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Abstract
This article summarizes the current knowledge about the presence of naproxen in the environment, its toxicity to nontarget
organisms and the microbial degradation of this drug.

Currently, naproxen has been detected in all types of water, including drinking water and groundwater. The concentrations that have
been observed ranged from ng/L to μg/L. These concentrations, although low, may have a negative effect of long-term exposure on
nontarget organisms, especially when naproxen is mixed with other drugs. The biological decomposition of naproxen is performed by
fungi, algae and bacteria, but the only well-described pathway for its complete degradation is the degradation of naproxen by Bacillus
thuringiensisB1(2015b). The key intermediates that appear during the degradation of naproxen by this strain areO-desmethylnaproxen
and salicylate. This latter is then cleaved by 1,2-salicylate dioxygenase or is hydroxylated to gentisate or catechol. These intermediates
can be cleaved by the appropriate dioxygenases, and the resulting products are incorporated into the central metabolism.

Key points
•High consumption of naproxen is reflected in its presence in the environment.
•Prolonged exposure of nontargeted organisms to naproxen can cause adverse effects.
•Naproxen biodegradation occurs mainly through desmethylnaproxen as a key intermediate.

Keywords Naproxen .Microorganisms . Toxicity . Biodegradation

Introduction

Naproxen, which is a bicyclic propionic acid derivative, is a
widely known drug from the group of non-selective, non-
steroidal anti-inflammatory drugs (Dzionek et al. 2018). Its
mechanism of action is based on the inhibition of both cyclo-
oxygenase isoforms that are involved in the synthesis of pros-
taglandins, prostacyclin and thromboxane from arachidonic
acid (Angiolillo and Weisman 2017; Barcella et al. 2019).
The advantages of naproxen are its rapid absorption and its
long duration of action, which result from its long biological
half-life (approximately 13 h), and its ability to strongly bind
to the plasma proteins. Another advantage is also its diffusion

into the synovial fluid. It is the preferred drug for treating oste-
oarthritis in patients who are at a high cardiovascular risk be-
cause, unlike diclofenac and other NSAIDs including the selec-
tive ones, when it is used in high doses, it poses a lower vascular
risk (Angiolillo andWeisman 2017; Barcella et al. 2019). These
advantages together with fact that naproxen can be purchased
without a prescription translate into its popularity on the phar-
maceutical market. For more than 40 years, it has held a strong
position compared to other NSAIDs (Aguilar et al. 2019;
Dzionek et al. 2018). In 2003, almost 3000 t of naproxen were
produced in the world (Li et al. 2016). According to ClinCalc
(2019), it was prescribed 11,470,076 times in the USA in 2016.
The popularity of naproxen in the treatment of pain has resulted
in its occurrence in the environment (Aguilar et al. 2019;
Madikizela et al. 2017; Xu et al. 2019).

Occurrence of naproxen in the environment

Since naproxen entered the market in 1976, it has enjoyed
unflagging popularity. This has resulted in the occurrence of
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this compound in wastewater (Garcia-Medina et al. 2015;
Shanmugam et al. 2014). In the body, naproxen is metabolized
into two key products: O-desmethylnaproxen and naproxen
glucuronide (Fig. 1) (Addison et al. 2000). Therefore, these
compounds also end up in the wastewater. Research to date
has indicated that in sewage treatment plants, naproxen does
not undergo complete mineralization and despite a relatively
high degree of transformation goes into the environment along
with the outflow from a treatment plant (Grenni et al. 2014;
Lahti and Oikari 2011; Marco-Urrea et al. 2010). The removal
of naproxen in wastewater treatment plants is significantly
different and ranges from its almost complete removal to only
a 40% degradation level (Marco-Urrea et al. 2010). It was
observed that in the effluents of wastewater treatment plants,
the concentration levels of naproxen ranged from 25 ng/l to
33.9 μg/l (Marotta et al. 2013). Moreover, Suzuki et al. (2014)
showed that the effluents of wastewater treatment plants also
contain its major metabolite – 6-O-desmethylnaproxen at a
concentration of 0.56 μg/l. Because of incomplete decompo-
sition, naproxen occurs in groundwater, surface water as well
as in drinking water (Benotti et al. 2009). It was found in 69%
of >100 water samples frommore than 100 European rivers at
a concentration of up to 2.027 μg/l (Ding et al. 2017). Recent
investigations of European Union waters have indicated that
concentration of naproxen in wastewater treatment plants and
in surface waters exceeds the concentration that is recom-
mended by the European Medicines Agency by 10- to 500-
fold (Grenni et al. 2013). The naproxen concentrations that
have been detected in the environment are presented in
Table 1.

