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ABSTRACT
To test for the existence of long run relationship, a variety of null of
cointegration tests have been developed in literature. This study is
aimed at comparing these tests on basis of size and power using
stringency criterion: a robust technique for comparison of tests as it
provides with a single number representing the maximum difference
between a test’s power and maximum possible power in the entire
parameter space. It is found that in general, asymptotic critical val-
ues tends to produce size distortion and size of test is controlled
when simulated critical values are used. The simple LM test based
on KPSS statistic is the most stringent test at all sample sizes for all
three specifications of deterministic component, as it has the max-
imum difference approaching to zero and lesser than 20% for the
entire parameter space.
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1. Introduction

Engle and Granger (1987) were first to introduce the concept of cointegration.
Cointegration means the existence of long run relationship between two or more than
two integrated of order one variables. For two variables say X and Y having order of
integration as one, if their linear combination has order of integration as zero, then
these two variables are said to be cointegrated i.e., they have a long run relationship.
After, its development numerous tests of cointegration have been developed for the last
three decades such as tests developed by Phillips and Ouliaris (1990), tests developed by
Johansen and Juselius (2009), test developed by Pesaran et al. (2001) and many more.
At first these cointegration tests were developed for the null of no cointegration.
However, later on Leybourne and McCabe (2009) were the pioneers of developing coin-
tegration tests for null of cointegration. Following them, null of cointegration tests were
developed in great diversity such as test developed by Shin (1994), tests developed by
Fern�andez-Macho and Mariel (1994) and many others. All these tests were developed
on basis of different characteristics of population assuming different data generation of
a cointegrated system.
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These developed cointegration tests produce contradicting results to each other for a
same empirical problem, due to different underlying assumptions of each test. Hence,
there was a need to evaluate the performance of these developed tests. Therefore, to fill
this gap and to evaluate the performance of cointegration tests, comparisons have been
carried out in literature in great diversity. Most of these comparisons were based on
Monte Carlo simulations (MCS) such as Banerjee et al. (2009), Kremers et al. (1992)
Boswijk and Franses (1992), Haug (1996), Mariel (1996), Pekmezci and Dilek (2016)
and many more. However, few comparison were based on real data such as Pesavento
(2004) and Gonzalo and Lee (1998). All these MCS-based comparisons assessed the per-
formance of tests using two criteria: one is the size of the test and the other is power of
the test. The size of test is defined as “The probability of rejecting a null hypothesis
when actually it is true” and the power of a test is defined as “Probability of rejecting a
null hypothesis when actually it is false.” A test is said to be better than other if it has a
controlled size (i.e., empirical size must be around nominal size, when test is conducted)
and better power than rest. For a detailed survey of these comparisons, Khan and
Zaman (2017) may be consulted. Majority of these MCS-based comparison considered
one or two alternative hypotheses even though the alternative space has infinite values.
However, among all these comparisons, the studies of Haug (1996) and Mariel (1996)
were the most comprehensive and broad ones, comparing nine different tests over 10
different alternative hypotheses, covering almost all of the alternative space. These two
studies assumed different data generating processes (DGPs). However, according to
Haug (1996) and Mariel (1996) there is no conclusive answer that which test or tests
perform better than rest. In a recent study by Pekmezci and Dilek (2016), only two
cointegration tests were compared using only three points in alternative space.
The performance of six tests having null of cointegration was evaluated by Gabriel

(2003) on basis of size and power using MCS. Gabriel (2003) assumed a variety of
DGPs. The study of Gabriel (2003) is the only one, carrying comparison of only null of
cointegration tests, to the best of our knowledge. Rest of all studies in literature are
either comparing only the tests having null hypothesis of no cointegration or comparing
both types of tests, i.e., tests with null of no cointegration and null of cointegration.
All these MCS-based comparative studies used the asymptotic critical values, produc-

ing size distortions. However, even though the size of tests was not controlled, yet these
tests were compared on basis of their powers. It is the basic principle in statistics and
econometrics that two or more tests cannot be compared on basis of power if their sizes
are not controlled. Because, if a test has empirical size way larger than the nominal size
then it is more than likely to have higher power. Moreover, there is a need of frame-
work through which tests are compared for the whole alternative space. Therefore, this
article is aimed to fill two gapes in literature: first the size of tests is controlled around
a fixed nominal size. Secondly, the whole alternative space is considered for power com-
parison. For this purpose, the stringency criterion: a robust technique for comparison of
tests is used. The detailed discussion on stringency criterion can be found in Zaman
et al. (2017). The stringency criterion has been used for comparison of tests in a limited
number of studies including Khan and Khan (2018) and Islam (2017).
Eight tests with null of cointegration are compared based on MCS in this study.

These tests are compared on basis of two criteria, i.e., size of test and stringency. This
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study will enable practitioners, applied researchers and statisticians to select an appro-
priate better performing test on basis of size and power. This study will also shed light
on worse performing tests, so those may be avoided. It will also enable the practitioners
to decide, whether to use asymptotic critical values or simulated ones.
The structure of the rest of study is as follows. Section 2 discusses the whole meth-

odological framework adapted to carry out the study. Section 3 have the results
explained. Section 4 draws conclusions and provide recommendations to the readers. At
the end “References” are listed.

