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PREDICTION LAW OF FRACTIONAL BROWNIAN MOTION

TOMMI SOTTINEN

Department of Mathematics and Statistics, University of Vaasa, P.O. Box 700,
FIN-65101 Vaasa, FINLAND

LAURI VIITASAARI

Department of Mathematics and System Analysis, Aalto University School of
Science, Helsinki, P.O. Box 11100, FIN-00076 Aalto, FINLAND

Abstract. We calculate the regular conditional future law of the fractional
Brownian motion with index H ∈ (0, 1) conditioned on its past. We show that
the conditional law is continuous with respect to the conditioning path. We
investigate the path properties of the conditional process and the asymptotic
behavior of the conditional covariance.

1. Introduction

Let BH = (BH
t )t∈R+ be the fractional Brownian motion with Hurst index

H ∈ (0, 1). Let u ∈ R+ , and let Fu be the σ -field generated by the fractional
Brownian motion on the interval [0, u] . We study the prediction of (Bt)t≥u given
the information Fu . In other words, we study the conditional regular law of
B̂H(u) = BH |Fu . It is well-known that such regular conditional laws for Gauss-
ian processes exists and they are Gaussian with random conditional mean and
deterministic conditional variance, see, e.g., Bogachev [4, Section 3.10] or Janson
[6, Chapter 9]. Recently, LaGatta [8] introduced the notion of continuous disin-
tegration. In our case it reads as follows: Let T > 0 be arbitrary and let PT
be the law of the fractional Brownian motion on [0, T ] . The regular conditional
law PyT = PT [ · |BH

v = y(v), v ≤ u] is continuous with respect to y if yn → y (in
sup-norm) implies PynT → PyT (weakly). We calculate the regular conditional law of
fractional Brownian motion explicitly and show that it is continuous with respect
to the conditioning trajectory.

Perhaps the earliest result on the prediction for fractional Brownian motion is due
to Gripenberg and Norros [5]. They provided the conditional mean of the fractional
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Brownian motion with parameter H > 1
2 based on observations extending to the

infinite past. Norros et al. [10] provided the conditional mean for the whole range
H ∈ (0, 1) based on the observations on a compact interval. While the conditional
expectation of the fractional Brownian motion is well understood, it seems that the
regular conditional law has not been studied at all.

2. Preliminaries

We recall some facts for fractional Brownian motion and fractional calculus. As
general references for fractional Brownian motion we refer to Biagini et al. [3] and
Mishura [9]. The standard reference for fractional calculus is Samko et al. [12].

The fractional Brownian motion BH = (BH
t )t∈R+ with Hurst index H ∈ (0, 1)

is the centered Gaussian process with covariance

rH(t, s) =
1

2

[
t2H + s2H − |t− s|2H

]
.

The case H > 1
2 corresponds to the long-range dependent case, or positively corre-

lated increments. The case H < 1
2 corresponds to the short-range dependent case,

or negatively correlated increments. For H = 1
2 , we have the classical Brownian

motion.

Let

Iαt−[f ](s) :=
1

Γ(α)

∫ t

s
f(z)(z − s)α−1 dz, s ∈ (0, t),

be the right-sided fractional integral of order α ∈ (0, 1). The inverse of Iαt− is the
right-sided fractional derivative

I−αt− [f ](s) := − 1

Γ(1− α)

d

ds

∫ t

s
f(z)(z − s)−α dz.

For u ∈ R+ , define

KH,u[f ](t) := σHt
H− 1

2 I
H− 1

2
u−

[
(·)H−

1
2 f
]

(t),

where

σH =

√
π(H − 1

2)2H

Γ(2− 2H) sin(π(H − 1
2))

.

Let K−1H,u be the inverse of KH,u , i.e.,

K−1H,u[f ](t) =
1

σH
t
1
2
−HI

1
2
−H

u−

[
(·)H−

1
2 f
]

(t).

Indicator functions 1[0,t) belong to the domains of KH,t and K−1H,t for all t > 0 and

H ∈ (0, 1). So, we can define

kH(t, s) := KH,t
[
1[0,t)

]
(s),

k−1H (t, s) := K−1H,t
[
1[0,t)

]
(s).

