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Abstract
The use of new technologies, such as GPU boosters, have led to a dramatic

increase in the computing power of High-Performance Computing (HPC)

centres. This development, coupledwith newclimatemodels that can better

utilise this computing power thanks to software development and internal

design, led to the bottleneckmoving from solving the differential equations

describingEarth’s atmospheric interactions to actuallystoring thevariables.

The current approach to solving the storage problem is inadequate: either

the number of variables to be stored is limited or the temporal resolution

of the output is reduced. If it is subsequently determined that another vari-

able is required which has not been saved, the simulation must run again.

This thesis deals with the development of novel compression algorithms

for structured floating-point data such as climate data so that they can be

stored in full resolution.

Compression is performed by decorrelation and subsequent coding of

the data. The decorrelation step eliminates redundant information in the

data. During coding, the actual compression takes place and the data is

written to disk. A lossy compression algorithm additionally has an approx-

imation step to unify the data for better coding. The approximation step

reduces the complexity of the data for the subsequent coding, e.g. by using

quantification. Thisworkmakes a newscientific contribution to each of the

three steps described above.

This thesis presents a novel lossy compressionmethod for time-series

data using an Auto Regressive IntegratedMoving Average (ARIMA)model

to decorrelate the data. In addition, the concept of information spaces and

contexts is presented to use information across dimensions for decorrela-

tion. Furthermore, a new coding scheme is described which reduces the

weaknesses of the eXclusive-OR (XOR) difference calculation and achieves
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a better compression factor than current lossless compressionmethods for

floating-point numbers. Finally, a modular framework is introduced that

allows the creation of user-defined compression algorithms.

The experiments presented in this thesis show that it is possible to in-

crease the information content of lossily compressed time-series data by

applying an adaptive compression techniquewhich preserves selected data

with higher precision. An analysis for lossless compression of these time-

serieshas shownnosuccess. However, the lossyARIMAcompressionmodel

proposed here is able to capture all relevant information. The reconstructed

data can reproduce the time-series to such an extent that statistically rele-

vant information for the description of climate dynamics is preserved.

Experiments indicate that there is a significant dependence of the com-

pression factor on the selected traversal sequence and the underlying data

model. The influence of these structural dependencies on prediction-based

compression methods is investigated in this thesis. For this purpose, the

concept of Information Spaces (IS) is introduced. IS contributes to improv-

ing the predictions of the individual predictors by nearly 10% on average.

Perhapsmore importantly, the standarddeviation of compression results is

on average 20% lower. Using IS provides better predictions and consistent

compression results.

Furthermore, it is shownthat shifting thepredictionand truevalue leads

to a better compression factorwithminimal additional computational costs.

This allows the use of more resource-efficient prediction algorithms to

achieve the same or better compression factor or higher throughput during

compression or decompression. The coding scheme proposed here achieves

a better compression factor than current state-of-the-art methods.

Finally, this paper presents amodular framework for the development

of compression algorithms. The framework supports the creation of user-

defined predictors and offers functionalities such as the execution of bench-

marks, the random subdivision of n-dimensional data, the quality evalua-

tion of predictors, the creation of ensemble predictors and the execution of

validity tests for sequential and parallel compression algorithms.

This researchwas initiated because of the needs of climate science, but

the applicationof its contributions isnot limited to it. The results of this the-

sis are of major benefit to develop and improve any compression algorithm

for structured floating-point data.
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Zusammenfassung
Der Einsatz von neuen Technologien, wie GPU-Boostern, haben zu einem

dramatischen Anstieg der Rechenleistung von HPC-Zentren geführt. Diese

Entwicklung gekoppeltmit neuenKlimamodellen,welche diese Rechenleis-

tung dank Softwareentwicklungen und internemAufbau besser auslasten

können, führte dazu, dass sich der Engpassweg von der Lösung der Differ-

entialgleichungen hin zur eigentlichen Speicherung derVariablenverschob.

Der aktuelleAnsatz zurLösungdes Speicherproblems ist unzureichend: En-

tweder wird die Anzahl der zu speichernden Variablen begrenzt oder die

zeitlicheAuflösungderAusgabe reduziert. Sollte imNachhinein festgestellt

werden, dass eineweitereVariable notwendig ist, welche nicht gespeichert

wurde, muss die Simulation von neuem laufen. Diese Arbeit beschäftigt

sich mit der Entwicklung neuartiger Kompressionsalgorithmen für struk-

turierteGleitkommazahlenwieKlimadaten, damitdiese invollerAuflösung

gespeichertwerden können.

Komprimierung erfolgt durch Dekorrelation und anschließende

Kodierung der Daten. Der Dekorrelationsschritt eliminiert redundante

Informationen in den Daten. Bei der Kodierung findet die eigentliche

Kompression statt und die Daten werden auf die Festplatte geschrieben.

Ein verlustbehafteter Kompressionsalgorithmus hat zusätzlich einen

Annäherungsschritt, um die Daten für die Kodierung zu vereinheitlichen.

Der Annäherungsschritt reduziert die Komplexität der Daten, indem z.B.

Methoden der Quantifizierung verwendet werden. Diese Arbeit leistet zu

jedemder drei obenbeschriebenenSchritte einenneuenwissenschaftlichen

Beitrag.

In dieser Dissertation wird ein neuartiges verlustbehaftetes Kompres-

sionsverfahren für Zeitreihendaten vorgestellt, welches ein Auto Regres-

sive Integrated Moving Average (ARIMA) Modell zur Dekorrelation der
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Daten verwendet. Darüber hinaus wird das Konzept der Information-

sräume und -kontexte vorgestellt, um Informationen über Dimensionen

hinweg besser für die Dekorrelation zu nutzen. Weiterhin wird ein neues

Kodierungsschema beschrieben, welches die Schwächen der eXclusive-

OR (XOR)-Differenzberechnung reduziert und einen besseren Kompres-

sionsfaktor erreicht als aktuelle verlustfreie Kompressionsverfahren für

Gleitkommazahlen. Schließlichwird einmodulares Framework eingeführt,

das die Erstellung von benutzerdefinierten Kompressionsalgorithmen er-

möglicht.

Die in dieser Dissertation aufgeführten Experimente zeigen, dass es

möglich ist, den Informationsgehalt von verlustbehaftet komprimierten

Zeitreihendaten durch die Anwendung eines adaptiven Kompressionsver-

fahrens zu erhöhen. Eine Analyse für verlustfreie Kompression dieser

Zeitreihen hat keinen Erfolg gezeigt. Das hier vorgeschlagene verlustbe-

haftete ARIMA-Kompressionsmodell ist jedoch in der Lage alle relevanten

Informationen zu erfassen. Die Rekonstruktion der Daten kann die Zeitrei-

hen so weit reproduzieren, dass statistisch relevante Informationen zur

Beschreibung der Klimadynamik erhalten bleiben.

