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Abstract

In the present work we study the space of isometry classes of Riemannian
metrics with zero sectional curvature on a closed manifold. Specifically, in
dimension 3 and for a family of manifolds in dimension 4, we give a complete
algebraic description of the Teichmüller spaces and the moduli spaces of flat
metrics. Furthermore, we give complete information about the topology of
the moduli spaces of flat metrics of the 3-dimensional closed manifolds.
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Introduction

A flat manifold is not only locally homeomorphic to a Euclidean space but
also has the same geometry, which means that near any point we can in-
troduce coordinates so that, with respect to these coordinates, the rules of
Euclidean geometry hold. More precisely, a flat manifold is a Riemannian
manifold which admits a metric of zero sectional curvature, called flat met-
ric.

In the present work we are interested in closed flat manifolds. The most
important invariant for these spaces is the fundamental group, in the sense
that if two closed flat manifolds have the same fundamental group then they
are homeomorphic. This result, and the study of the types of groups that
can be a fundamental group of a closed flat manifold are due to Bieberbach,
who published his work about 1911 in [4].

Later, in 1973, Wolf carried out the isometric classification of closed flat
manifolds in a fixed affine equivalence class, in [23]. In other words, the work
of Wolf allows us to study the space of flat metrics on a closed manifold and
identify the isometric ones. The space of isometry classes of flat metrics on
a manifold is the moduli space of flat metrics of the manifold. The aim
of this work is to study this moduli space.

Even though the space and the moduli space of flat metrics is perhaps
the easiest curvature constraint one could ask in the space of Riemannian
metrics, its understanding is not as developed as one could expect. Just
recently, in 2017, Bettiol, Derdzinski and Piccione in [3] established an al-
gebraic description of the Teichmüller space of flat metrics, which provides
a straightforward method to compute it and where it is clear that it is dif-
feomorphic to a euclidean space. The moduli space of flat metrics will be a
quotient of the Teichmüller space of flat metrics by a discrete group. If we
get a better understanding of this kind of quotients then we could find out a
better description for the moduli space of flat metrics, where their topology is
clearer. In this work, we make a contribution to the solution of this problem,
in dimension 3 and 4.

The present thesis builds upon the work of Kang, where she computed
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the moduli space of flat metrics for the 3-dimensional closed manifolds. Here
we do some amendments and we complete her work by studying the topology
of those moduli spaces of flat metrics in Theorem 3.4.3. We also compute the
moduli space of flat metrics for a family of 4-dimensional closed manifolds in
Theorem 4.4.2.

The approach to describe these spaces is case by case, using the descrip-
tion given by Wolf, where one has to compute some spaces which depend on
a representation of certain class of groups, called Bieberbach groups. The
Bieberbach groups are equivalent to closed flat manifolds. Then one has to
solve some equations, where the program Mathematica helped, and in some
cases, one has to study further the affine structure of the Bieberbach group.

Once one has the description of the moduli spaces of flat metrics, then
one can attempt to say something about their topology. A tool we use for the
study of the topology of the moduli spaces of flat metrics in dimension 3 and
some cases in dimension 4 comes from number theory, because it is related
to study discrete subgroups acting isometrically on the hyperbolic plane.

The study of the moduli space of flat metrics could lead to have a bet-
ter understanding of the moduli space of metrics with some other curva-
ture constraint. For instance, Tuschmann and Wiemeler in [20] worked with
manifolds diffeomorphic to the product of a simply connected closed smooth
manifold with a torus, and studied their moduli space of non-negative Ricci
curvature Riemannian metrics, where they were able to reduce it to study
the moduli space of flat metrics of the torus.

Our work is organized as follows. The first chapter contains basic notions
and results. The second chapter is about the moduli space of flat metrics
in dimension 2 and the tools we need later for studying the topology of the
moduli spaces of flat metrics in higher dimensions. The last two chapters
describe the moduli spaces of flat metrics in dimension 3 and 4.



Chapter 1

Background

1.1 Notations

Let us fix the notation we will use in our work.

� N, Z and R denote the natural, the integer and the real numbers,
respectively.

� We let R∗ = R \ {0}.

� R+ will denote the positive real numbers.

� Let n ∈ N. We will use the following notation:

– GL(n,R) is the group of n×n invertible matrices with real entries.

– GL(n,R)+ is the subgroup of GL(n,R) consisting of matrices with
positive determinant.

– SL(n,R) is the subgroup of GL(n,R) of determinant one matrices.

– GL(n,Z) is the unimodular group consisting of all integer matrices
with determinant ±1.

– SL(n,Z) is the subgroup of GL(n,Z) of determinant one matrices.

– O(n) is the orthogonal group, consisting of matrices in GL(n,R)
whose inverse is equal to its transpose.

– SO(n) is the subgroup of O(n) of determinant one matrices.

– Aff(n) is the group of affine transformations of Rn.

– Iso(n) is the subgroup of Aff(n) consisting of isometries of Rn with
the usual metric.

1
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� Id will denote the identity matrix of the corresponding dimension.

� At is the transpose of a matrix A.

� G+ will denote the subgroup of matrices with positive determinant in
a given group G of matrices.

� H1 · H2 := {h1 · h2 | h1 ∈ H1, h2 ∈ H2}, where H1 and H2 are two
subgroups of a given group.

1.2 Flat manifolds

In this section, we explain the relation between flat manifolds and Bieberbach
groups, we study affine transformations and introduce an important notion:
the holonomy. Further can be found in [22] or in [5].

By a flat manifold (M, g) we mean a connected n-dimensional complete
Riemannian manifold with zero sectional curvature, where the Riemannian
metric g will be called flat metric. The universal cover M̃ of M is isometric
to Rn with the usual metric denoted by σ. For a fixed manifold M and a
fixed flat metric g on M , we lift the metric g to M̃ and denote it by g̃. Then
we have the next diagram

(M̃, g̃) //

��

(Rn, σ)

zz
(M, g)

where the horizontal arrow is an isometry. This makes (Rn, σ) also a Rieman-
nian covering of (M, g). Let us consider its group of deck transformations,
denoted by π. Then (M, g) is isometric to (Rn/π, σ), with σ also denoting
the metric induced by the usual metric σ.

Therefore, given a manifold with a fixed flat metric, we get a group π
of isometries of (Rn, σ). On the other hand, if a group of isometries π acts
freely and properly discontinuously on Rn, then Rn/π is a flat manifold. This
result follows from the Killing-Hopf Theorem [22, Corollary 2.4.10]. For the
case when this manifold is closed, i.e, compact and without boundary, we
have the next definition.

Definition 1.2.1. A Bieberbach group π is a discrete subgroup of Iso(n)
that is torsion-free and such that Rn/π is compact.
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Given a Bieberbach group π, we get a closed flat manifold Rn/π. Con-
versely, given a closed flat manifold of dimension n ≥ 2, its fundamental
group is isomorphic to a Bieberbach group.

To study the structure of π, it is important to understand the structure of
the group of affine transformations of Rn. The group of affine transformations
of Rn, Aff(n), has the structure of a semidirect product in the following
way: any affine transformation can be expressed as (A, v) : Rn → Rn with
(A, v)x 7→ Ax+ v, where v ∈ Rn and A ∈ GL(n,R). The product is just the
composition of these transformations, as follows.
Let (A, v), (B, u) ∈ Aff(n). Then

(A, v)(B, u) = (AB,A(u) + v).

With this description, we have a semidirect product

Aff(n) = GL(n,R) nRn.

Remark 1.2.2. Another way to think about this product is with matrices:

(A, v) =

(
A v
0 1

)
,

with the product of usual matrix multiplication.

The isometries of Rn also have a structure of semidirect product

Iso(n) = O(n) nRn.

Now, we can present another important definition. Consider the projec-
tion homomorphism

τ : Aff(n) → GL(n,R)
(A, v) 7→ A

Definition 1.2.3. Let π be a Bieberbach group. The holonomy of π is the
subgroup of GL(n,R) given by Hπ := τ(π).

The kernel of τ restricted to π is denoted by Lπ, the maximal normal
abelian subgroup of π, which consists of all the translations (Id, v) of π. We
have a short exact sequence

1→ Lπ → π → Hπ → 1.
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The Bieberbach theorems provide the essential facts about the groups
(the algebraic version) or, equivalently, about the closed flat manifolds (the
geometric version). We present the geometric formulation:

Theorem 1.2.4 (Bieberbach theorems).

I. Let M be a closed flat manifold. Then M is covered by a flat torus,
and the covering map is a local isometry.

II. Let M and M ′ be closed flat manifolds with isomorphic fundamental
groups. Then M and M ′ are affinely equivalent.

III. There are only finitely many affine equivalence classes of closed flat
manifolds in any dimension.

The list of (affine equivalent classes of) closed flat manifolds, which, by
the theorem above, is in bijective correspondence with the list of (affine
conjugate classes of) Bieberbach groups in Iso(n), is known for some values
of the dimension n. We are only concerned about dimension 2, 3 and 4:

� If n = 2, there are 2: the torus and the Klein bottle. This is a classical
fact.

� If n = 3, there are 10. Listed in Wolf’s book [22].

� If n = 4, there are 74. Listed in the Ph.D. thesis of Lambert [15].

1.3 The moduli space of flat metrics

We are going to introduce the moduli space of Riemannian metrics based
on [21], and then state a result of Wolf for the moduli space of flat metrics
proven in [23].

Let M be a closed manifold. We denote by R(M) the space of all
complete Riemannian metrics on M . The space R(M) is a subspace of
C∞(M,S2T ∗M), the real vector space of smooth symmetric (0, 2) tensor
fields on M , where S2T ∗M denotes the second symmetric power of the cotan-
gent bundle of M . In this setting, the space R(M) is usually equipped with
the smooth compact-open topology or, some other times, with the Whitney
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topology. In here, we are only interested in the case when M is compact,
where the two topologies mentioned coincide. Details about these topologies
can be found in [21], [10] or [6].

We equip R(M) with the smooth compact-open topology. A sequence
converges in this topology if and only if the k derivative converge uniformly
on M , for all k ∈ N.

We would like to identify the metrics that are isometric, i.e., where there
exists an isometry between the given metrics. This leads us to consider the
next action. Let Diff(M) denote the group of self-diffeomorphisms of M .
Then Diff(M) acts on R(M) by pulling back metrics: f ∈ Diff(M), we let
g · f := f ∗(g) with g ∈ R(M).

Definition 1.3.1. The moduli spaceM(M) of complete Riemannian met-
rics on M is the quotient of R(M) by the above action of the diffeomorphism
group Diff(M).

We can study subspaces of R(M) that satisfy a curvature condition and
consider again the quotient by Diff(M). In our case, we are interested in the
space of complete Riemannian metrics with zero sectional curvature, denoted
by Rflat(M), leading us to the next definition:

Definition 1.3.2. The moduli space of flat metrics Mflat(M) is the
quotient of Rflat(M) by the action of Diff(M).

There is a description of the moduli space Mflat(M) due to Wolf [23].
We present this description and also some properties in order to compute
the moduli space Mflat(M). Some of the properties are also studied in [11],
[12] or [13]. In these last three papers, they use the notation and setting of
Kulkarni, Lee and Raymond [14], without using Wolf’s result.

First, we have to fix a connected n-dimensional, closed flat Riemannian
manifold M . From before we know that this means that we are fixing a
Bieberbach group π, where M = Rn/π.

A useful group is the normalizer of π in Aff(n), which we denote by

NAff(n)(π) = {γ ∈ Aff(n) | γπγ−1 = π}.

We will compute this group for the torus. For this, we need the next
notion.

Definition 1.3.3. Given a basis {a1, . . . , an} of Rn, the lattice generated
by that basis is {

∑n
i=1 niai | ni ∈ Z}. We also refer as a lattice to the group

generated by the translations by ai: 〈(Id, a1), . . . , (Id, an)〉.
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As we know the torus can be constructed as the quotient of Rn and a
lattice. We fix the lattice to be

Zn = 〈(Id, ei) | {e1, . . . , en} the standard basis ofRn〉.

Then Tn = Rn/Zn.

Example 1.3.4. Let us show that NAff(n)(Zn) = GL(n,Z) nRn.
We want to find γ ∈ Aff(n) such that γZnγ−1 = Zn. Let γ = (X, u) and
(Id, v) ∈ Zn. Then

(X, u)(Id, v)(X−1,−X−1(u)) = (Id, X(v)).

This means that we have to find the matrices X ∈ GL(n,R) that preserve the
lattice, i.e., send a basis that generates the whole lattice to another. Then
the matrices must have integer entries and determinant ±1. These matrices
are precisely the unimodular matrices. (See, for example, [17]).

Theorem 1.3.5 ([23] Wolf). The subset

Iso(n)\{γ ∈ Aff(n) | γπγ−1 ⊂ Iso(n)}/NAff(n)(π)

of the double coset space Iso(n)\ Aff(n)/ NAff(n)(π), is in bijective correspon-
dence with the set of all isometry classes of riemannian manifolds that are
affinely equivalent to M = Rn/π. The double coset Iso(n)γ NAff(n)(π) corre-
sponds to the isometry class of Rn/(γπγ−1).

