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We consider so-called regular invertible Gaussian Volterra processes and derive a formula

for their prediction laws. Examples of such processes include the fractional Brownian

motions and the mixed fractional Brownian motions. As an application, we consider
conditional-mean hedging under transaction costs in Black–Scholes type pricing models

where the Brownian motion is replaced with a more general regular invertible Gaussian

Volterra process.
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1. Introduction

We consider discrete imperfect hedging under proportional transaction costs in

Black–Scholes type pricing models where the asset price is driven by a relatively

general Gaussian process; a so-called regular invertible Gaussian Volterra process.

These are continuous Gaussian processes that are non-anticipative linear transfor-

mations of continuous Gaussian martingales.

For European vanilla type options we construct the so-called conditional-mean

hedge. This means that at each trading time the value of the conditional mean of

the discrete hedging strategy coincides with the frictionless price. By frictionless

we mean the continuous-trading hedging price without transaction costs. The key

ingredient in constructing the conditional mean hedging strategy is a representation

for the regular conditional laws of regular invertible Gaussian Volterra processes

∗Typeset names in 8 pt roman, uppercase. Use the footnote to indicate the present or permanent

address of the author.
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which we provide in Section 4. Let us note that in our models there may be arbitrage

strategies with continuous trading without transaction costs, but not with discrete

trading strategies, even in the absence of trading costs.

For the classical Black–Scholes model driven by the Brownian motion, the study

of hedging under transaction costs goes back toLeland (1985). See also Denis & Ka-

banov (2010) and Kabanov & Safarian (2009) for a mathematically rigorous treat-

ment. For the fractional Black–Scholes model driven by the long-range dependent

fractional Brownian motion, the study of hedging under transaction costs was stud-

ied in Azmoodeh Azmoodeh (2013). In the series of articles Shokrollahi et al. (2016),

Wang (2010a,b), Wang et al. (2010a,b) the discrete hedging in the fractional Black–

Scholes model was studied by using the economically dubious Wick–Itô–Skorohod

interpretation of the self-financing condition. Actually, with the economically solid

forward-type pathwise interpretation of the self-financing condition, these hedging

strategies are valid, not for the geometric fractional Brownian motion, but for a

geometric Gaussian process where the driving noise is a Gaussian martingale with

the same variance function as the corresponding fractional Brownian motion would

have, see Gapeev et al. (2011). Our approach here builds on the works Sottinen

& Viitasaari (2017) and Shokrollahi & Sottinen (2017). The novelty of this note is

twofold: First, we extend the results to a more general class of Gaussian processes

than just the long-range dependent fractional Brownian motions, thus allowing more

flexible models that can allow different features such as non-stationary increments,

short range dependence, or other stylised facts one wants to include to the model.

Second, we emphasize the models where there exists a non-trivial quadratic varia-

tion. This makes the formulas and the analysis very different from the long-range

dependent fractional Brownian case. Indeed, in the case of the fractional Brown-

ian motion with H > 1
2 , the quadratic variation vanishes and consequently, the

formulas simplifies significantly. For example, in this case the hedging strategy φt
depends only on the spot, i.e. φt = φ(St), while in our case it depends also on time,

i.e. φt = φ(t, St).

The rest of the paper is organized as follows: In Section 2 we introduce our pricing

model with a regular invertible Gaussian Volterra process as the driving noise, and

develop a transfer principle for the noise. In Section 3 we investigate arbitrage and

hedging in our pricing models. In Section 4 we provide prediction formulas for the

driving noise and for Markovian functionals of the asset price. Finally, in Section 5

we provide formulas for conditional-mean hedging under transaction costs.

2. Pricing Model with Invertible Gaussian Volterra Noise

Let T > 0 be a fixed time of maturity of the contingent claim under consideration.