2. Methodology

This section gives details of eight tests to be compared in “tests to be compared,” the
system of equations used to generate the artificial data in “artificial data generation,”
the steps to be followed to get a the size of test, using asymptotic critical values as well
as using simulated critical values in “MCS design for empirical size of test a,” the steps
to be followed for obtaining simulated critical values in “MCS design for simulated crit-
ical values” by fixing a, the steps to be followed to estimate power of test in “MCS
design for power,” the detail of point optimal test in “point optimal test” and the details
of stringency in “stringency criterion.” Moreover, the details of an empirical example
using the quarterly data of GDP and household consumption expenditure for USA
from 1957-Q1 to 2013-Q3 are also laid out. All the codes for carrying out this study are
compiled and run in MATLAB.

2.1. Tests to be compared

Eight tests with null hypothesis of cointegration are compared in this article whose
details are:

2.1.1. LM Test of cointegration based on KPSS statistic (LMKPSS)

It is supposed that there are two classes of variables, say yt and xit , i ¼ 1, 2, ::::::::::::,m
which are separately I(1), i.e., Integrated of order one. To carry out the test, first an
ordinary least square (OLS) regression is fitted

yt ¼ dwt þ
Xm
i¼1

bixit þ lt t ¼ 1, 2, :::,T (1)

Where, yt is the dependent and xit , i ¼ 1, 2, ::::::::::::,m are m independent variables. The
term wt denotes the deterministic part containing intercept and linear time trend.
Leybourne and McCabe (2009) suggested that following Kwiatkowski et al. (1992), LM
type test statistic can be used for cointegration testing under null hypothesis of cointe-
gration. This LM type test statistic is

LM ¼ T�2

PT
t¼1 S

2
t

s2ðlÞ
where St ¼

Pi
t¼1 l̂t and

COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATIONVR 3



s2ðlÞ ¼ l̂t
0l̂t

T

And l̂t are OLS residuals estimated from Eq. (1). In this article, critical values of this
test have been taken from McCabe et al. (1997).

2.1.2. Leybourne and McCabe’s LBI test of cointegration (LMLBI)

This test was also developed by Leybourne and McCabe (2009). According to them the
same LM type test statistic can be used as a test of cointegration with null of cointegra-
tion with a slight nonparametric modification. The test statistic is

LBI ¼ T�2

PT
t¼1 S

2
t

s2ðlÞ
where St ¼

Pi
t¼1 l̂t and

s2ðlÞ ¼ T�1
XT
t¼1

l̂2
t þ 2T�1

Xl
s¼1

XT
t¼sþ1

l̂tl̂t�s

And l̂t are OLS residuals estimated from Eq. (1). The selection of lag truncation param-
eter l is a crucial issue in real world applications. Different values of l lead to different
results. The power and size of test depends on value of l: In this l ¼ 4 has been taken
as proposed by Mariel (1996). According to him at this value, size of test is controlled
and gives reasonable powers. In this the critical values of this test have been used from
McCabe et al. (1997).

2.1.3. Shin’s C test of cointegration (SC)

Shin (1994) proposed to use OLS residuals l̂t from regression Eq. (2) instead of Eq. (1)

yt ¼ dwt þ cxt þ
Xk
i¼�k

piDxt�i þ lt t ¼ 1, 2, :::,T (2)

Where, yt is the dependent, xt is vector of independent variables and k is the maximum
number of lags or leads. The term wt denotes the deterministic part containing intercept
and linear time trend. The test statistic is

C ¼ T�2

PT
t¼1 S

2
t

s2ðlÞ
Where St ¼

Pi
t¼1 l̂t and

s2ðlÞ ¼ T�1
XT
t¼1

l̂2
t þ 2T�1

Xl
s¼1

�
1� sðl þ 1Þ�1

� XT
t¼sþ1

l̂tl̂t�s

And l̂t are OLS residuals estimated from Eq. (2). The selection of lag truncation param-
eter l is again a crucial issue as stated in Sec. 2.1.3. In this study, l ¼ 4 has been used as
proposed by Mariel (1996) and k ¼ 5 as proposed by Shin (1994). Critical values are
given in Shin (1994).
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2.1.4. McCabe–Leybourne–Shin test of cointegration (MLS)

McCabe et al. (1997) proposed a different estimation methodology using maximum like-
lihood estimation instead of OLS. They suggested that first OLS residuals l̂t may be
estimated from Eq. (2) and then these residuals l̂t may be used to estimate residuals ĝt
by applying maximum likelihood estimation to equation

l̂t ¼
Xp
i¼1

kiDl̂t�i þ gt

Where p is selected with minimum Akaike information criterion (AIC). The test statistic is

Ls ¼ ĝt
0 Xĝt

T2S2ðlÞ
Where X ¼ KK0 with K is the lower triangular matrix of ones and

S2ðlÞ ¼ ĝt
0 ĝt
T

In this study, the maximum value of p is taken as 4 and then AIC is used to choose
appropriate value of p: The critical values of MLs are given in McCabe et al. (1997).