Then
(2.1)

kH(t, s) = dH

[(
t

s

)H− 1
2

(t− s)H−
1
2 − (H − 1

2
)s

1
2
−H
∫ t

s
zH−

3
2 (z − s)H−

1
2 dz

]
,
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where

dH =

√
2HΓ(32 −H)

Γ(H + 1
2)Γ(2− 2H)

.

(A similar formula can be found for k−1H also, but we have no need for it here.)

Lemma 2.1 (Volterra Correspondence). Let BH be a fractional Brownian motion.
Then the process

Wt =

∫ t

0
k−1H (t, s) dBH

s

is a Brownian motion. Moreover, the fractional Brownian motion can be recovered
from it by

BH
t =

∫ t

0
kH(t, s) dWs.

The Volterra correspondence of Lemma 2.1 above extends to a transfer principle
of Lemma 2.2 below. We note that in Lemma 2.1 can be taken as the definition of
an abstract Wiener integral with respect to the fractional Brownian motion. We
refer to Pipiras and Taqqu [11] for details on Wiener integration with respect to
fractional Brownian motions, and for [13] for a more general discussion on abstract
Wiener integration.

Lemma 2.2 (Transfer Principle). Let BH and W be as in Lemma 2.1. Then, for
all u ∈ R+ , ∫ u

0
f(t) dWt =

∫ u

0
K−1H,u[f ](t) dBH

t

for all f ∈ L2([0, u]), and∫ u

0
f(t) dBH

t =

∫ u

0
KH,u[f ](t) dWt,

for all f ∈ K−1H,uL
2([0, u]).

3. Regular Conditional Law

Theorem 3.1 (Prediction Law). The conditional process B̂H(u) = (B̂H
t (u))t≥u is

Gaussian with Fu -measurable mean function

(3.1) m̂H
t (u) = BH

u −
∫ u

0
ΨH(t, s|u) dBH

s ,

where

ΨH(t, s|u) = −
sin(π(H − 1

2))

π
s

1
2
−H(u− s)

1
2
−H
∫ t

u

zH−
1
2 (z − u)H−

1
2

z − s
dz,

and deterministic covariance function

(3.2) r̂H(t, s|u) = rH(t, s)−
∫ u

0
kH(t, v)kH(s, v)dv.

Moreover, the regular conditional law is continuous with respect to the conditioning
trajectory (BH

v )v≤u .
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Proof. Let BH and W be as in Lemma 2.1. Let t ≥ u . Then

m̂t(u) = E
[
BH
t

∣∣Fu

]
= E

[∫ t

0
kH(t, s) dWs

∣∣∣∣FW
u

]
=

∫ u

0
kH(t, s) dWs

=

∫ u

0
kH(u, s) dWs −

∫ u

0
[kH(u, s)− kH(t, s)] dWs

= BH
u −

∫ u

0
[kH(u, s)− kH(t, s)] dWs.

It remains to show that the function s 7→ kH(u, s) − kH(t, s), s ∈ [0, u] , belongs
to K−1H,uL

2([0, u]) and then to apply Lemma 2.2 and calculate the transfered kernel
for the equation∫ u

0
[kH(u, s)− kH(t, s)] dWs =

∫ u

0
K−1H,u [kH(u, ·)− kH(t, ·)] (s) dBH

s .

This was done in Pipiras and Taqqu [11, Theorem 7.1].

Let us then calculate the conditional covariance. Let W be as before. Then

r̂H(t, s|u) = E
[(
BH
t − m̂t(u)

) (
BH
s − m̂s(u)

) ∣∣Fu

]
= E

[(∫ t

0
kH(t, v) dWv −

∫ u

0
kH(t, v) dWv

)
×(∫ s

0
kH(s, w) dWw −

∫ u

0
kH(s, w) dWw

) ∣∣∣∣FW
u

]
= E

[∫ t

u
kH(t, v) dWv

∫ s

u
kH(s, w) dWw

∣∣∣∣FW
u

]
=

∫ t∧s

u
kH(t, v)kH(s, v) dv

= rH(t, s)−
∫ u

0
kH(t, v)kH(s, v) dv,

where the kernel kH(t, s) is given by (2.1).