We are interested in imperfect hedging in a geometric Gaussian model where the

discounted risky asset follows the dynamics

dSt
St

= dµ(t) + dXt, t ∈ [0, T ], (2.1)
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where µ : [0, T ] → R is a known excess return of the asset and X is a driving

Gaussian noise, and the stochastic differential equation is understood in a pathwise

sense. We assume that µ is continuous with bounded variation. We note that here we

only assume the dynamics (2.1) formally. However, it turns out that the solution S

exists and is unique (cf. Section 3). For the noise X we assume that it is continuous

and centered with X0 = 0 and covariance function

R(t, s) = E [XtXs] , s, t ∈ [0, T ]. (2.2)

To analyze the pricing model (2.1), we make the following rather technical Defini-

tion 2.1 that ensures the invertible Volterra representation and continuous quadratic

variation for the noise process X. We note that Definition 2.1 is not very restrictive:

many interesting Gaussian models satisfy it (see Example 2.1 below).

Recall that a kernel K(t, u) is called Volterra kernel if K(t, u) = 0 for all u > t.

Definition 2.1 (Regular Invertible Gaussian Volterra Process). A centered

Gaussian process over an interval [0, T ] with covariance function R is a regular

invertible Gaussian Volterra process if

(1) There exists a continuous increasing function m : [0, T ] → R+ and a Volterra

kernel K ∈ L2([0, T ]2,dm × dm) such that: K is non-decreasing in the first

variable, for each s ∈ [0, T ] the mapping t 7→ K(t, s) is continuously differen-

tiable on (s, T ), i.e. the derivative exists and is continuous, and the mapping

t 7→ K(t, t) is continuously differentiable on [0, T ], and

R(t, s) =

∫ t∧s

0

K(t, u)K(s, u) dm(u). (2.3)

(2) For each t ∈ [0, T ], the equation

K∗[f ](s) = 1[0,t)(s) (2.4)

has a (dm-almost everywhere) unique solution, where

K∗[f ](s) = f(s)K(T, s) +

∫ T

s

[f(t)− f(s)]
∂K

∂t
(t, s) dt. (2.5)

Example 2.1 (Examples and Counterexamples).

(1) Obviously, any continuous Gaussian martingale M is a regular invertible Gaus-

sian Volterra process. Indeed, since M is continuous, so is the bracket 〈M〉.
Consequently, we can take m = 〈M〉 and K(t, s) = 1t>s.

(2) Fractional Brownian motions with Hurst index H ∈ [1/2, 1) are regular invert-

ible Gaussian Volterra processes. Indeed, this follows from the already well-

known Volterra representation with respect to the standard Brownian motion;

see e.g. Mishura (2008), Section 1.8, for details.

(3) Mixed fractional Brownian motions with Hurst index H ∈ [1/2, 1) are regular

invertible Gaussian Volterra processes. See Cai et al. (2016) for details.
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(4) Fractional or mixed fractional Brownian motions with Hurst index H ∈ (0, 1/2)

are not regular invertible Gaussian Volterra processes, since they have infinite

quadratic variation, cf. Lemma 3.1 below.

(5) The Gaussian slope Xt = tξ, where ξ is a standard Gaussian random variable

is an invertible Gaussian Volterra process in the sense that it is generated non-

anticipatively from a Gaussian martingale. It is not regular, however, since the

generating martingale cannot be continuous due to the jump in the filtration

of X at zero, cf. Theorem 2.1 below.

We note that we have the following isometry for all step-functions f and g:

E

[∫ T

0

f(t)dXt

∫ T

0

g(t)dXt

]
=

∫ T

0

K∗[f ](t)K∗[g](t) dm(t). (2.6)

By using this isometry, we can extend the Wiener-integral with respect to X to

the closure of step-functions under this isometry; we refer to Sottinen & Viitasaari

(2016) for details.

Write

K−1(t, s) = (K∗)−1
[
1[0,t)

]
(s). (2.7)

Theorem 2.1 (Invertible Volterra Representation). Let X be a continuous

regular invertible Gaussian Volterra process. Then the process

Mt =

∫ t

0

K−1(t, s) dXs, t ∈ [0, T ], (2.8)

is a continuous Gaussian martingale with bracket m, and X can be recovered from

it by

Xt =

∫ t

0

K(t, s) dMs, t ∈ [0, T ]. (2.9)

The martingale M in Theorem 2.1 is called a fundamental martingale.