Every flat n-dimensional torus is affinely equivalent to Rn/Zn. If γ =
(A, u) ∈ Aff(n) then γZnγ−1 = A(Zn) ⊂ Iso(n). Thus the case π = Zn of the
previous theorem is as follows. (This is equivalent to [22, Lemma 3.5.11]).

Corollary 1.3.6. The double coset space

O(n)\GL(n,R)/GL(n,Z)

is in bijective correspondence with the set of all isometry classes of flat Rie-
mannian n-tori. The double coset O(n)AGL(n,Z) correspond to the class of
Rn/A(Zn).

The result of Wolf gives us actually a homeomorphism. Since it seems
there is no reference where the continuity of the bijection is proved, we give
some details here.

As we mentioned before, the space Rflat(M) has the subspace topology
from R(M), which is equipped with the smooth compact-open topology, and
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the space Aff(n) with the subspace topology induced from GL(n+ 1,R) (see
Remark 1.2.2).

Fix a flat manifold Rn/π. Let g ∈ Rflat(Rn/π). Then we know that we get
an affine transformation γ. The construction of γ is the same as in Theorem
4.1 in do Carmo’s book [7], which uses the theorem of Cartan. Since we can
choose the affine transformation in different ways, we will choose them as
follows: first, we lift the metric g to Rn, denoting Rn with the lifted metric,
as before, (Rn, g̃). Let {e1, . . . , en} the standard basis of Rn, p ∈ Rn/π and
choose p0 ∈ Rn in the fibre of p. Second, by the Gram-Schmidt process
we can produce, from the standard basis, an orthonormal basis {u1, . . . , un}
with respect to the metric g̃. Then we consider the linear isometry between
the tangent spaces A : Tp0Rn → T0Rn, such that ui 7→ ei with 1 ≤ i ≤ n,
and 0 is the origin in Rn. Finally, the affine transformation is the map:

γ = expσ0 ◦ A ◦ (expg̃p0)
−1 : (Rn, g̃)→ (Rn, σ),

where expg̃p0 and expσ0 are the exponential maps define in Tp0Rn and T0Rn

respectively. By Theorem 4.1 in [7] the map γ : (Rn, g̃) → (Rn, σ) is an
isometry. Observe that γ = (A,−p0).
In this way, we have the map:

Rflat(Rn/π) → Aff(n)
g 7→ γ

which we will see is continuous by using sequences. Let (gk)k∈N be a sequence
of flat metrics on Rn/π that converges to a flat metric g. Then we will get
a sequence of linear isometries (Ak)k∈N converging to the linear isometry A,
because the orthonormal bases we get by the Gram-Schmidt process will
depend continuously on the metrics. Therefore, the affine transformations
(γk = (Ak,−p0))k∈N will converge to γ = (A,−p0).

Observe that {γ ∈ Aff(n) | γπγ−1 ⊂ Iso(n)} is not a group. The impor-
tant part of this space is the matrix part since for an affine transformation
to be an isometry we only have to see that the matrix is orthogonal. Also, to
describe the double coset in theorem 1.3.5, the important part is the matrix
part of the spaces, as one can already see in the corollary. We explain this
in the next remark, but first let us denote the matrix part of the spaces as
follows:

Cπ := {X ∈ GL(n,R) | XAX−1 ∈ O(n) for all A ∈ Hπ},
Nπ := τ(NAff(Rn)(π)).

Then {γ ∈ Aff(n) | γπγ−1 ⊂ Iso(n)} = Cπ n Rn. Sometimes we call the
space Cπ, the cone space, since it is closed under multiplication by scalars.
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Remark 1.3.7. Consider the quotient

Iso(Rn)\{γ ∈ Aff(Rn) | γπγ−1 ⊂ Iso(Rn)} = O(n) nRn\Cπ nRn.

The action is just by multiplication from the left and every orbit must contain
the whole Rn. Thus, the quotient is simply O(n)\Cπ.

We have the same situation for the double quotient. Therefore the moduli
space of flat metrics of M = Rn/π is

Mflat(Rn/π) = O(n)\Cπ/Nπ.

Now, we present some properties of these matrix spaces. The next lemma
is useful for computing the cone space Cπ.

Lemma 1.3.8 ([12, Lemma 2.2]). Let A ∈ O(n). For any invertible matrix
X ∈ GL(n,R), we have XAX−1 ∈ O(n) if and only if (X tX)A = A(X tX).

Proof. The fact that XAX−1 is orthogonal means that

(XAX−1)(XAX−1)t = Id,

which is equivalent to XA(X tX)−1 = (X t)−1A, and therefore equivalent
to

(X tX)A = A(X tX).

We know that a Bieberbach group π contains a lattice, denoted before by
Lπ. Thus, the normalizer of π in Aff(n) is contained in the normalizer of Lπ
in Aff(n), and the matrix part of the normalizer of a lattice in Aff(n), NLπ ,
is a conjugate of NZn in GL(n,R). We state this in the following lemma.

Lemma 1.3.9. Let π be a Bieberbach group, then

NAff(n)(π) ⊂ QGL(n,Z)Q−1 nRn,

where Q ∈ GL(n,R).

The matrix Q is the change of coordinates matrix from the basis of Lπ to
the standard basis.

It is convenient to study what happens to these spaces when we conjugate
the Bieberbach group by an affine transformation. For the next two lemmas
let π be a Bieberbach group and π′ = ξπξ−1, for some ξ ∈ Aff(n).
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Lemma 1.3.10 ([12, Lemma 2.3]). The cone spaces Cπ and Cπ′ are homeo-
morphic.

Proof. Consider τ(ξ) = P . If X ∈ Cπ′ , then XP ∈ Cπ, giving us the
homeomorphism.

Lemma 1.3.11 ([13, page 1069]). We have

ξNAff(Rn)(π)ξ−1 = NAff(Rn)(ξπξ
−1).

Proof. We see that γ ∈ NAff(Rn)(ξπξ
−1) if and only if ξ−1γξ ∈ NAff(Rn)(π).

1.4 The Teichmüller space of flat metrics

We will introduce the Teichmüller space of flat metrics of a closed manifold
and a straightforward method to compute it, which is proved in [3].

As before, let M be a closed manifold. We denote by Diff0(M) the sub-
group of Diff(M) of all smooth diffeomorphisms of M that are homotopic to
the identity. The Teichmüller space of flat metrics of M , Tflat(M), can be de-
fined as the quotient of Rflat(M) by restricting the action to Diff0(M). This
definition is equivalent to the next one, that for our purpose is the definition
we use and is also used in [3].

Definition 1.4.1. The Teichmüller space of flat metrics Tflat(M) of
M = Rn/π is the orbit space O(n)\Cπ of the left action of O(n) on Cπ.

In other contexts, the definition of the Teichmüller space is slightly differ-
ent: metrics that are homothetic are identified. There is a nice introduction
to this notion in [9]. We will discuss the 2-dimensional case in the next
remark.

Remark 1.4.2. The Teichmüller space of a closed surface S is the set of
classes of hyperbolic Riemannian metrics on S given by the action of Diff0(S).
The Gauss-Bonnet theorem implies that any closed hyperbolic surface S has
fixed area−2πχ(S). Then a more natural definition for the Teichmüller space
of flat metrics would be to restrict to the set of unit-area flat structures and
identify them by the action of Diff0(S). This is the way it is done in [8]. This
definition and the definition we are using differ only by an extra real line, as
we are going to see in the examples of the 2-dimensional flat manifolds.

We now present the description of the Teichmüller space of flat metrics
done in [3] only for manifolds, but they also prove it for orbifolds:
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Theorem 1.4.3. Let M be a closed flat manifold, and denote by Wi, 1 ≤ i ≤
l, the isotopic components of the orthogonal representation of its holonomy
group. Each Wi consists of mi copies of the same irreducible representation,
and we write Ki for R, C or H, according to this irreducible representation
being of real, complex, or quaternionic type. The Teichmüller space is diffeo-
morphic to

Tflat(M) ∼=
l∏

i=1

GL(mi,Ki)

O(mi,Ki)
,

where GL(m,K) is the group of K-linear automorphisms of Km and O(m,K)
stands for O(m), U(m), or Sp(m), when K is, respectively, R, C, or H. In
particular, Tflat(M) is real-analytic and diffeomorphic to Rd.

The dimension d = dimTflat(M) is easily computed as the sum of the

dimensions di ≥ 1 of the factors GL(mi,Ki)
O(mi,Ki)

∼= Rdi , 1 ≤ i ≤ l, which are given
by

di =


1
2
mi(mi + 1), if Ki = R,
m2
i , if Ki = C,

mi(2mi − 1), if Ki = H.

1.5 Further remarks

The moduli space of flat metrics can be described from the Teichmüller space
of flat metrics in the following way:

Mflat(M) = Tflat(M)/Nπ,

where π is a Bieberbach group and M = Rn/π.
The right action of Nπ on Cπ need not be free, so Mflat(M) may have

(isolated) singularities. We have further information about the group Nπ.
(See [3, Proposition 4.4]).

Proposition 1.5.1. The group Nπ is a discrete group.

Proof. First we have that GL(n,Z) is discrete, since Z ⊂ R is discrete. Now,
for the lattice Lπ = Rn ∩ π, the normalizer NLπ is a conjugate of GL(n,Z)
inside GL(n,R), which is also discrete. Finally, we have that Nπ ⊂ NLπ (see
Lemma 1.3.9). Therefore, Nπ is discrete.

Thus the Teichmüller space and the moduli space of flat metrics are orb-
ifolds with the same dimension.
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Corollary 1.5.2. We have dim Tflat(M) = dimMflat(M).

This description could be studied further since we have a diffeomorphism
between Tflat(M) and Rd. One would have to study the action of Nπ via this
diffeomorphism.

Another remark on these spaces of metrics is the following: the Te-
ichmüller space Tflat(M) only depends on the holonomy of π. On the other
hand, the moduli space Mflat(M) depends not only on the holonomy but
also on the affine structure of the group π. This will be clarified later, in
Chapter 3 and 4.
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Chapter 2

2-dimensional closed flat
manifolds and the action of
SL(2,Z)

In this section we recall some facts on the moduli space of flat metrics of
the 2-dimensional closed manifolds and make some remarks about them. In
the study of these spaces the group SL(2,Z) will appear. In addition, it will
be important to study its action on the hyperbolic plane H2, and moreover,
this action will be restricted to some subgroups of SL(2,Z) as well. This is
important because in the next chapters is going to be a key point in order to
study the topology of the moduli spaces of flat metrics of closed manifolds
in dimension 3 and 4.

In dimension 2, there are only two closed flat manifolds: the torus and
the Klein bottle.

2.1 The 2-torus

The Teichmüller space of flat metrics and the moduli space of flat metrics of
the 2-torus is very well understood (see [8]). Following this book, we present
some parts of this information.

Before going into details, one should notice that the definition in [8] of
moduli space of flat metrics is slightly different from the one we are using.
Inded, in the book [8], they are relating homothetic metrics as well, see re-
mark 1.4.2. In our situation, we consider relations of homotheties in order to
follow the same ideas, but in the final homeomorphism we add the positive
reals. This is important because homothetic flat metrics are not isometric,
i.e., they give us different points in the moduli space.

13
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We proceed as in [8]. Recall from the previous chapter that:

Mflat(T
2) = O(2)\GL(2,R)/GL(2,Z).

We start by studying the left quotient O(2)\GL(2,R). We use an auxiliary
space, the space of ordered bases in R2. In this way we have two bijections.
The first one is:

GL(2,R)
O(2)∪{homotheties} ↔

{ordered bases inR2}
O(2)∪{homotheties} (2.1)

Every regular matrix can be seen as an ordered lattice and vice versa:(
x1 x2

y1 y2

)
∈ GL(2,R) ↔ {w1 = (x1, y1), w2 = (x2, y2)}.

The space GL(2,R) has a topology given by being embedded in
M2×2(R) ∼= R4. Then we can give a topology on the space of ordered bases
in such a way that makes the bijection in (2.1) a homeomorphism.

The second bijection is given from the ordered bases into the hyperbolic
half-plane by an appropriate rotation and scaling in the following way:

{ordered lattices inR2}
O(2)∪{homotheties} ↔ H2 = {x+ iy | y > 0} (2.2)

First (with an appropriate rotation) we can suppose that our ordered
lattice {w1, w2} has the first vector w1 in the real part of C. From that lattice
we can scale and get {1, w = w2

w1
}. In this way we get two representatives

{1, w} and {1,−w}, so we choose the one that is in the upper half plane
(assume it is w). Then we have a well defined w ∈ H2. This means that
every τ ∈ H2 is representing the lattice {1, τ}.

One has the usual topology of H2 that is equivalent to the topology of
R2. Then one can show that the bijection in (2.2) is also a homeomorphism.
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Remark 2.1.1. One can have an easier way to see the bijection by noticing
that SL(2,R) acts transitively on H2 with point stabilizers isomorphic to
SO(2).