Finally, to invoke [8, Theorem 2.4], we must show that

sup
v∈[0,u]

supt∈[0,T ] |rH(v, t)|
supw∈[0,u] |rH(v, w)|

<∞

for all T > 0. Since rH is continuous,

supt∈[0,T ] |rH(v, t)|
supw∈[0,u] |rH(v, w)|

=
|rH(v, t∗T,v)|
|rH(v, w∗u,v)|

≤
|rH(v, t∗T,v)|
|rH(v, v)|

.

The ratio above is obviously bounded for all v ∈ [ε, u] for any ε > 0. As for v → 0,

lim sup
v→0

|rH(v, t∗T,v)|
|rH(v, v)|

≤ 1,

since rH(v, t∗T,v) = supt∈[0,T ] rH(v, t) ≥ rH(v, v). �
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Remark 3.1 (Brownian Motion). For H = 1
2 , we have k 1

2
(t, s) = 1[0,t)(s) and

K 1
2
,u is the identity operator. Consequently, we recover from the proof of Theorem

3.1 that

m̂
1
2
t (u) = Wu,

r̂ 1
2
(t, s|u) = t ∧ s− u.

Remark 3.2 (Prediction Martingale). The formula (3.1) for the conditional ex-
pectation m̂H

t (u) is rather complicated. Let us note, however, that for each fixed
prediction horizon t > 0, the process m̂H

t (·) is a Gaussian martingale on [0, t] with
bracket

d〈m̂t(·)〉u = kH(t, u)2 du.

Next we investigate the conditional covariance r̂H(t, s |u) for fixed s ≤ t as a
function of u ∈ (0, s). The proofs are rather technical and lengthy. For this reason
they are postponed into Section 4.

Proposition 3.1 (Conditional Covariance). r̂H(t, s |·) is infinitely differentiable
and strictly decreasing on (0, s) for any H ∈ (0, 1). For H ∈ [12 , 1) it is also
convex.

Remark 3.3 (Short-Range Dependent Conditional Covariance). For H ∈ (0, 12),

r̂H(t, s|·) is neither convex nor concave. Indeed, it can be shown that for H ∈ (0, 12),
the kernel kH is positive and

lim
s→0+

kH(t, s) = lim
s→t−

kH(t, s) =∞.

Therefore
∂

∂u
r̂H(t, s|u) = −kH(t, u)k(s, u)

is neither increasing nor decreasing in u .

Proposition 3.2 (No-Information Asymptotics). Let t ≥ s be fixed.

(i) For H < 1
2 we have, as u→ 0,

r̂H(t, s|u) = rH(t, s)− CHu2H + o
(
u2H

)
,

where

CH =
d2H
2H

(
H − 1

2

)2(∫ ∞
1

wH−
3
2 (w − 1)H−

1
2 dw

)2

.

(ii) For H > 1
2 we have, as u→ 0,

r̂H(t, s|u) = rH(t, s)− CH,t,su2−2H + o
(
u2−2H

)
,

where

CH,t,s =
d2H(ts)2H−1

8− 8H
.

Remark 3.4. It is interesting to note in Proposition 3.2 the different asymptotic
behavior for the long-range dependent case (H > 1

2 ) and the short-range dependent

case (H < 1
2). Indeed, for the long-range dependent case the principal term in the

“remaining covariance” rH(t, s)− r̂H(t, s|u) is CHu
2H , where the constant CH is

independent of t and s . In the short-range dependent case the principal term is
CH,t,su

2−2H . So, the power reverts from 2H to 2 − 2H (and, consequently, the
principal term remains convex) and the constant depends on t and s .
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Proposition 3.3 (Full-Information Asymptotics). Let H ∈ (0, 1) \
{
1
2

}
. Then

(i) for t = s, we have, as u→ s,

r̂H(s, s|u) =
d2H
2H

(s− u)2H + o
(
(s− u)2H

)
,

(ii) for t > s we have, as u→ s,

r̂H(t, s|u) = CH,t,s(s− u)H+ 1
2 + o

(
(s− u)H+ 1

2

)
,

where

CH,t,s =
d2H

H + 1
2

[(
t

s

)H− 1
2

(t− s)H−
1
2 +

(
1

2
−H

)
sH−

1
2

∫ t
s

1
wH−

3
2 (w − 1)H−

1
2

]
.