Proof. By using the definition of K−1 together with the isometry (2.6) we get

E [MtMs] = E

[∫ T

0

(K∗)−1
[
1[0,t)

]
(u)dXu

∫ T

0

(K∗)−1
[
1[0,s)

]
(u)dXu

]

=

∫ T

0

K∗
[
(K∗)−1

[
1[0,t)

]]
(u)K∗

[
(K∗)−1

[
1[0,s)

]]
(u) dm(u)

=

∫ T

0

1[0,t)(u)1[0,s)(u) dm(u)

= m(t ∧ s),

which implies that M is a martingale. It remains to prove the continuity of M .

However, this follows from the continuity of m. Indeed, by defining M̃t = Wm(t),

where W is a Brownian motion, we observe that M̃ is continuous and has the same

finite dimensional distributions as M . This implies that M is continuous.
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Remark 2.1 (Continuity). We remark that we assumed the continuity of X

a priori. In general, the process X is always L2-continuous. Indeed, this follows

directly from the Itô isometry. However, this does not necessarily imply almost

surely continuous sample paths, as the modulus of continuity in L2 depends on

the function m which in general may behave badly. On the other hand, if m is

absolutely continuous with respect to the Lebesgue measure, then X is even Hölder

continuous.

3. Quadratic Variation and Robust Hedging

The form of the solution of risky-asset dynamics (2.1) depend on the quadratic

variation of the noise process X. Recall that the (pathwise) quadratic variation of

a process X is defined as

q2(t) = 〈X〉t = lim
n→∞

∑
tnk≤t

(
Xtnk
−Xtnk−1

)2

, (3.1)

where {tn0 = 0 < tn1 < · · · < tnn = T} is a sequence of partitions of [0, T ] such that

maxk |tnk − tnk−1| → 0. We remark that in general the existence or the value of the

quadratic variation may depend on the chosen sequence of partitions. In our case

however, it does not.

Lemma 3.1 (Quadratic Variation). For a regular invertible Gaussian Volterra

process the quadratic variation always exists along arbitrary sequence of partitions.

Furthermore, it is deterministic, independent of the chosen sequence of partitions,

and given by

q2(t) =

∫ t

0

K(s, s)2 dm(s). (3.2)

Proof. By (Viitasaari 2015 Theorem 3.1), the convergence of quadratic variation

of a Gaussian process X holds also in Lp for any p ≥ 1. Suppose first that the

quadratic variation is deterministic. Then, by using representation (2.9) we obtain

that

E
[
(Xt −Xt−∆t)

2
]

=

∫ T

0

(K(t, u)−K(t−∆t, u))
2

dm(u)

=

∫ t

t−∆t

K(t, u)2 dm(u) +

∫ t−∆t

0

(K(t, u)−K(t−∆t, u))
2

dm(u),

where we have used the fact that K is a Volterra kernel. As here ∆t is arbitrary,

we can consider arbitrary sequence of partitions. As a result, the claim follows for

deterministic quadratic variations from this by using Taylor’s approximation for the

kernel in the latter integral.
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It remains to prove that the quadratic variation is deterministic along arbitrary

sequence of partitions. By (Viitasaari 2015 Theorem 3.1), it suffices to prove that

max
1≤j≤n

∑
tnk≤t

E
[(
Xtnk
−Xtnk−1

)(
Xtnj
−Xtnj−1

)]
→ 0. (3.3)

Let k > j. Representation (2.9) together with the Itô isometry and the fact that K

is Volterra kernel yields

E
[(
Xtnk
−Xtnk−1

)(
Xtnj
−Xtnj−1

)]
=

∫ tnj

tnj−1

(
K(tnk , u)−K(tnk−1, u)

)
K(tnj , u) dm(u)

+

∫ tnj−1

0

(
K(tnk , u)−K(tnk−1, u)

) (
K(tnj , u)−K(tnj−1, u)

)
dm(u).

For the first term we use the fact that t 7→ K(t, u) is increasing together with the

bound K(tnj , u) ≤ K(T, u). Hence we observe that summing with respect to either

of the variables and letting maxk |tnk − tnk−1| → 0 yields convergence towards zero.