The concentration of naproxen in the environment depends
on its physicochemical properties such as solubility and chem-
ical stability as well as environmental properties, while its
mobility in the environment correlates to chemical properties

such as the dissociation constant and the value of the octanol-
water partition coefficient (logKow) (Kim and Zoh 2016;
Sibeko et al. 2019). The value of this coefficient for naproxen
(3.2) indicates that this compound is hydrophobic (Vulava
et al. 2016).

The fate of naproxen in the environment is affected by two
phenomena: sorption and degradation (Liu et al. 2019;
Martinez-Hernandez et al. 2016). The sorption process is
strictly and inversely dependent on pH. Because naproxen
has a carboxylic acid group that is deprotonated at an environ-
mentally relevant pH (5–8), it occurs in the environment main-
ly in an anionic form. In this form, it can conjugate with the
base forms in the aquatic and soil environments (Liu et al.
2019; Vulava et al. 2016). On the other hand, the electrostatic
interactions of naproxen with negatively charged natural or-
ganic matter and clay mineral surfaces are difficult (Liu et al.
2019).

The basic changes that naproxen undergoes in surface wa-
ters are via its direct photochemical degradation and indirect
photochemical pathways (Packer et al. 2003; Vulava et al.
2016). The intensity of photodegradation is affected by the
intensity of light and the presence of nonorganic ions such
as carbonate, nitrate, ferrous and ferric ions as well as organic
matter, e.g. humic acids. Direct photochemical degradation of
naproxen is possible because its UV absorption spectrum
overlaps with the solar spectrum – > 290 nm (Sokół et al.
2017; Vulava et al. 2016). Its indirect photochemical degrada-
tion occurs when dissolved organic matter absorbs sunlight,
which produces reactive oxygen species such as singlet oxy-
gen, hydroxyl radicals or superoxide ions and other reactive
species (Aguilar et al. 2019; Packer et al. 2003; Topp et al.
2008; Sokół et al. 2017; Vulava et al. 2016). Unfortunately,
these processes lead to the formation of products that may be
more persistent and more toxic (Vulava et al. 2016).

Fig. 1 The transformations of naproxen that occur in higher organisms (Addison et al. 2000)
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The impact of naproxen on nontarget
organisms

It is well known that pharmaceuticals present in the environ-
ment may have a negative ecotoxicological effect. Naproxen
can affect the organisms inhabiting ecosystems either through
its toxicity to an organism or via the toxicity of its metabolites.
The latter can be formed during both physicochemical and
biological processes (Jallouli et al. 2016; Rodriguez-
Rodriguez et al. 2011). One of the most important aspects of
studies on pollutant degradation is the increased toxicity of the
degradation products. The photoderivatives of naproxen have
been reported as being more toxic than the parent compound
to Brachionus calyciflorus, Thamnocephalus platyurus,
Ceriodaphnia dubia, Vibrio fischeri and Daphnia magna
(DellaGreca et al. 2004; Jallouli et al. 2016). DellaGreca
et al. (2004) showed that naproxen photoderivatives with a
lower molecular weight such as the ethyl, carbinol, ketone
and olefin derivatives are more active against bacteria than
dimeric photoproducts. Moreover, the toxicity of its dimers

is stereo-dependent (DellaGreca et al. 2004). Ma et al.
(2014) reported that during simulated solar radiation, the gen-
erated product of naproxen photodegradation was more toxic
than the parent compound. Its toxicity is probably connected
with a loss of the chemical moieties of naproxen resulting in a
lower steric effect and easier penetration into the cells of
Vibrio fischeri (Ma et al. 2014). However, it was also demon-
strated that the solar photocatalysis of naproxen partially re-
duces its acute toxicity (Jallouli et al. 2016; Marotta et al.
2013).