Using the two homeomorphisms in (2.1) and in (2.2), and adding the
homotheties, we obtain the identification

O(2)\GL(2,R) ∼= R+ ×H2. (2.3)

Now we study the action of GL(2,Z) on H2 via the bijection resulting
from the composition of the two previous bijections in (2.1) and in (2.2).
This means that we have to compute the transformation we get on H2 from
the matrix multiplication on GL(2,R).

Observe that we are quotienting out the orientation reversing matrices,
since we are choosing a representative of the class of lattices. Then it only
make sense to consider the ones with positive determinant, i.e., the group
SL(2,Z).

Let U ∈ SL(2,Z) and X ∈ GL(2,R). We have that SL(2,Z) is acting by
matrix multiplication on the right: XU . This is equivalent to the action on
the left as U tX t. Thus

UX =

(
d c
b a

)(
x1 y1

x2 y2

)
=

(
d c
b a

)(
w1

w2

)
=

(
dw1 + cw2

bw1 + aw2

)
=

(
w′1
w′2

)
.

Then the correspondent representatives in H2 are:

(w1, w2) ∼ (1, w2

w1
) and (w′1, w

′
2) ∼ (1,

w′
2

w′
1
) with

w′2
w′1

=
bw1 + aw2

dw1 + cw2

=
b+ aw2

w1

d+ cw2

w1

.

Therefore SL(2,Z) acts on H2 via Möbius transformations:(
a b
c d

)
w =

aw + b

cw + d
,

where

(
a b
c d

)
∈ SL(2,Z) and w ∈ H2.

We can even compute the fundamental domain of the action that will
give us the full information about the quotient space SL(2,Z)\H2. First, let
us recall the definition of fundamental domain.
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Definition 2.1.2. A fundamental domain for a discrete group Γ acting
on H2, is a connected open subset D of H2 such that no two points of D are
equivalent under Γ and H2 = ∪γ∈ΓγD, where D is the closure of D.

To compute the fundamental domain in H2 given by the action of SL(2,Z),

we use that SL(2,Z) has two generators S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
.

This means that we have two transformations:

T (w) = w + 1 and S(w) = − 1

w
.

The first one is just a translation and the second one is a composition of
an inversion of the circle of radius one and center in the origin and a reflec-
tion. One can see that the fundamental domain looks:

Figure 2.1: The fundamental domain of SL(2,Z) on H2.

Making the corresponding identifications we get an orbifold with two
singular points that is homeomorphic to a punctured sphere which is con-
tractible. Thus the moduli space of flat metrics on the 2-torus is the product
of two contractible spaces:

Mflat(T
2) ∼= R+ × (H2/SL(2,Z)) ∼= R+ × (S2 \ {∗}) ∼= R3.

2.2 The Klein bottle

Now we are going to determine the moduli space of flat metrics for the Klein
bottle.

The Klein bottle K2 can be described as a quotient of R2 by a discrete
subgroup of Iso(2) as follows: K2 = R2/π, where π is a group generated
by a translation and a glide reflection in independent directions. We can
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fix π to be generated by (Id, e1) and (E, 1
2
e2), where E(x, y) = (−x, y)

is the reflection with respect the y-axis and {e1, e2} is the standard basis
of R2. Observe that the holonomy of K2 is generated by the reflection E,

Hπ =

〈(
−1 0

0 1

)〉
= Z2.

As we have seen before, every lattice gives us a metric in the torus, but
for the Klein bottle the lattice needs to behave well with respect to the glide
reflection. This means that only the orthogonal lattices will induce a metric
on the Klein bottle. This will be clear in the following paragraphs (see also
[22, Proposition 2.5.9]).

We compute the spaces Cπ and the normalizer of π as in Theorem 1.3.5,
in order to compute the moduli space of flat metrics. Let us compute
{γ ∈ Aff(n) | γπγ−1 ⊂ Iso(n)}. For this we will use the description of Lemma
1.3.8 to compute Cπ. We want to know which X = (x1, x2) ∈ GL(2,R) satisfy

(X tX)E = E(X tX), where E =

(
−1 0

0 1

)
.

Thus we have(
〈x1, x1〉 〈x1, x2〉
〈x2, x1〉 〈x2, x2〉

)(
−1 0

0 1

)
=

(
−1 0

0 1

)(
〈x1, x1〉 〈x1, x2〉
〈x2, x1〉 〈x2, x2〉

)
,

then

(
−〈x1, x1〉 〈x1, x2〉
−〈x2, x1〉 〈x2, x2〉

)
=

(
−〈x1, x1〉 −〈x1, x2〉
〈x2, x1〉 〈x2, x2〉

)
.

This can only happen if x1 ⊥ x2. This means that

Cπ = {X ∈ GL(2,R) | x1 ⊥ x2} = O(2) · (R+)2.

Now we compute the normalizer NAff(R2)(π). First we find the matrix part
Nπ, which is a matrix X ∈ GL(2,Z) such that XEX−1 = E, since we need
to preserve the generator of the holonomy in order to generate the whole
group. That is equivalent to solving the equation XE = EX and adding the
conditions of determinant ±1 with integer entries. We only get{(

1 0
0 1

)
,

(
1 0
0 −1

)
,

(
−1 0

0 1

)
,

(
−1 0

0 −1

)}
,

which can be seen as the 2-dihedral group D2 or, equivalently, the Klein
4-group.
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Second, the translation part is computed as follows. Let any translation
γ = (Id, u) ∈ Aff(2) and ε = (E, v) ∈ π, where u = (u1, u2) and v =

n1e1 + (2n2+1)
2

e2. Then

γεγ−1 = (Id, u)(E, v)(Id,−u)

= (E,−E(u1, u2) + v + (u1, u2)

= (E, (2u1, 0) + v).

Therefore, we need that 2u1 ∈ Z. This means that the translations that
normalize are 1

2
Z⊕ R.

Putting together the two computations we have that

NAff(Rn)(π) = D2 n ( 1
2
Z⊕ R).

With this information we can now see that the moduli space of flat metrics
is

Mflat(K
2) = O(2) nR2\O(2) · (R∗)2 nR2/D2 n ( 1

2
Z⊕ R)

= O(2)\O(2) · (R∗)2/D2

= (R+)2.

Thanks to the reflection, we have more restrictions for the Klein bottle.
Thus the dimension of the moduli space of flat metrics in comparison to
that of the 2-torus decreases. Actually, this can be observed already in the
Teichmüller space. Furthermore, for this case the moduli space of flat metrics
and the Teichmüller space are homeomorphic, telling us that the normalizer
is not giving us any new information about the space. This situation will
change for some cases in dimension 3 and 4.

2.3 Fundamental domains for congruence

subgroups

In this section we are going to explain how to compute the fundamental
domain of the action of a subgroup of SL(2,Z) on the hyperbolic plane.
Later, we will compute it for some specific subgroups. The information of
this section is based on [1], [16] and [18].

From section 2.1 we know that O(2)\GL(2,R) ∼= R+ ×H2, and that the
group SL(2,Z) acts on the hyperbolic plane by Möbius transformations. Now
we are interested in computing the fundamental domain of some subgroups
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of SL(2,Z) because in the next section we will find out those types of double
cosets and we would like to say something about their topology.

2.3.1 Subgroups of SL(2,Z)

There are a lot of discrete groups acting on H2, usually studied in number
theory. Some of them receive a special name, for example:

� Any discrete subgroup of SL(2,R) acting on H2 is called Fuchsian
group.

There are also some special names for subgroups of SL(2,Z):

� The principal congruence subgroup of level N is

Γ(N)+ = {A ∈ SL(2,Z) | A ≡ Id mod N}

for any natural number N . By the congruence of matrices we mean the
respective congruence of integer numbers in each entry.

� A congruence subgroup of SL(2,Z) is a subgroup containing Γ(N)+

for some N . For example:

Γ0(N)+ =

{(
a b
c d

)
∈ SL(2,Z) | c ≡ 0 mod N

}
.

Remark 2.3.1. The usual notation is Γ(N) without the ”+” since one al-
ways considers elements with positive determinant. In our case we consider
also elements with negative determinant in order to use Wolf’s notation,
even though for computing the double coset it only the positive determinant
elements are important.

2.3.2 Fundamental domains for Fuchsian groups

We already saw the definition of fundamental domain in 2.1.2. The next
theorem will tell us how to relate the fundamental domain of a group and its
subgroups:

Theorem 2.3.2. Let Γ be a discrete subgroup of SL(2,R), and let D be
a fundamental domain for Γ. Let Γ′ be a subgroup of Γ of finite index,
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and choose elements γ1, . . . , γm in Γ such that we have the disjoint union
Γ = Γ′γ̄1 t · · · t Γ′γ̄m, where a bar denotes the images in Aut(H2). Then

D′ =
m⋃
i=1

γiD

is a fundamental domain for Γ′.

Remark 2.3.3. It is possible to choose the γi so that the closure of D′ is
connected; the interior of the closure of D′ is then a connected fundamental
domain for Γ.

2.3.3 The fundamental domain for some congruence
subgroups of SL(2,Z)

First consider the following subgroups of GL(2,Z) that are going to appear
in the next sections:

Γ0(2) = {X =

(
a b
c d

)
∈ GL(2,Z) | c ≡ 0 mod 2}

=

{(
2a+ 1 b

2c 2d+ 1

)
∈ GL(2,Z) | a, c, d ∈ Z

}
,

Γ(2) = {X ∈ GL(2,Z) | X ≡ Id mod 2}

=

{(
2a+ 1 2b

2c 2d+ 1

)
∈ GL(2,Z) | a, b, c, d ∈ Z

}
.

For describing the next subgroup, we denote Y =

(
0 1
1 0

)
. Then the

subgroup of GL(2,Z) is given by

Γ(2)Y := Γ(2) ·
〈(

0 1
1 0

)〉
=

{(
2a+ 1 2b

2c 2d+ 1

)
,

(
2a 2b+ 1

2c+ 1 2d

)
∈ GL(2,Z) | a, b, c, d ∈ Z

}
.

In this section, we consider the subgroups of the previous groups given
by the matrices with positive determinant. These are the three congruence
subgroups to which we will compute their fundamental domain on H2. The
notation for these groups, as introduced in the section 1.1, is:

Γ0(2)+, Γ(2)+ and Γ(2)Y +.
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The algorithm to compute the fundamental domain of a subgroup Γ of
SL(2,Z) on H2, deduced from the Theorem 2.3.2, is:

1. Compute the index of Γ in SL(2,Z).

2. Find representatives in SL(2,Z) for Γ.

3. Apply the respective representatives transformations to the fundamen-
tal domain of SL(2,Z) on H2.

� We carry out these steps for Γ0(2)+.

1. Compute the index of Γ0(2)+ in SL(2,Z).
We will use that the index of Γ(2)+ in SL(2,Z) is: [SL(2,Z) : Γ(2)+] = 6,
this is well explained in [18], page 20-22.

We have that Γ(2)+ < Γ0(2)+ < SL(2,Z), then

[SL(2,Z) : Γ(2)+] = [SL(2,Z) : Γ0(2)+][Γ0(2)+ : Γ(2)+],

since the index is multiplicative. This means that [SL(2,Z) : Γ0(2)+] ≤ 3,
because [Γ0(2)+ : Γ(2)+] 6= 1.
On the other hand, we have that for any group G and subgroup H < G, if
g ∈ G, then gn ∈ H with n = [G : H].

Consider B =

(
2 1
1 1

)
/∈ Γ0(2)+. Then B2 /∈ Γ0(2)+ but B3 ∈ Γ0(2)+.

This means that [SL(2,Z) : Γ0(2)+] ≥ 3. Therefore, [SL(2,Z) : Γ0(2)+] = 3.

2. Find representatives in SL(2,Z) for Γ0(2)+.
Consider

γ1 = Id, γ2 =

(
0 −1
1 0

)
= S, γ3 =

(
0 −1
1 1

)
= ST .

They are representatives of Γ0(2)+ since:

Γ0(2)+ =

{(
2a+ 1 b

2c 2d+ 1

)
∈ GL(2,Z) | a, c, d ∈ Z

}
,

Γ0(2)+γ2 =

{(
a 2b+ 1

2c+ 1 2d

)
∈ GL(2,Z) | b, c, d ∈ Z

}
,

Γ0(2)+γ3 =

{(
a b

2c+ 1 2d+ 1

)
∈ GL(2,Z) | c, d ∈ Z

}
.
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3. Compute what happens to the fundamental domain of SL(2,Z).
Every transformation of SL(2,Z) is generated by S and T . Then it is enough
to see what these two transformations are doing to the fundamental domain
of SL(2,Z) on H2.

The map S is an inversion together with a reflection:

The map T is just a translation:

Since we have the representatives in terms of S and T , we make the corre-
sponding compositions to obtain that the fundamental domain is

Figure 2.2: The fundamental domain of Γ0(2)+ on H2.

The borders of the fundamental domain are identified by T ,

(
1 0
−2 1

)
,

and

(
−1 −1
2 1

)
∈ Γ0(2)+. Doing the border identifications we have an

orbifold which is homeomorphic to a cylinder.
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� We carry out the steps for Γ(2)+.