For example, we have∑
tnj ≤t

∫ tnj

tnj−1

(
K(tnk , u)−K(tnk−1, u)

)
K(tnj , u) dm(u)

≤
∑
tnj ≤T

∫ tnj

tnj−1

(
K(tnk , u)−K(tnk−1, u)

)
K(T, u) dm(u)

=

∫ T

0

(
K(tnk , u)−K(tnk−1, u)

)
K(T, u) dm(u)→ 0.

For the second term, it suffices to observe∫ tnj−1

0

(
K(tnk , u)−K(tnk−1, u)

) (
K(tnj , u)−K(tnj−1, u)

)
dm(u)

≤
∫ T

0

(
K(tnk , u)−K(tnk−1, u)

) (
K(tnj , u)−K(tnj−1, u)

)
dm(u).

Hence summing with respect to either of the variables and letting maxk |tnk−tnk−1| →
0 we get (3.3).

By Lemma 3.1 and Föllmer (1981), the solution to the stochastic differential

equation (2.1) defining the discounted risky asset price is given by

St = S0 exp

{
µ(t)− 1

2
q2(t) +Xt

}
(3.4)

and the quadratic variation of S is

〈S〉t =

∫ t

0

S2
s dq2(s). (3.5)
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Write

q2(s, t) = q2(t)− q2(s). (3.6)

Suppose q2(t) is non-vanishing on every interval. Then it follows from the robust

replication theorem of Bender et al. (2008) that the pricing model is free of arbitrage

under so-called allowed strategies and replications of vanilla claims are robust in the

sense that, as replicating strategies are involved, one can replace X with a Gaussian

martingale with bracket q2(t). Thus, we have the following proposition:

Proposition 3.1 (Robust Hedging). Let f(ST ) be a European claim such that

f(ST ) ∈ L2(Ω) and f is continuous. Then its Markovian replicating strategy is given

by the delta-hedge

πt =
∂v

∂x
(t, St), (3.7)

where

v(t, St) =

∫ ∞
−∞

f
(
Ste
− 1

2 q
2(t,T )+q(t,T )z

)
φ(z)dz (3.8)

is the value of the replicating strategy π at time t. Here φ(z) = 1√
2π
e−

z2

2 is the

density function of a standard normal random variable.

Proof. We make use of the robust replication theorem 5.4 of Bender et al. (2008).

First of all, note that since S is continuous, cf. Example 5.6 in Bender et al. (2008)

and Remark 3.1 below, it suffices to check condition (H) of Bender et al. (2008).

However, as G can be viewed as a time-changed Brownian motion, this follows

simply from a time change. Now theorem 5.4 of Bender et al. (2008) gives

V πt = EQ
[
f(ST )

∣∣Ft] , (3.9)

where, under Q, the price process S is the exponential martingale driven by a

Gaussian martingale G with bracket q2.

By equality of filtrations of G and S driven by G, we have

V πt = E
[
f
(
S0eGT− 1

2 q
2(T )

) ∣∣∣FGt ]
= E

[
f
(
Ste
− 1

2 q
2(t,T )+(GT−Gt)

) ∣∣∣FGt ] .
The claim follows from this, since GT − Gt is independent of FGt and is Gaussian

with zero mean and variance q2(t, T ).

Remark 3.1 (Black–Scholes Type BPDE). If q2 is absolutely continuous with

respect to the Lebesgue measure then the European vanilla option f(ST ) can be

replicated by solving its time-value from the Black–Scholes type backward partial

differential equation

∂v

∂t
(t, x) +

1

2
x2 dq2

dt
(t)
∂2v

∂x2
(t, x) = 0, (3.10)

v(T, x) = f(x). (3.11)
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Remark 3.2 (Vanishing Quadratic Variation). Proposition 3.1 remains for-

mally true for q2 ≡ 0. However, in this case the replicating strategy is very simple:

πt = f ′(St). (3.12)

Remark 3.3 (Simple Arbitrage). If the quadratic variation measure q2 vanishes

on some interval, then there are simple arbitrage opportunities. Indeed, suppose

q2(s, t) = 0 for some 0 ≤ s < t ≤ T . Then, by Bender et al. (2007) and Bender et

al. (2011),

(St − Ss)+ =

∫ t

s

1[Ss,∞)(Su) dSu. (3.13)

So, a buy-and-hold-when-expensive strategy would generate arbitrage.