Many studies have indicated the negative effects of
naproxen on aquatic invertebrates and vertebrates. It was
shown that naproxen can accumulate in the bile of fishes
where its concentration was 1000 times higher than this de-
tected in samples of the lake (Brozinski et al. 2012). One
explanation for the naproxen bioaccumulation may be the
suppression of the metabolizing enzyme activity (Xu et al.
2019). Moreover, the presence of phase II metabolites in fish
bile such as glucuronides was also detected. These intermedi-
ates undergo enzymatic deconjugation (Brozinski et al. 2012;

Table 1 Naproxen concentration
in the aquatic environment Sources Concentration (μg/l) References

Estuary of Seine River, France Up to 0.275 Shanmugam et al. 2014

German rivers Up to 0.39 Vulava et al. 2016

Lake Greifensee, Switzerland 0.003–0.010 Straub and Stewart 2007

Lake Haapajarvi, Finland 0.040–0.21 Brozinski et al. 2013

A major river in Korea 0.326 Ji et al. 2013

Marina catchment, Singapore 0.008–0.108 Shanmugam et al. 2014

Ebro River, Spain Up to 0.109 Shanmugam et al. 2014

Elbe River, Germany up to 0.032 Straub and Stewart 2007

Fyris River, Sweden 0.447 Shanmugam et al. 2014

Glatt River, Switzerland 0.004–0.36 Straub and Stewart 2007

Han River, South Korea 0.005–0.1 Shanmugam et al. 2014

Ladysmith River, South Africa 2.77 Madikizela et al. 2017

Lopan River, Ukraine 0.2–0.264 Shanmugam et al. 2014

Malir River, Pakistan 11.4–32.00 Shanmugam et al. 2014

Mbokodweni River, South Africa 1.0–3.8 Sibeko et al. 2019

Pearl River, China Up to 0.328 Shanmugam et al. 2014

Rhine River, Germany and Switzerland Up to 0.028 Straub and Stewart 2007

Sindian River, Taiwan 0.035–0.27 Shanmugam et al. 2014

Tiber River, Italy 0.24–0.27 Grenni et al. 2014

Rivers, Canada Up to 4.5 Shanmugam et al. 2014

Rivers, Japan Up to 0.24 Shanmugam et al. 2014

Rivers, Poland Up to 0.753 Shanmugam et al. 2014

Rivers, Slovenia Up to 0.08 Shanmugam et al. 2014

Seawater, Portugal 0.178 Jallouli et al. 2016

Sediment of the Danube River, Europe 7–57 μg/kg Garcia-Medina et al. 2015

Water sources from Mexico City, Mexico 0.052–0.186 Garcia-Medina et al. 2015
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Xu et al. 2019). It was also shown that naproxen at environ-
mental concentrations may affect the mRNA expression and
cause gastrointestinal and renal effects in zebrafish (Ding et al.
2017). A 14-day exposure to 10 μg/L of naproxen resulted in
an altered gene expression in the gill tissue of zebrafish (Li
et al. 2016). Li et al. (2016) observed that zebrafish embryos
(LC50 = 115.2mg/L) were more sensitive to naproxen than the
larvae (LC50 = 147.6 mg/L). It was also shown that the larval
zebrafish liver was particularly sensitive to naproxen. The
hepatic reactions to the drug included a swelling of hepatic
cells, hepatocellular vacuolar degeneration, and nuclei
pycnosis and obscure cell borders were also observed. These
reactions in fish may be connected with a modification of the
organelles structure and an elevated stress level and could be a
sign of the mobilization of an organism to detoxification.
Moreover, a lower heart rate, pericardial oedema and terato-
genic effects that are induced by naproxen may be connected
with the inhibition of cyclooxygenases in Danio rerio. It is
postulated that prostaglandins, which are products of the reac-
tions that are catalysed by cyclooxygenases (COX), are nec-
essary for proper heart formation (Li et al. 2016). It has also
been postulated that naproxen may cause thyroid disruption in
zebrafish because of the relatively high degree of similarity of
the thyroid axis between humans and fishes. Xu et al. (2019)
demonstrated a decrease in the thyroid hormone levels in
zebrafish after exposure to naproxen. They postulated that this
phenomenon resulted from a disturbance in the gene transcrip-
tion along the hypothalamic-pituitary-thyroid axis and a sig-
nificant decrease in transthyretin level (Xu et al. 2019).