2.1.5. Hausman H1 test of cointegration (HH1)

Fern�andez-Macho and Mariel (1994) proposed a test statistic that compares two estima-
tors. These two estimators are consistent under the null hypothesis of cointegration;
however, one is inconsistent under the alternative hypothesis of no cointegration. The
OLS estimation of Eq. (2) will give us an estimate of c say ĉL: Define

tt ¼ yt �
Xk
j¼�k

p̂jDxt�j (3)

Where p̂j are OLS estimates of Eq. (2). Then estimate following equation using OLS to
obtain estimator ĉD

Dtt ¼ cDDxt þ et (4)

These two estimators are used to define Hausman like tests statistic under null hypoth-
esis of cointegration

H1 ¼ ðĉL � ĉDÞ0ðV̂D þ V̂ LÞ�1ðĉL � ĉDÞ
where V̂D and V̂ L are estimates of the covariance matrices of ĉD and ĉL, respectively.
Fern�andez-Macho and Mariel (1994) also gave critical values for the sample sizes of
T¼ 10, 20, … , 500 and for 1–4 regressors. In our study we have settled for k ¼ 5:

2.1.6. Hausman H2 test of cointegration (HH2)

Fern�andez-Macho and Mariel (1994) proposed a second test statistic H2 based on same
estimators ĉL and ĉD under null hypothesis of cointegration. These two estimators are
estimated using Eqs. (2)–(4). The test statistic is given as
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H2 ¼ ðĉL � ĉDÞ0 V̂D
�1ðĉL � ĉDÞ

where V̂D is estimate of the covariance matrix of ĉD: Again, Fern�andez-Macho and
Mariel (1994) also gave critical values for the same sample sizes of T¼ 10, 20, … , 500
and for 1–4 regressors. In our study, again we settled for k ¼ 5:

2.1.7. Hansen’s Lc test of cointegration (HLC)

Hansen (1992) developed the Lc test which is based on the fully modified estimation
method of Phillips and Hansen (1990). This procedure follows with estimation of
Eq. (1) by OLS and finding out of estimated residuals l̂t: Then by taking first differ-
ence

Dxit ¼ tit for i ¼ 1, 2, :::,m,

with the tit representing mean-zero random errors. Then nt is defined by

nt ¼ ðlt t0tÞ
VAR (1) model is estimated using equation

nt ¼ Hnt�1 þ !t

The estimated residuals matrix !̂t is used to calculate

K̂! ¼
XT
s¼0

wðs=M̂Þ 1
T

XT
t¼sþ1

!̂t�s!̂
0
t

X̂! ¼
XT
s¼�T

wðs=M̂Þ 1
T

XT
t¼sþ1

!̂t�s!̂
0
t

Where wðs=M̂Þ denotes an appropriate weighting Kernel. In our study, we used quad-
ratic spectral kernel, i.e.,

wðs=M_ Þ ¼ 25

12p2ðs=M_ Þ2
sin
�
6pðs=M_ Þ

�
=5�

6pðs=M_ Þ
�
=5

� cos
��

6pðs=M_ Þ
�
=5
�8><

>:
9>=
>;

and automatic bandwidth estimator M as

M̂ ¼ 1:3221
�
âð2Þ

�
T

� �1=5

where

âð2Þ ¼
Xp
a¼1

4q̂2
ar̂

4
a

ð1� q̂aÞ8
=
Xp
a¼1

r̂4
a

ð1� q̂aÞ4
(5)

In Eq. (5), q̂a and r̂2
a are the estimated AR coefficient and estimated variance of resid-

uals of endogenous variable “a.” The above estimates are recolored to get the required
covariance estimates

X̂ ¼ ðI � ĤÞ�1X̂!ðI � Ĥ
0Þ�1
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K̂ ¼ ðI � ĤÞ�1K̂!ðI � Ĥ
0Þ�1ðI � ĤÞ�1ĤR̂

Where R̂ ¼ 1
T ntn

0
t

Then matrices X̂ and K̂ are partitioned in conformity with nt :

X ¼ Xll Xlt

Xtl Xtt

� �
and K ¼ Kll Klt

Ktl Ktt

� �

Further define

Xl:t ¼ Xll � XltX
�1
tt Xtl (6)

and Kþ
tl ¼ Ktl � KttX

�1
tt Xtt

The fully modified OLS (FMOLS) estimator

b̂
þ ¼

XT
t¼1

�
yþt x

0
t � ð0 K̂

þ
tl

0Þ
�" # XT

t¼1

xtx
0
t

" #�1

Where yþt ¼ yt � X̂ltX̂
�1
tt Dxt

and the FMOLS residuals are

l̂þ
t ¼ yþt � b̂

þ
xt (7)

The Lc test statistic is a Lagrange multiplier (LM) test:

Lc ¼ trace
XT
t¼1

xtx
0
t

 !�1XT
t¼1

ŜtX̂
�1
l�tŜ

0
t

2
4

3
5

where Ŝt ¼
Pt

i¼1 xil̂
þ
i � 0

K̂
þ
tl

� �� 	
Critical values are given in Boswijk and Franses (1992).

2.1.8. Xiao fluctuation test of cointegration (XFT)

Xiao (1999) derived a residual based test for the null hypothesis of cointegration based
on the fluctuation of the residuals l̂t from the cointegrating regression Eq. (1). Xiao
(1999) used FMOLS to construct a test statistic given as

RT ¼ max
i¼1, :::,T

iffiffiffiffiffiffiffiffiffiffiffiffi
Xl�tT

p 1
i

Xi
t¼1

l̂þ
t � 1

T

XT
t¼1

l̂þ
t

�����
�����

where l̂þ
t are the residuals as given in Eq. (7) and Xl:t is given as in Eq. (6). Critical

values of RT can be found in Xiao (1999).
Table 1 lists the cointegration tests to be compared with their abbreviations to be

used in the rest of paper.

COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATIONVR 7



2.2. Artificial data generation (ADG)

The model in artificial data generation is derived from Jansson (2005) with some modi-
fications for deterministic part. Let us consider time series yt and xt of length T, follow-
ing the DGP given by

yt ¼ Dtd
0 þ xt þ tt

xt ¼ xt�1 þ lxt
tt ¼ tt�1 � ulyt�1 þ lyt (17)

lt ¼ ðlyt , lxt Þ and lt : Nð0,RÞ where R is an identity matrix of same order as lt: Under
null hypothesis of cointegration and alternative hypothesis of no cointegration

H0 : u ¼ 1 ðCointegrationÞ
HA : 0 � u < 1 ðNo cointegrationÞ

In our study, we have taken a set of values of u under alternative hypothesis and this
set is

u ¼ ð0, 0:1, 0:2, 0:3, 0:4, ������� 0:9Þ
Dt denotes the deterministic part comprising of intercept and linear time trend i.e.,

Dt ¼

1 1
1 2
� �
� �
� �
1 T

2
6666664

3
7777775

and d is its coefficient vector. In our study we are considering three cases of determinis-
tic part,

i. Without intercept and linear time trend (denoted as D0T0): For this
case d ¼ ½ 0 0 �

ii. With intercept and without linear time trend (denoted as D1T0): For this
case d ¼ ½ 1 0 �

iii. With intercept and linear time trend (denoted as D1T1): For this
case d ¼ ½ 1 1 �

There are 10 point alternative hypotheses, one null hypothesis, three combinations of
deterministic part and four sample sizes, i.e., T ¼ 30, T ¼ 60, T ¼ 120 and T ¼ 240

Table 1. Cointegration tests and their abbreviations.
S. no Name of test Abbreviation used

1 LM test of cointegration based on KPSS statistic LMKPSS
2 Leybourne and McCabe’s LBI test of cointegration LMLBI
3 Shin’s C test of cointegration SC
4 McCabe–Leybourne–Shin test of cointegration MLS
5 Hausman H1 test of cointegration HH1
6 Hausman H2 test of cointegration HH2
7 Hansen’s Lc test of cointegration HLC
8 Xiao fluctuation test of cointegration XFT
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considered in this study. It means, 132 different artificial data generation processes have
been used to assess the performance of each test.

2.3. MCS design for empirical size of test a

There will be two a's calculated for each test: one using the asymptotic critical values
and the other using the simulated. However, their MCS design is same as:

i. Data are generated using ADG under null hypothesis.
ii. Tests statistic is calculated for this generated data.
iii. Decision (rejection of null or not) is made on basis of asymptotic critical value

or simulated one, depending upon the a calculated.
iv. Above three steps are repeated for a fixed Monte Carlo sample size say M and

number of rejections are counted.
v. The proportion of rejections out of M in terms of percentage is the a:

2.4. MCS design for simulated critical value

In this study, significance level for testing the null hypothesis of cointegration is taken
as the commonly and routinely used one, i.e., 5%. To obtain simulated critical value or
values of a test, following design is followed:

i. Data are generated using ADG under null hypothesis.
ii. Tests statistic is calculated for this generated data.
iii. Above two steps are repeated for a fixed Monte Carlo sample size M and test

statistics are saved in an array say A:
iv. According to nature of test, simulated critical value is found. If the test is two

tailed then 2.5th and 97.5th percentiles of A are lower and upper simulated crit-
ical values, if the test is right tailed, then 95th percentile of A is simulated crit-
ical value and if the test is left tailed then 5th percentile of A is simulated
critical value.

2.5. MCS design for power

To obtain power of a test, following steps have been used:

i. Data are generated using ADG under a point alternative hypothesis.
ii. Tests statistic is calculated for this generated data.
iii. Decision (rejection of null or not) is made on basis of simulated critical value.
iv. Above three steps are repeated for a fixed M and number of rejections

are counted.
v. As power of a test is defined as

Power ¼ PðRejection H0 = H0 is FalseÞ
So, proportion of rejections out of M in terms of percentage is the power of test at that
specific alternative.
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2.6. Point optimal test

Jansson (2005) proposed a point optimal test for null of cointegration. He considered
the model comprising of two series yt and xt as

yt ¼ xt þ tt
xt ¼ xt�1 þ lxt
tt ¼ tt�1 � hlyt�1 þ lyt

lt ¼ ðlyt , lxt Þ and lt � Nð0,RÞ where R is a positive definite matrix. The null hypothesis
of cointegration and alternative hypothesis of no cointegration are