1. Again, the index of Γ(2)+ in SL(2,Z) is

[SL(2,Z) : Γ(2)+] = 6. ([18], page 20− 22).

2. The representatives in SL(2,Z) for Γ(2)+ (that we choose) are

γ1 = Id, γ2 =

(
0 −1
1 0

)
= S, γ3 =

(
0 −1
1 1

)
= ST , γ4 =

(
1 1
0 1

)
= T ,

γ5 =

(
1 −1
1 0

)
= TS, γ6 =

(
1 −2
1 −1

)
= TST−1.

3. Since we already expressed the representatives in terms of the gen-
erators T and S, we can apply them easier to the fundamental domain of
SL(2,Z). In this way we obtain the fundamental domain for Γ(2)+ on H2:

Figure 2.3: The fundamental domain of Γ(2)+ on H2.

The borders of the fundamental domain are identified by T 2,

(
1 0
−2 1

)
,

and

(
−3 2
−2 1

)
∈ Γ(2)+. Doing the border identifications, as shown in

the following picture, we have an orbifold which is homeomorphic to a 3-
punctured sphere.
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Figure 2.4: Doing the border identifications.

� The steps to compute the fundamental domain of the group Γ(2)Y + on
H2:

1. With a similar procedure as the case of Γ0(2), we get that the index
of Γ(2)Y + in SL(2,Z) is

[SL(2,Z) : Γ(2)Y +] = 3.

2. The representatives in SL(2,Z) for Γ(2)Y + (that we choose) are

γ1 = Id, γ2 =

(
1 1
0 1

)
= T , γ3 =

(
1 −1
1 0

)
= TS.

3. Since we already expressed the representatives in terms of the gen-
erators T and S, we can apply them easier to the fundamental domain of
SL(2,Z). In this way we obtain the fundamental domain for Γ(2)Y + on H2:

Figure 2.5: The fundamental domain of Γ(2)Y + on H2.

We can notice that the fundamental domain of Γ(2)Y + is quite similar to the
one of Γ0(2)+ and it is also homeomorphic to a cylinder.



Chapter 3

3-dimensional closed flat
manifolds

In this section, we present some steps and remarks necessary to compute the
moduli space of flat metrics. Then, we present the lists of moduli spaces of
flat metrics for 3-dimensional closed manifolds.

Recall that to describe the moduli space of flat metrics, as we have seen
already in the 2-dimensional case, we have to compute two spaces:

(a) The cone space

Cπ := {X ∈ GL(3,R) | XHπX
−1 ⊂ O(3)}.

(b) The normalizer

NAff(3)(π) = {α ∈ Aff(3) | απα−1 = π}.

Here, π is one of the 3-dimensional Bieberbach groups.
We will proceed as follows. First, we list the Bieberbach groups for the

3-dimensional manifolds; secondly, we determine the cone space Cπ, then we
determine the matrix part of the normalizer NAff(3)(π) and we describe the
moduli space of flat metrics. Finally, we study the topology of those moduli
spaces using the tools from the previous Chapter.

3.1 List of the 3-dimensional Bieberbach

groups

There are only 10 Bieberbach groups in dimension 3 up to affine change of
coordinates. Out of them, six give orientable manifolds and four give non-

25
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orientable manifolds. We present a list of them. The representations can also
be found in [22] or [13].

We need some notation. We shall denote by e1 = (1, 0, 0), e2 = (0, 1, 0)
and e3 = (0, 0, 1) the vectors of the standard basis of R3. The basic trans-
lations of R3 are denoted by ti = (Id, ei). Also, the rotation matrix by an
angle θ ∈ [0, 2π] is denoted as

R(θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

3.1.1 The orientable 3-dimensional closed flat
manifolds

Here is the list of the Bieberbach groups for the orientable 3-dimensional flat
manifolds.

G1 = T3: Hπ = {Id}, π = 〈t1, t2, t3〉.

G2: Hπ = Z2, π = 〈t1, t2, t3, α = (A, 1
2
e1)〉,

where A =

 1 0 0
0 −1 0
0 0 −1

 =

(
1 0
0 R(π)

)
.

G3: Hπ = Z3, π = 〈t1, s1 = (Id, A(e2)), s2 = (Id, A2(e2)), α = (A, 1
3
e1)〉,

where A =

 1 0 0

0 −1
2
−
√

3
2

0
√

3
2
−1

2

 =

(
1 0
0 R(2π

3
)

)
.

G4: Hπ = Z4, π = 〈t1, t2, t3, α = (A, 1
4
e1)〉,

where A =

 1 0 0
0 0 −1
0 1 0

 =

(
1 0
0 R(π

2
)

)
.

G5: Hπ = Z6, π = 〈t1, s1 = (Id, A(e2)), s2 = (Id, A2(e2)), α = (A, 1
6
e1)〉,

where A =

 1 0 0

0 1
2
−
√

3
2

0
√

3
2

1
2

 =

(
1 0
0 R(π

3
)

)
.
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G6: Hπ = Z2 × Z2, π = 〈t1, t2, t3, α = (A, 1
2
e1), β = (B, 1

2
(e2 + e3))〉,

where A =

 1 0 0
0 −1 0
0 0 −1

, B =

 −1 0 0
0 1 0
0 0 −1

.

3.1.2 The non-orientable 3-dimensional closed flat
manifolds

We now list the Bieberbach groups for the non-orientable 3-dimensional flat
manifolds.

B1 = S1 ×K2: Hπ = Z2, π = 〈t1, t2, t3, ε = (E, 1
2
e1)〉,

where E =

 1 0 0
0 1 0
0 0 −1

.

B2: Hπ = Z2, π = 〈t1, t2, s = (Id, 1
2
(e1 + e2) + e3), ε = (E, 1

2
e1)〉,

where E =

 1 0 0
0 1 0
0 0 −1

.

B3: Hπ = Z2 × Z2, π = 〈t1, t2, t3, α = (A, 1
2
e1), ε = (E, 1

2
e1)〉,

where A =

 1 0 0
0 −1 0
0 0 −1

, E =

 1 0 0
0 1 0
0 0 −1

 .

B4: Hπ = Z2 × Z2, π = 〈t1, t2, t3, α = (A, 1
2
e1), ε = (E, 1

2
(e2 + e3))〉,

where A =

 1 0 0
0 −1 0
0 0 −1

 E =

 1 0 0
0 1 0
0 0 −1

.

3.2 The cone space

The cone space Cπ is easy to analyze since it only depends on the holonomy.
To describe the space Cπ, one has to solve the equation:

X ∈ GL(3,R) such that (X tX)A = A(X tX) (3.1)
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for all A ∈ Hπ (see Lemma 1.3.8). Recall that we can consider the columns
of X = (x1, x2, x3) as vectors in R3 to get the following description:

X tX =

 〈x1, x1〉 〈x1, x2〉 〈x1, x3〉
〈x2, x1〉 〈x2, x2〉 〈x2, x3〉
〈x3, x1〉 〈x3, x2〉 〈x3, x3〉

 .

Solving the Equation (3.1) will give some conditions for the vectors xi.
To express these spaces, we use the notation H1 ·H2, given in the section

1.1. The descriptions are done in [11] and [12]. We present some details
because some of the cases appear again in dimension 4.

Proposition 3.2.1. The possible spaces Cπ for the 3-dimensional closed flat
manifolds are the following:

1. If the holonomy is trivial, then Cπ = GL(3,R).

2. If Hπ = Z2, then Cπ = O(3) · (R∗×GL(2,R)) or O(3) · (GL(2,R)×R∗).

3. If Hπ = Zk with k = 3, 4, 6, then Cπ = O(3) · (R∗ × (R+ ×O(2))).

4. If Hπ = Z2 × Z2, then Cπ = O(3) · (R∗)3.

We explain cases 2 and 3 in the preceding proposition.

Case 2. The case of Hπ = Z2 generated by A =

 1 0 0
0 −1 0
0 0 −1

. We

solve the Equation (3.1), and we get:

Cπ = {(x1, x2, x3) ∈ GL(3,R) | x1 ⊥ x2 and x1 ⊥ x3}

= O(3) ·
{(

a 0
0 B

)
| a ∈ R∗ and B ∈ GL(2,R)

}
= O(3) · (R∗ ×GL(2,R)).

Note that when the holonomy is generated by E =

 1 0 0
0 1 0
0 0 −1

, then the

second factor has different order: O(3) · (GL(2,R)× R∗).

Case 3. In the cases of cyclic holonomy Z3, Z4, or Z6, the generator is

of the form A =

(
1 0
0 R(θ)

)
with θ = 2π

3
, π

2
or π

3
, respectively. Thus, when
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we solve the Equation (3.1), the rotation must be preserved. This gives an
extra restriction on the vectors, namely:

Cπ = {(x1, x2, x3) ∈ GL(3,R) | xi ⊥ xj i 6= j and ‖x2‖ = ‖x3‖}

= O(3) ·


 a 0 0

0 b 0
0 0 b

 | a, b ∈ R∗


= O(3) · (R∗ × (R+ ×O(2)).

Remark 3.2.2. If A ∈ Hπ and X ∈ GL(n,R) such that XAX−1 ∈ O(n)
then XArX−1 = (XAX−1)r ∈ O(n) for any r ∈ N.

3.3 The normalizer

To describe the moduli space of flat metrics, it is important to compute the
matrix part of the normalizer, Nπ, of the given Bieberbach group π in the
group of affine transformations. As we saw in Corollary 1.5.2, the group Nπ
will not change the dimension of the moduli space of flat metrics with respect
to the Teichmüller space, but Nπ can make the moduli space of flat metrics
have interesting topology, in the sense that it could be a non-contractible
space.

We use some descriptions from [13] but we present them in a different
fashion. We found out that there are some mistakes in [13]; this is going to
be highlighted when is necessary. For some computations we use the program
Mathematica as a tool.

3.3.1 General approach

The description of the normalizer of a Bieberbach group in the affine trans-
formations depends not only on the holonomy but on the affine structure as
well, i.e., on how the translations are acting. We have two situations:

(a) The matrix part of the normalizer Nπ is not always the same as
NGL(n,Z)(Hπ).

(b) It is not always possible to express NAff(n)(π) as a semidirect product.

This two situations lead us to the following definitions and lemmas. We
are going to present an example of each definition.

Definition 3.3.1. We say that the Bieberbach group π has trivial lattice,
when its lattice is Lπ = Zn ⊂ π.
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For example, G2 has trivial lattice, but G3 do not has trivial lattice.

Definition 3.3.2. Let π be a Bieberbach group with non trivial holonomy.
We say that the group has translation part not involved, when for X ∈
NGL(n,Z)(Hπ) we have that X(v) = v = (v1, . . . , vn) or X(v) = (u1, . . . , un),
with ui = −vi for some i ∈ I ⊆ {1, . . . , n} and uj = vj for j /∈ I; for
each generator α = (A, v) of π such that A 6= Id. Otherwise, we say it has
translation part involved.

Example 3.3.3. An example of a Bieberbach group with translation part
not involved is G2. The generator that is not a translation is α = (A, 1

2
e1).

Solving the equation for X ∈ GL(3,Z) such that XA = AX, where

A =

 1 0 0
0 −1 0
0 0 −1

 ,

we conclude that the matrices X have the form(
±1 0
0 X2

)
with X2 ∈ GL(2,Z).

Therefore X(1
2
e1) = ±1

2
e1.

Example 3.3.4. An example of a Bieberbach group with translation part
involved is B1. The generator that is not a translation is ε = (E, 1

2
e1).

Solving the equation for X ∈ GL(3,Z) such that XE = EX, where

E =

 1 0 0
0 1 0
0 0 −1

 ,

we conclude that the matrices X have the form(
X1 0
0 ±1

)
with X1 ∈ GL(2,Z).

Therefore X(1
2
e1) is not always ±1

2
e1.

Definition 3.3.5. Let α = (A, v) ∈ π with A 6= Id. Then the lattice for α
is αLπ = {(A, v)(Id, u) | (Id, u) ∈ Lπ}, that is, all the affine transformations
in π that have the matrix part equal to A.

Example 3.3.6. The lattice for ε in B1 is

εLπ = {(E, 1

2
e1)(Id, u) | (Id, u) ∈ Lπ = Z3}

= {(E, v) | v =
2n1 + 1

2
e1 + n2e2 + n3e3, with n1, n2, n3 ∈ Z}.
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Using this notation we state:

Lemma 3.3.7. Let π be a Bieberbach group with trivial lattice, translation
part not involved and assume that the lattices of the generators of the holon-
omy are preserved by multiplying by −1, i.e., for (A, v) ∈ π with A 6= Id, we
have (A,−v) ∈ π. Then

NAff(n)(π) = NGL(n,Z)(Hπ) n T,

where T are the translations of the normalizer.

Proof. Let X ∈ GL(n,Z) such that XHπX
−1 = Hπ. For some generator

(A, v) of π we have

(X, 0)(A, v)(X−1, 0) = (XAX−1, X(v)).

