42 6571 1515 0.141 22.636 5.345 1 11 4 0.009 0.103 0.036
Easy 36 9 31 17 0.032 0.165 0.059 1 1 1 0.038 0.05 0.043
Challengi 25 41 3720 581 0.153 11.617 1.939 1 1 1 0.037 0.046 0.042
Difficult 23 77 17673 5104 0.269 67.874 13.040 6 221 35 0.043 3.877 0.534
Super diff 22 123 24199 6867 0.394 85.914 15.529 10 375 52 0.056 3.905 0.564
GA-E 32 15 338 65 0.055 1.353 0.343 1 1 1 0.055 0.13 0.082
GA-M 29 34 3865 606 0.128 17.392 2.240 1 1 1 0.05 0.108 0.071
GA-H 27 51 15073 4136 0.172 69.384 16.755 7 554 91 0.05 4.88 0.887
Avg. Gen+sum time 42.08 6953.08 1697.00 1.752 319.558 60.752 3.08 116.42 21.67 0.480 14.703 2.791
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5 Conclusions

We studied if Sudoku puzzles can be solved with a combinatorial Genetic Algorithms,
Cultural Algorithms and a hybrid algorithm with Genetic Algorithms and Ant Colony
optimization. The results show that all these methods can solve Sudoku puzzles, but
with slightly different effectivity. We find out that the hybrid algorithm GA/ACO is the
most efficient with every Sudoku’s, even more efficient than GAs or CAs. In this study
we for the first time applied pre-processing of Sudoku’s by first applying the most well
known Sudoku solving methods. When we apply the pre-processing we obtain really
good results and get a really efficient algorithm for solving Sudoku’s, where first the
easy parts of Sudoku is solved and then heuristic evolutionary algorithm is applied to
solve rest instead of brute force used e.g. in SudokuExplainer.

The other goal was to study if difficulty ratings given for Sudoku puzzles (human
difficulty) are consistent with their difficulty for our algorithms. The answer to that
question seems to be positive: those Sudoku’s that have a higher difficulty rating
proved more difficult also for our algorithms. This also means that our algorithms can
be used for testing the difficulty of a new Sudoku puzzle: Easy, Medium and Hard
depending of the algorithm we used for testing and the generations needed for solving
Sudoku.

We are using the same algorithms as here with Sudoku for other combinatorial
optimization purposes, e.g. evenly loading the vehicle etc. technical balancing prob-
lems. We found Sudoku solving as a good benchmark problem for creating the better
and more efficient algorithm. With real world problems, we have found that evaluating
and comparing our algorithms and their evolution versions sometimes more uncertain
than with exactly defined combinatorial balancing problem as Sudoku.
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