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Abstract
Data-limited fisheries assessment methods have great potential to help inform small island communities on the

status of their fisheries resources. In this paper, we provide a length-based assessment of an artisanal fishery that
primarily targets spawning aggregations of Shortjaw Bonefish Albula glossodonta at Anaa Atoll in the Tuamotu
Archipelago of French Polynesia. We assessed the length-frequency distribution of the spawning stock across a 3-year
period (2016–2018). During this time, male and female Shortjaw Bonefish were fully recruited to the fishery at age
4 and age 5, respectively. Fishing mortality was over two times the range of natural mortality for this species
(i.e., 0.21–0.32), and based on these estimates of natural mortality, the annual spawning potential ratio of the popula-
tion was between 7% and 20% across the sampling years. The majority of the catch was sexually mature, with 78,
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95, and 95% of the annual female catch in 2016, 2017, and 2018, respectively, being equal to or greater than the
length of first maturity (i.e., 48 cm FL). However, every fisheries indicator and biological reference point suggested
that the fishery was overexploited and in need of management intervention. To this aim, the community of Anaa (1)
established an Educational Managed Marine Area, which overlaps with the Shortjaw Bonefish migratory corridor
adjacent to Tukuhora village and (2) instated a temporal rahui (a traditional conservation method) inside the Educa-
tional Managed Marine Area during the peak months of the spawning season.

Fisheries resources are threatened by a wide range of
anthropogenic activities, including overexploitation, habi-
tat modification, and climate change (Jackson et al. 2001;
Pauly et al. 2002; Allison et al. 2009). Many of the most
severe fisheries declines are in data-deficient artisanal fish-
eries (Pauly 1997; Allison and Ellis 2001; Neil et al. 2007;
Worm et al. 2009; Johnson et al. 2013), where communi-
ties lack the capacity to conduct research and monitor the
status of their yields and where robust governance struc-
tures or formal monitoring programs are absent (Hughes
et al. 2010; Fenner 2012). This paradigm is universal in
the artisanal fisheries of the tropical Pacific Ocean, where
low fish biomass and altered reef ecosystems are associ-
ated with human inhabitation (Friedlander and DeMartini
2002; DeMartini et al. 2008; Sandin et al. 2008), and there
is an urgent need to manage these fisheries on local and
regional scales (Bell et al. 2009; Houk et al. 2012, 2017,
2018; Cuetos-Bueno et al. 2018).

Most fisheries stock assessments are expensive and
require a combination of life history parameters and time
series catch-and-effort data to evaluate the status of a har-
vested species (Walters and Pearse 1996; Prince et al.
2015). However, these prerequisites are rare in remote
island communities, which happen to be the jurisdictions
where science-based management is urgently needed
(Johannes 1998; Prince et al. 2011, 2015). Fortunately,
novel low-cost data-limited methods are emerging that
permit the assessment of data-deficient fisheries without
the once essential context provided by historic abundance
and long-term trends in fisheries landings (Froese 2004;
Cope and Punt 2009; Prince et al. 2011; Hordyk et al.
2015b). These methods utilize a combination of life history
parameters and the length-frequency distribution of a har-
vested fish population to reveal its status in a given fishery
and have made substantial contributions to the manage-
ment of numerous data-poor fisheries (Ault et al. 2008;
Nadon et al. 2015; Prince et al. 2015; Usseglio et al. 2016).
Additionally, to compensate for the lack of biological and
catch data, other approaches suggest assessing fisheries
systems from three different viewpoints: the ecology of
targeted populations, their exploitation, and the broader
socioeconomic fishery context. This information can illu-
minate the need for intervention in unmanaged fisheries
and assist in the development of fisheries conservation

actions that are necessary to sustain coral reef fisheries
(Clua et al. 2005).

Spawning-aggregation fisheries that target coral reef
species are of particular conservation concern, as the pre-
dictable spatial and temporal concentrations of reproduc-
tively mature fish from a broad geographic area renders
their populations highly vulnerable to over exploitation
(Sadovy 2005; De Mitcheson et al. 2008; De Mitcheson
and Erisman 2012; Gruss et al. 2014; Erisman et al. 2017).
These biomass concentrations provide benefits to fishers,
including minimalized search time, reduced overhead, and
large predictable catches that yield short-term economic
benefits (De Mitcheson and Erisman 2012; Secor 2015).
However, market saturation can result in price gluts where
fishers receive less value per fish, waste due to excess fish
that cannot be sold, and heterogenous food supply (De
Mitcheson and Erisman 2012). Furthermore, if improperly
managed, overfishing of these aggregations can result in
population-wide effects on harvested species (Claydon
2004; Sasikumar et al. 2015; Secor 2015). Even in spawn-
ing-aggregation fisheries where managers have the
resources to effectively monitor the harvest, fishery-depen-
dent data collected from spawning aggregations known to
be hyper stable and can mask declines in stock abundance
(i.e., catch per unit effort remains stable, while the abun-
dance of the stock continues to decline), and in conse-
quence exploitation can cryptically erode the resilience of
a population (De Mitcheson and Erisman 2012).