Diese Arbeit zeigt, dass eine signifikante Abhängigkeit des Kompres-

sionsfaktors von der gewählten Traversierung und dem zugrunde liegen-

denDatenmodell besteht. Der Einfluss dieser strukturellenAbhängigkeiten

auf Vorhersage-basierende Kompressionsverfahren wird in dieser Arbeit

untersucht. EswerdenMöglichkeiten vorgestellt diese Abhängigkeiten zu

entdecken und den Kompressionsfaktor zu verbessern. Hierfür wird das

Konzept der Information Spaces (IS) eingeführt, welches dazu beiträgt, die

Vorhersagen der einzelnen Prädiktoren um durchschnittlich fast 10% zu

verbessern. Vielleicht noch wichtiger jedoch ist, dass die Standardabwe-

ichung der Kompressionsergebnisse um durchschnittlich über 20% ver-

ringertwird. DieVerwendung des IS-Ansatzes bietet bessereVorhersagen

und konsistente Kompressionsergebnisse.

Weiterhinwird gezeigt, dass ein besserer Kompressionsfaktormit min-

imalen Rechenkosten erreicht wird, wenn vor der Differenzberechnung

die Vorhersage und der wahre Wert verschoben werden. Das ermöglicht

die Verwendung von ressourcenschonenderenVorhersagealgorithmen, um

den gleichen oder besseren Kompressionsfaktor oder einen höherenDurch-

xii



satzwährend der Kompression bzw. Dekompression zu erreichen. Darüber

hinaus erreicht das hier vorgeschlagene Kodierungsschema einen besseren

Kompressionsfaktor als der aktuelle Stand der Technik.

Schließlichwird in dieser Arbeit einmodulares Framework zumAufbau

eigener Kompressionsalgorithmen zur Verfügung gestellt. Dieses Frame-

work unterstützt die Erstellung von benutzerdefinierten Prädiktoren und

weitere Funktionenwie die Ausführung von Benchmarks, die zufällige Un-

terteilung von n-dimensionalen Daten, die Qualitätsbewertung von Prädik-

toren, die Erstellung von Ensemble-Prädiktoren und die Ausführung von

Gültigkeitstests für sequentielle und parallele Kompressionsalgorithmen.

Diese Forschungwurde durch Bedürfnisse der Klimawissenschaften be-

gründet. Letztendlich sind die Ergebnisse aber nicht auf die Klimawis-

senschaften beschränkt. Die Ergebnisse dieser Arbeit sind zur Entwicklung

undVerbesserung eines beliebigenKompressionsalgorithmus für strukturi-

erte Gleitkommazahlen von großemNutzen.
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CHAPTER 1

Introduction
The development of GPU clusters, high bandwidths within and between

compute nodes, faster CPUs usingmulti-core architecture and the introduc-

tion of SSDs have drastically reduced the computation time for simulations

onHPCclusters. Inaddition to thesedevelopments in rawcomputingpower,

a better utilisation of hardware nodes is achieved through optimised soft-

ware libraries for parallel and distributed computing. While the computing

power used to be the bottleneck for climate simulations, today it is typically

thememory bandwidth and the storage space required for simulation out-

put. The climate sciences are severely affected by this bottleneck.

New climate models allowmodel integration at unprecedented resolu-

tion, simulating decades and centuries of climate change, including com-

plex interactions in theEarth systemunderdifferent scenarios. Thenumber

of variables stored for analysis is minimised to keep the simulation output

small andmanageable. Further, if themodel assessment requires more in-

formation, often simulations have to be rerun to calculate the requested

variables. Another applied solution is to reduce resolution. The available

storage space often forces scientists to reduce the temporal resolution of

their output and to use interpolation formissing time steps. The generated

output then becomes an inferior representation of the actual model used

for simulation. Onemethod to tackle this problem is to apply compression.

Although compression algorithms can differ in their specifics, the basic

principle is always the same: Data compression is achieved by removing

redundant information in the data. Removing redundancy allows a smaller

representation of the data without information loss. Both of the applied

solutionswould not be necessary anymore.

First, applying compression enables the researcher to increase the tem-

poral resolution of the simulation output, since more information can be

savedon the samestorage spaceasbefore. Therefore, no interpolationmeth-

1



ods are for missing time steps necessary. Even if the desired temporal reso-

lution can not be achieved and interpolationmethods still need to be used,

the results of the interpolation methods will be better than before since

more data points can be used for interpolation.

Second, compression enables savingmore variables per simulation run.

This prevents possible simulation reruns, sincemore variables can be saved

with the initial run of the simulation. This decreases the CO2 footprint of

the HPC cluster since unnecessary simulation runs are avoided. However,

there are challenges involved in developing novel compression algorithms.

Challenge 1

Understanding the structure and intrinsics of the data.

The first step is to analyse the structure and intrinsics of the data. Knowl-

edge must be gained about what is represented in the data. Possible data

sources must be identified and analysed for differences and information

content. Themost common data variables, their data types, and their value

rangesmustbe identified. This informationwill help relate onedatapoint to

anyother data point. In order to do this itwill help identify related research

fields and recommended solutions from the literature.

Challenge 2

Analysing available compression techniques for strengths and weaknesses.

The next step is to find outwhich compression techniques aremost promis-

ing for the data. For this purpose, an extensive and in-depth analysis of the

available literature must be carried out. With an ever deeper knowledge,

compression techniques for related data can be analysed, that are similar

but not identical to the available data.

Challenge 3

Integrating existing knowledge about the interactions of variables.

If knowledge about the data already exists, it can be used to identify redun-

dant information. To do this, the first step is to find out which knowledge

about the variables makes sense to integrate. Then it has to be decided in

which phase of the compression process this knowledge can be integrated.

Finally, a suitable form of representation must be chosenwith which this

knowledge can be integrated into the algorithm.
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Challenge 4

Identifying new patterns and relationships within and between variables for

the current data.

Previous knowledge can only help to a certain extent. The compression

algorithm must adapt to the data to be compressed. This process can be

acceleratedbyanalysing inadvancewhich typesof relationshipsoccurmost

frequently and contain themost informationwithin and between the data

variables. Finally, a method must be developed to quickly identify these

types of relationships in the current data.

Challenge 5

Building a framework to perform rapid testing of new compression

algorithms.

Developing a compression algorithm is an iterative process. There is a lot of

fine-tuning involved. If parts of the compression algorithmcan be replaced

quickly, iteration steps can be accelerated. For this purpose, the common

components of a compression algorithm must first be identified. Then a

concept for a modular structure has to be worked out. Following this, the

interfaces can be developed by analysingwhich of the algorithm steps offer

the greatest opportunity for improvement. Finally, concepts to accelerate

testingmust be developed. These can be parallel processing or the (random)

selection of data areas for tests. Such an environment can reduce the devel-

opment time of an algorithm.