4. Prediction

Prediction of the asset price or the noise is possible because all the filtrations FSt ,

FXt and FMt are the same, and for regular invertible Gaussian Volterra processes

we can use the theorem of Gaussian correlations in an explicit manner. Write

X̂t(u) = E
[
Xt

∣∣FXu ] , (4.1)

R̂(t, s|u) = Cov
[
Xt, Xs

∣∣FXu ] . (4.2)

Theorem 4.1 (Prediction). Let X be a regular invertible Gaussian Volterra pro-

cess with fundamental martingale M . Then the conditional process Xt(u) = Xt|FXu ,

t ∈ [u, T ], is Gaussian with FXu -measurable mean

X̂t(u) = Xu −
∫ u

0

Ψ(t, s|u) dXs, (4.3)

where

Ψ(t, s|u) = (K∗)−1 [K(t, ·)−K(u, ·)] (s), (4.4)

and deterministic covariance

R̂(t, s|u) = R(t, s)−
∫ u

0

K(t, v)K(s, v) dm(v). (4.5)

Proof. Consider first the conditional mean. By Theorem 2.1 together with the fact

that K is a Volterra kernel we obtain

X̂t(u) = E
[∫ t

0

K(t, s) dMs

∣∣∣FMu ]
=

∫ u

0

K(t, s) dMs

=

∫ u

0

K(u, s) dMs −
∫ u

0

[K(u, s)−K(t, s)] dMs

= Xu −
∫ u

0

[K(u, s)−K(t, s)] dMs.
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The conditional expectation formula follows from this by using the isometric defi-

nition of Wiener integration with respect to X.

Consider then the conditional covariance. By Theorem 2.1 and calculations

above

R̂(t, s|u) = E
[∫ t

u

K(t, v) dMv

∫ s

u

K(s, v) dMv

∣∣∣FMu ]
= E

[∫ t

u

K(t, v) dMv

∫ s

u

K(s, v) dMv

]
=

∫ t∧s

u

K(t, v)K(s, v) dm(v)

=

∫ t∧s

0

K(t, v)K(s, v) dm(v)−
∫ u

0

K(t, v)K(s, v) dm(v)

= R(t, s)−
∫ u

0

K(t, v)K(s, v) dm(v).

Write

ρ̂(t|u) =

√
R̂(t, t|u), (4.6)

β(u, t) = µ(u, t)− 1

2
q2(u, t) (4.7)

Then

St = Sueβ(u,t)+(Xt−Xu) (4.8)

and

Var[Xt −Xu

∣∣Fu] = ρ̂2(t|u). (4.9)

The following corollary is the key result that allows us to calculate the

conditional-mean hedging strategies in Section 5.

Corollary 4.1 (Prediction). Let 0 ≤ u ≤ t ≤ T . Let f : [0, T ] × R → R be such

that f(t, St) is integrable. Let φ be the standard Gaussian density function. Then

E
[
f(t, St)

∣∣∣FSu ] =

∫ ∞
−∞

f
(
t, Sueβ(u,t)−

∫ u
0

Ψ(t,s|u)dXs+ρ̂(t|u)z
)
φ(z)dz. (4.10)

Proof. Given Theorem 4.1, the equality of filtrations and the Föllmer–Itô formula,

the claim follows from straightforward calculations:

E
[
f(t, St)

∣∣∣FSu ] = E
[
f
(
t, Sueβ(u,t)+(Xt−Xu)

) ∣∣∣FXu ]
=

∫ ∞
−∞

f
(
t, Sueβ(u,t)+(ρ̂(t|u)z+X̂t(u))−Xu

)
φ(z)dz

=

∫ ∞
−∞

f
(
t, Sueβ(u,t)+ρ̂(t|u)z+(X̂t(u)−Xu)

)
φ(z)dz

=

∫ ∞
−∞

f
(
t, Sueβ(u,t)+ρ̂(t|u)z−

∫ u
0

Ψ(t,s|u)dXs

)
φ(z)dz,
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proving the claim.