H0 : h ¼ 1 ðCointegrationÞ
HA : 0 � h < 1 ðNo cointegrationÞ

Jansson (2005) assumed HA : h ¼ h� where 0 � h� < 1 and R ¼ ðxt ,DtÞ where Dt

denotes the deterministic component (intercept and trend). He partitioned R in con-

formity with lt as R ¼ ryy r0xy
rxy Rxx

� �
and defined Wh ¼ W1=2

h W1=2
h

0
where W1=2

h is a lower

triangular matrix of order T 	 T given as

W1=2
h ¼

1 0 0 � � 0
1� h 1 0 � � 0
1� h 1� h 1 � � 0
� � � � � 0
� � � � � 0

1� h 1� h 1� h � � 1

2
6666664

3
7777775

ryy�x ¼ ryy � rxy
0Rxx

�1rxy

LðhÞ ¼ log jR0W�1
h Rj þ ryy�x�1Yh

0
�
W�1

h �W�1
h RðR0W�1

h RÞ�1R0W�1
h

�
Yh

Where Yh ¼ Y � h W�1=2
h xtRxx

�1rxy:
According to Jansson (2005) that the test statistic PO based on log-likelihood ratio is
the point optimal test based on Neyman Pearson Lemma (Neyman and Pearson 1992).

POh� ¼ Lð1Þ � Lðh�Þ

2.7. Stringency criterion

The shortcoming of a test a (SCa
m) at a point alternative hypothesis m is the difference of

power of point optimal test (POm) and the power of the test a (Pa
m) at that alternative m:

SCa
m ¼ POm � Pa

m 8 m ¼ 1, 2, 3, :::::::::::::, k and a ¼ 1, 2, 3, ::::::::::::, l

The maximum shortcoming (MSC) or stringency of a test a (Pa) is

Pa ¼ max
m

ðSCa
mÞ

The most stringent test will be the test having the minimum of these maximum short-
comings, i.e.,
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Most stringent test ¼ min
a

ðPaÞ

For detailed discussion on stringency criterion, see (Zaman et al. 2017).
The cointegration tests are classified into three, depending upon their maximum

shortcomings. If a test has maximum shortcoming of 30% or less, then it is categorized
as better performer. If a test has maximum shortcoming of 50% or less but greater than
30% then it is classified as average or mediocre performer and if a test has maximum
shortcoming of greater than 50%, then it is categorized as worst performer.

2.8. An empirical example

In order to investigate the cointegration between household consumption expenditure
(denoted by C hereafter) and gross domestic product, i.e., GDP (denoted by Y here-
after) for the USA, quarterly data in billions of current US $ are retrieved from World
Bank IFS Data set, from 1957Q1 to 2013Q3 (T¼ 227). The cointegration between these
two series was also investigated by Shin (1994). The natural logarithms of these two ser-
ies (LnC and LnY) are obtained for further analysis. First two tests, investigating
whether the two series have unit root or stationary are used and these two tests are
KPSS stationary test and ADF unit root test. Then the three relatively better performing
tests from eight tests with null of cointegration and one test with null of no cointegra-
tion, i.e., Philips Ouliaris’ Za test Phillips and Ouliaris (1990) are used to assess the
existence of cointegration between LnC and LnY.

3. Discussion of results

The eight cointegration tests are compared using four sample sizes of T ¼
30, 60, 120 and 240 at three specifications of deterministic part (D0T0, D1T0 and
D1T1) and for eleven points of null and alternative hypotheses (One null and ten point
alternative hypotheses). To obtain size, power and simulated critical values of tests,
50,000 simulations have been carried out.
It is evident from Table 2 that size of tests is not controlled around nominal size of

5% when asymptotic critical values are used. There are only 14 (marked as BOLD in
Table 2) out of 96 cases when the size is controlled around nominal size of 5%.
LMKPSS faces over rejection problem for D0T0, has controlled size for D1T0 and faces
problem of under rejection for D1T1. The two Hausman tests HH1 and HH2 have their
sizes way smaller than the nominal size. In same manner, from the remaining five tests,
two tests XFT and HLC have uncontrolled size at all sample sizes for three specifica-
tions of deterministic part. SC has under rejection problem for D0T0, has controlled size
for D1T0 and has controlled size for D1T1 also, except at T ¼ 30: In general, LMLBI
tends to control the size with increase in sample size, hence it attains controlled size for
D1T0 at T¼ 240. But this the only case where LMLBI has controlled size. Similarly,
MLS also tends to decrease its size with increase in sample size, but it has controlled
size for only two cases.
As the size of tests is not controlled around nominal size of 5% when asymptotic crit-

ical values are used, so simulated critical values are obtained and then using these simu-
lated critical values again, sizes of tests are estimated and displayed in Table 3. It is
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clear from Table 3 that now all eight tests have controlled size around nominal size of
5%. These simulated critical values are used further in power comparison based on
stringency criterion.
For the power comparison, first the simplest model, i.e., D0T0 is considered and the