1.1 Contributions to the Research Field

Overall, the contributions of this thesis focus on developing novel compres-

sion techniques for structured floating-point data. This research was ini-

tiated because of the needs of climate science, but the application of its

contributions is not limited to them. The results of this thesis can be used

to develop and improve any compression algorithm for structured floating-

point data. Each contribution is discussed inmore detail in the following.
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Contribution 1

Analysis methods for identification of redundant information in data

The first contribution is about analysis methods for the discovery of redun-

dant information in data. In the following, it is shown howanalysis meth-

ods from statistics, entropy analysis and information theory can be used

for the recognition of redundant information between andwithinvariables.

The presented analyses can be applied to one-dimensional andmultidimen-

sional data. This contribution is associatedwith Challenge 1.

Contribution 2

Comparison of lossless compression algorithms for structured floating-point

data

The next contribution is an in-depth study of lossless compression algo-

rithms for floating-point data. The compression factor and throughput of

these algorithms is investigated. For this purpose, general-purpose algo-

rithms as well as custom compression algorithms for floating-point data

are used. This contributionmakes it possible to test the compression algo-

rithms developed in this thesis against state-of-the-art algorithms. This

contribution has been published in Cayoglu et al. (2019b) and is associated

with Challenge 2.

Contribution 3

Novel data coding scheme for prediction-based lossless compression

methods

Third, a novel data coding scheme is developed. During the analysis of com-

pression algorithms, aweakness in the coding of the data is identified. Ex-

tensive analysis of thisweakness shows that by applying a shift operation

to move the data into a more suitable value range it is possible to improve

the compression factor. In addition, thismethod allows the use of computa-

tionally less intensive algorithms to increase throughputwithout affecting

the achieved compression factor. This contribution has been published in

Cayoglu et al. (2019b) and is associatedwith Challenge 2.
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Contribution 4

Development of a novel lossy compression algorithm for time-series data

There are various established climate indices,which can predict the devel-

opment of data variables. These indices are time-series data and can help

identify redundant information in temperature or precipitation. However,

these time-series data must be available to the encoder. The fourth contri-

bution of this thesis is a novel lossy compression algorithm for time-series

data. Byapplying statisticalmodels and improving the precision of individ-

ual data points, the quality of the reconstructed data is increasedwithout

significantly increasing the required storage space. This contribution has

been published in Cayoglu et al. (2017) and is associatedwith Challenge 3.

Contribution 5

Introduction of Information Spaces to use information across all dimensions

for data prediction

Analyses of climate data suggest that information from all dimensions are

important forpredictingvariables. However, the importanceof eachdimen-

sion depends on the time and location of the data point on Earth. Therefore,

it is necessary to have an algorithm that adapts the context onwhich a pre-

diction is based on to previous successful or erroneous predictions. The con-

cept of information spaces (IS) and contexts presented in this thesis serves

this purpose. Based on the quality of earlier predictions, the information

used for the next prediction is adjusted. Further, IS can use and adapt prior

knowledge about the data variables to achieve a better prediction and com-

pression factor. Using this concept it is possible to increase the compression

factor and, more importantly, to reduce dependence of the compression

factor on the structure of the data. This contribution has been published in

Cayoglu et al. (2019a, 2018c,a) and is associatedwith Challenge 1 and 4.

Contribution 6

A modular framework for testing and quality assessment of compression

algorithms

The final contribution is a modular framework for the development of cus-

tomcompressionalgorithms. This frameworkallows the creationof custom

prediction-based compression algorithmswith support for ensemble pre-

dictors, quality assessment, parallel executionwith random subsetting of
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multi-dimensional data. Further, it defines an interface for eachmodule to

help the user extent the framework. This contribution has been published

in Cayoglu et al. (2018b,c) and is associatedwith Challenge 5.

List of Publications. Most of the contributions discussed above have been

published in peer-reviewed conferences andworkshops. In the following

the corresponding publications are listed:

• Cayoglu, U., Braesicke, P., Kerzenmacher, T., Meyer, J., and Streit,

A. (2017). Adaptive Lossy Compression of Complex Environmental

Indices Using Seasonal Auto-Regressive IntegratedMoving Average

Models. In 2017 IEEE 13th International Conference on e-Science

(e-Science), pages 315–324.DOI: 10.1109/eScience.2017.45. [best paper

award]

• Cayoglu, U., Schröter, J., Meyer, J., Streit, A., and Braesicke, P. (2018b).

A Modular Software Framework for Compression of Structured Cli-

mate Data. In Proceedings of the 26th ACM SIGSPATIAL Inter-

national Conference on Advances in Geographic Information Sys-

tems, SIGSPATIAL ’18, pages 556–559,NewYork,NY,USA.ACM, ISBN:

978-1-4503-5889-7, DOI: 10.1145/3274895.3274897

• Cayoglu, U., Tristram, F., Meyer, J., Kerzenmacher, T., Braesicke, P.,

and Streit, A. (2018c). Concept and Analysis of Information Spaces

to improve Prediction-Based Compression. In 2018 IEEE Interna-

tional Conference on Big Data (Big Data), pages 3392–3401. DOI:

10.1109/BigData.2018.8622313

• Cayoglu, U., Tristram, F., Meyer, J., Kerzenmacher, T., Braesicke, P.,

and Streit, A. (2019a). On Advancement of Information Spaces to

Improve Prediction-Based Compression. In David, K., Geihs, K.,

Lange, M., and Stumme, G., editors, INFORMATIK 2019: 50 Jahre

Gesellschaft für Informatik – Informatik für Gesellschaft, pages

271–272, Bonn.Gesellschaft für Informatik e.V., ISBN: 978-3-88579-688-

6, ISSN: 1617-5468, DOI: 10.18420/inf2019_39

• Cayoglu, U., Tristram, F., Meyer, J., Schröter, J., Kerzenmacher, T.,

Braesicke, P., and Streit, A. (2019b). Data Encoding in Lossless

Prediction-Based Compression Algorithms. In IEEE 15th Interna-

tional Conference on e-Science (e-Science). ISBN: 978-1-7281-2451-3,

DOI: 10.1109/eScience.2019.00032
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• Cayoglu, U., Braesicke, P., Kerzenmacher, T., Meyer, J., and Streit,

A. (2018a). Towards an optimised environmental data compression

method for structuredmodel output. In EGUGeneral AssemblyCon-

ference Abstracts, volume 20, page 8609. https://meetingorganizer.

copernicus.org/EGU2018/EGU2018-8609.pdf

• Kerzenmacher, T., Cayoglu, U., Kellmann, S., Kirner, O., Versick, S.,

Wang, S., and Braesicke, P. (2018). QBO influence on the ozone

distribution in the extra-tropical stratosphere. In EGU General

Assembly Conference Abstracts, volume 20, page 16565. https://

meetingorganizer.copernicus.org/EGU2018/EGU2018-16565.pdf

Code and Data Availability. Data and corresponding implementations of

all methods introduced in this thesis and previously published articles are

available under GNUGPLv3 license at the following addresses:

• https://github.com/ucyo/adaptive-lossy-compression (Cayoglu et al.,

2017)

• https://github.com/ucyo/informationspaces (Cayoglu et al., 2019a,

2018c)

• https://github.com/ucyo/cframework (Cayoglu et al., 2018b,c)

• https://github.com/ucyo/xor-and-residual-calculation (Cayoglu et al.,

2019b)

• https://github.com/ucyo/climate-data-analysis (Cayoglu, 2019a)

1.2 Outline of the Thesis

The remainder of this thesis is structured as follows (see Fig. 1.1):

Chapter 2 provides the necessary background for the thesis. The basic

principles and structure of compression algorithms are introduced, meth-

ods for classification presented, and the relationship between compression

and information theory explained. Further, prediction-based compression

is explained in detail and several metrics for the evaluation of compression

methods are introduced. The chapter concludeswith an introduction to cli-

mate data and their different sourceswith a deep dive in simulation output.