Finally, we examine the sample path continuity of the conditional process. Recall
that a process X = (Xt)t∈R+ is Hölder continuous of order γ , if for all T > 0 there
exists an almost surely finite random variable CT such that

(3.3) |Xt −Xs| ≤ CT |t− s|γ

for all t, s ≤ T . The Hölder index of the process is the supremum of all γ such
that (3.3) holds.

Next we show that the Hölder index of the conditional process B̂H(u) and the
conditional mean m̂H(u) are the same as that of the fractional Brownian motion
BH . This is very important e.g. for pathwise stochastic analysis.

Proposition 3.4 (Hölder Continuity). Let u > 0 be fixed. Then the conditional

process B̂H(u) and the conditional mean m̂H(u) both have Hölder index H .

Proof. Let us first consider the conditional mean m̂H(u). Since

m̂H
t (u) =

∫ u

0
kH(t, v) dWv,

we have, by the Itô isometry,

E
[(
m̂H
t (u)− m̂H

s (u)
)2]

=

∫ u

0
[kH(t, v)− kH(s, v)]2 dv.

Let s ≤ t . By Lemma 2.1 and the Itô isometry, we have

|t− s|2H =

∫ t

0
[kH(t, v)− kH(s, v)]2 dv.

Thus

E
[(
m̂H
t (u)− m̂H

s (u)
)2] ≤ |t− s|2H

from which it follows, by the Kolmogorov continuity criterion, that m̂H
t (u) is Hölder

continuous of any order γ < H . Next we show that m̂H
t (u) cannot be Hölder

continuous of any order γ > H at t = u . Since

r̂H(t, t|u) =

∫ t

u
[kH(t, v)]2 dv,

Proposition 3.3 gives∫ t

u
[kH(t, v)]2 dv =

d2H
2H
|t− u|2H + o

(
|t− u|2H

)
.



PREDICTION LAW OF FRACTIONAL BROWNIAN MOTION 7

Now it can be shown that for H 6= 1
2 we have

d2H
2H < 1, and hence we also have∫ u

0
[kH(t, v)− kH(u, v)]2 dv =

(
1−

d2H
2H

)
(t− u)2H + o

(
|t− u|2H

)
.

In particular, this shows that

E
[(
m̂H
t (u)− m̂H

u (u)
)2]

=

∫ u

0
[kH(t, v)− kH(u, v)]2 dv ≥ cH |t− u|2H .

Consequently, the claim follows from the sharpness of the Kolmogorov continuity
criterion for Gaussian processes (see [1]).

Let us then consider the conditional process B̂H(u). Since the conditional mean
m̂H(u) is Hölder continuous with index γ if and only if γ < H , we may consider

the centered conditional process B̄H(u) = B̂H(u)− m̂H(u). Since

E
[(
B̄H
t (u)− B̄H

s (u)
)2]

= |t− s|2H −
∫ u

0
[kH(t, v)− kH(s, v)]2 dv,

the claim follows with the same arguments as in the conditional mean case. �

4. Proofs of Propositions 3.1, 3.2 and 3.3

Proof of Proposition 3.1. Let u < s ≤ t . From (3.2) we observe that

∂

∂u
r̂H(t, s|u) = −kH(t, u)kH(s, u).

Since kH(t, u) is infinitely differentiable with respect to u for all t , it follows that
r̂H(t, s|u) is infinitely differentiable in u . Furthermore, since kH(t, u) > 0 for all t
and u , we observe that ∂

∂u r̂H(t, s|u) < 0. Hence r̂H(t, s|u) is strictly decreasing in
u .

Next we prove the convexity in u of r̂H(t, s|u) for H > 1
2 . For this it is sufficient

to show that −kH(t, u)kH(s, u) is increasing in u . Hence, it suffices to show that
kH(t, s) is decreasing in s . Indeed, then −kH(t, u)kH(s, u) is increasing in u since
kH(t, s) ≥ 0. By [7, Eq. (1.2)] we have

kH(t, s) = CH(t− s)H−
1
2F

(
1

2
−H,H − 1

2
, H +

1

2
;
s− t
s

)
,

where F denotes the Gauss hypergeometric function. Denote v = 1− s
t and let t

be fixed. Then

kH(t, s) = kH(t, t(1− v)) = tH−
1
2 vH−

1
2F

(
1

2
−H,H − 1

2
, H +

1

2
;

v

v − 1

)
,

where v ∈ [0, 1]. By [2, p. 269, eq. (8.2.9)] and the symmetry of Gauss hypergeo-
metric function with respect to first two parameters, we have