Shortjaw Bonefish Albula glossodonta (hereafter refer-
red to as “bonefish”) have historically played a vital role
in the subsistence and commercial fisheries in Anaa Atoll,
a remote island in the Tuamotu Archipelago of French
Polynesia. Locally known as kiokio, bonefish are captured
in the lagoon with a variety of methods, including hand
lines and gill nets; however, this species is principally har-
vested with artisanal fish traps during their spawning
migrations between the lagoon and the open ocean (Allen
2014; Torrente 2015; Filous et al. 2019b). The artisanal
trap fishery has existed for centuries but the addition of
chicken wire to the end of the rock traps and the expan-
sion of the total number of fish traps since the late 1980s
has increased the efficiency of the fishery and yields have
declined from their historical abundance (A. Filous, per-
sonal communications with residents of Anaa Atoll). This
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scenario and the consequential overexploitation of bone-
fish populations is commonplace in analogous fisheries
across the Pacific Islands, and the bonefish of Tarawa,
Kiritimati, Aitutaki, and Hawai'i have all been overex-
ploited with the modernization of traditional fishing tech-
niques (Beets 2000; Johannes and Yeeting 2000;
Friedlander et al. 2007; Adams et al. 2013; Allen 2014).
Congruently, fisheries harvests at Anaa Atoll were nonreg-
ulated throughout the 20th century, and to compound the
absence of fisheries management, the phenomenon of
shifting baselines in fisheries resource abundance con-
founds the ability of the community to evaluate the cur-
rent state of the fishery (Pauly 1995). Until recently, there
was insufficient biological data to evaluate the impact of
fishing on the stock; however, research into the life history
of the species has filled these knowledge gaps and paved
the way for its assessment with the data-limited methods
(Filous et al. 2019a).

Data-limited length-based fisheries methods have great
potential to help inform this small island community on
the status of this fishery and provide management recom-
mendations to improve its sustainability (Froese 2004;
Thorson and Prager 2011; Hordyk et al. 2015b). To this
aim, this paper provides an assessment of the bonefish
fishery by describing the sex composition of the harvested
bonefish stock and assessing its length-frequency distribu-
tion across a 3-year period with three data-limited fisheries
methods. These include the following: (1) an estimation of
fishing mortality and recruitment of male and female
bonefish in the trap fishery with an age-based catch curve,
(2) the estimation of the spawning potential ratio (SPR) of
the atoll's bonefish population and how far the fishery
deviates from the biological reference point (F40%), and (3)
the application of the Froese (2004) fisheries indicators to
assess the sustainability and status of this fishery. Based
on these results and a synthesis of previous research, we
propose community-based management recommendations
that will allow the continued harvest of the resource while
protecting the essential components of the population's
spawning stock.

STUDY SITE
Anaa is a small coralline atoll (38 km2) 350 km east of

Tahiti, in the Tuamotu Archipelago of French Polynesia
(Figure 1). The atoll is bordered by a coral reef that encir-
cles a shallow lagoon with 11 small islands known as
“motu” and fringing sand flats. Anaa is closed and lacks a
deep oceanic pass between its interior lagoon and outer
reef. There are a few small and shallow passes that allow
movement between the lagoon and oceanic habitats, which
are situated in the northeastern area of the atoll (Figure 1).
An artisanal trap fishery targets the spawning migrations
of bonefish, which are funneled through these migratory

passages, and there are 36 artisanal fish trap structures
located throughout Anaa Atoll (Figure 1). Each lunar
month during the spawning season, migrating schools of
bonefish are captured in the trap complex while moving
between the lagoon and the open ocean during the waning
gibbus moon. Privately owned traps are operated by indi-
viduals that hold a concession from the Direction Des
Resources Marines to operate and sell captured marine
life and are outfitted with chicken wire mesh (5 × 3.5 cm),
thereby selecting any fish with girths greater than 3.5 cm
that encounter the trap. In contrast, public traps are
constructed entirely of stone and harvested on a first-
come, first-served basis by any member of the community
(Figure 2). Upon capture, bonefish schools typically
remain blockaded in the cod end of the trap for periods
of 1 to 4 d. The fish are then brailed or netted out of the
trap as needed to meet local market demand. Bonefish
are sold fresh on the atoll for 1,000 French Pacific
francs (CFP) per packet (about five bonefish; 1,000
CFP=US$9.33 as of October 2019), and when bonefish
are abundant, they are salted, dried, and sold for 1,000
CFP per fish if exported to Tahiti (Figure 2). This fishery
provides sustenance and economic opportunities for the
atoll's approximately 500 residents, but previous research
suggests that the bonefish stock is overexploited and in
need of a quantitative fisheries assessment (Filous et al.
2019b).

METHODS
Fisheries landings surveys were conducted alongside

local fishers to record the length and sex of bonefish har-
vested in the artisanal trap fishery. Catches were sampled
from all public and private traps that operated in the
migratory corridors of the atoll, and sampling coincided
with monthly spawning runs during the waning moon
phases from 2016 to 2018. A scientist (the first author)
accompanied local fishermen during harvesting events and
each captured fish was counted, measured to the nearest
centimeter (FL) on a purpose-built measuring cradle, and
sexed externally by pressing the abdomen anterior to the
cloaca. Males were identified by the presence of milt and
females by the presence of oocytes. These observations
provided length-frequency distributions of the male and
female components of the bonefish spawning population
during the annual fishing seasons from 2016 to 2018. In
this forthcoming analysis, all values are means and SDs of
the mean, unless otherwise stated, and statistics were done
in R (version 3.4.3).