5. Conditional-Mean Hedging

We are interested in the pricing and hedging of European vanilla options f(ST ) of

the single discounted underlying asset S = (St)t∈[0,T ], where T > 0 is a fixed time

of maturity of the option.

We assume that the trading only takes place at fixed preset time points 0 =

t0 < t1 < · · · < tN < T . We Write by πN the discrete trading strategy

πNt = πN0 1{0}(t) +

N∑
i=1

πNti−1
1(ti−1,ti](t). (5.1)

The value of the strategy πN is given by

V π
N ,k

t = V π
N ,k

0 +

∫ t

0

πNu dSu −
∫ t

0

kSu|dπNu | (5.2)

= V π
N ,k

0 +
∑
ti≤t

πNti−1
∆Sti +

∑
ti≤t

kSti−1
|∆πNti |, (5.3)

where ∆Sti = Sti − Sti−1 , ∆πNti = πNti − π
N
ti−1

, and k ∈ [0, 1) is the proportional

transaction cost.

Under transaction costs perfect hedging is not possible. In this case, it is natural

to try to hedge on average in the sense of the following definition:

Definition 5.1 (Conditional-Mean Hedge). Let f(ST ) ∈ L2(Ω) be a European

vanilla type option with convex or concave payoff function f . Let π be its Markovian

replicating strategy of Proposition 3.1: πt = g(t, St) for some function g. We call

the discrete-time strategy πN a conditional-mean hedge, if for all trading times ti,

E
[
V π

N ,k
ti+1

| Fti
]

= E
[
V πti+1

| Fti
]
. (5.4)

Here Fti is the information generated by the asset price process S up to time ti.

Remark 5.1 (Conditional-Mean Hedge as Tracking Condition). Criterion

(5.4) is actually a tracking requirement. We do not only require that the conditional

means agree on the last trading time before the maturity, but also on all trading

times. In this sense the criterion has an “American” flavor in it. From a purely

“European” hedging point of view, one can simply remove all but the first and the

last trading times.

Remark 5.2 (Arbitrage and Uniqueness of Conditional-Mean Hedge).

Note that the conditional-mean hedging strategy πN depends on the continuous-

time hedging strategy π. Since there may be strong arbitrage in the pricing model

(zero can be perfectly replicated with negative initial wealth), the replicating strat-

egy π may not be unique. However, the strong arbitrage strategies are very compli-

cated. Indeed, it follows directly from the Föllmer–Itô change-of-variables formula
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that in the class of Markovian strategies πt = g(t, St), the delta-hedge coming from

the Black–Scholes type backward partial differential equation is the unique repli-

cating strategy for the claim f(ST ).

Remark 5.3 (No Martingale Measures). We stress that the expectation in

(5.4) is with respect to the true probability measure; not under any equivalent

martingale measure. Indeed, equivalent martingale measures may not even exist.

To find the solution to (5.4) one must be able to calculate the conditional ex-

pectations involved.

Let π be the continuous-time Markovian hedging strategy of the claim f(ST )

and let V π be its value process. Write

∆X̂ti+1
(ti) = X̂ti+1

(ti)−Xti , (5.5)

= E
[
Xti+1 |Fti

]
−Xti , (5.6)

∆Ŝti+1(ti) = Ŝti+1
(ti)− Sti (5.7)

= E
[
Sti+1

|Fti
]
− Sti , (5.8)

∆V̂ πti+1
(ti) = V̂ πti+1

(ti)− V πti (5.9)

= E
[
V πti+1

|Fti
]
− V πti , (5.10)

∆V̂ π
N ,k

ti+1
(ti) = V̂ π

N ,k
ti+1

(ti)− V πti (5.11)

= E
[
V π

N ,k
ti+1

|Fti
]
− V π

N ,k
ti . (5.12)

Write

γ(s, t, T ) = β(s, t)− 1

2
q2(t, T ). (5.13)

Lemma 5.1 below states that all these conditional gains listed above can be

calculated explicitly.