It was shown a decrease in egg fertilization of Jordanella
floridae over one complete life cycle occurred 121 days after
exposure to 0.1 μg/L of naproxen. A low concentration of
naproxen may also inhibit the growth of crustaceans such as
Ceriodaphnia dubia after 7 days of exposure (Li et al. 2016).

Górny et al. (2019a) estimated the mean value of the mi-
crobial toxic concentration MTCavg, which is equivalent EC50

on the 1.66 g/L level using the MARA test with model organ-
isms. This value indicated a low toxicity of naproxen for bac-
teria, which was probably connected with the lack of a proper
carrier of naproxen in bacterial cells. Moreover, changes in the
composition of the total fatty acids of Bacillus thuringiensis
B1 were also observed (2015b). After incubation of B1 strain
in the presence of naproxen, there was a significant increase in
the value of the ratio of saturated and unsaturated fatty acids.
The occurrence of the 16:0 iso 3OH fatty acid in bacterial cell
membrane may stabilize its structure by interacting with the
membrane protein (Górny et al. 2019a). The EC50 values that
were estimated for Chlorella vulgaris and Ankistrodesmus
falcatus were 40 mg/L after 24 h of exposure to naproxen
(Ding et al. 2017). Ding et al. (2017) showed that the toxicity
of naproxen on two algae,Cymbella species and Scenedesmus
quadricauda, depended on its concentration and the duration
of the incubation. The inhibition of growth increased together

with the concentration of naproxen and decreased as the du-
ration of the exposure increased. Moreover, a significant de-
crease in chlorophyll a, chlorophyll b and carotenoids was
also observed. Naproxen decreased the number of enzymatic
antioxidants, which led to a greater accumulation of OH− and
H2O2. At the same time, there was an increase of the
malondialdehyde concentration. This compound may interact
with biomolecules such as proteins, lipoproteins and DNA
(Ding et al. 2017). Garcia-Medina et al. 2015 showed an in-
creased superoxide dismutase (SOD) activity, which was con-
nected with the generation of reactive oxygen species (ROS)
after Hyalella azteca was exposed to naproxen. They sug-
gested that the increase in SOD activity led to an increase in
the hydrogen peroxide concentration and, as a result, to an
increase in the activity of catalase. Oxidative stress damaged
the genetic material of Hyalella azteca probably via the direct
interaction of reactive oxygen species with DNA (Garcia-
Medina et al. (2015). The genotoxicity of naproxen at a higher
concentration was also observed by Górny et al. (2019a).
However, this effect was not dose-dependent (Górny et al.
2019a).

Although low concentrations of naproxen occur in the en-
vironment, the increase in its toxicity may be related to a
synergy effect with other contaminations. Zdarta et al.
(2019) examined the toxicity of untreated and enzymatically
treated solutions of naproxen and diclofenac against Artemia
salina. However, they observed that after 24 h, the EC30 (the
concentration of the drug at which 30% of the microorganisms
showed a positive response after the exposure time) values for
untreated naproxen and diclofenac solutions amounted around
20% and 25%, respectively. Enzymatic treatment with encap-
sulated laccase resulted in decreasing the EC30 values to
around 80% and 85% for diclofenac and naproxen, respective-
ly (Zdarta et al. 2019). A decrease in the toxicity was also
observed by Marco-Urrea et al. (2010) and Rodriguez-
Rodriguez et al. (2011) during the treatment of naproxen ef-
fluent using Trametes versicolor. A standard toxicity test
using Vibrio fischeri showed a significant toxicity for
naproxen at 10 mg/L only for the uninoculated control
(EC50 amounted to 33% after 15 min of exposure) (Marco-
Urrea et al. 2010).