Sex ratios and size differences between male and female
bonefish.— To determine if the overall sex ratio of the
bonefish population differed significantly from 1:1, the
sex ratio (F:M) was taken across all sampled fish and
tested with a chi-square test using the chisq.test function.
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Differences in the average size of male and female bone-
fish were evaluated with a Student's t-test. The ages of
each fish were determined with length–age conversions
using the sex-specific growth parameters, mean asymp-
totic length (L∞Female= 78 cm FL, L∞Male= 58 cm FL),
growth rate (KFemale= 0.21, KMale= 0.38), and the theo-
retical age at which length is zero (t0=−0.40) described
in Filous et al. (2019a), and the differences in average
age of male and female bonefish were tested with a Stu-
dent's t-test as described above. Changes in the sex ratio
of spawning schools were evaluated throughout the
spawning season by determining the number of females

and males in each catch and testing for differences in
the sex ratio of catches between months of the spawning
season with a binomial generalized linear model using
the glm function. Post hoc multiple comparisons were
then performed with the Tukey's honestly significant
difference test with the glht function in the multcomp
package.

Age-based catch curve.— The total annual fishing mor-
tality experienced by female and male components of the
bonefish population was estimated with an age-based
catch curve (Chapman and Robson 1960). Following the
methods of Smith et al. (2012), a catch curve was

(A)

(B)

FIGURE 1. The location of (A) Anaa, the eastern most atoll in the Tuamotu Archipelago of French Polynesia, and (B) a map of Anaa, showing the
locations of artisanal fish traps (red Xs indicate the locations of private fish traps, yellow Xs indicate the locations of public fish traps, green diamonds
indicate the locations of migratory passageways used by Shortjaw Bonefish).
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constructed by taking the annual fork length measure-
ments of male and female bonefish captured in the arti-
sanal trap fishery and converting length to age, with the
sex-specific von Bertalanffy growth parameters as
described above. Total mortality (Z) was then estimated
with a modified Chapman–Robson method that corrected
for overdispersion with the FSA package (Ogle et al.
2019). The apex in the catch curve for each sex reveals
the age at which male and female bonefish are fully
recruited to the fishery, and this method estimates the
total (natural and fishing) instantaneous mortality (Z)
and annual survival (S) experienced by these two seg-
ments of the population (Smith et al. 2012). From these
estimates of total instantaneous mortality, we calculated
a range of respective fishing mortalities for male and
female bonefish by subtracting the natural mortality (M)
of 0.21 derived from the Hoenig (1983) fish equation and
an M of 0.32 derived from the Then et al. (2015) Hoe-
nignls equation (Filous et al. 2019a). The range of fishing
mortality to obtain a maximum sustainable yield (Fmsy)

was then estimated using these two values with the fol-
lowing equation:

Fmsy ¼ 0:87M; (1)

where Fmsy is the fishing mortality and M is the instanta-
neous rate of natural mortality (Zhou et al. 2012).

Finally, generation time (GT) was estimated with the
following equation:

GT ¼ AM þ Tmax � AM
2

; (2)

where AM is the age at first maturity (4 years) in females
and Tmax (20 years) is the maximum recorded age
(Depczynski and Bellwood 2006; Filous et al. 2019a).

Spawning potential ratio.— The SPR of a fish stock is
defined as the proportion of unfished reproductive poten-
tial remaining in a population at any given level of fishing
pressure (Goodyear 1993; Hordyk et al. 2015b) and is a
ratio of the number of eggs an average recruit could pro-
duce over its lifetime in a fished stock versus the number

(A) (B)

(C) (D)

FIGURE 2. Artisanal fish trap design at Anaa Atoll, with (A) public traps made exclusively from coral rock and (B) private traps comprised of coral
rock and chicken wire mesh. Panel (C) shows a close up view of the chicken wire mesh holding a catch of Shortjaw Bonefish in the cod end of a
private trap, and (D) shows dried Shortjaw Bonefish, which is the principal product of the trap fishery.
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of eggs an average recruit could produce over its lifetime
in an unfished stock (Brooks et al. 2010). The SPR of the
bonefish population and fishery selectivity at Anaa Atoll
was estimated with the age-structured methods outlined in
Hordyk et al. (2015a) with the LBSPRfit function and
model type “absel” in the R package LBSPR using the life
history characteristics and the two separate estimates of
M described above (Hordyk 2019). The plots of selectivity
and the annual length-frequency distributions of the har-
vested fish compared with a simulated population with an
SPR of F40% were extracted with the plotMat and plot-
Targ functions in the R package LBSPR.

Froese sustainability indicators.— Froese (2004) pro-
posed three guiding principles to avoid overexploitation:
(1) let them spawn, (2) let them grow, and (3) let the
megaspawners live. According to these principles (i.e.,
immature fish are not harvested, fish are harvested at their
optimal length, and megaspawners are protected), a fish-
ery should be sustainable if it is managed to insure that
the size of fish harvested adhere to these guidelines (Froese
2004). To assess the status of the bonefish fishery at Anaa
Atoll, we evaluated the annual length-frequency distribu-
tions of harvested female bonefish in the context of these
three principles. Following the methods of Froese (2004),
we used the female life history characteristic growth rate
(K = 0.21), mean asymptotic length (L∞= 78 cm FL), and
the two natural mortality rates described above to deter-
mine optimum harvest lengths (Lopt) for female bonefish:

Lopt ¼ L1 � 3=ð3þM=KÞ½ �; (3)

where Lopt is the optimal harvest length (Beverton 1992;
Froese 2004).

From these optimal harvest lengths, optimum harvest
length intervals were estimated as ±10% of the Lopt, the
length of a megaspawner was estimated as lengths greater
than 1.10 of the Lopt, and the length at 50% maturity
(Lmat) was estimated to be 48 cm FL in Filous et al.
(2019a). According to the methods of Cope and Punt
(2009), if the combined percentages of mature, optimal,
and megaspawners in the catch (Pobj) is between 100%
and 200%, the selectivity of the fishery fits the maturity
ogive. Given this selectivity pattern, if Lmat is less than or
equal to 0.75 of the Lopt and the proportion of mature
individuals in the catch is greater than 95% or if Lmat is
equal to 0.9 of the Lopt and the proportion of mature indi-
viduals in the catch is greater than 90%, the spawning bio-
mass is likely greater than or equal to both 40% and 25%
of the unfished spawning biomass (Cope and Punt 2009).

