
Received December 16, 2019, accepted January 3, 2020, date of publication January 8, 2020, date of current version January 15, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2964755

Patch-Based Convolutional Neural Network for
Differentiation of Cyst From Solid Renal Mass
on Contrast-Enhanced Computed
Tomography Images
FATEMEH ZABIHOLLAHY 1, N. SCHIEDA 2, AND E. UKWATTA 3, (Senior Member, IEEE)
1Department of System and Computer Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada
2Department of Radiology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
3School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada

Corresponding author: Fatemeh Zabihollahy (fatemehzabihollahy@cmail.carleton.ca)

The work of E. Ukwatta was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery.

ABSTRACT Automated classification of renal masses detected at computed tomography (CT) examinations
into benign cyst versus solid mass is clinically valuable. This distinction may be challenging at single-phase
contrast-enhanced CE-CT examinations, where cysts may simulate solid masses and where renal masses
are most commonly incidentally detected. This may lead to unnecessary and costly follow-up imaging for
accurate characterization. In this paper, we describe a patch-based CNN method to differentiate benign
cysts from solid renal masses using single-phase CECT images. The predictions of the network for patches
extracted from a manually segmented lesion are combined through the majority voting system for final
diagnosis. We used a dataset comprised of single-phase CECT images of 315 patients with 77 benign
(oncocytomas, and fat poor renal angiomyolipoma) and 238 malignant (renal cell carcinoma including clear
cell, papillary, and chromophobe subtypes) tumors.We trained our proposed network using patches extracted
and artificially augmented from 40 CECT scans. The presented algorithm was evaluated using 275 unseen
CECT test images consisting of 327 renal masses by comparing algorithm-generated labels to those labeled
by experts and achieved mean accuracy, precision, and recall of 88.96%, 95.64%, and 91.64%. Our method
yielded accuracy of 91.21% ± 25.88% as mean ± standard deviation at the patient level. The AUC was
reported as 0.804. The results indicate that our algorithm may accurately characterize benign cysts from
solid masses with a high degree of accuracy and may be clinically valuable to prevent unnecessary imaging
follow-up for characterization in a proportion of patients.

INDEX TERMS Renal mass, benign cyst, malignant, convolutional neural network.

I. INTRODUCTION
Renal cancer is among the 10 most common cancers and
renal cell carcinoma (RCC) is the most common type of
malignancy of the urogenital tract after prostate cancer [1].
RCCs are most commonly detected incidentally in patients
undergoing computed tomography (CT) for other reasons;
however, other renal lesions, which are not RCC, are also
commonly detected during CT, most commonly benign renal
cysts. It is estimated that between 15-40% of patients under-
going CT will have an incidentally discovered renal lesion
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and among these, the most common are benign cysts [2], [3].
A benign cyst can be diagnosed at CT when it is homoge-
neous, well-circumscribed and measures water attenuation
(<20 Hounsfield Units [HU]).When all of these three criteria
are met, a cyst can be diagnosed with a high degree of accu-
racy [4]. Inmany instances, a cyst cannot be diagnosed at time
of initial CT which may occur due to: internal complexity
from protein or hemorrhage or from pseudo-enhancement
(which is the artificial increase in attenuation of a cyst due
to beam hardening artifact from adjacent iodine in the kid-
ney on single-phase enhanced CT scans) [5]. Indeterminate
renal lesions that may be cysts require further imaging with
dedicated multi-phase CT or magnetic resonance imaging
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(MRI) or biopsy for definitive diagnosis. The further workup
of potentially benign incidental imaging findings is costly and
increases patient morbidity.