maximum shortcomings for this case at all sample sizes are displayed in Table 4. It is
clearly portrayed from Table 4 that from two residual based tests, one test (LMKPSS) is
consistently a better performer at all sample sizes as it has stringencies of 30.12%,
26.88%, 22.78% and 14.37% at T ¼ 30, 60, 120 and 240, respectively. The other
residual based test i.e., LMLBI is a worst performer up to sample size of 60 (having
stringency of 87.82% and 68.13% at T¼ 30 and 60) and an average performer at sample
sizes of 120 and 240 (having stringencies of 51.17% and 35.77%, respectively). From
three tests based on DOLS estimation a single test, i.e., SC is a worst performer up-to
sample size of 60 (stringencies of 76.81% and 56.96% at T¼ 30 and 60, respectively), an
average performer at sample size of 120 (stringency of 36.97%) and a better performer
(stringency of 26.59%) at sample size of 240. The other two tests based on DOLS esti-
mation, i.e., HH1 and HH2are worst performers (stringencies are greater than 65%) at
all sample sizes. Similarly, from two tests based on FMOLS estimation one test i.e.,
HLC is a worst performer up-to sample size of 60 (stringencies of 90.01% and 71.24%
at T¼ 30 and 60) and an average performer at sample sizes of 120 and 240 (stringencies
of 49.62% and 33.96%). The other test based on FMOLS estimation i.e., XFT is worst
performer at all sample sizes (stringencies greater than 84%). The single test based on

Table 3. Size in % for simulated critical values.

Tests

D0T0 D1T0 D1T1

Sample size T Sample size T Sample size T

30 60 120 240 30 60 120 240 30 60 120 240

LMKPSS 4.76 4.99 5.11 4.78 5.14 5.38 4.82 4.79 4.54 4.67 4.68 4.87
HH1 5.23 5.02 4.91 4.43 5.06 4.81 5.02 5.01 4.08 5.07 5.11 5.05
HH2 5.09 5.58 4.84 4.85 5.18 5.13 4.42 4.91 5.61 5.12 4.72 4.84
SC 5.09 5.29 5.19 4.73 4.85 5.48 5.21 5.01 5.42 4.98 4.85 4.81
LMLBI 4.89 5.05 4.98 5.11 4.92 5.13 4.97 5.13 4.16 5.17 4.52 4.73
XFT 4.67 4.41 5.25 4.72 3.91 5.17 5.42 4.82 5.36 5.42 5.24 4.59
HLC 4.42 4.78 4.92 5.04 4.84 4.92 4.96 4.91 4.78 5.02 5.34 5.44
MLS 3.73 4.31 4.54 6.46 4.78 4.67 6.32 3.81 3.82 5.35 5.74 5.72

Table 2. Size in % for asymptotic critical values.

Tests

D0T0 D1T0 D1T1

Sample size T Sample size T Sample size T

30 60 120 240 30 60 120 240 30 60 120 240

LMKPSS 22.71 22.56 21.94 22.32 5.89 5.34 5.75 5.33 0.02 0.07 0.04 0.02
HH1 0.76 0.84 0.65 0.49 0.23 0.46 0.51 0.61 0.33 1.14 1.48 1.71
HH2 1.11 0.74 0.63 0.55 0.54 0.61 0.63 0.64 1.93 1.60 1.66 1.77
SC 0.47 1.85 2.38 2.51 6.38 5.36 4.98 5.28 20.34 5.72 5.20 5.01
LMLBI 34.07 28.4 24.64 23.84 21.34 12.99 7.97 5.94 10.68 3.75 0.55 0.05
XFT 0.31 2.23 1.84 1.82 18.72 17.41 18.32 18.71 41.32 43.74 44.34 40.91
HLC 53.24 43.52 29.84 15.52 55.8 40.74 33.42 17.72 58.98 42.08 34.14 21.88
MLS 65.81 60.91 58.62 54.23 58.91 41.21 33.51 29.82 36.41 11.71 6.51 6.32

Note: Marked BOLD shows that size is controlled around nominal size of 5%.
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ML estimation, i.e., MLS is also a worst performer at all sample sizes (stringencies
greater than 84%).
Moving to the second case of deterministic part, i.e., D1T0, it is evident from Table 5

that only one test, i.e., LMKPSS which is residual based is a better performer at all sam-
ple sizes (stringencies of 23.52%, 16.81%, 15.34% and 10.90% at T¼ 30, 60, 120 and
240, respectively). The other residual based test i.e., LMLBI is worst performer up-to
sample size of 60 (stringencies of 93.63% and 78.66%), an average performer at sample
size of 120 (stringency of 49.51%) and a better performer at sample size of 240 (strin-
gency of 29.03%). From three tests based on DOLS estimation two (HH1 and HH2) are
worst performers at all sample size (stringencies greater than 70%) and one, i.e., SC is
worst performer up-to sample size of 60 (stringencies of 80.11% and 52.26%), an aver-
age performer at sample size of 120 (stringnecy of 32.74%) and a better performer at
sample size of 240 (stringency of 20.67%). Rest of three tests out which two are based
on FMOLS estimation (HLC and XFT) and one is based on ML estimation i.e., MLS
are all worst performers at all four sample sizes (stringencies are greater than 64%).

Table 4. Maximum shortcomings in % of cointegration tests for D0T0.
Tests T¼ 30 T¼ 60 T¼ 120 T¼ 240

LMKPSS 30.12�� 26.88�� 22.78�� 14.37��
SC 76.81 56.96 36.97� 26.59��
LMLBI 87.82 68.13 51.17� 35.77�
HLC 90.01 71.24 49.62� 33.96�
HH2 66.86 70.05 73.20 81.42
HH1 70.85 70.63 74.38 81.98
XFT 84.80 87.80 87.10 88.10
MLS 87.50 84.30 88.70 86.40

Note: �� and � shows that a test is better and average performer, respectively.