Chapter 3 goes on to discuss related work. The chapter is divided into

three parts. First, relatedwork regarding the compression of climate data

is introduced. Next, relatedwork in image, time-series and floating-point
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FIGURE 1.1 Outline of the thesis

compression is described, since these compression algorithms deal with

data similar to climate data. Finally, a short summaryof the remainingfield

of compression is given.

Chapter 4 provides a critical analysis of climate data to identify redun-

dant information. Several analyses are conducted: Long-term and short-

term variance analysis, Shannon and Sample entropy analysis as well as

Mutual Information analysis.

Chapter 5 builds upon the results of the previous chapter and introduces

the concept of information spaces and contexts. Since several contexts are

used, methods for the consolidation of predictions are investigated and al-

ternative traversal methods are recommended and evaluated to optimise

the information context.

Chapter 6 introduces the aforementioned lossy compression method

for time-series data. The chapter starts with an introduction of the Auto

Regressive IntegratedMoving Average (ARIMA)model used to identify re-

dundant information. After an introduction of the environmental indices,

the replacement methods are explained, since the algorithm must decide

autonomouslywhich data points to savewith higher precision. The chapter

concludeswith an evaluation of the proposedmethod.

Chapter 7 introduces the novel coding approach discussed in the third

contribution. After an introduction to established residual calculation algo-

rithms, theweakness of theXORresidual calculation is explained. Next, the

shift calculation is presented to overcome the weakness. This is followed
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by an explanation of the transformation and coding steps applied to the

residual. Finally putting it all together, state-of-the-art compression algo-

rithms are compared regarding compression factor and throughput, the

coding performance evaluated and the proposed compression algorithm

with state-of-the-art algorithms compared.

In Chapter 8 the proposed compression framework from the sixth con-

tribution is presented. The internal structure and the implementedmodules

are described. Afterwards, more details about the libraries used and possi-

bilities for future extensions are explained.

In Chapter 9 a summary of the thesis is given aswell as a an overviewof

open questions and the possibilities for futurework are presented.
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CHAPTER 2

Background
This chaptergivesanoverviewof thebasic componentsof data compression

and its history in information theory. The goal of this chapter is to build a

common understanding of data compression and climate data. The chapter

starts with an introduction to common terminology and notation. After-

wards, compression algorithms are classified based on their characteristics

and application field. Following this overviewof different compression al-

gorithms, one specific compression algorithm, prediction-based compres-

sion, is introduced in more detail. The introduction to data compression

concludeswith an overviewof metrics that can be used to assess the quality

of a compression algorithm. Since the compression algorithms introduced

and developed in this thesis are applied to climate data, an overview about

the structure and properties of climate data are presented in the concluding

section.

2.1 Data Compression

Data compressionwas originally developed to reduce transportation time

of data from a source location S to a predefined destination D. This is the

reasonwhy data compression is also referred to as source coding. The re-

duction in transportation timewasmostly achieved by reducing the size of

the data. The following definitions are based on Salomon andMotta (2010).

DEFINITION 2.1 (Source) A source S of data items can be a file stored on a

disk, a file that is input from outside the computer, text input from a key-

board, or a program that generates data symbols to be compressed or pro-

cessed in some way. A source is always ordered and might therefore be
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called a sequence.

S = s1s2s3 . . . sn−1sn

= (si)n
i=1 with i ∈ N∗ (2.1)

|S| = n

with |S| representing the size of S. A subsequence of S can be expressed

using Sk
m notation

Sk
m = smsm+1sm+2 . . . sk−1sk

= (si)k
i=m with k ≥ m (2.2)

In amemoryless source, the probability of occurrence of a data symbol

does not depend on its context. Such a source is termed Independent and

Identically Distributed (IID). The source consists of a set of data symbols

which is called its AlphabetX .

DEFINITION 2.2 (Alphabet) An alphabet defines the set of symbols from

which a source S can draw its symbols from.

X = {x1, x2, x3, . . . , xm}withm ∈ N∗ (2.3)

|X| = m

with |X| representing the size of X . An alphabet may consist of 128 ASCII

codes (text data), two bits, or any other set of symbols.

A compression algorithmconsists of two transformation processes. The

first process transforms the data from source S to destinationD. This pro-

cess is called encoding or compression and is performed by the encoder.

Thedatabeing encoded is called raw,original, orunencodeddata,while the

data after the encoding process is called encoded or compressed data. The

second process reverses the first transformation. This process transforms

data from D back to S. This process is called decoding or decompression

and is performed by the decoder. The data after the decoding process is

called reconstructed data.

While compression algorithms can differ in their specifics, the basic

principle is always the same: Data compression is achieved by removing

redundancy also called structure, or correlation in the original data. Any
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non-random data has some structure, and this structure can be exploited

to achieve a smaller representation of the data, a representationwhere no

structure is discernible (Salomon andMotta, 2010).

2.1.1 Classification of Compression Algorithms

There are two main types of compression algorithms: lossless and lossy.

Lossless compression algorithms encode the original data in such a way,

that the reconstructed data is identical to the original data. Lossless com-

pression is performed by decorrelation and subsequent coding of the data.

The decorrelation step eliminates redundant information in the data. Dur-

ing coding, the actual compression takesplace and thedata iswritten todisk.

Lossy compression algorithms aim to achieve smaller file sizes for encoded

data by removing or approximating unimportant information. This process

is called approximation. The approximation step reduces the complexity

of the data for the subsequent coding, e.g. byusing quantification. Approxi-

mation and is not applied in lossless compression. An overviewof the steps

is depicted in Figure 2.1. Some additional classifications for compression

algorithms are the following (Salomon andMotta, 2010):

• Non-adaptive vs adaptive

A compression algorithmwhichmodifies its operations and parame-

ters based on the original data is called an adaptive compression algo-

rithm. An algorithmwhich does not do this is called a non-adaptive

compression algorithm.