RESULTS
From 2016 to 2018, we sampled 3,420 bonefish from

the artisanal trap fishery. The sex ratio of these fish was

1,666 females to 1,754 males and was not significantly dif-
ferent from 1:1 (χ2= 2.2643, df= 1, P< 0.13). The average
length of male and female bonefish was significantly dif-
ferent (t= 49.23, df= 2,705, P < 0.005), with females being
larger (55± 5 cm FL) than males (49± 3 cm FL). When
these lengths were converted to age, the mean age of
males (4.65 ± 0.93 years) and females (5.55 ± 1.14 years)
was also significantly different (t= 25.151, df= 3,215,
P< 0.005). There was a significant difference in the sex
ratio of spawning aggregations across the reproductive
season, wherein females dominated the catch during
March, April, and May but declined throughout the
remainder of the season, yielding to a male-dominated
catch (P < 0.005; Figure 3). In the following length-based
analysis we separated the female and male components of
the population to derive sex-specific population estimates
for each year (Table 1).

Age-Based Catch Curve
The catch curve analysis indicates that male and female

bonefish are fully recruited to the trap fishery at age 4 and
age 5, respectively (Figure 4). Based on a visual analysis
of the peaks and right tails of the age-frequency distribu-
tions, we included ages 4–8 from 2016 to 2017 and ages
5–8 in 2018 when modeling male catch curves. For female
catch curves, we included ages 5–10 from 2016 to 2018.

FIGURE 3. The female to male sex ratio of Shortjaw Bonefish in the
catches harvested throughout the months of the spawning season for
2016–2018 in aggregate. For the box plot, the horizontal line in each box
indicates the median, the box dimensions represent the 25th to 75th
percentile ranges, and the whiskers show the 10th to 90th percentile
ranges. Different letters above the boxes indicate significant differences
between months based on Tukey–Kramer honestly significant difference
multiple comparisons with a P< 0.005. Note that the month of August
(marked with an asterisk) was removed from statistical comparisons due
to low sample size.
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The modified Chapman–Robson method yielded annual
survival rates ranging between 43.86% and 50.00% (46± 3%)
for females and between 25.28% and 43.86% (35 ± 9%) for
males. After subtracting the two M values from the total
mortality estimates, the rate of fishing mortality ranged
from 0.48 to 0.61 (0.56± 0.07) in females and 0.63 to 1.16
(0.85± 0.28) in males when using the Hoenig (1983) M
and 0.37 to 0.50 (0.45 ± 0.05) in females and 0.52 to 1.05
(0.74± 0.22) in males with the Hoenignls M. Finally, we
estimated the Fmsy to be between 0.18 and 0.28, and with
the species living to maximum life span of 20 years in the
absence of fishing, the generational turnover time is esti-
mated to be 12 years.

Spawning Potential Ratio
The SPR of the bonefish population between 2016 and

2018 was estimated to be between 7% and 11% (9± 2%)
with the Hoenig (1983) M and between 13% and 20%
(17± 3%) with the Hoenignls M (Table 2). The truncated
length composition of the bonefish population along with
its associated theoretical egg production is evident in refer-
ence to the simulated length-frequently distribution of a
theoretical population with Hoenig (1983) M and a 40%
SPR, a well-established biological reference point for the
maintenance of sustainable fisheries (Figure 5). A selectiv-
ity curve indicates that bonefish are fully selected to the
fishery shortly after reaching sexual maturity (Table 2;
Figure 6).

Froese Sustainability Indicators
Given a female von Bertalanffy growth parameter (K)

of 0.21, we estimated the ratio of M/K to be 1.00 for a
population with a Hoenig (1983) M and 1.52 for a popu-
lation with a Hoenignls M, which yielded optimum lengths
of harvest for female bonefish of 58 and 52 cm FL, respec-
tively. From these Lopt estimates we derived an optimal
harvest size range between 52 and 64 cm FL, and we esti-
mated the size at which a female bonefish becomes a
megaspawner to be greater than 64 cm FL based on a
Hoenig (1983) M. In a population with a Hoenignls M,

the optimum harvest size range was estimated to be
between 47 and 57 cm FL, and the length of a mega-
spawner was estimated to be greater than 57 cm FL. An
analysis of the annual length-frequency distributions of
harvested fish with Froese's indicators demonstrated that
the majority of harvested fish were sexually mature with
78, 95, and 95% (89 ± 10%) of the annual female catch
being equal to or greater than 48 cm FL (i.e., the Lmat for
female bonefish) across the three sampling years, respec-
tively. Given the estimates of Lopt derived from the Hoe-
nig (1983) M, over half of the harvested fish were within
the optimal size range of 52 to 64 cm FL, with an average
of 65± 9% of the catch being within this range during the

TABLE 1. Estimates of survival (S), total mortality (Z), and fishing mortality (F) derived from age-based catch curves for male and female Shortjaw
Bonefish from 2016 to 2018. Note that two different natural mortality rates (M) were used to provide a range of F estimates: one based on the Hoenig
(1983) fish equation (M= 0.21) and one on the Hoenignls equation (M= 0.32), each denoted by the subscript (available estimates of 95% confidence
intervals are provided in parentheses).