Then XAX−1 ∈ Hπ and X(v) is v or −v which means that the lattices with
respect to each generator of Hπ are preserved.

This lemma is satisfied by G2, G6, B3 and B4. Also, in general, by Tn.
Now, we can use the next property in order to see if the normalizer is a

semidirect product or not.

Proposition 3.3.8. Let G < Aff(n) be a subgroup. For all (X, u) ∈ G, we
have (X, 0) ∈ G if and only if G = M n T , where M is the matrix part and
T are the translations of G.

We have to check this property case by case, but having it will give us the
advantage to search only for the affine transformations with zero translation
that normalize. All the orientable 3-dimensional closed flat manifolds have
this property. In the next example we will see the case of a non-orientable
one satisfying the property.

Example 3.3.9. The flat manifold B1 satisfies the property studied in
Proposition 3.3.8. Let (X, u) ∈ NAff(3)(π) and (E, v) ∈ π, we have:

(X, u)(E, v)(X−1,−X−1(u)) = (XEX−1,−XEX−1(u) +X(v) + u).

Set u = (a, b, c), then

(XEX−1,−XEX−1(u) +X(v) + u) = (E,−E(u) + u+X(v))

= (E, (0, 0, 2c) +X(v)) ∈ εLπ.

This means that the translation vector is of the form (see example 3.3.6)

(0, 0, 2c) +X(v) = (
2n1 + 1

2
, n2, 2c+ n3)

where the ni are in Z and 2c + n3 ∈ Z. This means that c can be zero, and
we are still in the lattice. We have shown that (X, 0) ∈ NAff(3)(π).
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The only 3-dimensional flat manifold that does not satisfy Proposition
3.3.8 is B2.

Example 3.3.10. The flat manifold B2 do not satisfy the property in Propo-
sition 3.3.8. Indeed, doing the same computation as in the previous example,
we have
(E, (0, 0, 2c) + X(v)) ∈ εLπ. But now we do not have a trivial lattice. Thus
the lattice of ε is different:

εLπ = {(E, v) | v =
2n1 + n3 + 1

2
e1+

2n2 + n3

2
e2+n3e3, with n1, n2, n3 ∈ Z}.

As we can see, the first and second entry depend on the value of n3. Then,
the value of c could change the third entry without changing the other two.
That is the reason why we can not consider the translation zero in general.

For the cases that do not have the structure of a semidirect product, it is
useful to denote them as follows.

Definition 3.3.11. When Proposition 3.3.8 does not hold, we say that we
have switching cases with translations for the elements of the normalizer
that needs the translation part different from zero.

The approach to compute the matrix part of the normalizer of a Bieberbach
group, π, in the group of affine transformations is:

(a) For the cases that do not have trivial lattice sometimes it is convenient
to change the representation in order to have trivial lattice, and in this
way, the matrix becomes an integer matrix.

(b) If the group satisfies Proposition 3.3.8, we proceed as follows:

i. Compute the normalizer of Hπ in GL(n,Z), or in a conjugation of
this group for the case of non-trivial lattice:

{X ∈ GL(n,Z) or QGL(n,Z)Q−1 | XHπ = HπX},

where Q ∈ GL(n,R).

ii. See if the translation part is involved or not. Then see which of the
matrices computed in step i preserve or interchange the lattices of
the respective generators.

(c) If the group does not satisfy Proposition 3.3.8, we do the same as in step
(b), but now we have to search for the switching cases with translation.
To detect the possible options, one can compute the translations that
normalize π.
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3.3.2 The normalizer for the 3-dimensional
Bieberbach groups

Having the previous notions and examples in hand, we proceed with the
description of the matrix part, Nπ, of the normalizer of the 3-dimensional
Bieberbach groups in the group of affine transformations.

First, we do a change of representation by conjugating with a suitable
affine transformation as in [13, Lemma 2.2], to G3 and G5. Then the repre-
sentations used for computing the normalizer are, using the same notation:

G3: Hπ = Z3, π = 〈t1, t2, t3, α = (A, 1
3
e1)〉 where A =

 1 0 0
0 0 −1
0 1 −1

.

G5: Hπ = Z6, π = 〈t1, t2, t3, α = (A, 1
6
e1)〉 where A =

 1 0 0
0 0 −1
0 1 1

 .

Proposition 3.3.12. Let π be one of the Bieberbach groups for the
3-dimensional orientable closed flat manifolds, then the matrix part of the
normalizer of π, Nπ, in Aff(3) are as follows:

1. For T 3, Nπ = GL(3,Z).

2. For G2, Nπ =

{(
±1 0
0 B

)
| B ∈ GL(2,Z)

}
.

3. For G3, Nπ = D6 =

〈 1 0 0
0 1 −1
0 1 0

 ,

 −1 0 0
0 0 1
0 1 0

〉.

4. For G4, Nπ = D4 =

〈 1 0 0
0 0 −1
0 1 0

 ,

 −1 0 0
0 1 0
0 0 −1

〉.

5. For G5, Nπ = D6 =

〈 1 0 0
0 0 −1
0 1 1

 ,

 −1 0 0
0 0 1
0 1 0

〉.
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6. For G6, Nπ =


 ±1 0 0

0 ±1 0
0 0 ±1

.

This is proved in [13], but we will explain some cases and make some
remarks to use them later as a comparison for the cases in dimension 4.

The group G2 has trivial lattice, and by Example 3.3.3, it has translation
part not involved. When we multiply by −1 a translation vector of the lattice
of the generator, it stays inside the lattice. Therefore, as we saw in Lemma
3.3.7, any matrix X ∈ NGL(3,Z)(Hπ) will give an element (X, 0) ∈ NAff(3)(π).

For G3, observe that we have cyclic holonomy of order bigger than 2. In
this case the next remark is useful:

Remark 3.3.13. Let π be a Bieberbach group with cyclic holonomy Hπ =
〈A〉 of order k. To compute the normalizer one has to find X ∈ GL(n,Z)
such that XHπX

−1 = Hπ, but for this we need to satisfy XAX−1 = Ar with
(r, k) = 1 (relative primes) in order to always get a generator of the cyclic
group. To preserve the lattices of the generators, it is enough to find the X
that preserves one type of lattice for one generator.

Continuing with G3, the preceding remark tells us that there are two cases
for X ∈ GL(3,Z):

XAX−1 =

{
A case 1
A2 case 2.

For both cases we need the matrix with the form X =

(
±1 0
0 X2

)
, where

the matrix X2 will be:

Case 1: X2

(
0 −1
1 −1

)
=

(
0 −1
1 −1

)
X2.

Then the matrix has to be: X2 ∈
〈(

1 −1
1 0

)〉
.

Case 2: X2

(
0 −1
1 −1

)
=

(
−1 1
−1 0

)
X2.

Then the matrix has to be: X2 ∈
{〈(

1 −1
1 0

)〉
·
(

0 1
1 0

)}
.

As we can observe, the group G3 has trivial lattice and translation part not
involved. Then we just have to see if multiplying by −1 in the first entry
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affects the lattices of the generators:

αLπ = {(A, 1

3
e1)(Id, v) | (Id, v) ∈ Lπ = Z3}

= {(A, v̂) | v̂ =
3n1 + 1

3
e1 − n3e2 + (n2 − n3)e3, with n1, n2, n3 ∈ Z};

α2Lπ = {(A2, v̂) | v̂ =
3n1 + 2

3
e1 + (n3 − n2)e2 − n2e3, with n1, n2, n3 ∈ Z}.

Then, the 1 in the first entry of the matrix X preserve the lattices (necessary
for Case 1) and the −1 switches the lattices (necessary for Case 2). Therefore,
the normalizer is

D6 =

〈 1 0 0
0 1 −1
0 1 0

 ,

 −1 0 0
0 0 1
0 1 0

〉 .
All of the Bieberbach groups of Proposition 3.3.12 have trivial lattice,

translation part not involved and the normalizer is a semidirect product,
which means that to compute the normalizer of π one just has to compute
the normalizer of Hπ in GL(3,Z) and the lattices for αLπ to see if it is affected
by multiplying by −1, as we did for the case of G3.

Now, we present the result for the non-orientable manifolds.

Proposition 3.3.14. Let π be one of the Bieberbach groups for the
3-dimensional non-orientable closed flat manifolds. Then the matrix part of
the normalizer of π, Nπ, in Aff(3) is as follows:

1. For B1, Nπ =

{(
Γ0(2) 0

0 ±1

)}
.

2. For B2, Nπ =


(

Γ(2) 0
0 ±1

)
·

〈 0 1 0
1 0 0
0 0 −1

〉.

3. For B3 or B4, Nπ =


 ±1 0 0

0 ±1 0
0 0 ±1

.

We will only prove the proposition for B1 and B2, which are the interest-
ing cases.
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The group B1 has trivial lattice and the normalizer has structure of
semidirect product. The difference now is that we have translation part
involved as shown in example 3.3.4. This means we have to restrict to matri-
ces in NGL(3,Z)(Hπ) that preserve the corresponding lattice of the generator
ε:

εLπ = {(E, v) | v =
2n1 + 1

2
e1 + n2e2 + n3e3, with n1, n2, n3 ∈ Z}.

As we saw in Example 3.3.4, we have to search for X1 ∈ GL(2,Z) such that
X1(2n1+1

2
, n2)t = (2k1+1

2
, k2), with ni, ki ∈ Z for i = 1, 2. This only happens

for matrices in Γ0(2), getting the conclusion.
For B2 we do not have trivial lattice anymore, and as we saw in Example

3.3.10, the normalizer will not have the structure of a semidirect product.
We proceed as before with preserving the lattice of the generator:

εLπ = {(E, v) | v =
2n1 + n3 + 1

2
e1+

2n2 + n3

2
e2+n3e3, with n1, n2, n3 ∈ Z}.

After considering the cases when n3 is even and when n3 is odd, separately,
one finds that the matrices that normalize the group π without needing a
translation are {(

Γ(2) 0
0 ±1

)}
.

We still have to consider affine transformations that normalize but with a
nonzero translation (the switching case with translation). After looking at
all possibilities we conclude that the switching cases with translation are

 Γ(2) ·
(

0 1
1 0

)
0

0 ±1

 , 2n+1
2
e3

 | n ∈ Z

 .

Thus, the whole group is:

NAff(3)(π) =

({(
Γ(2) 0

0 ±1

)}
n (R⊕ R⊕ Z)

)
n 〈ξ〉 ,

where ξ =

 0 1 0
1 0 0
0 0 −1

 , 1
2
e3

.

Remark 3.3.15. There is a mistake in the computations done by Kang for
the group B1. It is stated in [13, Lemma 3.3] the group Γ(2) instead of the
group Γ0(2). Knowing the correct group is important because it affects the
topology of the resulting spaces.
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3.4 The moduli space of flat metrics

First, for completeness and because of the previous relations with the mod-
uli space of flat metrics, we will state the Teichmüller spaces for the 3-
diemnsional closed manifolds. They are computed in [11] and [12]. They
are also easily computed using the description given in [3].

Theorem 3.4.1. The Teichmüller spaces of the 3-dimensional closed flat
manifolds are the following:

1. For T 3, Tflat = O(3)\GL(3,R) ∼= R6.

2. For G2, B1 and B2, Tflat = O(1)\GL(1,R)×O(2)\GL(2,R)
or O(2)\GL(2,R)×O(1)\GL(1,R) ∼= R4.

3. For G3, G4 and G5, Tflat = O(1)\GL(1,R)× U(1)\GL(1,C) ∼= R2.

4. For G6, B3 and B4, Tflat = (O(1)\GL(1,R))3 ∼= R3.

To describe the moduli space of flat metrics we need to use the orthogonal
representation. For the cases where we change the representation, we have
to recover the orthogonal representation. This is done using Lemma 1.3.11.
In this way we obtain the following groups:

For G3, Nπ =

〈(
1 0
0 R(π

3
)

)
,

 −1 0 0
0 1 0
0 0 −1

〉 < O(3).

For G5, Nπ =

〈(
1 0
0 R(π

3
)

)
,

 −1 0 0
0 −1 0
0 0 1

〉 < O(3).

We put all the information together for describing the moduli space of
flat metrics and reduce the double coset whenever possible. The next result
also appears in [13].

Theorem 3.4.2. The moduli space of flat metrics of the 3-dimensional closed
manifolds are:

1. For T 3, Mflat = O(3)\GL(3,R)/GL(3,Z).

2. For G2, Mflat = R+ × (O(2)\GL(2,R)/GL(2,Z)).

3. For G3, G4 and G5, Mflat = (R+)2.

4. For G6, Mflat = (R+)3.
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5. For B1, Mflat = (O(2)\GL(2,R)/Γ0(2))× R+.