Automated assessment of RCC is of great interest to the
imaging community given the variable inter-observer agree-
ment for diagnosis of renal masses using subjective assess-
ment and relatively low reported accuracy for differentiating
benign from malignant solid masses [6]. Automated differ-
entiation of a benign cyst from solid mass is also clinically
desirable, as discussed above, and, is an essential step for
automated evaluation of solid renal masses for eventual clas-
sification into benign neoplasms and RCC. Automated clas-
sification of solid renal masses into subtypes using first- and
second-order texture features [7]–[10] and machine learn-
ing [11]–[15] has been previously studied and is also actively
under investigation. However, to best of our knowledge dif-
ferentiation of benign cysts from solid renal masses has not
been studied to date. The purpose of this study is to design and
evaluate a patch-based convolutional neural network (CNN)
model to differentiate benign renal cyst from solid renal mass
(Figure 1). It has been demonstrated that patch-based CNN
can outperform image-based CNN for whole slide tissue
image classification [16]. In an image-based approach the
network is trained and tested using the whole image whereas,
in a patch-based approach, small images are extracted around
each pixel in the image and used for CNN training and
testing. We evaluated the developed algorithm on the largest
cohort of renal masses at CECT studied to date for automated
diagnosis that was acquired from four CT scanners that assure
us of technique robustness and generalizability of results.
Moreover, we computed the inter-observer variability of the
algorithm. Additionally, we compared the results of the CNN
to those of thresholding based on CT number for benign cyst
diagnosis.

II. METHOD
A. PATIENT, CT TECHNIQUE, AND
MANUAL SEGMENTATION
This retrospective study was approved by the Ottawa Hos-
pital Research Ethics Board. Under the institutional review
board (IRB) approval 315 consecutive patients with histolog-
ically confirmed solid renal masses and CT without interven-
ing chemo- or radiotherapy were identified. The images used
in this study were taken using four CT systems including GE
Medical Systems (Lightspeed 64 and Discovery 750 HD),
Toshiba (Aquillion 64 and 320), Siemens (Sensation 64), and
Philips (Brilliance 64). For each patient, anonymized images
in digital imaging and communication in medicine (DICOM)
format were exported for axial CECT from our PACS. Images
were evaluated by a fellowship-trained genitourinary radi-
ologist with 13 years of experience in renal CT working
in conjunction with a research assistant experienced in the
analysis and segmentation of CT and magnetic resonance
images using ITK-SNAP version 3.2 (Philadelphia, PA). For
each patient, the radiologist and research assistant identified
each solid renal mass and correlated the location on CT

FIGURE 1. An example of a) benign renal cyst b) solid renal mass on CECT
images. The 2D CT images are visualized in the standard abdominal
window and level set of 400 and 50, respectively.

images to the pathology reports. The boundaries of the solid
renal masses were then identified and the solid renal mass
segmented. Before completing the segmentation, the radiolo-
gist reviewed all of the images for other renal cystic or solid
masses in the kidneys present on CT images.When additional
solid renal masses were identified without histological con-
firmation, the patient was excluded. When incidental cystic
renal masses were encountered that measured ≥10 mm with
adequate reference standard [17] to confirm benign Bosniak
1 or 2 simple cyst, described above, the cysts were also
segmented. Renal cysts measuring <10 mm were excluded,
as these are considered too small to characterize in clinical
practice and of no clinical significance [18].

B. PATCH EXTRACTION AND BALANCING DATASET
For both training and testing phases, renal masses were
manually delineated from CECT scans as explained in the
previous section. A local image (patch) of size 40×40 pixels
around voxels in the renal mass tissue was then derived in
the transversal direction with the stride of 5 pixels and the
density values were normalized into the range [0,1] across
each patch (Figure 2). To label patches as a cyst or solid,
the corresponding patch extracted from manual segmenta-
tion was used as a reference. As the number of cysts was
less than the number of solid renal masses in our dataset,
we had fewer patches labeled as cyst than those assigned
to the solid renal mass class that caused a class imbal-
ance in the training set. To address this problem, the elastic
transformation was applied to the instances from underrep-
resented class to expand the training dataset. The method
described by Simard et al. [19] was followed to perform elas-
tic deformation.
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TABLE 1. Configuration of the proposed convolutional neural network for classification of extracted patches into cyst and solid renal masses.