Cleuvers (2004) showed that predicting the toxicity of a
mixture is also indispensable because pharmaceuticals very
rarely occur as a single contamination in the environment.
When the concentrations of the non-steroidal anti-inflamma-
tory drugs that are used in a mixture were compared to the
individual compound, no observable effect concentrations
(NOECs) of the single drugs revealed that considerable com-
bination effect may occur even if substances were applied in
concentrations below their NOEC (Cleuvers 2004). This ob-
servation was confirmed by Melvin et al. (2014) during re-
search on Limnodynastes peronei. They observed an interac-
tive effect of naproxen, carbamazepine and sulfamethoxazole
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on amphibian growth and development at environmental con-
centrations (Melvin et al. 2014). Jiang et al. (2017) showed
that a mixture of naproxen, diclofenac and ibuprofen led to an
increase in bacterial diversity in a sequencing batch reactor.
According to the Shannon-Wiener diversity index,
Actinobacteria and Bacteroidetes were enriched, whereas the
number of Micropruina and Nakamurella decreased after the
additionNSAIDs.Moreover, they observed damage in the cell
wall of the microorganisms (Jiang et al. 2017). On the other
hand, Grenni et al. (2014) showed that the chronic exposure to
naproxen of the natural microbial community of the Tiber
River caused a decrease in β-Proteobacteria especially
ammonia-oxidizing bacteria and the Archaea. At the same
time, an increase in α- and γ-Proteobacteria was observed.
It is speculated that these last two are involved in naproxen
biodegradation (Grenni et al. 2014). Due to the potential risk
to organisms living in naproxen-contaminated environments,
it is necessary to seek effective methods for its removal.

Microbial decomposition of naproxen

Despite the increase in interest in the breakdown of non-
steroidal anti-inflammatory drugs such as ibuprofen,
ketoprofen and diclofenac in recent years, relatively little is
known about the microbiological breakdown of naproxen.

This is due to the relatively high stability of naproxen and its
resistance to microbial degradation, which is connected with
the presence of two condensed rings. This has been confirmed
by the research that has been carried out to date. These show
that most often there is only a microbiological transformation
of naproxen, during which the aromatic rings are not cleaved
(Domaradzka et al. 2015b). The transformation of naproxen is
performed by bacteria, fungi and algae. Ding et al. (2017)
observed the transformation of naproxen by the freshwater
algae Cymbella sp. and Scenedesmus quadricauda. They
identified 12 metabolites that had resulted from the hydroxyl-
ation, decarboxylation, demethylation, tyrosine conjugation
and glucuronidation of naproxen (Fig. 2). Among the fungi,
only Aspergillus niger, Trametes versicolor, Phanerochaete
ch r y so spo r i um , Myce l i o ph t ho ra t h e rmoph i l e ,
Cunninghamella blakeslesna AS 3.153, Cunninghamella
echinulata AS 3.2004, Cunninghamella elegans AS 3.156,
Bjerkandera adusta and Bjerkandera sp. R1 can decompose
naproxen (Jureczko and Przystaś 2018; Lloret et al. 2010;
Marco-Urrea et al. 2010; Rodarte-Morales et al. 2011;
Rodarte-Morales et al. 2012; Rodriguez-Rodriguez et al.
2010; Rodriguez-Rodriguez et al. 2011; Tran et al. 2010;
Zhong et al. 2003). The transformation of naproxen by fungi
is accompanied by the involvement of the extracellular oxida-
tive enzymes such as laccase, manganese peroxidase, lignin
peroxidase and versatile peroxidase (Lloret et al. 2010;

Fig. 2 The decomposition pathways of naproxen in algae (Ding et al. 2017)
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Rodarte-Morales et al. 2012). Moreover, Marco-Urrea et al.
(2010) showed that cytochrome P-450 might also play a role
in the transformation of naproxen. The key metabolites that
were observed included 7-hydroxynaproxen, 7-hydroxy-6-O-
d e s m e t h y l n a p r o x e n , d e s m e t h y l n a p r o x e n ,
desmethylnaproxen-6-O-sulfate, 1-(6-hydroxynaphthalen-2-
yl)ethanone, 1-(6-methoxynaphthalen-2-yl)ethanone (Fig. 3)
(He and Rosazza 2003; Marco-Urrea et al. 2010; Qurie et al.
2013; Rodarte-Morales et al. 2012; Zhong et al. 2003). The
efficiency of the transformation of naproxen by fungi is almost
100%. Moreover, Tran et al. (2010) showed that commercial
laccase is more effective than crude laccase from Trametes
versicolor.