Table 6. Maximum shortcomings in % of cointegration tests for D1T1.
Tests T¼ 30 T¼ 60 T¼ 120 T¼ 240

LMKPSS 18.90�� 13.88�� 11.53�� 12.15��
SC 88.62 57.64 34.24� 23.06��
MLS 94.60 75.40 49.20� 41.60�
LMLBI 91.66 94.99 62.92 31.60�
XFT 80.50 80.50 86.70 84.10
HH2 86.12 82.60 84.96 88.29
HH1 88.73 83.67 86.20 88.02
HLC 93.14 95.70 92.60 83.98

Note: �� and � shows that a test is better and average performer, respectively.

Table 5. Maximum shortcomings in % of cointegration tests for D1T0.
Tests T¼ 30 T¼ 60 T¼ 120 T¼ 240

LMKPSS 23.53�� 16.81�� 15.34�� 10.90��
SC 80.11 55.26 32.74� 20.67��
LMLBI 93.63 78.66 49.51� 29.03��
HH2 73.13 71.06 78.67 83.91
XFT 76.60 82.04 83.01 81.40
HH1 78.59 72.97 78.94 83.63
MLS 80.60 64.70 57.30 54.30
HLC 93.52 88.02 75.88 62.68

Note: �� and � shows that a test is better and average performer, respectively.
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For the last case of deterministic part, i.e., D1T1, maximum shortcomings of the tests
are displayed in Table 6. It is clear that again a sole residual based test, i.e., LMKPSS is
a better performer at all sample sizes (stringencies of 18.90%, 13.88%, 11.53% and
12.15% at T¼ 30, 60, 120 and 240, respectively). The other residual based test, i.e.,
LMLBI is worst performer up-to sample size of 120 (stringencies greater than 62%).
However, it is an average performer at sample size of 240 (stringency of 31.60%). From
three tests based on DOLS estimation two tests, i.e., HH1 and HH2 are worst perform-
ers at all sample sizes (stringencies are greater than 82%). However, the third one, i.e.,
SC is worst performer up-to sample size of 60 (stringencies are 88.62% and 57.64%), an
average performer at sample size of 120 (stringency of 34.24%) and a better performer
at sample size of 240 (stringency of 23.06%). The single test based on ML estimation,
i.e., MLS is worst performer up-to sample size of 60 (stringencies of 94.60% and
75.40%) and an average performer at sample sizes of 120 and 240 (stringencies of
49.20% and 41.60%). The rest of two tests based on FMOLS estimation, i.e., HLC and
XFT are worst performers at all sample sizes (stringencies are greater than 80%).
Three tests i.e., LMKPSS, SC and LMLBI are selected for further discussion as they

are performing relatively way better than the rest of five. The shortcomings of these
three tests are plotted against the parameter h, representing the alternative hypotheses.
For the first case of deterministic part i.e., D0T0, the shortcomings are displayed in

Figure 1. Shortcomings for D0T0. Note: Along x-axis are the parameter h and along y-axis are the
shortcomings in %.
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Figure 1. It is evident from the Figure 1 that at T¼ 30, all three tests have increasing
shortcomings with decrease in parameter h: However, LMKPSS test’s shortcomings are
less than 30% for the entire paramter space. At T¼ 60, two tests i.e., LMLBI and SC
have increasing shortcomings for the entire parameter space. However LMKPSS has
increasing shortcomings in [0.8, 0.9] but has decreasing shortcomings in [0,0.8). For
T¼ 120 and 240, LMLBI and SC have shortcomings between 30% and 50% for the
whole parameter space. However, LMKPSS has sharply decreasing shortcomings with
decreasing parameter in whole parameter space.
For the second and third cases of deterministic part, i.e., D1T0 and D1T1, it is evident

from Figures 2 and 3, that at T¼ 30, again the three tests have increasing shortcoming
with decreasing parameter value in parameter space. However, LMKPSS test’s shortcom-
ings are never the less lesser than 20% in the entire parameter space. The shortcomings
of LMKPSS decrease sharply with increase in parameter value and it approaches to zero
for [0,0.4) for T¼ 120 and [0, 0.6) for T¼ 240.
Before investigating the existence or absence of cointegration between LnC and LnY,

these two series are assessed for stationarity and unit root by two tests, i.e., KPSS test of
stationary null hypothesis and augmented dickey fuller (ADF) test of unit root null
hypothesis. For KPSS two specifications are taken; one is the user specified value of
bandwidth, i.e., l ¼ 10, (following (Shin 1994)) and the other is Automatic bandwidth l
using Newey–West method. However, when using the automatic bandwidth, it turns
out its value is l ¼ 11: For both types, the Bartlett Kernel has been used to estimate the