FIGURE 2. A diagram of our proposed method for patch extraction from
renal mass tissue.

C. NETWORK ARCHITECTURE
In designing the CNN model, number of layers (including
convolutional, maximum pooling, and Dropout), number of
filters, number of layers and nodes in the fully connected
layer, number of training images, patch size, optimizer, and
loss functions were varied. For each set of parameters, a sep-
arate network was trained, which was then tested on a subset
of unseen images to compare the results and choose the CNN
model that yields the highest classification accuracy.

Table 1 displays the configuration of the CNN we used in
our experiments to distinguish cyst from solid renal masses.
All parameters of the network were adjusted experimentally
aimed at raising the network performance. The developed
CNN is made up of 6 convolutional (Conv.) layers of size
3 × 3 with 16, 16, 32, 32, 64, and 64 filters in each layer.

Rectified Linear Unit (ReLU) and batch normalization were
applied after each Conv. layer. After every two Conv. layers,
one maximum pooling (Max. Pool) layer of size 2 × 2 was
employed that calculates the maximum of 4 output nodes.
A conventional neural network with two hidden layers of size
64 neurons was included to the end of our proposed network
in which three Dropout layers were added before hidden and
output layers.We used softmax as an activation function at the
last layer of our suggested CNN to map the non-normalized
output of a network to a probability distribution over pre-
dicted output classes. Categorical cross-entropy and Adadelta
were used as loss function and optimizer to train the CNN,
respectively.

D. NETWORK TRAINING AND TESTING
Our dataset comprised of 315 CECT images of size
512 × 512×N (N: [31,555]). The images were randomly
divided into the training (N = 40), and testing (N = 275)
sets. Table 2 shows the number of CECT images used in our
experiments broken by the CT systems for training and test-
ing phases, separately. As seen, a combination of data from
multiple CT scanners was used for training and testing. This
strategy may be limited because it does not account for small
differences between CT scanner types; however, using the
same technical parameters across systems not only allowed
the network to learn the signal characteristics of all scanners
during training but also assured us that the results could be
more generalizable and reproducible between systems and
centers [7]. As we used the patch-based approach for this
study, the number of patches derived from 40 images was
enough for training the suggested network. Figure 3 shows
an overview of our proposed method for renal masses assess-
ment. The network was trained using patches that extracted
from training CECT scans and artificially augmented that
results in a total of 65287 patches (32837 and 32450 patches
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FIGURE 3. A flow diagram of our proposed methodology, where the left and right block diagrams
display training and testing procedures.

TABLE 2. The number and variety of CT systems used in our experiments
for training and testing phases.

labeled as cyst and solid renal mass respectively) for training.
We implemented the algorithm in Python using Keras library
built on top of Tensorflow. The network was trained for
250 epochs on Intel Core i7, 2.8 GHz on a graphics process-
ing unit (GPU)-accelerated computing platform, which took
approximately 110minutes. In the testing phase, the extracted
patches around each voxel from manually segmented renal
mass tissue were passed to the trained CNN to be labeled as
benign cyst or solid renal mass. For each renal mass, if the
number of predicted patches with the label of benign cyst
was more than that of solid, the renal mass was categorized
as cyst and vice versa. For cases with an equal number of
patches labeled with benign cyst and solid renal masses, the
patch-extraction was repeated with the different stride value
(3 or 4 pixels) to assure of existing unequal number of cyst
and solid labels as a prerequisite for applying majority voting
rule.

E. EVALUATION METRICS
We used accuracy, precision, and recall to assess the per-
formance of our algorithm for renal mass classification

(i.e., benign cyst vs. solid renal mass).