Lemma 5.1 (Conditional Gains). Suppose that f is polynomially bounded. Then

∆X̂ti+1
(ti) = −

∫ u

0

Ψ(t, s|u) dXu, (5.14)

∆Ŝti+1
(ti) = Sti

(
eβ(ti,ti+1)+ 1

2 ρ̂
2(ti+1|ti)+∆X̂ti+1

(ti) − 1
)
, (5.15)

∆V̂ πti+1
(ti) =

∫ ∞
−∞

[∫ ∞
−∞

f
(
Stie

γ(ti,ti+1,T )+ρ̂(ti+1|ti)y+q(ti+1,T )z
)
φ(y)dy

− f
(
Stie

− 1
2 q

2(ti,T )+q(ti,T )z
)]
φ(z)dz, (5.16)

∆V̂ π
N ,k

ti+1
(ti) = πNti ∆Ŝti+1(ti)− kSti |∆πNti |. (5.17)

Proof. The formula for ∆X̂ti+1
(ti) is given by Theorem 4.1.
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Consider ∆Ŝti+1(ti). By Corollary 4.1,

Ŝti+1
(ti) =

∫ ∞
−∞

Stie
β(ti,ti+1)+∆X̂ti+1

(ti)+ρ̂(ti+1|ti)z φ(z)dz

= Stie
β(ti,ti+1)+∆X̂ti+1

(ti)

∫ ∞
−∞

eρ̂(ti+1|ti)z φ(z)dz

= Stie
β(ti,ti+1)+ 1

2 ρ̂
2(ti+1|ti)+∆X̂ti+1

(ti).

Consequently,

∆Ŝti+1
(ti) = Sti

(
eβ(ti,ti+1)+ 1

2 ρ̂
2(ti+1|ti)+∆X̂ti+1

(ti) − 1
)
. (5.18)

Consider then ∆V̂ πti+1
(ti). Since f is polynomially bounded, we may use Fubini

theorem for conditional expectations to obtain

V̂ti+1
(ti) =

∫ ∞
−∞

E
[
f
(
Sti+1

e−
1
2 q

2(ti+1,T )+q(ti+1,T )z
) ∣∣∣Fti]φ(z)dz. (5.19)

Now,

E
[
f
(
Sti+1e−

1
2 q

2(ti+1,T )+q(ti+1,T )z
) ∣∣∣Fti]

= E
[
f
(
Stie

β(ti,ti+1)+ 1
2 q

2(ti,T )+(Xti+1
−Xti

)+q(ti+1,T )z
) ∣∣∣Fti]

=

∫ ∞
−∞

f
(
Stie

β(ti,ti+1)− 1
2 q

2(ti+1,T )+ρ̂(ti+1|ti)y+q(ti+1,T )z
)
φ(y)dy.

Since

V πti =

∫ ∞
−∞

f
(
Stie

− 1
2 q

2(ti,T )+q(ti,T )z
)
φ(z)dz, (5.20)

we obtain

∆V̂ πti+1
(ti)

=

∫ ∞
−∞

∫ ∞
−∞

f
(
Stie

γ(ti,ti+1,T )+ρ̂(ti+1|ti)y+q(ti+1,T )z
)
φ(y)dyφ(z)dz

−
∫ ∞
−∞

f
(
Stie

− 1
2 q

2(ti,T )+q(ti,T )z
)
φ(z)dz

=

∫ ∞
−∞

[∫ ∞
−∞

f
(
Stie

γ(ti,ti+1,T )+ρ̂(ti+1|ti)y+q(ti+1,T )z
)
φ(y)dy

− f
(
Stie

− 1
2 q

2(ti,T )+q(ti,T )z
)]
φ(z) dz.
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Finally, we calculate

V̂ π
N ,k

ti+1
(ti) = E

[
V π

N ,k
ti+1

∣∣Fti]
= V π

N ,k
ti + E

[∫ ti+1

ti

πNu dSu −
∫ ti+1

ti

kSu|dπNu |
∣∣∣Fti]

= V π
N ,k

ti + πNti
(
E
[
Sti+1

∣∣Fti]− Sti)− kSti |∆πNti |
= V π

N ,k
ti + πNti ∆Ŝti+1

(ti)− kSti |∆πNti |.