F

(
1

2
−H,H − 1

2
, H +

1

2
;

v

v − 1

)
= (1− v)

1
2
−HF

(
1,

1

2
−H,H +

1

2
; v

)
,

and hence it suffices to show that(
v

1− v

)H− 1
2

F

(
1,

1

2
−H,H +

1

2
; v

)
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is increasing as a function of v . To show this, we use the Euler integral formula [2,
p. 271, Proposition 8.3.1.]

F (a, b, c; v) =
1

B(b, c− b)

∫ 1

0
xb−1(1− x)c−b−1(1− vx)−adx

provided that |v| < 1 and c > b > 0, where B(a, b) denotes the Beta function.
Hence we have(

v

1− v

)H− 1
2

F

(
1,

1

2
−H,H +

1

2
; v

)
=

1

B
(
1, H − 1

2

) ( v

1− v

)H− 1
2
∫ 1

0
(1− x)H−

3
2 (1− vx)H−

1
2 dx

=
1

B
(
1, H − 1

2

) ∫ 1

0
(1− x)H−

3
2

(
v

1− v
(1− vx)

)H− 1
2

dx.

Now it is straightforward to see that, for any x ∈ (0, 1),

v

1− v
− v2

1− v
x

is an increasing function in v . Consequently, kH(t, s) = kH(t, t(1 − v)) is also
increasing as a function of v , and thus −kH(t, u)kH(s, u) is increasing in u , which
shows that, for fixed t and s , r̂H(t, s|u) is a convex function. �

Proof of Proposition 3.2. Denote

βH(τ) =

∫ τ

1
wH−

3
2 (w − 1)H−

1
2 dw.

Then, by using the change of variable w = z
v in (2.1) we can write

kH(t, v) = dH

[(
t

v

)H− 1
2

(t− v)H−
1
2 −

(
H − 1

2

)
vH−

1
2βH

(
t

v

)]
.

Then, from (3.2) it follows that

r̂H(t, s|u)− rH(t, s)

= −d2H
∫ u

0

[
IH1 (t, s, v) + IH2 (t, s, v) + IH3 (t, s, v) + IH4 (t, s, v)

]
dv,

where

IH1 (t, s, v) =

(
t

v

)H− 1
2 (s

v

)H− 1
2

(t− v)H−
1
2 (s− v)H−

1
2 ,

IH2 (t, s, v) =

(
1

2
−H

)
tH−

1
2 (t− v)H−

1
2βH

(s
v

)
,

IH3 (t, s, v) =

(
1

2
−H

)
sH−

1
2 (s− v)H−

1
2βH

(
t

v

)
,

IH4 (t, s, v) =

(
H − 1

2

)2

v2H−1βH

(s
v

)
βH

(
t

v

)
.

Consider first the term IH1 (t, s, v). Recall that |aγ − bγ | ≤ |a − b|γ for any
γ ∈ (0, 1). Consequently, for H > 1

2 ,

(4.1) |(t− v)H−
1
2 − tH−

1
2 | ≤ vH−

1
2 ,
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which implies that

(4.2) (t− v)H−
1
2 = tH−

1
2 +O

(
vH−

1
2

)
.

Similarly, for H < 1
2 ,

|(t− v)H−
1
2 − tH−

1
2 | =

∣∣∣∣∣ 1

(t− v)
1
2
−H
− 1

t
1
2
−H

∣∣∣∣∣
≤

∣∣∣∣ 1

t− v
− 1

t

∣∣∣∣ 12−H
=

(
v

(t− v)t

) 1
2
−H

.

Consequently, as v → 0, we have

(4.3) (t− v)H−
1
2 = tH−

1
2 +O

(
v

1
2
−H
)
.

Hence, as v → 0,

IH1 (t, s, v) = (ts)2H−1v1−2H + o(v1−2H)

and, consequently,

(4.4)

∫ u

0
IH1 (t, s, v) dv =

(ts)2H−1

2− 2H
u2−2H + o(u2−2H).