Year Sex N S Z FM = 0.21 FM = 0.32

2016 Female 144 50 (43.16–56.84) 0.69 (0.57–0.80) 0.48 0.37
Male 126 43 (36.12–49.88) 0.84 (0.57–1.1) 0.63 0.52

2017 Female 631 44.78 (41.72–47.84) 0.8 (0.59–1.01) 0.59 0.48
Male 893 38.01 (35.37–40.64) 0.97 (0.76–1.18) 0.76 0.65

2018 Female 891 43.86 (41.23–46.49) 0.82 (0.69–0.95) 0.61 0.50
Male 735 25.28 (21.86–28.70) 1.37 (1.28–1.46) 1.16 1.05

FIGURE 4. Age-frequency distribution of the annual Shortjaw Bonefish
catches harvested in the artisanal trap fishery at Anaa Atoll from 2016 to
2018 (blue bars represent harvested males, pink bars represent harvested
females, and the overlapping size distributions of the two sexes is
indicated by the darker shading).
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study period. However, the annual percentage of megas-
pawners in the catch was low and averaged 3± 1% (Table
2). In contrast, when using the of Lopt derived from the
Hoenignls M, on average 54± 2% of the catch was within
the optimal size range and 36± 4% of the catch was

considered a megaspawner. Following the principles for
length-based reference points outlined by Cope and Punt
(2009), for both the Lopt estimates derived from the Hoe-
nig (1983) M and Hoenignls M (i.e., 58 and 52 cm FL,
respectively), the Pobj ranged from 139% to 171% and

TABLE 2. The fisheries selectivity, length-based spawning potential ratio (SPR), and Froese fisheries indicators for female Shortjaw Bonefish
harvested at Anaa Atoll from 2016 to 2018. Note that two different natural mortality rates (M) were used to provide a range of SPR and Froese
estimates: one based on the Hoenig (1983) fish equation (M= 0.21) and one on the Hoenignls equation (M= 0.32). Abbreviations are as follows: SL50
= the length at which 50% of individuals are selected to the fishery, SL95 = the length at which 95% of individuals are selected to the fishery, %mat =
percent of mature individuals in the catch, %mega = percent of mega-spawners in the catch, %opt = percent of individuals in the catch that are within
the optimal size range.

Year
Total
females SL50 SL95

%mat

L>48 cm

MHoenig(1983)= 0.21 MHoeningnls ¼ 0:32

SPR
%opt

L52–64 cm

%mega

L>64 cm SPR
%opt

L47–57 cm

%mega

L>57 cm

2016 144 52 62 78 11 56 5 20 52 32
2017 631 54 59 95 7 74 2 13 56 42
2018 891 50 54 95 9 64 3 17 64 35

FIGURE 5. The size distribution of female Shortjaw Bonefish harvested in the artisanal trap fishery at Anaa Atoll from 2016 to 2018 during the
spawning season, overlaid on a theoretical size structure if the population were to have an SPR of 40% and a natural mortality rate (M= 0.21,
derived from the Hoenig 1983 fish equation). Green bars indicate the observed size frequency of harvested fish, and pink bars indicate the theoretical
size distribution under a 40% SPR scenario.
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130% to 193%, respectively, suggesting that the selectivity
of this fishery follows the maturity ogive of this species. For
this selectivity pattern, according to the decision tree pre-
sented in Cope and Punt (2009), an analysis of the relation-
ship between the Lmat and the two estimates of Lopt

indicates that the Lmat (i.e., 48 cm FL) is not less than or
equal to 0.75 of the Lopt (i.e., 44 and 39 cm FL, respec-
tively). Furthermore, in both cases, the Lmat is not equal to
0.9 of the Lopt (i.e., 52 and 47 cm FL, respectively). There-
fore, although the percentage of mature individuals in the
catch is relatively high, the spawning biomass is likely less
than 40% or 25% of the unfished spawning stock.

DISCUSSION
The management of small-scale, data-limited fisheries

can benefit from cost-effective methodologies such as the
length-based methods applied in this study. However, there
are a variety of assumptions that could affect the outcomes
of these length-based fisheries models. First, all of the meth-
ods we utilized rely on an estimate of natural mortality,
which is a poorly understood life history characteristic and
difficult to estimate (Vetter 1987; Pascual and Iribarne
1993; Hewitt and Hoenig 2005; Kenchington 2014; Then et
al. 2015). Errors in the estimation of this parameter would
affect our catch curve estimates of fishing mortality, optimal
harvest length, and SPR. In recognition of this uncertainty,
we modeled these estimates across a range of plausible val-
ues for M. Furthermore, these methods assume the popula-
tion is at equilibrium, meaning both recruitment and fishing
mortality are constant. This assumption is rarely met in wild
populations, and environmental stochasticity could affect
the recruitment strength of the year-classes that we modeled
in our study and bias our results (Hordyk et al. 2015b). Nev-
ertheless, given the limited resources in many communities

like Anaa Atoll, these methods provide an important tool
for the management of their fisheries, and although there is
uncertainty in the exact values of our results, collectively
they suggest this population is overexploited.