Accuracy =
TP+ TN

TP+ FP+ TN + FN
, (1)

Precision =
TP

TP+ FP
, (2)

and

Recall =
TP

TP+ FN
, (3)

where TP, TN, FP, and FN denote true positive, true negative,
false positive, and false negative, respectively. These metrics
were computed per tumor basis. Therefore, if there were
multiple tumors in one kidney, each tumor was considered
separately in computing the metrics. We also computed the
accuracy of renal mass classification on a per-patient basis.
To this end for patients with multiple tumors, the mean accu-
racy was computed for each patient and the average accu-
racy across the whole test dataset was reported. Moreover,
the receiver operating characteristic (ROC) curve, which
graphs the true positive rate (sensitivity) against the false
positive rate (1 - specificity) at various threshold settings
was plotted. The area under the ROC curve (AUC) was
reported as a measure of our proposed method for renal
mass assessment performance across all possible classifica-
tion thresholds. We measured 95% confidence interval and
p-value for AUC. To this end, the AUC computation was
bootstrapped 10,000 times by sampling predicted and true
labels for each lesion in the test dataset with replacement. The
lower and upper bounds at the 95% level of the histogram of
the bootstrapped AUC values considered as the confidence
intervals. Given 0.5 as the null hypothesis value of AUC,
the p-value was a matter of counting the proportion of time
AUC was less than or equal to 0.5.
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We used the coefficient-of-variation (CV) [20] in accuracy
of the algorithm in classifying renal masses into benign cyst
and solid renal masses on a per-patient basis to evaluate the
variability among users.

To diagnose a simple cyst on CT, the lesion should be com-
pletely homogeneous and measure < 20 HU in density [4].
A cyst measuring ≥ 20 HU is technically indeterminate on
CT and would require further characterization typically with
a follow-up CT or MRI performed with and without IV
contrast to assess for the presence of enhancement. Follow-up
imaging results in unnecessary health care expenditure and
increases patient morbidity. Since many cysts will spuriously
measure above 20 HU at single-phase CECT (due to pseudo-
enhancement) higher attenuation thresholds have been pro-
posed to improve accuracy including 30 HU [17] and more
recently 40 HU [21]. A limitation of using higher atten-
uation thresholds to diagnose simple cysts is the potential
false positive results and misclassification of solid masses
which show low levels of enhancement andmeasure<40HU.
We calculated the number of cysts and solid masses with
average HU ≥20 HU, ≥30 HU and ≥40 HU to determine
what proportion of cysts and masses would be accurately
classified using only attenuation measurements. Since atten-
uation measurements are performed in clinical practice by
manual placement of a circular region of interest (ROI) in
the center of a lesion encompassing approximately 2/3 of its’
surface area and avoiding the edges to prevent inclusion of
adjacent structures, we trimmed the boundary of the cysts
and tumors for three iterations using the erosion operation in
python to sample the center of tumor for density computation.
The HU was then estimated at the tumor level. The ROC for
HU was also plotted, where the diagnosis of a benign cyst
was true positive when HU < 20, and false negative when
HU≥ 20. The diagnosis of solid mass was considered as false
positive for HU < 20, and true negative otherwise.

III. RESULTS
Our proposed method for differentiating benign cyst from
solid renal masses yielded mean accuracy, precision, and
recall of 88.96% (291/327), 95.64%, and 91.64% on
275 CECT test images including 327 renal masses (39 benign
cysts and 288 solid renal masses) on a per-renal mass basis.
The confidence interval for accuracy, precision, and recall
at a 95% level was (0.859 - 0.917), (0.935 - 0.975), and
(0.888 - 0.942) respectively.Our methodology reported accu-
racy of 91.21%± 25.88% asmean± standard deviation at the
patient level. The average running time required to classify a
manually segmented renal masses from a typical CECT test
image on Intel Core i7, 2.8 GHz using a GPU-accelerated
computing platform was 14.46 ± 12.30 sec. Figure 4 shows
the confusion matrix for the developed method where the
number of misclassified cases are shown for each type of
renal masses. The average of HU for misclassified cystic
renal masses using our developed method was 51.

The ROC curve was graphed for our proposed methodol-
ogy for diagnosis of benign cyst versus solid renal masses

FIGURE 4. Confusion matrix shows the performance of our proposed
method for classification of cyst and solid renal masses on CECT images.