6. For B2, Mflat = (O(2)\GL(2,R)/Γ(2)Y )× R+.

7. For B3 and B4, Mflat = (R+)3.

Proof. By Theorem 1.3.5 and Remark 1.3.7, the moduli space of flat metrics
can be described as

Mflat = O(3)\Cπ/Nπ.
For the Bieberbach groups with cyclic holonomy with order bigger than 2,
we have that when we reduce the double coset, the following factor appears:

O(2)\R∗ ·O(2)/〈R,A〉,

where R and A are generators that depend on the normalizer for each Bieber-
bach group with cyclic holonomy of order bigger than 2. These two generators
are going to be orthogonal matrices, R,A ∈ O(2). Then

O(2)\R∗ ·O(2)/〈R,A〉 = R+.

Now we are in the position to study the topology of these spaces. We will
use the homeomorphism (2.3) and the fundamental domains we computed in
Section 2.3.

Theorem 3.4.3. There are two moduli spaces of flat metrics of
3-dimensional closed manifolds that are non-contractible, and the other mod-
uli spaces of flat metrics are contractible.

Proof. The proof is done case by case.

� For the 3-torus we have

Mflat(T
3) = O(3)\GL(3,R)/GL(3,Z).

This is contractible by the work of Soulé [19].

� For G2 we have

Mflat(G2) = R+ × (O(2)\GL(2,R)/GL(2,Z))
∼= R+ × (R+ ×H2/SL(2,Z))
∼= (R+)2 × S2 \ {∗},

by the homeomorphism (2.3) given in Section 2.1, and shown in Figure
2.1.
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The next cases are clearly contractible:

� For Gk, with k = 3, 4, 5, we have

Mflat(Gk) = (R+)2.

� For G6, Bi, with i = 3, 4, we have

Mflat(G6) =Mflat(Bi) = (R+)3.

The non-contractible cases are the following:

� For B1, we have

Mflat(B1) = (O(2)\GL(2,R)/Γ0(2))× R+

∼= (R+ ×H2/Γ0(2)+)× R+

∼= cylinder× (R+)2,

by the homeomorphism (2.3) given in Section 2.1 and the computation
of the fundamental domain done in Section 2.3, and shown in Figure
2.2.

� For B2, we have

Mflat(B2) = (O(2)\GL(2,R)/Γ(2)Y )× R+

∼= (R+ ×H2/Γ(2)Y +)× R+

∼= cyliner× (R+)2,

by the homeomorphism (2.3) given in Section 2.1 and the computation
of the fundamental domain done in Section 2.3, and shown in figure
2.5.

Remark 3.4.4. There is another erroneous claim in Kang’s paper [13, The-
orem 4.5]. It is stated that the moduli space of flat metrics of B2 is

(O(2)\GL(2,R)/Γ(2))× R+.

If this were true, then

O(3)\Cπ/Nπ ∼= (O(2)\GL(2,R)/Γ(2))× R+,



40

but the matrix part of the normalizer is

Nπ =


(

Γ(2) 0
0 ±1

)
·

〈 0 1 0
1 0 0
0 0 −1

〉 .

This would mean that we have the next homeomorphism:

(O(2)\GL(2,R)/Γ(2)Y )× R+ ∼= (O(2)\GL(2,R)/Γ(2))× R+.

This is a contradiction because

(O(2)\GL(2,R)/Γ(2)Y )× R+ ∼= cyliner× (R+)2 and

(O(2)\GL(2,R)/Γ(2))× R+ ∼= 3-punctured sphere× (R+)2.

The last homeomorphism follows from the homeomorphism (2.3) given in
Section 2.1 and the fundamental domain computed in Section 2.3 and shown
in Figure 2.3 and 2.4.



Chapter 4

4-dimensional closed flat
manifolds

In this chapter we describe the moduli spaces of flat metrics for a family of
4-dimensional closed manifolds. We will use the same approach as in the
3-dimensional case. First we list the Bieberbach groups, then we determine
the cone spaces and the normalizer groups, and finally we present the moduli
spaces of flat metrics.

4.1 List of the 4-dimensional Bieberbach

groups

The family of 4-dimensional closed flat manifolds that we are considering is
the one whose Bieberbach groups have only one generator in their holonomy.
This family consists of 16 manifolds, where 8 are orientable and 8 are non-
orientable. To list their Bieberbach groups we use the classification tables
done in the Ph.D. thesis of Lambert [15]. There are, in addition to this
family, two further families of 2 and 3 generators in their holonomy. In total
there are 74 affine equivalent classes of 4-dimensional closed flat manifolds.

Let us introduce the following notation for dimension 4, analogous to
the one we used in dimension 3. We shall denote by e1 = (1, 0, 0, 0), e2 =
(0, 1, 0, 0), e3 = (0, 0, 1, 0) and e4 = (0, 0, 0, 1) the standard basis vectors of
R4. Also, ti = (Id, ei) will denote the basic translations of R4.

41
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4.1.1 The orientable 4-dimensional closed flat
manifolds with a single generator in their
holonomy

Here is the list of the Bieberbach groups for the orientable 4-dimensional flat
manifolds with a single generator in their holonomy.

The flat torus T4 = O4
1:Hπ = Id, π = 〈t1, t2, t3, t4〉 = Z4

O4
2:Hπ = Z2

π = 〈t1, t2, t3, t4, α = (A, 1
2
e4)〉, where A =


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 .

O4
3: Hπ = Z2

π = 〈t1, t2, t3, s = (Id, 1
2
(e1 + e4)), α = (A, 1

2
e2)〉,

where A =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 .

O4
4: Hπ = Z3

π = 〈t1, t2, t3, s = (Id, 1
2
e3 +

√
3

2
e4)), α = (A, 1

3
e2)〉,

where A =


1 0 0 0
0 1 0 0

0 0 −1
2
−
√

3
2

0 0
√

3
2
−1

2

 .

O4
5: Hπ = Z3

π = 〈t1, t2, s1 = (Id,−1
3
e2 + 2

√
3

3
e3), s2 = (Id, 1

3
e2 +

√
3

3
e3 + e4), α = (A, 1

3
e1)〉,

where A =


1 0 0 0
0 1 0 0

0 0 −1
2
−
√

3
2

0 0
√

3
2
−1

2

 .
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O4
6: Hπ = Z4

π = 〈t1, t2, t3, t4, α = (A, 1
4
e2)〉, where A =


1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0

 .

O4
7: Hπ = Z4

π = 〈t1, t2, s1 = (Id, 1
2
e1 + 1

2
e2 + e3), s2 = (Id, 1

2
e1 + 1

2
e2 + e4), α = (A, 1

4
e2)〉,

where A =


1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0

 .

O4
8: Hπ = Z6

π = 〈t1, t2, t3, s = (Id, 1
2
e3 +

√
3

2
e4), α = (A, 1

6
e2)〉,

where A =


1 0 0 0
0 1 0 0

0 0 1
2
−
√

3
2

0 0
√

3
2

1
2

 .

4.1.2 The non-orientable 4-dimensional closed flat
manifolds with a single generator in their
holonomy

Here is the list of the Bieberbach groups for the non-orientable 4-dimensional
flat manifolds with a single generator in their holonomy.

N4
1 = K2 × T 2: Hπ = Z2

π = 〈t1, t2, t3, t4, α = (A, 1
2
e1)〉, where A =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .

N4
2: Hπ = Z2

π = 〈t1, t2, t3, s = (Id, 1
2
(e3 + e4)), α = (A, 1

2
e1)〉,
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where A =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .

N4
14: Hπ = Z2

π = 〈t1, t2, t3, t4, α = (A, 1
2
e4)〉, where A =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 .

N4
15: Hπ = Z4

π = 〈t1, t2, t3, t4, α = (A, 1
4
e2)〉, where A =


−1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0

 .

N4
16: Hπ = Z4

π =〈s1 = (Id, 1
2
(e1 + e2 + e3)), s2 = (Id, 1

2
(−e1 + e2 − e3)),

s3 = (Id, 1
2
(−e1 − e2 + e3)), t4, α = (A, 1

4
e4)〉,

where A =


0 1 0 0
−1 0 0 0
0 0 −1 0
0 0 0 1

 .

N4
19: Hπ = Z6

π = 〈t1, t2, t3, s = (Id, 1
2
e3 +

√
3

2
e4), α = (A, 1

6
e2)〉,

where A =


−1 0 0 0
0 1 0 0

0 0 −1
2
−
√

3
2

0 0
√

3
2
−1

2

 .

N4
20: Hπ = Z6
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π = 〈t1, t2, t3, s = (Id, 1
2
e3 +

√
3

2
e4), α = (A, 1

6
e2)〉,

where A =


−1 0 0 0
0 1 0 0

0 0 1
2

√
3

2

0 0 −
√

3
2

1
2

 .

N4
21: Hπ = Z6

π = 〈t1, t2, t3, t4, α = (A, 1
6
e1)〉, where A =


1 0 0 0
0 0 −1 0
0 0 0 −1
0 −1 0 0

 .

4.2 The cone space

We compute the cone spaces Cπ for the family of 4-dimensional closed flat
manifolds with a single generator in their holonomy. As before, we continue
using the same notation as in dimension 3 and Lemma 1.3.8.

Proposition 4.2.1. The possible spaces Cπ for the 4-dimensional closed flat
manifolds with a single generator in their holonomy are the following:

1. For trivial holonomy: T 4. The space is Cπ = GL(4,R).

2. For Hπ = Z2, the spaces are:

i. For O4
2 and O4

3, Cπ = O(4) · (GL(2,R)×GL(2,R)).

ii. For N4
1 , N4

2 , and N4
14, Cπ = O(4) · (GL(3,R)× R∗).

3. For cyclic holonomy of order bigger than 2, the spaces are:

i. For O4
4, O4

5, O4
6, O4

7 and O4
8, Cπ = O(4) ·(GL(2,R)×(R+×O(2))).

ii. For N4
15, , N4

19 and N4
20, Cπ = O(4)·((R+)2×O(2))×(R+×O(2))).

For N4
16, Cπ = O(4) · ((R+ ×O(2)× (R+)2 ×O(2))).

iii. For N4
21, Cπ = O(4) · (R∗ × (R+ × (0, 2π

3
)×O(3))).

Proof. We consider each case separately.
Case 1. When the holonomy is trivial, the result follows from Corollary

2.1.
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Case 2. For Hπ = Z2. The situation is similar to dimension 3 Case 2 of

Proposition 3.2.1. When Hπ is generated by A =


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 or its

negative −A, which is the case of O4
2 and O4

3, we have

Cπ = {(x1, x2, x3, x4) ∈ GL(4,R) | x1 ⊥ x3, x1 ⊥ x4, x2 ⊥ x3 and x2 ⊥ x4}

= O(4) ·
(

GL(2,R) 0
0 GL(2,R)

)
.

When the generator of Hπ is A =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 or its negative −A,

which is the case of N4
1 , N4

2 , and N4
14, we have

Cπ = {(x1, x2, x3, x4) ∈ GL(4,R) | x4 ⊥ xi with i = 1, 2, 3}

= O(4) ·
{(

B 0
0 a

)
| a ∈ R∗ and B ∈ GL(3,R)

}
= O(4) · (GL(3,R)× R∗).

Case 3. For cyclic holonomy manifolds with order bigger than 2. The
situation is similar to dimension 3, Case 3 of Proposition 3.2.1. Here we
are also using remark 3.2.2. When Hπ is generated by matrices of the form 1 0 0

0 1 0
0 0 R(θ)

, which is the case of O4
4, O4

5, O4
6, O4

7, and O4
8, we get that

Cπ = {(x1, x2, x3, x4) ∈ GL(4,R) | x1 ⊥ x3, x1 ⊥ x4, x2 ⊥ x3, x2 ⊥ x4, x3 ⊥ x4

and ‖x3‖ = ‖x4‖}

= O(4) ·
(

GL(2,R) 0
0 R+ ×O(2)

)
= O(4) · (GL(2,R)× (R+ ×O(2))).

When the holonomy is generated by matrices of the form

 −1 0 0
0 1 0
0 0 R(θ)


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or

 R(θ) 0 0
0 −1 0
0 0 1

, which is the case of N4
15, N4

16, N4
19, and N4

20, we have

Cπ = {(x1, x2, x3, x4) ∈ GL(4,R) | xi ⊥ xj for all i 6= j with i, j ∈ {1, 2, 3, 4},
and ‖x3‖ = ‖x4‖}
= O(4) ·

(
((R+)2 ×O(2))× (R+ ×O(2))

)
.

When the holonomy is generated by


1 0 0 0
0 0 −1 0
0 0 0 −1
0 −1 0 0

, which is the case

of N4
21, we have

Cπ = {(x1, x2, x3, x4) ∈ GL(4,R) | x1 ⊥ xi with i = 2, 3, 4,

‖x2‖ = ‖x3‖ = ‖x4‖ and x2 · x3 = x2 · x4 = x3 · x4} .

This means that the vectors x2, x3 and x4 have the same length and form
the same angle between them. For this situation we have that the angle is
θ ∈ (0, 2π

3
) since having angle 2π

3
means that the vectors are coplanar (and

not linearly independent anymore). With this information we can conclude
that

Cπ = O(4) · (R∗ × (R+ × (0, 2π
3

)×O(3)).