The formula for ∆V̂ π
N ,k

ti+1
(ti) follows from this.

Now we are ready to state and prove our main result. We note that, in principle,

our result is general: it is true in any pricing model where the option f(ST ) can

be replicated. In practice, our result is specific to the regular invertible Gaussian

Volterra noise pricing model via Lemma 5.1.

Theorem 5.1 (Conditional-Mean Hedging Strategy). The conditional mean

hedge of the European vanilla type option with convex or concave positive payoff

function f with proportional transaction costs k is given by the implicit equation

πNti =
∆V̂ πti+1

(ti) + (V πti − V
πN ,k
ti ) + kSti |∆πNti |

∆Ŝti+1
(ti)

, (5.21)

where V π
N ,k

ti is determined by (5.2).

Proof. Let us first consider the left hand side of (5.4). We have

E
[
V π

N ,k
ti+1

∣∣Fti] = E
[
V π

N ,k
ti +

∫ ti+1

ti

πNu dSu − k
∫ ti+1

ti

Su|dπNu |
∣∣∣Fti]

= V π
N ,k

ti + πNti E
[
Sti+1(ti)− Sti

∣∣Fti]− kSti |∆πN ti|
= V π

N ,k
ti + πNti ∆Ŝti+1(ti)− kSti |∆πNti |.

For the right-hand-side of (5.4), we simply write

E
[
V πti+1

∣∣Fti] = ∆V̂ πti+1
(ti) + V πti . (5.22)

Equating the sides we obtain (5.21) after a little bit of simple algebra.

Remark 5.4 (Interpretation). Taking the expected gains ∆Ŝti+1
(ti) to be the

numéraire, one recognizes three parts in the hedging formula (5.21). First, one

invests on the expected gains in the time-value of the option. This “conditional-

mean delta-hedging” is intuitively the most obvious part. Indeed, a näıve approach

to conditional-mean hedging would only give this part, forgetting to correct for the

tracking-errors already made, which is the second part in (5.21). The third part in

(5.21) is obviously due to the transaction costs.
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Remark 5.5 (Initial Position). Note that the equation (5.21) for the strategy

of the conditional-mean hedging is recursive: in addition to the filtration Fti , the

position πNti−1
is needed to determine the position πNti . Consequently, to determine

the conditional-meand hedging strategy by using (5.21), the initial position πN0
must be fixed. The initial position is, however, not uniquely defined. Indeed, let βN0
be the position in the riskless asset. Then the conditional-mean criterion (5.4) only

requires that

βN0 + πN0 E[St1 ]− kS0|πN0 | = E[V πt1 ]. (5.23)

There are of course infinite number of pairs (βN0 , π
N
0 ) solving this equation. A natu-

ral way to fix the initial position (βN0 , π
N
0 ) for the investor interested in conditional-

mean hedging would be the one with minimal cost. If short-selling is allowed, the

investor is then faced with the minimization problem

min
πN
0 ∈R

w(πN0 ), (5.24)

where the initial wealth w is the piecewise linear function

w(πN0 ) = βN0 + πN0 S0 (5.25)

=

E[V πt1 ]−
(

∆Ŝt1(0)− kS0

)
πN0 , if πN0 ≥ 0,

E[V πt1 ]−
(

∆Ŝt1(0) + kS0

)
πN0 , if πN0 < 0.

(5.26)

Clearly, the minimal solution πN0 is independent of E[V πt1 ], and, consequently, of the

option to be replicated. Also, the minimization problem is bounded if and only if

k ≥

∣∣∣∣∣∆Ŝt1(0)

S0

∣∣∣∣∣ , (5.27)

i.e. the proportional transaction costs are bigger than the expected return on [0, t1]

of the stock. In this case, the minimal cost conditional mean-hedging strategy starts

by putting all the wealth in the riskless asset.
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