Our estimates of total mortality (Z) are high for this
genus, for which estimates of Z in locations with no active
commercial fisheries are between 0.21 to 0.27 (roughly
equivalent to natural mortality) and 0.643 in fished popu-
lations (Crabtree et al. 1994; Ault et al. 2007; Friedlander
et al. 2007; Kamikawa et al. 2015). Traditionally, in order
to maintain maximum sustainable yields, managers strived
to limit fishing mortality so that it does not exceed natural
mortality (Francis 1974); however, this paradigm has been
revised (i.e., Fmsy = 0.87M) to provide a more conserva-
tive biological reference point (Francis 1974; Zhou et al.
2012). Our study revealed that in some years fishing mor-
tality is two to three times the instantaneous range of nat-
ural mortality and exceeds the range of Fmsy for this
species (Gulland and Boerema 1973; Murawski et al. 2001;
Kenchington 2014). These figures are concerning given the
historical collapse of analogous fisheries. For instance,
fishing mortality in the bonefish fishery of Hawaii was
estimated at 0.59 and commercial landings have declined
to less than 1% of their historic yields (Friedlander et al.
2007, 2015; Kamikawa et al. 2015).

Our estimate of fishing mortality for males is consis-
tently higher than for females, which supports our “differ-
ential spawning behavior” theory in which male bonefish
engage in spawning events more frequently than females
and as a result are more vulnerable to harvest in the trap
complex. Previous research indicates that female bonefish
exhibit group synchronous oocyte development, with three
developmental stages present in the gonads of spawning-
capable fish (i.e., primary growth, cortical alveolar, and
vitellogenic 3). Therefore, we suggest that females need
time to develop their oocytes between batches, while in
contrast, males appear to be capable of spawning during
every monthly lunar phase (Filous et al. 2019a). These life
history characteristics are corroborated by unpublished
acoustic tracking data that showed that males visited
the spawning grounds more frequently than females
(A. Filous, unpublished data). The apparent differences in
spawning frequency between the two sexes may be respon-
sible for the higher rate of fishing mortality in the male
component of the spawning stock and the shift toward
male-dominated catches that we observed during the latter
part of the spawning season.

The selectivity curve of this fishery is asymptotic, with
any individual greater than their age of maturity vulnera-
ble to harvest. However, the average age of both male
and female bonefish captured in this fishery is equal to
their age of first recruitment, illustrating the truncated life
span of an average recruit and the limited egg production
it could provide over its lifetime (Goodyear 1993). Given

FIGURE 6. The artisanal fish trap selectivity curve from 2016 to 2018,
plotted in reference to the length at maturity (the blue line indicates
fisheries selectivity in 2016, the orange line indicates fisheries selectivity in
2017, the yellow line indicates fisheries selectivity in 2018, and the black
line indicates the maturation schedule of female Shortjaw Bonefish).
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the current level of fishing mortality, the more conserva-
tive SPR analysis with a Hoenig (1983) M suggests that
the SPR of the atoll's spawning stock is critically low and,
if taken at its 3-year average, the population has lost over
91% of its theoretical egg production. A SPR between
20% to 40% is considered to be the minimum egg produc-
tion required to maintain fish stocks, while SPRs less than
20% are symptomatic of overexploitation (Clark 2002;
Ault et al. 2008; Nadon et al. 2015; Kindsvater et al.
2016). This is because the rate of increase in compensatory
survival required per unit decrease in SPR is significantly
higher when a population's SPR is less than or equal to
20% (Goodyear 1993). With this in mind, the SPR esti-
mates derived from the Hoenignls M suggest that the pop-
ulation's SPR was at this 20% threshold in 2016 and
descended below it throughout the remainder of the study.
Furthermore, previous work has suggested that in scenar-
ios where the spawner–recruit relationship is unknown,
the recommended maximum fishing mortality should be at
least F40% (i.e., a level that would maintain 40% of the
population SPR) because Fmsy cannot be reliably esti-
mated (Mace 1994; Clark 2002). Given our results, the
longevity of bonefish, the unidentified spawner–recruit
relationship, and the fact that the artisanal trap fishery
intensively harvests their spawning aggregations in a way
that has led to the collapse of analogous fisheries (Beets
2000; Johannes and Yeeting 2000), a F40% should be the
target for the management of this fishery (Goodyear 1993;
Mace 1994). Yet, both estimates suggest that the popula-
tion is presently well below this reference point, and
although the fishery continues to provide yield, the popu-
lation could be highly sensitive to environmental stochas-
ticity and other factors that may affect recruitment
(Stacey and Taper 1992; Hutchings and Reynolds 2004;
Reynolds et al. 2005).

Our results demonstrate that the artisanal trap fishery
partially adheres to Froese's first principle of sustainable
fisheries of “let them spawn” as few females are harvested
at sizes less than the length of first maturity (L50). How-
ever, there is an important distinction between harvest at
L50 and the opportunity to spawn. The length at which
95% of female bonefish reach sexual maturity (L95) is 51
cm FL, and female bonefish are fully recruited to the fish-
ery at 5 years of age (i.e., 51–55 cm FL). This evidence
suggests that although the L50 for the species is 48 cm FL
(age 4), some individuals may not make their first spawn-
ing run until their 5th year of life. Consequently, because
the trap fishery primarily captures bonefish en route to
their spawning locations, much of the population's spawn-
ing stock is harvested before their first spawning event,
therefore violating the “let them spawn at least once”
principle (Myers et al. 1997; Myers and Mertz 1998). Simi-
larly, our results indicate growth overfishing may be
occurring, in that a significant proportion of the harvested