Figure 2. Shortcomings for D1T0. Note: Along x-axis are the parameter h and along y-axis are the
shortcomings in %.
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long run variance. For ADF test five augmentations are taken (following (Shin 1994)).
For each test, two cases of deterministic part, i.e., with constant and with constant and
trend (trend stationary) are taken. The results of the stationarity and unit root tests are
displayed in Table 7. There is strong evidence that both of the series, i.e., LnC and LnY
have unit root except one case. This exceptional one case is according to ADF, LnY is
stationary at 10% level of significance when only there is intercept in deterministic part.
However, even LnY is unit root at 5% level of significance.
The cointegration between LnC and LnY has been assessed using three relatively bet-

ter performing tests (LMKPSS, SC and LMLBI) with null of cointegration and one test
with null of no cointegration, i.e., Philips Ouliaris’ Za test (Phillips and Ouliaris 1990),
denoted by PO Za, hereafter. Two specifications of deterministic component, i.e.,
demeaned (D1T0) and detrended (D1T1) have been analyzed (following (Shin 1994)).
The results of the four tests are displayed in Table 8. It is evident from Table 8 that for
detrended case all three tests with null of cointegration reach to the same conclusion of
existence of cointegration between LnC and LnY. The PO Za also rejects the null
hypothesis of no cointegration at 10% level of significance and concludes in favor of
existence of cointegration between LnC and LnY. However, for the Demeaned case, SC
and LMLBI concludes in favor of existence of cointegration, while, LMKPSS concludes
in favor of existence of cointegration at 1% and 5% level of significance, but it also con-
cluded against the existence of cointegration at 10% level of significance. The PO Za has
the same conclusion as for the detrended case.

Figure 3. Shortcomings for D1T1. Note: Along x-axis are the parameter h and along y-axis are the
shortcomings in %.
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4. Conclusions and recommendations

The use of asymptotic critical values generally produces size distortions as most of tests
have either too much high or too much low sizes as compared to the nominal size.
However, the use of simulated critical values controls the sizes of tests around nominal
size. Therefore, it is highly recommended that asymptotic critical values may not be
used and only simulated critical values may be used in empirical studies.
As for as the power comparison of tests is concerned, if both nuisance parameters,

i.e., intercept and linear time trend are absent from cointegrating equation (D0T0) then
from eight tests, a residual based test, i.e., LMKPSS is the sole better performer at all
sample sizes as it has stringencies lesser than 30% and with decrease in parameter value
in parameter space [0,0.9], it narrows down the difference between its power and max-
imum possible power and at larger sample sizes of 120 and 240, this difference
approaches zero. Another test based on DOLS estimation, i.e., SC is only better per-
former at large sample sizes of 240 or higher. Four tests (HH1, HH2, XFT and MLS)
are worst performers at all sample sizes. Similarly, if only one of the nuisance parame-
ters i.e., intercept is present in cointegrating equation (D1T0) then from eight tests,
again the same residual-based test, i.e., LMKPSS is the sole better performer at all sam-
ple sizes. The LMKPSS test has shortcomings around or majority of times lesser than
20% at all sample sizes and specially the difference between its powers and possible
maximum power decreases with decrease of the parameter in the entire parameter
space. Another residual based test, i.e., LMLBI along with a test based on DOLS estima-
tion, i.e., SC are only better performers at large sample sizes of 240 or higher. The
remaining five tests are worst performers at all sample sizes. In same manner, if both
nuisance parameters are present in cointegrating equation then again, the same
residual-based test, i.e., LMKPSS is the sole better performer at all sample sizes.
However, another test based on DOLS estimation, i.e., SC is only a better performer at
large sample sizes of 240 or higher. LMKPSS test has the shortcomings lesser than 20%
for sample sizes of 30 and 60, however, at larger sample sizes of 120 and 240, the

Table 7. Stationarity and unit root tests.

Tests

Stationarity test Unit root test

KPSS (l ¼ 10) KPSS (automatic l) ADF

Series/deterministic part Constant
Constant
and trend Constant

Constant
and trend Constant

Constant
and trend

LnY 2.1485��� 0.4797��� 1.9774��� 0.4427��� �2.7908� 1.3984
LnC 2.1515��� 0.4654��� 1.9802��� 0.4295��� �2.3152 1.1047

Note: ���, �� and � represent the rejection of null hypothesis at 1%, 5% and 10% level of significance, respectively.

Table 8. Tests for cointegration and no cointegration.

Tests/deterministic component

D1T0 D1T1

Test statistic p Value Test statistic p Value

LMKPSS 1.1573� 0.0831 0.698 0.1011
SC 0.1323 0.3113 0.0857 0.1488
LMLBI 0.2085 0.1872 0.0992 0.2268
PO Za �18.9345� 0.0635 �23.9634� 0.079

Note: � represents the rejection of null hypothesis at 10% level of significance.
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difference between its powers and maximum possible power even approaches zero with
decreasing parameter value in parameter space. The remaining tests are worst perform-
ers. Hence, LMKPSS is the most stringent test at all sample sizes for all three specifica-
tions of deterministic component as the difference between its powers and maximum
possible power is the minimum and even it approaches zero for the parameter in [0,
0.6). Therefore, the use of LMKPSS is highly recommended for any sample size and any
specification of deterministic component. In addition to LMKPSS, LMLBI and SC may
be used for very large sample sizes of 240 or greater. However, the use of remaining
five tests may be avoided in empirical studies.
The empirical example assessing the cointegration between household consumption

expenditure and GDP of USA, using three cointegration tests with null of cointegration
(LMKPSS, SC and LMLBI), performing relatively better in our MCS comparison and
one test with null of no cointegration, i.e., Philips Ouliaris’ Za test, concludes that the
two series are cointegrated for most of cases and specifications.
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