The total degradation of naproxen by pure strains was ob-
served only in bacterial cultures: Planococcus sp. S5, Bacillus
thuringiensis B1(2015b), Stenotrophomonas maltophilia
KB2 and Pseudoxanthomonas sp. DIN-3 (Domaradzka et al.
2015a; Górny et al. 2019b; Lu et al. 2019; Marchlewicz et al.
2016; Wojcieszyńska et al. 2014). The degradation of
naproxen in monosubstrate conditions occurred with a low
efficiency. However, the presence of an additional carbon
source such as glucose, phenol, 4-hydroxybenzoic acid or
3,4-dihydroxybenzoic acid increased the effectiveness of this
process (Górny et al. 2019a; Wojcieszyńska et al. 2014).
Similar results were obtained by Lu et al. (2019). In
cometabolic conditions with acetate, glucose or methanol,
the DIN-3 strain degraded naproxen with a higher efficiency
than in monosubstrate conditions. Hydroxyquinol 1,2-
dioxygenase is involved in the cleavage of naproxen in
Stenotrophomonas maltophilia KB2 and Planococcus sp. S5
(Wojcieszyńska et al. 2014; Wojcieszyńska et al. 2016). Liu

et al. (2019) proposed the transformation of naproxen by elim-
inating the methyl group. The O-desmethylnaproxen that is
f o rmed may con j u g a t e w i t h t y r o s i n e t o 6 , 7 -
dihydroxynaphthalene-2-yl-tyrosine. Naproxen can also be
degraded via its hydroxylation to 2-(7,8-dihydroxy-6-
methoxynaphthalene-2-yl) propanoic acid, which may subse-
quently undergo ring opening. The final product is (E)-6-(2-
carboxy-1-hydroxy-2-methoxyethylidene)-4-(-1carboxyrthyl)
cyclohexa-2,4-diene-1-carboxylic acid (Lu et al. 2019). The
best described is the naproxen degradation pathway in
Bacillus thuringiensis B1(2015b), which occurs via demeth-
ylation to O-desmethylnaproxen. This metabolite is converted
to 2-formyl-5-hydroxyphenyl-acetate. Another identified me-
tabolite of this pathway is salicylic acid, which is cleaved by
salicylate 1,2-dioxygenase or is hydroxylated to catechol or
gentisic acid. The pathway with catechol as an intermediate,
which is cleaved to cis,cis-muconic acid involved in central
metabolism, probably dominates in this strain (Górny et al.
2019b). The microbial pathways of naproxen decomposition
are presented in Fig. 4.

Studies with mixed populations of microorganisms indicate
a higher efficiency of naproxen degradation using monocultur-
al systems. The natural microbial community in the Tiber River
degraded 0.1 mg/l naproxen within about 40 days, although
there was a transient negative effect on this community
(Grenni et al. 2014). Moreover, Caracciolo et al. (2012) ob-
served the ability of an autochthonous bacterial community in
river water to completely eliminate naproxen over the course of
30 days. In turn, Quintana et al. (2005) showed that in the
presence of powdered milk, 20 mg/l of naproxen was trans-
formed by 50% by the active sludge in a membrane bioreactor.

Fig. 3 The decomposition pathways of naproxen in fungi (He and Rosazza 2003; Marco-Urrea et al. 2010; Qurie et al. 2013; Rodarte-Morales et al.
2012; Zhong et al. 2003)
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It was also demonstrated that naproxen degradation can occur
under anaerobic conditions (Lahti and Oikari 2011).

Conclusion

Analysis of the current state of knowledge indicates that due to
the increasing intake of naproxen, the problem of its occur-
rence in the environment will continue to increase.
Toxicological studies indicate that long-term exposure to en-
vironmental doses may negatively affect the organisms that
live in a habitat, especially if naproxen co-occurs with other
drugs. The vast majority of literature reports indicate the trans-
formation of naproxen without decomposition of condensed
aromatic rings. Another problem is the appearance of hydrox-
ylated derivatives of naproxen as a result of transformation,
which may have a more negative impact on living organisms,
due to their greater hydrophilicity. To date, only a few bacte-
rial strains possessing enzymes of the full naproxen degrada-
tion pathway have been described. However, compared to

monocyclic non-steroidal anti-inflammatory drugs such as
ibuprofen, the level of naproxen degradation is definitely low-
er. Therefore, it is still necessary to search for the strains and
consortia of microorganisms that have an increased potential
to degrade naproxen.
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