bonefish were outside of the optimum size ranges that
were predicted by both the estimates made with Hoenig
(1983) and Hoenignls rates of M (Diekert 2012). To
improve food security and ensure that the maximum yield
(i.e., edible biomass) can be obtained from an individual
fish, a well-managed fishery will allow new recruits to
grow to an optimum length before they are harvested,
thus increasing the yield obtained from the resource (Holt
1958; Froese and Binohlan 2000; Froese 2004). Finally,
our results based on the Hoenig (1983) M provide evi-
dence of longevity overfishing, wherein the proportion of
megaspawners (Lmega= 64 cm FL) in the population is
critically low (Beamish et al. 2006). These older, larger,
and more fecund fish are disproportionally important to
the population (Berkeley et al. 2004b; Hixon et al. 2014),
and an increasing body of evidences suggests that in addi-
tion to increased fecundity with female body size, mater-
nal age is positively related to larval survival and
recruitment (Longhurst 2002; Berkeley et al. 2004a; Birke-
land and Dayton 2005; O'Farrell and Botsford 2006).
Therefore, the loss of these more experienced spawners
may lead to higher larval mortality rates and recruitment
failure as the aptitude of the collective spawning stock is
reduced (Walsh et al. 2006; Venturelli et al. 2012). More-
over, the population's spawning biomass may be depleted
to a point where depensation could limit the overall repro-
ductive success of fish that escape the trap fishery (Rowe
and Hutchings 2003; Gascoigne and Lipcius 2004; Secor
2015). A well-managed fishery will minimize the harvest
of these age-classes with a goal of 0%. In the assessment
of an unmanaged fishery like that of Anaa Atoll, the pres-
ence of 30% to 40% of megaspawners in a stock would be
considered a healthy age structure and less than 20% of
megaspawners in the catch composition would suggest
that a state of overexploitation exists (Froese 2004). How-
ever, the estimated size of a megaspawner was different
between the two Hoenig (1983) and Hoenignls rates of M
and the later (Lmega= 57 cm FL) suggests that the propor-
tion of megaspawners is relatively high. This discrepancy
is a result of the two rates of natural mortality used in this
study, and given the uncertainty in the estimation of this
parameter, we were unable to definitively asses the status
of megaspawners in this stock. The limitations of the
interpretation of Froese indicators have been explored in
Cope and Punt (2009), and following their recommenda-
tions, both outputs suggest that the spawning biomass is
likely less than 40% or 25% of its unfished potential and
recruitment overfishing could be effecting this population
(Cope and Punt 2009).

Historically, there was a limited number of traps in this
fishery, and it was likely sustainable due to the inefficiency
of rudimentary fishing technology and the limited capacity
to preserve large amounts of fish (Torrente 2015). How-
ever, after a series of cyclones devastated the atoll in the
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early 1980s (Dupon 1984), small-scale economic develop-
ment and food acquisition during the reconstruction of the
atoll was supported by a rapid proliferation in the number
of traps (Filous, personal communications with residents
of Anaa Atoll), and this is a classic case of overcapitaliza-
tion of a fishery (Greboval and Munro 1999; Clark and
Munro 2002). In the adjacent Rangiroa Atoll, the maxi-
mum economic yield was estimated to be 10 traps and
well below the predicted maximum sustainable yield of 53
traps (Chauvet and Galzin 1996). Furthermore, the pulse
nature of spawning and correlated surges in catch leads to
oversupply (De Mitcheson and Erisman 2012), and during
peak spawning activity fishers are frequently forced to sell
bonefish in seven fish per packet as opposed to the stan-
dard five, and in some cases fish are released in poor con-
dition after being held for weeks due to lack of market
demand (A. Filous, personal observation). This suggests
that in addition to overfishing the current trapping effort
does not increase economic benefits to fishers but rather
reduces individual catches, leads to oversupply, and
marginalizes profits, with worrying long-term conse-
quences to the fishery.

Although our data provides only a recent window
into the time series changes in this fishery, our results
suggest that the stock is being fished at a level that is
economically inefficient and at risk of impairing recruit-
ment. While the fishery continues to provide yield, the
collapse of fisheries under heavy exploitation is often
preceded by a period of stability in catch rates, and
these plateau-style collapses, which are often a result of
depensation (i.e., Allee effects from reduced spawner
abundance), provide false impressions of fisheries equilib-
rium (Mullon et al. 2005). Catch rates are known to be
hyperstable in spawning aggregations, and declines are
first realized in adjacent sectors of the fishery (De Mitch-
eson and Erisman 2012). There is some evidence to sug-
gest that this phenomenon is occurring on Anaa, as local
ecological knowledge indicates that bonefish have become
increasingly harder to catch in the traditional fishing
holes in the lagoon, where they were customarily tar-
geted with hook and line. Furthermore, elder residents
indicate that prior to the late 1980s bonefish spawning
aggregations were so plentiful that during their migra-
tions the original stone traps would become completely
saturated and thousands of the fish could be captured
throughout the entire breadth of the passageways where
the artisanal fish traps now operate (Filous, personal
communications with residents of Anaa Atoll). The
apparent consistency of our results and the observations
of the community's elder generations citing marked decli-
nes highlight the utility of the SPR in modeling the cur-
rent status of a fishery in data-limited scenarios (Prince
et al. 2011; Hordyk et al. 2015a, 2015b, 2015c; Ault et al.
2018).

The albulid fisheries of Oceania are integral to the
region's culture, food security, and economic development
but have been impacted by anthropogenic harvest and
habitat modification throughout their range (Beets 2000;
Johannes and Yeeting 2000; Friedlander et al. 2007;
Adams et al. 2013; Allen 2014; Wallace 2015). The bone-
fish fishery at Anaa Atoll exhibits symptoms of overex-
ploitation of its spawning aggregations and epitomizes the
challenges faced by this species and society (Sadovy 2005;
Sadovy and Domeier 2005; Domeier 2012). Given the
severity of overexploitation, there is an urgent need to
manage this fishery as recovery from collapse often takes
decades and requires more extreme regulations (Myers et
al. 1995; Hutchings 2006). However, any action must
appreciate the humanitarian importance of the trap fishery
and its contribution to commercial markets, food security,
and the cultural heritage of the residents of Anaa Atoll.
We emphasize the need to manage the fishery to preserve
both the ecosystem and the cultural services that bonefish
provide to this socioecological system. Here we discuss
potential management solutions that will improve the sus-
tainability of the trap fishery while maintaining a judicious
level of subsistence harvest.