• Symmetric vs asymmetric

The data processing of the encoder and decodermight be different de-

pending on the compression algorithm. In a symmetric compression

algorithm the encoder and decoder apply the same algorithm in dif-

ferent direction. In an asymmetric compression algorithm one of the

two parts has a heavierworkload.

• Single-pass vsmulti-pass

A single-pass algorithm traverses the data only once, while amulti-

pass or n-pass algorithm traverses the data several (n) times. Statis-

tical compression algorithms are oftenmulti-pass algorithms, since

the first pass is used to gather statistical information about the data

like distribution and skewness.
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Start EndDecorrelation Coding

Approximation

lossy

lossless

FIGURE 2.1 A compression algorithm is defined by three steps: decorrelation, ap-

proximation and coding. A lossless compression algorithm uses decorrelation and

coding. A lossy compression algorithm has an approximation step in between. This

figure is based on Cappello and Lindstrom (2018).

• Streaming vs blockmode

A compression algorithmworking in streaming mode reads a sym-

bol from the source, encodes it andmoves on to the next symbol until

the source is exhausted. A blockmode compression algorithm reads

the source in several blocks of n symbols and encodes each block sep-

arately.

• Universal vs custom

A universal compression algorithm has no statistical information

about the original data. A custom, specific or non-universal com-

pression algorithm has a predefined knowledge about the data to be

compressed. A universal method is optimal if the compressor can

produce compression ratios (see Section 2.1.5) which asymptotically

approaches the entropy of the input stream for long inputs.

EXAMPLE: SYMMETRIC VS. ASYMMETRIC

Archiving is a good example for an asymmetric compression algorithm.

The encoder has often the heavierworkload, so that it takes significantly

more time to encode the data. The reason for this imbalance is the as-

sumption, that the fileswill be readmore often thanwritten in an archive.

Therefore, the decompression should be fast.

2.1.2 Data Compression and Information Theory

Claude Shannon single-handedly created the research field of information

theory in the late 1940s. He was interested in creating a reliable and fast

communication channel from a source to a receiver. Back in the days the
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communication channels were often affected by faulty hardware (e.g. bad

wiring, isolation problems) or in case of audio communication actual noise

in thebackground. Therefore, heworkedon special codes (e.g. error-control

codes) to reliably communicate over a noisy channel. Further, he tried to re-

duce the amount of data to be transferred over the communication channel.

To achieve this, Shannon (1948) created ametric tomeasure the information

content of each symbol of themessage to be transmitted called the Shannon

EntropyH(X),
H(X) = −

∑
xi∈X

P (xi) · logb(P (xi)) (2.4)

whereX = {x1, x2, . . . , xn} is the alphabet of the source,P (·) the probability
mass function (PMF), and b the base of the logarithm. Commonvalues for b

are 2, Euler e, and 10. The unit of H(X) depends on b. For thosementioned

above the corresponding units are bits for b = 2,nats for b = e, and bans for

b = 10. Unless otherwise stated, b = 2 is assumed in the remainder of the

thesis, since the Shannon Entropywith b = 2 is considered the lower limit

for bits per float (BPF) in lossless compression algorithms for floating-point

numbers.

One advantage (and disadvantage) of the Shannon Entropy is that no

further information other than the PMFwill be considered for calculating

the information content of a symbol. This may lead to information about

fluctuation or the regularity of a dataset (e.g. in time-series data) to be dis-

regarded. In cases where more information about the dataset is available

(e.g. temporal interdependency) other entropymetrics such as the Sample

Entropymight bemore accurate as to the information content of each sym-

bol.

Sample Entropy (Richman andMoorman, 2000) is an approximate en-

tropyestablished in thefield of neurologyto analyse brainwavedata. Given

a source S = s1s2 . . . sn−1sn and a subset Sm+l
m = smsm+1 . . . sm+l−1, sm+l, the

Sample Entropy is defined as follows:

SampEn(X, l, τ) = − log2
Z(X, l + 1, τ)

Z(X, l, τ) (2.5)

Z(X, l, τ) =
∑

i

∑
j

[d(Si+l
i , Sj+l

j ) < τ ] ∀i 6= j

15



with d(·) being a distance function of two datasets (i.e. vectors) like the Eu-
clidean orChebyshevdistance (Chebyshev, 1853), τ a thresholdvalue for the

distance, and [ · ] defined as follows:

[P ] =

1 if P is true

0 else

In literature the values l = 2 and τ = 0.2 · σ(X)with σ(·) representing the
standard deviation, have established themselves.

EXAMPLE: SHANNON ENTROPY VS. SAMPLE ENTROPY

Given a source S1 with alphabetX1 and a source S2 with alphabetX2

S1 = (10, 20, 10, 20, 10, 20, 10, 20, 10, 20, 10, 20)withX1 = {10, 20}

S2 = (10, 10, 20, 10, 10, 20, 20, 20, 10, 10, 20, 20)withX2 = {10, 20}

the resulting entropies based on Eq. 2.4 and 2.5 are

H(X1) = 1.0 SampEn(S1, 2, σ(X1)) = 0.223

H(X2) = 1.0 SampEn(S2, 2, σ(X2)) = 0.693

Since the fluctuation in S1 is rather regular than pure noise the

SampEn(X) returns a lower entropy for S1 than for S2. H(X) returns the
same entropy for both sources since no information other than the PMF

is considered.

2.1.3 Application of Custom Compression Algorithms

One of the classification criteria for compression algorithms explained in

the previous section is the type of customisation: universal and custom.

For subsequent chapters it is helpful to understand inwhich aspects algo-

rithms are customised. Custom compression algorithms usually take into

account structural dependencies in the data. This might be previous or fol-

lowing frames in a video format or neighbouring pixels in an image file.

These dependencies are represented in the structure of the file and can be

taken advantage of to discover redundancies in the data. There are several

custom compression algorithms for video, audio (e.g. wavelet, transform-
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based), image (e.g. partial pattern matching), text (e.g. dictionary-based),

and numerical data (e.g. prediction-based). Most of these algorithms use

probabilitymodels to figure outwhat themost probable symbol might be

next in the data. This is the reasonwhymost of the research in the field of

compression can be split into two groups. The first groupworks on improv-

ing the probabilitymodel for a given application field (e.g. video, numerical

data, or audio). The second groupworks on improving the coding process

where the actual compression of the data happens. Novel approaches in

both of these fields are discussed in Chapter 6, 5 and 7.

2.1.4 Prediction-Based Compression

One often customised algorithm for floating-point data is the prediction-

based compression algorithm. This section describes the steps involved in a

prediction-based compression algorithm. A prediction-based compression

algorithm involves five steps (Cayoglu et al., 2018c):

1) Mapping the floating-point data to integer values

2) Choosing a traversal sequence

3) Giving a prediction for each value

4) Calculating the residual between prediction and true value

5) Coding the residuals andwriting them on disk

The five steps are nowdiscussed inmore detail:

1. Mapping the Floating-Point Data to Integer Values. The mapping of

floating-point data to positive integer values is necessary to use integer op-

erations. Using integer operations guarantees reproducibility across com-

puter architectures, sincefloating-point operations arevulnerable to round-

ing errorswhichmay lead to numerical imprecision.

m : R→ N (2.6)

2. Choosing a Traversal Sequence. In prediction-based compression each

datapoint isfirstgivenapredictionand later comparedwith theactualvalue.