4.3 The normalizer

We proceed as in section 3.3.1. For the orientable manifolds we will get
different situations than in dimension 3. That is why we will introduce some
helpful notation.

First, we present the list of the conjugated representations of some of the
Bieberbach groups. The matrix is going to be similar as in dimension 3 since
we have the same holonomies. These representations are used to compute
the normalizer. With an abuse of notation, we denote these groups in the
same way as before.

O4
4: Hπ = Z3

The representation is conjugated by the affine transformation (P, 0) ∈ Aff(4)
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with P =


1 0 0 0
0 1 0 0
0 0 −1 1√

3

0 0 −1 − 1√
3

.

The resulting integer representation is

π = 〈t1, t2, t3,−t4, α = (A, 1
3
e2)〉, where A =


1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 −1

 .

O4
5: Hπ = Z3

We do a change of representation with the same affine transformation as in
O4

4. The resulting integer representation is
π =〈t1, t2, s1 = (Id, − 1

3
e2 − 2

√
3

3
e3 − 2

√
3

3
e4), s2 = (Id, 1

3
e2 − 2√

3
e4),

α = (A, 1
3
e1)〉,

where A =


1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 −1

 .

O4
8: Hπ = Z6

The representation is conjugated by the affine transformation (P, 0) ∈ Aff(4),

where P =


1 0 0 0
0 1 0 0
0 0 1 − 1√

3

0 0 0 2√
3

 .

The resulting integer representation is

π = 〈t1, t2, t3, t4, α = (A, 1
6
e2)〉, where A =


1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 1

 .

Let us introduce the following notation, which we will use in the propo-
sition below.



49

Γ0(2)t : =

{(
2a+ 1 2b
c 2d+ 1

)
∈ GL(2,Z) | a, b, c, d ∈ Z

}
= {X t | X ∈ Γ0(2)}.

Γ0,1(3) :={(
3a+ 1 3b
c 3d+ 1

)
or

(
3a+ 2 3b
c 3d+ 1

)
∈ GL(2,Z) | a, b, c, d ∈ Z

}
=

{(
a b
c d

)
∈ GL(2,Z) | b ≡ 0 and d ≡ 1 mod 3

}
.

Γ0,2(3) :={(
3a+ 1 3b
c 3d+ 2

)
or

(
3a+ 2 3b
c 3d+ 2

)
∈ GL(2,Z) | a, b, c, d ∈ Z

}
=

{(
a b
c d

)
∈ GL(2,Z) | b ≡ 0 and d ≡ 2 mod 3

}
.

Γ1,2(3) : =

{(
3a+ 1 3b

3c 3d+ 2

)
∈ GL(2,Z) | a, b, c, d ∈ Z

}
=

{(
a b
c d

)
∈ GL(2,Z) | b, c ≡ 0, a ≡ 1 and d ≡ 2 mod 3

}
.

Γ2,1(3) : =

{(
3a+ 2 3b

3c 3d+ 1

)
∈ GL(2,Z) | a, b, c, d ∈ Z

}
=

{(
a b
c d

)
∈ GL(2,Z) | b, c ≡ 0, a ≡ 2 and d ≡ 1 mod 3

}
.

Γ0,1(4) : =

{(
2a+ 1 4b
c 4d+ 1

)
∈ GL(2,Z) | a, b, c, d ∈ Z

}
=

{(
a b
c d

)
∈ GL(2,Z) | b ≡ 0 and d ≡ 1 mod 4

}
.
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Γ0,3(4) : =

{(
2a+ 1 4b
c 4d+ 3

)
∈ GL(2,Z) | a, b, c, d ∈ Z

}
=

{(
a b
c d

)
∈ GL(2,Z) | b ≡ 0 and d ≡ 3 mod 4

}
.

Γ0,1(2, 4) :=

{(
2a+ 1 4b

2c 4d+ 1

)
∈ GL(2,Z) | a, b, c, d ∈ Z

}
=

{(
a b
c d

)
∈ GL(2,Z) | c ≡ 0 mod 2, b ≡ 0 and d ≡ 1 mod 4

}
.

Γ0,3(2, 4) :=

{(
2a+ 1 4b

2c 4d+ 3

)
∈ GL(2,Z) | a, b, c, d ∈ Z

}
=

{(
a b
c d

)
∈ GL(2,Z) | c ≡ 0 mod 2, b ≡ 0 and d ≡ 3 mod 4

}
.

Γ0,1(6) : =

{(
2a+ 1 6b
c 6d+ 1

)
∈ GL(2,Z) | a, b, c, d ∈ Z

}
=

{(
a b
c d

)
∈ GL(2,Z) | b ≡ 0 and d ≡ 1 mod 6

}
.

Γ0,5(6) : =

{(
2a+ 1 6b
c 6d+ 5

)
∈ GL(2,Z) | a, b, c, d ∈ Z

}
=

{(
a b
c d

)
∈ GL(2,Z) | b ≡ 0 and d ≡ 5 mod 6

}
.

Proposition 4.3.1. The matrix part of the normalizer of π in Aff(4) for
the 4-dimensional orientable closed flat manifolds with a single generator on
their holonomy is as follows:

1. For T 4, Nπ = GL(4,Z).

2. For O4
2, Nπ =

{(
GL(2,Z) 0

0 Γ0(2)

)}
.
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3. For O4
3, Nπ =


(

Γ(2) 0
0 Γ0(2)t

)
·

〈
1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1


〉.

4. For O4
4,

Nπ =

〈 B 0 0
0 1 −1
0 1 0

 ,

 C 0 0
0 0 1
0 1 0

 | B ∈ Γ0,1(3), C ∈ Γ0,2(3)

〉
.

5. For O4
5,

Nπ =

〈 B 0 0
0 1 −1
0 1 0

 ,

 C 0 0
0 0 1
0 1 0

 | B ∈ Γ1,2(3), C ∈ Γ2,1(3)

〉
.

6. For O4
6,

Nπ =

〈 B 0 0
0 0 1
0 −1 0

 ,

 C 0 0
0 0 1
0 1 0

 | B ∈ Γ0,1(4), C ∈ Γ0,3(4)

〉
.

7. For O4
7,

Nπ =


〈 B 0 0

0 0 1
0 −1 0

 ,

 C 0 0
0 0 1
0 1 0

〉 ·
〈

1 2 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


〉

,

where B ∈ Γ0,1(2, 4), C ∈ Γ0,3(2, 4).

8. For O4
8,

Nπ =

〈 B 0 0
0 0 −1
0 1 1

 ,

 C 0 0
0 0 1
0 1 0

 | B ∈ Γ0,1(6), C ∈ Γ0,5(6)

〉
.

Proof. In the case of T4, the result follows from example 1.3.4.

The Bieberbach groups O4
3, O4

5, and O4
7 have non-trivial lattice. Then the

group of matrices that normalizes the lattice is a conjugation of GL(4,Z) by a
matrix Q ∈ GL(4,R) (Remark 1.3.9). For these cases the Q is computed, but
fortunately the X ∈ QGL(4,Z)Q−1 that satisfy the condition XA = AX for
the generator of the holonomy A are reduced to matrices in GL(4,Z). Then
in all cases we can consider matrices in GL(4,Z).

In what follows we will consider all the Bieberbach groups (listed in the
proposition) without taking into account the torus.
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We first find all the matrices X ∈ GL(4,Z) that normalize the holonomy
Hπ. For all cases we get that the matrix must have the form

X =

(
X1 0
0 X2

)
.

All of the Bieberbach groups have translation part involved. Then the
lattices of the generators of the holonomy have to be computed and we have
to search for matrices X ∈ NGL(4,Z)(Hπ) that preserve or switch the lattices.

For O4
2, the matrix X2 ∈ GL(2,Z) has to preserve vectors of the form

X2(n3,
2n4+1

2
)t = (k3,

2k4+1
2

), with ni, ki ∈ Z for i = 3, 4, similar to the case
of B1.

For cyclic holonomy of order k bigger than 2, we have the cases

XAX−1 =

{
A
Ar with r ∈ N, 1 < r < k and (r, k) = 1.

For the ones with trivial lattice, O4
4, O4

6 and O4
8, we have to search for the ma-

trices X1 such that X1(n1,
kn2+1
k

) = (k1,
kk2+1
k

) or X1(n1,
kn2+1
k

) = (k1,
kk2+r
k

),
with ni, ki ∈ Z for i = 1, 2, depending on where the generator of the holon-
omy is sent. The matrices X2 are going to be the same as in the cases of
dimension 3 with the same respective holonomy in Proposition 3.3.12.

For the ones with non-trivial lattice, the types of vectors to preserve or
switch will depend on more cases. Let us see this more closely:

For O4
5 the lattices of the generators are:

αLπ = {(A, v) | v =
3n1 + 1

3
e1 +

3n2 − n3 + n4

3
e2 + (n3 + n4) 2√

3
e3 + n4

2√
3
e4

and ni ∈ Z, i = 1, 2, 3, 4}

α2Lπ = {(A, v) | v =
3n1 + 2

3
e1 +

3n2 − n3 + n4

3
e2 − n4

2√
3
e3 + n3

2√
3
e4 and

ni ∈ Z, i = 1, 2, 3, 4}.
We have the next three cases:
1. −n3 + n4 ∈ 3Z, 2. −n3 + n4 ∈ 3Z + 1, 3. −n3 + n4 ∈ 3Z + 2.
Looking at all combinations for sending the lattices, it is concluded that not
all of them are possible, leading us to get the structure of semidirect product
in the normalizer.

The next two groups are the only ones that their normalizer do not ac-
cept a structure of semidirect product: O4

3 and O4
7. We consider each case

separately.
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For O4
3, the lattice of the generator is:

αLπ = {(A, v) | v =
2n1 + n4

2
e1 +

2n2 + 1

2
e2 − n3e3 −

n4

2
e4 and ni ∈ Z,

i = 1, 2, 3, 4}.

We have two cases: n4 odd or n4 even. Looking at all the possibilities,
including the switching cases with translations, we obtain:

NAff(4)(O
4
3) =

({(
Γ(2) 0

0 Γ0(2)t

)}
nR⊕ R⊕ 1

2
Z⊕ 1

2
Z
)
n 〈ξ〉,

where ξ =




1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , 1
4
e4

.

For O4
7, the lattices of the generators are as follows:

αLπ = {(A, v) | v = 2n1+n3+n4
2

e1 + 4n2+2(n3+n4)+1
4

e2 − n4e3 + n3e4 and ni ∈ Z,
i = 1, 2, 3, 4}.

α3Lπ = {(A3, v) | v = 2n1+n3+n4
2

e1 + 4n2+2n3+2n4+3
4

e2 + n4e3 − n3e4 and ni ∈ Z,
i = 1, 2, 3, 4}.

We will have two cases: n3 +n4 even or n3 +n4 odd. Looking at all possibil-
ities, including the switching cases with translations, we obtain:

NAff(4)(O
4
7) =

〈 Γ0,1(2, 4) 0 0
0 0 1
0 −1 0

 ,

 Γ0,3(2, 4) 0 0
0 0 1
0 1 0

〉nR⊕ R⊕ T

n 〈ξ〉,

where ξ =




1 2 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , (0, 0,
1

2
,−1

2
)

 , and

T = {(t, n− t) | t ∈ 1
2
Z and n ∈ Z}.
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As we can see in the preceding Proposition, we have two situations similar
to the situation of B1 and B2 in dimension 3, where the Bieberbach groups
are almost the same but one of them has non-trivial lattice and consequently
the normalizer NAff(3)(π) does not have the structure of semidirect product.
These similar situations in dimension 4 are as follows. For holonomy Z2 it
is O4

2 and O4
3, and for holonomy Z4 it is O4

6 and O4
7, where the ones with

normalizer NAff(4)(π) without the structure of semidirect product are O4
3 and

O4
7.

Now, we study the non-orientable manifolds. As before, we present the
list of the conjugated representations in order to get a group with trivial
lattice and integer matrix. This representation is the one used to compute
the matrix part of the normalizer Nπ. With an abuse of notation, we denote
these groups in the same way as before.

N4
16: Hπ = Z4

The representation is conjugated by the affine transformation (P, 0) ∈ Aff(4),

where P =


0 1 1 0
−1 1 0 0
−1 0 1 0
0 0 0 1

 .

The resulting integer representation is:

π = 〈t1, t2, t3, t4, α = (A, 1
4
e4)〉, where A =


−1 1 0 0
−1 0 1 0
−1 0 0 0
0 0 0 1

 .

N4
19: Hπ = Z6

The representation is conjugated by the same affine transformation (P, 0) ∈
Aff(4) as in O4

8. The resulting integer representation is

π = 〈t1, t2, t3, t4, α = (A, 1
6
e2)〉, where A =


−1 0 0 0
0 1 0 0
0 0 −1 −1
0 0 1 0

 .

N4
20: Hπ = Z6

The representation is conjugated by the same affine transformation (P, 0) ∈
Aff(4) as in O4

8 and N4
19. The resulting integer representation is
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π = 〈t1, t2, t3, t4, α = (A, 1
6
e2)〉, where A =


−1 0 0 0
0 1 0 0
0 0 1 1
0 0 −1 0

 .