Although this albulid is fished with a variety of gear
types throughout the atoll, management should focus on
the harvest of spawning aggregations (Danylchuk et al.
2011; Adams et al. 2013, 2018). To this aim, the establish-
ment of a slot limit that protects both newly mature
spawning females and megaspawners is a commonly uti-
lized catch control in fisheries management (Froese 2004;
Gwinn et al. 2015). However, though theoretically effec-
tive, given the nature of the fishery where catches are
brailed or netted from the traps in large quantities, we
believe this solution will be hard to implement and there
are many unanswered questions regarding the postrelease
fate of these fish after interactions with humans (Coggins
et al. 2007; Lennox et al. 2017). Furthermore, owing to the
nature of this spawning-aggregation fishery in which bone-
fish are not vulnerable to capture until sexual maturity,
the lower bound of the size limit is naturally enforced by
the reproductive biology of the species. Given the uncer-
tainty surrounding the estimation of natural mortality and
the discrepancy in our results on the exact size of a mega-
spawner, we were unable to specify the effective size to
protect that would conserve this component of the spawn-
ing stock. Finally, even if length-based harvest restrictions
are implemented, if fishing mortality remains high and
unmanaged in younger age-classes, not enough recruits
will survive to reach the size of a megaspawner for this
management strategy to be effective. Thus, the establish-
ment of length-based harvest restrictions should not be a
management priority. Alternatively, as noted above, the
fishery is overcapitalized and the migratory passes from
the lagoon to the ocean are saturated with traps. Although
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the number of traps actively fishing is only a fraction of
the number historically available, fishing effort (i.e., the
number of traps) must be adjusted to match population
size and the overall health of the resource. Therefore, we
propose fishers, local government, and the regional fish-
eries authority work together to cap the number of active
traps permitted in the atoll's migratory corridors so that
fishing capacity can be matched to the size of the resource.
However, this is a long-term solution that will require
considerable effort and collaboration with stakeholders,
both at the local and national level. The critical state of
the population indicates more immediate action is
required to prevent the collapse of this fishery.

Consequently, spatiotemporal closures in the atoll's
migratory corridors during peak reproductive activity
provide an easily enforceable, low-economic-impact, and
biologically effective management solution (Heppell et al.
2012; Gruss et al. 2014; Erisman et al. 2017). The most
significant finding of this research in regard to this man-
agement option is the apparent difference in the sex ratios
of bonefish aggregations throughout the course of the
spawning season. This suggests that the majority of the
population's females synchronize their egg development
and spawn together during the beginning of the season.
Previous work has proposed the resurgence of traditional
management in the form of a rahui (the traditional conser-
vation method of Eastern Polynesia) during the waning
gibbous moon phase (Filous et al. 2019a, 2019b). The
results of the present study demonstrate that the most effi-
cient period to institute a rahui, while at the same time
maintain a level of traditional harvest, may be to protect
the first three moon phases of the spawning season in
March, April, and May by the removal of chicken wire
from the cod end of the traps and subsequently open the
fishery for the remainder of the year. In doing so, a signifi-
cant proportion of females would be allowed to spawn
(i.e., maximizing egg production), ensuring a series of
reproductive events and reducing overall fishing mortality
to both the female and male components of the popula-
tion. Along with these management actions, continued
yearly monitoring of the size structure of fish harvested
during the open season would allow the efficacy of these
seasonal closures to be evaluated.

Given the urgent need for management and the failure
of many top-down management regimes in Oceania
(Johannes 1978, 1998; Friedlander 2018), we recommend
a community-based management approach to implement-
ing these conservation actions based on local participation
in the monitoring of the resource (Mcclanahan et al. 1997;
Wilson et al. 2006; Danielsen et al. 2007; Jokiel et al. 2011;
Ayers and Kittinger 2014; Schemmel et al. 2016; Vaughan
et al. 2017). Rahui is the traditional conservation method
of Eastern Polynesia in which a community can chose to
restrict the use of an area or resource that is in decline

and provides a socially robust method of management.
Rahui can include spatial closures, seasonal closures, size
limits, or any other form of regulatory measure that is
enacted to preserve a scarce resource (Bambridge 2016).
To this aim, our results were presented to the community
of Anaa Atoll by the local school and the government
established an Educational Managed Marine Area
(EMMA), which overlaps with the bonefish migratory
corridor adjacent to Tukuhora village (https://www.radio1.
pf/anaa-a-son-aire-marine-educative/). As part of this
EMMA, the atoll's school children were taught the biol-
ogy of bonefish and the importance of megaspawners and
their representatives worked with the atoll's fishers and
stakeholder groups to petition the community for the insti-
tution of a temporal rahui inside the EMMA during the
three critical months described above. Given that their
habitat is pristine and the high fecundity of bonefish, we
project the bonefish population will recover under this
management regime. Our estimate of generational turn-
over time suggests that it will take 12 years to yield a
meaningful recovery of the resource, but given the age of
maturity and recruitment to the fishery, we expect measur-
able changes in population abundance within 4–5 years. In
light of these positive management outcomes, our results
provide an important reference point from which this pop-
ulation can be monitored in future years.
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