This is an iterative process and each prediction is based on data points seen

in the past. The traversal function t is a permutation of the original source
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FIGURE 2.2 Example for row-major traversal sequence.

and defines the sequence inwhich each data point is visited.

t : N→ N (2.7)

The resulting traversal sequence S ′ is defined as follows:

S ′ = (st(i))|S|
i=1 (2.8)

A traversal function can be considered as a space-filling curve introduced

by Peano (1890). The traversal sequence is important for designing a good

prediction-based compression algorithm since it defines the available in-

formation formaking a prediction. Non-universal compression algorithms

can adapt their traversal sequence to fully exploit the structure of the data

to decorrelate it better than universal compression algorithms.

EXAMPLE: FROM ROW-MAJOR TO COLUMN-MAJOR TRAVERSAL

Given a source S = (s1s2 . . . s15s16) with si = i representing a 4 × 4 grid
(see Figure 2.2) and the traversal function

t(x) = 4 · (x mod 4) +
⌊

x

4

⌋

the resulting sequence is S ′ = (s1s5s9s13s2s6s10s14s3s7s11s15s4s8s12s16).
This traversal function transformed a row-major dataset into a column-

major dataset. This traversal might bemore successful in decorrelating S

if there is a higher correlation between the columns of the dataset rather

than the rows.
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3. Giving a Prediction for Each Value. In the next step each data point is vis-

ited according to the traversal sequence. At each visit a predictionmethod

or predictor pk gives a prediction ŝi ∈ Ŝ for each symbol s ∈ S using the

data points of S ′ → Ŝ with pk(S ′) = (ŝi)|S′|
i=1.

pk(S ′) =


∑k

j s′
i−j · cj ∀i ≥ k ∧ s′

i ∈ S ′

pbk(S ′) else
(2.9)

where pk(·) is the prediction function using k elements of the sequence S ′,

pbk a prediction function for the border caseswhere |S ′| < k, cj theweight

coefficient of element s′
i−j .

The above notation focuses on the traversal sequence and can become

confusing very quickly:

S
t(i)−−→ S ′ pk(s′

i)−−−→ Ŝ (2.10)

Since climate data is represented using a four dimensional cube i.e.

tesseract, any prediction function pk(·) can be expressed using the relative
position of eachdata point. In the following thenotation for aM×N matrix

is described, but it can be extended to anyothermulti-dimensional data like

a cube (three dimensions) or tesseract (four dimensions).

GivenamatrixAof sizeM×N , each element of A canbe identifiedusing

A(i, j)with 0 ≤ i < M and 0 ≤ j < N . Thepredictionmethod p : {A,~c } 7→ Â

can then be defined as follows:

p(A,~c) =


∑

ci,j∈~c
A(x− i, y − j) · ci,j x ∈M∧ ≥ i, y ∈ N∧ ≥ j

pb(A,~c ) else

(2.11)

with p(·) representing the prediction function, ci,j ∈ ~c theweight coefficient

of element A(x − i, y − j) and pb(·) the prediction function for the border
cases if A(x− i, y−j) is not available. The notation can be further shortened
by expressing the relative position of cells using ρi,j as follows:

ρi,j := A(x− i, y − j) ∀x ∈M ∧ ∀y ∈ N (2.12)

p = ~ρ · ~c (2.13)

=
∑
i,j

ρi,j · ci,j
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where ρi,j defines the relative position of the data pointA(x− i, y − j) and
ci,j theweight coefficient for that particular data point.

4. Calculating the Residual Between Prediction and True Value. The differ-

ence method diff(·) defines how the difference between the prediction ŝi

and the true value si is calculated. The difference itself is called the resid-

ual. In most cases thiswill be either the absolute difference using diffabs or

eXclusive OR (XOR) difference using diffxor defined as follows:

diffxor = ŝi ⊕ si (2.14)

diffabs = | ŝi − si | (2.15)

If theprediction is close to the truevalue, the leading zero count (LZC) of the

residual will be high. LZC represents the number of most significant bits

of a floating-point value that are zero i.e. unset. These bits do not need to

be saved on disk, since they can be reproduced by the prediction algorithm.

The remaining bits of the residual are then processed in the next step.

5. Coding the Residuals and Writing Them on Disk. In the last step the re-

mainder of the residual is coded and written on disk. There are several

options to choose from: Huffman coding (Huffman, 1952), Arithmetic cod-

ing (Howard andVitter, 1994), Range coding (Martin, 1979), Golomb coding

(Golomb, 1966), Asymmetric Numeral System coding (Duda, 2013) or any

combination of these. More details regarding step four and five are given

in Chapter 7.

In prediction-based compression there is a clear distinction between the

decorrelation and coding phase depicted in Fig. 2.1. The goal of the decor-

relation phase (steps one to three) is to use the available information in the

best possibleway to decorrelate the data and reduce the size of the residual.

The task of the coding phase (steps four and five) is to write these residu-

als on disk in themost space-efficientway. If necessary, an approximation

step can be added before calculating the residuals in step four or by a post-

processing step using quantisation in step three.
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2.1.5 Metrics

To assess the quality of a compression algorithm several metricswill be de-

scribed in this section. The followingmetrics are commonlyused: compres-

sion factor (CF), compression ratio (CR), throughput, and memory usage.

The first twometrics are used if the size of the encoded data is important.

They set the size of the raw and compressed data in relation.

compression factor (CF) = Size of rawdata

Size of compressed data
(2.16)

A CF greater than 1means the compression algorithmwas successful in re-

ducing the size of the original data. A value smaller than 1means that the

encoded data is actually larger than the rawdata. The greater the compres-

sion factor, the better the compression algorithm.

compression ratio (CR) = Size of compressed data

Size of rawdata
(2.17)

= CF−1

The CR is the inverse of the CF. The smaller the CR, the better the compres-

sion algorithm. A value close to 0 is optimal, while a value greater than 1

suggests that the compression algorithm failed and the size of the encoded

data is actually larger than the raw data. It gives information about how a

single bit in the encoded data is related to a single bit in the rawdata.

The following two metrics are about compression speed and memory

usage. The throughput indicates the amount of data processed per unit of

time. Inmost cases thiswill be either Bytes/s orMiB/s.

throughput = Filesize [Bytes orMiB]

Total Processing Time [sec]
(2.18)

The higher the throughput, the faster the algorithm. The throughput is cal-

culated separately for the encoder and decoder since the compression algo-

rithmmight be asymmetric. Thememory usage is themaximum amount

of memory used by the encoder (decoder) at any given time during the com-

pression (decompression) process.
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Most custom compression algorithms developed for a specific type of

data also adjust their metrics to that data type. One such ametric is bits per

float (BPF), which is derived fromCR.