Consider then the next three remaining terms IH2 (t, s, v), IH3 (t, s, v) and
IH4 (t, s, v). We begin with the case H < 1

2 . Now βH(∞) <∞ and∣∣∣∣βH ( tv
)
− βH(∞)

∣∣∣∣ =

∫ ∞
t
v

wH−
3
2 (w − 1)H−

1
2 dw

≤
∫ ∞

t
v

(w − 1)2H−2 dw

= CH

(
t

v
− 1

)2H−1

≤ CH,tv
1−2H

for small enough v . Consequently,

(4.5) βH

(
t

v

)
= βH(∞) +O

(
v1−2H

)
.

By using this together with (4.3) we get

IH2 (t, s, v) =

(
1

2
−H

)
tH−

1
2βH (∞) +O(v

1
2
−H)

from which it follows that∫ u

0
IH2 (t, s, v) dv = O(u) = o(u2H).

Moreover, with the same arguments we observe∫ u

0
IH3 (t, s, v)dv = o(u2H)
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and by (4.4) we also have∫ u

0
IH1 (t, s, v)dv = O(u2−2H) = o

(
u2H

)
.

Finally, for IH4 we have, again thanks to (4.5),

IH4 (t, s, v) =

(
H − 1

2

)2(∫ ∞
1

wH−
3
2 (w − 1)H−

1
2 dw

)2

v2H−1 +O(1)

from which the claim follows by integrating with respect to v over the interval
[0, u] for H < 1

2 . Let then H > 1
2 . We have

βH

(
t

v

)
=

∫ t
v

1
w2H−2 dw +

∫ t
v

1
wH−

3
2

[
(w − 1)H−

1
2 − wH−

1
2

]
dw

=
t2H−1

2H − 1
v1−2H +O

(
v

1
2
−H
)
,(4.6)

where the last equality follows from (4.1). By using (4.2) again we hence observe
that

IH2 (t, s, v) =

(
1

2
−H

)
(ts)2H−1

2H − 1
v1−2H +O(v

1
2
−H).

Since O
(
u

3
2
−H
)

= o
(
u2−2H

)
for H > 1

2 , we have

(4.7)

∫ u

0
IH2 (t, s, v) dv =

(
1

2
−H

)
(ts)2H−1

(2H − 1)(2− 2H)
u2−2H + o(u2−2H).

Similarly, we observe

(4.8)

∫ u

0
IH3 (t, s, v) dv =

(
1

2
−H

)
(ts)2H−1

(2H − 1)(2− 2H)
u2−2H + o(u2−2H).

For IH4 (t, s, v), we obtain by (4.6) that

IH4 (t, s, v) =

(
H − 1

2

)2 (ts)2H−1

(2H − 1)2
v1−2H +O(v

1
2
−H)

and hence

(4.9)

∫ u

0
IH4 (t, s, v) dv =

(
H − 1

2

)2 (ts)2H−1

(2− 2H)(2H − 1)2
u2−2H + o(u2−2H).

Now the result follows by combining equations (4.7)–(4.9) with (4.4) together with
some simplifications. �

Proof of Proposition 3.3. Let βH and IHi (t, s, v), i = 1, 2, 3, 4, be like in the proof
of Proposition 3.2.

We begin by showing that the terms IH2 (t, s, v) and IH4 (t, s, v) are negligible.
For this note that

(4.10) βH

(s
v

)
≤ CH

(s
v
− 1
)H+ 1

2 ≤ CH(s− v)H+ 1
2

for v close enough to s . Consequently, for t > s we have

IH2 (t, s, v) = O
(

(s− v)H+ 1
2

)
from which it follows that∫ s

u
IH2 (t, s, v) dv = o

(
(s− v)H+ 1

2

)
.
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Similarly, for t = s we have

IH2 (s, s, v) = O
(
(s− v)2H

)
and thus ∫ s

u
IH2 (s, s, v) dv = o

(
(s− v)2H

)
.

This implies that the term IH2 (t, s, v) is negligible. For terms IH3 (t, s, v) and
IH4 (t, s, v), we first observe that

(4.11) βH

(
t

v

)
= βH

(
t

s

)
+

∫ t
v

t
s

wH−
3
2 (w − 1)H−

1
2 dw.