FIGURE 5. ROC curve displays the performance of our designed
patch-based CNN model for diagnosis of cyst versus solid renal masses,
where true positive rate (sensitivity) against false positive rate (1 -
specificity) has been plotted.

FIGURE 6. Histogram of the ROC AUC values obtained from
10,000 bootstrapping of the AUC calculation.

as shown in Figure 5. The AUC was estimated as 0.804.
Figure 6 displays the histogram of the ROC AUC values
obtained from 10,000 bootstrapping of the AUC calculation.
The confidence intervals at the 95% level was (0.739 - 0.866)
with p-value < 0.0001.
Figure 7 shows examples of cases in which our devel-

oped model failed to classify tumors correctly. In order to
investigate whether there is a correlation between tumor size
and misclassification, the volume of the renal masses was
measured. Although the majority of small renal masses were
correctly classified, the size of approximately 80% of the
misclassified cases was less than one-fifth of the average
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FIGURE 7. Example results of misclassified (a) benign cyst and (b) solid
renal mass using our algorithm. The original CECT images are shown in
the first column. The third column shows the location of tumor where
blue and red show benign cyst and solid renal mass, respectively. The
CECT images are visualized in the standard abdominal window and level
set of 400 and 50.

TABLE 3. Accuracy of classification of benign cysts from solid masses as
evaluated using independent segmentation of two observers.

tumor volume, which suggests that the proposed algorithm
is relatively less accurate in identifying smaller renal lesions.

A subset of our test dataset was used to evaluate the inter-
observer variability of our algorithm. We randomly selected
30 images from patients with different renal mass subtypes
including oncocytomas, fpAml, clear cell RCC, papillary
RCC, and chromophobe RCC (six from each subtype). Two
observers participated in this study. In addition to the initial
segmentations performed (described earlier) by observer 1,
a second observer (observer 2) who was a non-radiologist
shown only where the location of renal masses was in each
patient, and independently segmented the tumors on all slices
in which they appeared. The inter-observer CVwas computed
as 8.8%. As seen, the algorithm yielded a very small inter-
observer CV. In addition, the results for the classification of
benign cysts from solid masses performed equally well using
segmentations from both observers (Table 3). This can be
expected because in our method, small patches are extracted
from the region of interest and the majority voting system is
applied for final prediction. Therefore, minor discrepancies
in manual segmentation at the boundary of the renal masses
do not substantially affect the accuracy of classification at the
patient level.

Our analysis of the average attenuation of benign cysts
in the test dataset revealed that 71.79% of cysts measured
≥20 HU, 48.72% ≥30 HU and 38.46% ≥40 HU. Figure 8
shows the ROC curve for the diagnosis of a simple cyst

FIGURE 8. ROC curve displays the performance of conventional
assessment for diagnosis of cyst versus solid renal masses, where true
positive rate (sensitivity) against false positive rate (1 - specificity) has
been plotted.

TABLE 4. The performance of different techniques for benign cyst
diagnosis on CECT test images.

from solid renal masses using attenuation with the different
threshold values of 20 HU and 30 HU. AUC was 0.639 and
0.743 for HU ≥ 20 and 30, respectively.
The results of our study revealed that automated diag-

nosis of benign cyst is more challenging than that of solid
tumors. We examined the performance of CNN for cyst
cases and compared the results with the traditional method,
where benign cysts are differentiated from solid tumors based
on the HU threshold. Table 4 shows the results of differ-
ent methods for cyst detection, where the CNN approach
is more accurate for cyst identification than thresholding
based on CT numbers. It is remarkable that we measured the
CT numbers in HU in 3D while in practice the slice-wise
measurement is performed. Therefore, it is likely to have a
greater number of incorrectly diagnosed benign cyst using
HU thresholding-based technique.