BPF = Size of compressed data [bits]

Number of floating-point values in data · bits
(2.19)

with bits = 32 for singleprecisionand bits = 64 fordoubleprecisionfloating-
point data. BPF describes howmany bits a single floating-point value occu-

pies in a dataset after compression.

2.2 Climate Data

There aremanydifferent sources for climate data. However, these sources

can be divided into twomain groups: observational data and simulation

data. The former can be split again into ground-based remote sensing

data usingmeasurement devices on the ground e.g. Fourier-Transform In-

frared Spectrometers (FTIR), remote sensing data from devices attached

to aircraft, satellites or balloons and in-situmeasurements by direct con-

tact (see Fig. 2.3). Observational data is often constrained in its spatial

as well as temporal resolution due to hardware or software specifications.

Further, there are more missing values in observational data compared

to simulation data, since there are conditions where the sensors are not

able to work properly (e.g. due to clouds or heavy rain). Simulation data

are climate or weather data calculated by simulation models like ICOsa-

hedral Nonhydrostatic (ICON) (Zängl et al., 2015; Schröter et al., 2018) or

ECMWFHamburg/Modular Earth Submodel System Atmospheric Chem-

istry (EMAC) (Jöckel et al., 2006). The rest of the thesiswill deal exclusively

with simulation data. It therefore makes sense to take a closer look at the

weather and climate simulationmodels that generate these data.

2.2.1 Weather and Climate Models

Weather and climatemodels simulate the interactions in the Earth’s atmo-

sphere, ocean, cryosphere, and land surface. These models solve coupled

differential equations describing central physical and chemical interactions

on Earth, i.e. radiation (solar and terrestrial), advection, emissions, convec-
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FIGURE 2.3 There are many different sources for climate data. However, these

sources can be divided into two main groups: observational data and simulation

data. This figure is taken fromWMO (2019).

tion and condensation. Models simulate different prognostic and diagnos-

tic variables. The variables described directly by the differential equations

are called prognostic variables. They are integrated and calculated at each

time step. Prognostic variables are e.g. temperature, wind, moisture, sur-

face pressure, salinity (of the ocean), andwatervapour. Thediagnosticvari-

ables are evaluated from prognostic variables at specific time steps (set by

themodel parameters). One example for a diagnostic variable is humidity,

which can be derived from temperature andwater vapour.

These variables are calculated by dividing the Earth into a three-

dimensional grid and solving the underlying differential equations and

their interactions along the fourth dimension, time. While the differen-

tial equations solved are the same inweather and climatemodels, often the

horizontal resolution, simulated area, and time scale is different. Weather

models have often ahigher horizontal resolution, but simulate at short time

scales (fromhours to coupleweeks) andmight be limited to local regions (e.g.

Germany, or Europe). Climate models often simulate several decades at a

global scale. Thesemodels are often run on a coarser horizontal resolution
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than weather models due to the high compute power needed to solve the

differential equations on a global scale formanyyears. Simulationmodels

can further be distinguished based on their approach to solve the differ-

ential equations (i.e. spectral models using Fourier-based transformations

or finite-difference models), their vertical consistency (i.e. hydrostatic or

nonhydrostatic) as well as their grid model (i.e. structured models with a

constant angular grid or unstructuredmodelswith a non-rectangular grid).

2.2.2 Data Structure of Climate Model Output

Due to historical reasons the most common data structure in climate data

is the hypercube or tesseract. Although next generation climate models

switched to unstructured grids to better use the compute power provided

byHigh Performance Computing (HPC) systems the output of thesemodels

will beoften interpolated toa structuredgrid format for easeof use. The four

dimensions of the tesseract represent the three spatial dimensions (longi-

tude, latitude, and altitude) and time. These dimensions are called coordi-

nates or coordinate variables. The calculated prognostic and diagnostic

variables are referred to as data variables. While the horizontal dimen-

sionswith longitude and latitude are usually represented by [◦E] (longitude)

or [◦N] (latitude), there is no agreement about the altitude unit. The alti-

tude might be represented in (hybrid) pressure levels (e.g. [Pa], [hPa]) or

metre (e.g. [m]). The temporal resolution can be anything between seconds

[s], days [d], months [months] or years [years]. Most of the climate data

is stored using hierarchical data formats like the Network Common Data

Format (NetCDF) (Rewand Davis, 1990), General Regularly-distributed In-

formation inBinary form (GRIB) (WMO, 2013), orHierarchicalData Format

(HDF) (Folk et al., 1999). But it is not uncommon for remote sensing data

to be stored as ASCII data. The data and coordinate variables are single or

double precision floating-point values.

In this chapter, terms and notations were presented that are used

throughout thework and a general overviewof the basic principles of data

compressionwas given. The reader should nowbe able to classify different

compressionalgorithmsbasedon their properties andevaluate their perfor-
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mance using themetrics presented in this chapter. In the following, related

work in the field of compression of climate data aswell as structurally sim-

ilar data is introduced.
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CHAPTER 3

Related Work
The biggest challengewith the compression of climate data is data volume.

The processing of high volumes of data is a well-known problem in com-

puter science in the era of Big Data. This chapter features an overview of

similar challenges in related scientific fields aswell as their proposed solu-

tions. This overview is by no means exhaustive. There are many develop-

ments in compression, such as succinct data structures, which are skipped

for reasons of brevity. The focus of this chapter is on the algorithms used

in compression and not on the data structures.

First, related work and solutions directly connected to the topic of cli-

mate data compression is introduced. Afterwards, an outline of the state-

of-the-art compressionmethods for image, time-series and floating-point

compression is given, since these data sharemost similaritieswith climate

data. Finally, compression techniques fromvideo, audio and text compres-

sion are described.

3.1 Compression of Climate Data

A thorough search of the relevant literature yielded one other groupwork-

ingon lossless compressionof climatedata. In theirworkHuanget al. (2016)

and Liu et al. (2014) introduce czip a lossless compression algorithm for

climate data. Huang et al. (2016) use a prediction-based compression algo-

rithmwith adaptive prediction, XOR difference and ‘multi-way’ compres-

sion. First the authors identify themost powerful predictionmethod froma

predefined set of predictors byanalysing the first 100 time steps of the data.

Afterwards, each dataset is split into static and dynamic regions. Static re-

gionsaredefinedas twoormoreconsecutivedatapointswith thesamevalue.