As in the orientable case, let us introduce the following groups:

Γ0(2)3 =


 a b c

d e f
g h i

 ∈ GL(3,Z) | d, g ≡ 0 mod 2

 ,

Γ2
0(2)3 =


 a b c

d e f
g h i

 ∈ GL(3,Z) | d, g, c, f ≡ 0 mod 2

 .

Proposition 4.3.2. The matrix part of the normalizer of π in Aff(4) for the
4-dimensional non-orientable closed flat manifolds with a single generator in
their holonomy is as follows:

1. For N4
1 , Nπ =

〈(
B 0
0 ±1

)
| B ∈ Γ0(2)3

〉
.

2. For N4
2 , Nπ =

{〈(
B 0
0 ±1

)
| B ∈ Γ2

0(2)3

〉}
·

〈
1 0 0 0
0 1 0 0
1 0 1 0
0 0 0 1


〉

.

3. For N4
14, Nπ =

{(
GL(3,Z) 0

0 ±1

)}
.

4. For N4
15, Nπ =

〈
±1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0

 ,


±1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


〉
.

5. For N4
16, Nπ =〈

1 −1 0 0
1 0 −1 0
1 0 0 0
0 0 0 1

 ,


−1 1 0 0
−1 0 1 0
−1 0 0 0
0 0 0 1



−1 0 0 0
−1 0 1 0
−1 1 0 0
0 0 0 −1


〉
.
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6. For N4
19, Nπ =

〈
±1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 1

 ,


±1 0 0 0
0 −1 0 0
0 0 0 1
0 0 1 0


〉
.

7. For N4
20, Nπ =

〈
±1 0 0 0
0 1 0 0
0 0 1 1
0 0 −1 0

 ,


±1 0 0 0
0 −1 0 0
0 0 0 1
0 0 1 0


〉
.

8. For N4
21, Nπ =

〈
±1 0 0 0
0 0 −1 0
0 0 0 −1
0 −1 0 0

 ,


±1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


〉
.

Proof. First we explain the case of N4
1 . The group N4

1 has trivial lattice,
translation part involved, and his normalizer has structure of semidirect prod-
uct. The matrix that normalize the holonomy has to be of the form

X =

(
X1 0
0 ±1

)
with X1 ∈ GL(3,Z). In order that this matrix X is inNπ, also has to preserve
the lattice of the generator α

αLπ = {(A, v) | v =
2n1 + 1

2
e1 + n2e2 + n3e3 − n4e4 and ni ∈ Z,

i = 1, 2, 3, 4}.

The case of N4
2 is similar to N4

1 but its group has non-trivial lattice. Then
the form of the matrix X is the same but the lattice of the generator α is
different:

αLπ = {(A, v) | v =
2n1 + 1

2
e1 + n2e2 +

2n3 + n4

2
e3 −

n4

2
e4 and ni ∈ Z,

i = 1, 2, 3, 4},

with two cases: n4 even or n4 odd. This lead us to switching cases with
translations. Therefore the whole normalizer group is

NAff(4)(N
4
2 ) =

〈
2a+ 1 b 2c 0

2d 2e+ 1 2f 0
2g h 2i+ 1 0
0 0 0 ±1

 ∈ GL(4,Z)

〉
n T

n 〈ξ〉,
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with a, b, c, d, e, f, g, h, i ∈ Z, the translations T = R⊕ R⊕ R⊕ 1
2
Z, and

ξ =




1 0 0 0
0 1 0 0
1 0 1 0
0 0 0 1

 , (0, 0, 0,
1

4
)

 .

The case of N4
14 is simple because the form of the matrix X is also as

in N4
1 but now the group N4

14 has trivial lattice and translation part not
involved. Then Nπ is the same as NGL(4,Z)(Hπ).

The remaining groups are also simple to compute since they have triv-
ial lattice, translation part not involved and their normalizers have struc-
ture of semidirect product. They even have the normalizer of the holonomy,
NGL(4,Z)(Hπ), finite, which we computed using Mathematica. We only have
to be careful with multiplying by −1 in some entries of the lattice. We omit
the computations.

Remark 4.3.3. The Bieberbach groups N4
15, N4

16, N4
19, N4

20 and N4
21 have

finite matrix part of the normalizer, making them similar to the case of
dimension 3 for the orientable manifolds with cyclic holonomy bigger than 2.

4.4 The moduli space of flat metrics

First, for completeness and because of the previous relations with the moduli
space of flat metrics, we will state the Teichmüller spaces for our manifolds
which are easily computed by the description given in [3].

Theorem 4.4.1. The Teichmüller spaces of the 4-dimensional closed flat
manifolds with a single generator in their holonomy are:

1. For T 4, Tflat = GL(4,R)
O(4)

∼= R10.

2. For O4
2 and O4

3, Tflat ∼= GL(2,R)
O(2)

× GL(2,R)
O(2)

∼= R6.

3. For O4
4, O4

5, O4
6, O4

7, and O4
8, Tflat ∼= GL(2,R)

O(2)
× GL(1,C)

U(1)
∼= R4.

4. For N4
1 , N4

2 and N4
14, Tflat ∼= GL(3,R)

O(3)
× GL(1,R)

O(1)
∼= R7.
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5. For N4
15, N4

16, N4
19, N4

20, and N4
21, Tflat ∼= GL(1,R)

O(1)
× GL(1,R)

O(1)
× GL(1,C)

U(1)
or

GL(1,C)
U(1)

× GL(1,R)
O(1)

× GL(1,R)
O(1)

∼= R3.

To describe the moduli spaces of flat metrics we need to use the orthogonal
representation. For the cases where we changed the representation, we have
to recover the orthogonal representation. This is done by conjugating with
the respective transformation P−1 (see Lemma 1.3.11). In this way we obtain
the following groups:

For O4
4,

Nπ =

〈(
B 0
0 R(π

3
)

)
,

 C 0 0
0 1 0
0 0 −1

 | B ∈ Γ0,1(3), C ∈ Γ0,2(3)

〉
.

For O4
5,

Nπ =

〈(
B 0
0 R(π

3
)

)
,

 C 0 0
0 1 0
0 0 −1

 | B ∈ Γ1,2(3), C ∈ Γ2,1(3)

〉
.

For O4
8, Nπ =〈(

B 0
0 R(π

3
)

)
,

 C 0 0
0 −1 0
0 0 1

 ∈ GL(4,Z) | B ∈ Γ0,1(6), C ∈ Γ0,5(6)

〉
.

For N4
16, Nπ =〈

0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 ,


0 1 0 0
−1 0 0 0
0 0 −1 0
0 0 0 1




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


〉
< O(4).

For N4
19,

Nπ =

〈 ±1 0 0
0 1 0
0 0 R(π

3
)

 ,


±1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 ∈ GL(4,Z)

〉
< O(4).

For N4
20,

Nπ =

〈 ±1 0 0
0 1 0
0 0 R(5π

3
)

 ,


±1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 ∈ GL(4,Z)

〉
< O(4).
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Let us consider the following notation:

Γ0(3) :=

{(
a b
c d

)
∈ GL(2,Z) | b ≡ 0 mod 3

}
.

Γ(3) :=

{(
a b
c d

)
∈ GL(2,Z) | b, c ≡ 0 mod 3

}
.

Γ0(4) :=

{(
a b
c d

)
∈ GL(2,Z) | b ≡ 0 mod 4

}
.

Γ1(2)3 :=


 a b c

d e f
g h i

 ∈ GL(3,Z) | d, c, f ≡ 0 mod 2

 .

Theorem 4.4.2. The moduli space of flat metrics of the 4-dimensional closed
manifolds with a single generator in their holonomy are:

1. For T 4, Mflat = O(4)\GL(4,R)/GL(4,Z).

2. For O4
2, Mflat = (O(2)\GL(2,R)/GL(2,Z))× (O(2)\GL(2,R)/Γ0(2)).

3. For O4
3, Mflat = (O(2)\GL(2,R)/Γ0(2))× (O(2)\GL(2,R)/Γ0(2)t).

4. For O4
4, Mflat = (O(2)\GL(2,R)/Γ0(3))× R+.

5. For O4
5, Mflat = (O(2)\GL(2,R)/Γ(3))× R+.

6. For O4
6, Mflat = (O(2)\GL(2,R)/Γ0(4))× R+.

7. For O4
7, Mflat = (O(2)\GL(2,R)/Γ(2))× R+.

8. For O4
8, Mflat = (O(2)\GL(2,R)/ 〈Γ0,1(6),Γ0,5(6)〉)× R+.

9. For N4
1 , Mflat = (O(3)\GL(3,R)/Γ0(2)3)× R+.

10. For N4
2 , Mflat = (O(3)\GL(3,R)/Γ1(2)3)× R+.

11. For N4
14, Mflat = (O(3)\GL(3,R)/GL(3,Z))× R+.
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12. For N4
15, N4

16, N4
19, N4

20, and N4
21, Mflat = (R+)3.

Proof. We use Theorem 1.3.5 and Remark 1.3.7 to obtain the moduli space
of flat metrics via

Mflat = O(4)\Cπ/Nπ.
For the orientable manifolds of cyclic holonomy of order greater than 2

their double quotient is of the shape

O(4)\O(4) · (GL(2,R)× (R+ ×O(2)))
/〈(

Γ1 0
0 R

)
,
(

Γ2 0
0 A

)〉
,

where Γ1, Γ2 ⊂ GL(2,Z), and R, A ∈ O(2), the respective matrices that

appear in Nπ for each case. Observe that
(
C 0 0
0 1 0
0 0 1

)
/∈ Nπ, where C ∈ Γ2; this

means that Nπ can not be separated as the product of the groups. But we
still can separate the double quotient in two factors:

(O(2)\GL(2,R)/ 〈Γ1,Γ2〉)×
(
O(2)\R+ ×O(2)/ 〈R,A〉

)
,

this is because the second part of the space Cπ is R+×O(2) and, 〈R,A〉, the
second factor of the group Nπ is finite and generated by orthogonal matrices.
Then we separate the double quotient in two factors and reduce the second
factor as in Theorem 3.4.2.

For the non-orientable manifolds with cyclic holonomy of order greater
than 2, we can reduce it because the normalizer is a subgroup of O(4) and
the cone space Cπ is equal to orthogonal matrices times the positive real
numbers. Let us see the case of N4

15:

Mflat(N
4
15) =

O(4)\O(4)·(((R+)2 ×O(2))× (R+ ×O(2)))
/〈( ±1 0 0 0

0 1 0 0
0 0 0 −1
0 0 1 0

)
,

( ±1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

)〉
= R+ × R+ × (O(2)\R+ ×O(2)/ 〈( 0 −1

1 0 ), ( 1 0
0 −1 )〉)

∼= R+ × R+ × R+.

With the work we have done so far, we can say something about the
topology of some of the moduli spaces above.

Corollary 4.4.3. The moduli spaces of flat metrics of the 4-dimensional
manifolds with Bieberbach groups O4

2 and O4
7 are non-contractible. On the

other hand, the moduli spaces of flat metrics of the 4-dimensional manifolds
with Bieberbach groups N4

14, N4
15, N4

16, N4
19, N4

20, and N4
21 are contractible.



61

Proof. The proof is done case by case.
We explain why the following moduli spaces of flat metrics are non-

contractible:

� The case of O4
2, since

Mflat = (O(2)\GL(2,R)/GL(2,Z))× (O(2)\GL(2,R)/Γ0(2))
∼= (R+ ×H2/SL(2,Z))× (R+ ×H2/Γ0(2)+)
∼= (R+)2 × S2 \ {∗} × cylinder.

This double cosets are studied in Theorem 3.4.3.

� The case of O4
7, since

Mflat = (O(2)\GL(2,R)/Γ(2))× R+

∼= (R+ ×H2/Γ(2)+)× R+

∼= 3-punctured sphere× (R+)2.

The last homeomorphism follows from the homeomorphism (2.3) given
in Section 2.1 and the fundamental domain computed in Section 2.3,
and shown in figure 2.3 and 2.4.

We explain why the following moduli spaces of flat metrics are con-
tractible:

� The case of N4
14, since we have

Mflat(N
4
14) = O(3)\GL(3,R)/GL(3,Z)× R+,

and that double coset is contractible due to Soulé [19].

� The cases of N4
15, N4

16, N4
19, N4

20, and N4
21, since

Mflat = (R+)3.

Remark 4.4.4. The moduli space of flat metrics of the 4-dimensional torus
is non-contractible due to Tuschmann and Wiemeler in [20].

For the remaining ones we could still study their topology, and this is work
in progress. For the orientable ones, we could also compute their fundamental
domain as we have done so far. For the cases N4

1 and N4
2 potentially one

could use the work of Soulé [19].
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2015.

[22] Joseph A. Wolf, Spaces of constant curvature , sixth edition, American
Mathematical Society, 2011.

[23] Joseph A. Wolf, Local and Global equivalence for Flat Manifolds with
Parallel Geometric Structures , Geometriae Dedicata 2, 127-132, 1973.