IV. DISCUSSION
In this study, we described a CNN-based method to differ-
entiate benign renal cysts from solid renal masses. Our pro-
posed method was evaluated on a relatively large test dataset
compared to previous studies have done on automated evalu-
ation of renal masses and achieved highly accurate results.
Using the patch-based CNN model for classification, our
proposed algorithm benefits from the majority voting system
for the final prediction that improves the performance of the
designed model for renal mass evaluation. Our results may be
useful for groups actively investigating automated diagnosis
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of renal masses since an initial step after kidney segmentation
is to differentiate benign cysts (which are ubiquitous in the
population) from any solid renal mass. Our results may also
be clinically useful, since a proportion of benign cysts may
appear complex and indeterminate in CT, requiring further
costly work-up in many instances and our results indicate
that the proposed model can be highly accurate to diagnose
renal cysts from solid masses at single-phase enhanced CT
exams. In training our CNN model, we had substantially
fewer images with cysts. We employed elastic transformation
to artificially augment data from training samples of patches
with cyst label that was the key concept in designing our
method. Elastic transformation not only enhanced available
data for training instances but also reduced the generalization
error as this operation allows the network to learn invariance
to such deformation which is a common variation in CT
images due to the dynamic motion of abdominal tissues.
The low inter-observer CV of our algorithm suggests high
reproducibility. This is particularly useful in multi-center
clinical trials andwhen using large registries of tumors, where
segmentation could be performed by multiple observers.

We evaluated the average density of benign cysts in
our test dataset which demonstrated that the majority of
cysts measured greater or equal than 20 HU which, when
applied strictly, would require that these lesions be further
characterized with additional dedicated imaging with renal
mass protocol CT or MRI. The increased attenuation of
benign cysts in our study is likely due to the fact that only
single-phase enhanced CT images were evaluated where
pseudo-enhancement spuriously increases attenuation val-
ues. Comparing the ROC curves for HU and our proposed
methodology shows the potential clinical value of our method
whichmay help to characterize a subset of benign cysts which
may otherwise be considered indeterminate. In the recently
published Bosniak version 2019 guideline, an upper threshold
of 30 HU has been proposed to diagnose benign cysts from
solid masses and to partially mitigate the effects of pseudo-
enhancement [17]; however, this proposed threshold requires
further validation. When applied in our cohort, 48.72% %
of cysts measured >30 HU, whereas 2.78% of solid masses
measured <30 HU.
This study has several limitations. One limitation of our

technique is that it requires expert manual identification of
renal masses on CECT images. In practice, this is not a major
limitation since renal lesion detection is rarely a clinical
problem and renal lesion segmentation is by far less time
consuming than whole kidney segmentation. Future studies
are required to develop a fully automated approach includ-
ing renal mass detection and segmentation. In this research,
we used patch-based CNN that inherits all limitations of
patch-based approach including redundant computation due
to the overlap exists between adjacent patches, being slow,
and incapability of capturing both local and global features
simultaneously [22]. Although the sample size in this study
was quite large and images were acquired from several
CT scanners, images were taken from a single institution

retrospective cohort that may create the potential for popu-
lation bias. Evaluation of our technique in other patient pop-
ulations is required. The number of reported cysts measuring
≥20 HU and≥30 HU at enhanced CT is higher than expected
and this most likely relates to the automated HU calcula-
tion derived from the whole cyst rather than the single slice
HU measurement using ROI placement in clinical practice.
Though we attempted to simulate manual ROI placement in
practice by trimming the volume of HU measurement in our
study, it is likely that the whole cyst analysis resulted in an
increasedmeanHUvalue per cyst compared towhat would be
expected by using single slice ROI measurements. Neverthe-
less, the practice of ROI placement in clinical practice is not
without its’ own limitations subject to observer differences
in the size of ROI and placement of ROI which has been
reported to vary reported HU measurements and accuracy of
classification [23].

V. CONCLUSION
We described a deep learning-based model that differentiates
renal lesions on CECT as benign cysts compared to solid
masses. The results indicate that our algorithm is highly
accurate in characterizing benign cysts from solid masses and
maybe clinically valuable to prevent unnecessary imaging
follow-up for characterization in a proportion of patients.
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