Here the first term, denoted by βH
(
t
s

)
, is just a constant independent of v and u .

For the second term we have

(4.12)

∫ t
v

t
s

wH−
3
2 (w − 1)H−

1
2 dw ≤ CH,t,s

(
t

v
− t

s

)H+ 1
2

≤ CH,t,s(s− v)H+ 1
2

for v close to s . Hence the term IH4 (t, s, v) is also negligible. Indeed, combining
estimates (4.10) and (4.12) we get∫ s

u
IH4 (t, s, v) dv ≤ CH,t,s

∫ s

u

[
βH

(
t

s

)
(s− v)H+ 1

2 + (s− v)2H+1

]
dv.

Consequently, for t > s we have∫ s

u
IH4 (t, s, v) dv = o

(
(s− u)H+ 1

2

)
and for t = s , thanks to the fact βH(1) = 0, we have∫ s

u
IH4 (s, s, v)dv = o

(
(s− u)2H

)
.

Let us next study the term IH3 (t, s, v). By using the decomposition (4.11) and
the estimate (4.12) we obtain that

IH3 (t, s, v) =

(
1

2
−H

)
sH−

1
2 (s− v)H−

1
2βH

(
t

s

)
+O((s− v)2H).

Hence for t > s we have∫ s

u
IH3 (t, s, v) dv =

1
2 −H
1
2 +H

βH

(
t

s

)
sH−

1
2 (s− u)H+ 1

2 + o
(

(s− u)H+ 1
2

)
and for t = s we have ∫ s

u
IH3 (s, s, v) dv = o

(
(s− u)2H

)
.

To conclude the proof, it remains to study the term IH1 (t, s, v). We write

IH1 (t, s, v) =

(
t

s

)H− 1
2 (s

v

)2H−1
(t− v)H−

1
2 (s− v)H−

1
2 .

Furthermore, using similar analysis as above we observe that, for v close to s , we
have (s

v

)2H−1
− 1 ≤ CH(s− v)2H−1
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for H > 1
2 and (s

v

)2H−1
− 1 ≤ CH(s− v)1−2H

for H < 1
2 . Thus instead of IH1 (t, s, v) it suffices to consider(

t

s

)H− 1
2

(t− v)H−
1
2 (s− v)H−

1
2 ,

from which we easily observe that, for t = s , we have∫ s

u
IH1 (t, s, v) dv =

1

2H

(
t

s

)H− 1
2

(s− u)2H + o
(
(s− u)2H

)
.

For t > s we write∫ s

u
(t− v)H−

1
2 (s− v)H−

1
2 dv

=

∫ s

u
(t− s)H−

1
2 (s− v)H−

1
2 dv

+

∫ s

u

[
(t− v)H−

1
2 − (t− s)H−

1
2

]
(s− v)H−

1
2 dv

=
1

H + 1
2

(t− u)H−
1
2 (s− u)H+ 1

2

+

∫ s

u

[
(t− v)H−

1
2 − (t− s)H−

1
2

]
(s− v)H−

1
2 dv.

For H > 1
2 we have ∣∣∣(t− v)H−

1
2 − (t− s)H−

1
2

∣∣∣ ≤ (s− v)H−
1
2 ,

from which it follows that∫ s

u

[
(t− v)H−

1
2 − (t− s)H−

1
2

]
(s− v)H−

1
2 dv = O

(
(s− u)2H

)
= o

(
(s− u)H+ 1

2

)
.

Similarly, for H < 1
2 we have

∣∣∣(t− v)H−
1
2 − (t− s)H−

1
2

∣∣∣ ≤ ( v − s
(t− v)(t− s)

)H− 1
2

≤ (t− s)2H−1(s− v)
1
2
−H .

Hence∫ s

u

[
(t− v)H−

1
2 − (t− u)H−

1
2

]
(s− v)H−

1
2 dv = O (s− u) = o

(
(s− u)H+ 1

2

)
.

Combining the above estimates we thus observed that, in the case t > s ,∫ s

u
IH1 (t, s, v) dv =

1

H + 1
2

(
t

s

)H− 1
2

(t− s)H−
1
2 (s− u)H+ 1

2 + o
(

(s− u)H+ 1
2

)
.

�
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