Regions not satisfying this criteria are declared as dynamic. The residual is
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calculated using XOR difference as described in Section 2.1.4. The residual

of dynamic regions is then ‘multi-way’ compressed: Each single or double

precision floating-point data is split into four or eight byte sections respec-

tively, and is compressed using zlib (Deutsch and Gailly, 1996) for the first

byte sections and lz4 (Collet, 2011) for the last section. The experimental

results in Huang et al. (2016) and Liu et al. (2014) suggest that czip achieves

a very good CR as well as throughput. Unfortunately no public version of

the algorithmwas available at the time of writing, so it could not be used for

the experiments described in this thesis. Further, the authors assume that

the time coordinate variable is large, which might not be the case. A large

part of the climate simulation output analysed in this thesis shows that the

spatial resolution in a single data set is finer than that of the temporal di-

mension. The reason for this is that the output of simulations takes place at

fixed time stepswhich are significantly shorter compared to the simulated

time scale. As a result, individual files have a few time steps but high spatial

resolution.

While there is little relatedwork regarding lossless compression of cli-

mate data, there ismuchmore literature about lossycompression of climate

data. Baker et al. (2016) and Hübbe et al. (2013) compare the effects of lossy

compression on climate data using different error thresholds and quality

metrics.

Baker et al. (2016) conclude that ‘lossy compression can effectively re-

duce climate simulation data volumeswithout negatively impacting scien-

tific conclusions’ if certain precautions have been taken. First, the com-

pression must be done on a variable-by-variable basis. This would allow

applying different compression algorithms per variable and defining adap-

tive thresholds. Theauthorsalso suggest consideringderivedvariables from

post-processingworkflowswhen choosing the abovementioned thresholds,

since these variables aremost severely affected by error propagation from

lossily compressed data. Further, Baker et al. (2016) argue that compression

algorithms should consider a special treatment for missing or fill values,

because these can appear very often and intermittently in climate data.

Hübbe et al. (2013) compare three lossy compression methods (GRIB2

coding, GRIB2with JPEG2000 and LZMA, and proprietaryAPAX) regard-

ing data quality, compression ratio and processing time. The experimental

results show that APAX outperforms GRIB2 coding regarding data qual-
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ity especially in climate variableswith often repeating values. The authors

recommend using one of the other two lossy compression algorithms com-

pared if not execution speed but high precision is themain concern in the

reconstructed data, e.g. for archiving purposes. Hübbe et al. (2013) suggest

‘due to the statistical nature of climate research’ that the input and output

datasets could probably be lossy compressed, but suggest lossless compres-

sion for intermediate results (e.g. checkpoint and restart files during simula-

tion) to ‘carefullymonitor thenumerical stabilityand consistencyof results’.

Sasaki et al. (2015) analyse lossycompression of climate data specifically

for checkpoints and restarts during simulation runs. The authors propose a

lossy compression technique based on Haarwavelet transformation (Haar,

1910) for checkpoints. Thewall clock time of a checkpoint is reduced by 81%,

while the average relative error introduced by the compressionmethod is

around 1.2%. The reduction in checkpoint time is achieved due to the strong

decrease in I/O compared to additional computation time. The authors ex-

pect derivations to be in the order of
√

nwith n representing the calculation

steps in the simulation. Sasaki et al. (2015) suggest this ‘may be acceptable

compared to inherent errors to scientific simulations’. But this derivations

are additional to the error computed by the scientific models. Further, an

error in the per cent range is high for certain environmental variables es-

pecially if derived variables are considered. Unfortunately, the authors do

only a single restart of the simulations during their experiments. It would

be interesting to knowhow the error propagateswith several restarts.

OBSERVATION 3.1 Lossless compression of climate data is not verywell re-

searched.

OBSERVATION 3.2 Lossy compression is a viable option if certain criteria

aremet: variable-based thresholds, consideration of post-processing steps,

and special treatment of missing values.

3.2 Compression of Data Similar to Climate Data

While there is only a handful of research papers regarding the compres-

sion of climate data, there are a lot of research papers about compression

of data that share structural similaritieswith climate data. Image data are

two dimensional numerical data sharing similarities with the horizontal
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resolution of climate data. Time-series data share similaritieswith climate

data along the temporal dimension. Further, since climate simulation out-

put is mostly floating-point data, climate research has the same challenges

as other scientific fields dealingwith high volume floating-point data.

3.2.1 Image Compression

A digital image is a rectangular array of dots, cells or pixels, arranged in a

grid. In case of grayscale images the pixels are shades of greywith integer

values in the range of 0–255. Colour images are often represented as a triple

of 0–255 for each primary colour or a quad including the alpha level. Image

compression algorithms are often designed specifically for various kinds of

images (Salomon andMotta, 2010): bi-level images (i.e. images with only

twocolours), grayscale images, continuous tone images, ordiscrete-tone im-

ages (i.e. imageswithout noise nor blur like text images, cartoons or charts).

The assumption for image compression is that each randompixel is strongly

correlatedwith its neighbouring pixels. The neighbouring values of a pixel

are called its context. The reason for the similarities between compression

techniques for image and climate data lies in the spatial structure of the

climate data, which is also structured like a grid. As with pictures, it can

be assumed that the meteorological conditions at two locations are rather

similar at short distances.

Many image compression algorithms use lossy compression since the

human eye has inefficiencies in the perception of certain shades or gra-

dients. Compression algorithms exploiting these inefficiencies are called

perceptive compression algorithms. One of these perceptive image com-

pression algorithms is JPEG (ITU-T.81, 1992). JPEG can be used in lossy and

lossless mode. In lossymode the algorithm first maps the red, green, and

blue (RGB) values to luminance and chrominance representation. Since the

human eye is more sensitive to changes in luminance rather than chromi-

nance, the chrominancevalues get downsampled to artificially increase cor-

relation in the dataset. Afterwards the data is decorrelated using discrete

cosine transform (DCT) and encoded using run-length encoding (RLE) cou-

pledwith Huffman Coding (Huffman, 1952). In losslessmode the algorithm

does not use downsampling and switches the decorrelation step fromaDCT

algorithm to a prediction-based algorithm using the predictors given in Ta-
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TABLE 3.1 Predictors used by JPEG in lossless mode.

Type Predictor

One-dimensional ρ1,0 ρ0,1 ρ1,1

Two-dimensional ρ1,0 + ρ0,1 − ρ1,1 ρ1,0 + ρ0,1−ρ1,1
2 ρ0,1 + ρ1,0−ρ1,1

2
ρ1,0+ρ0,1

2

ble 3.1. The user has to choose manuallywhich predictor to use. Since the

lossless compression results of JPEGyield lowCF, thismode is often not im-

plemented by JPEG libraryproviders (SalomonandMotta, 2010). Due to the

problems of JPEG in lossless mode the standard JPEG-LS (ITU-T.87, 1998)

was developed. Algorithm 3.1 depicts the prediction step of JPEG-LS. This

1: procedure Prediction(ρ1,0,ρ0,1,ρ1,1)
2: r ← ρ1,0 + ρ0,1 − ρ1,1
3: ifmax{ρ1,0, ρ0,1, ρ1,1} = ρ1,1 then
4: r ← min{ρ1,0, ρ0,1, ρ1,1}
5: else ifmin{ρ1,0, ρ0,1, ρ1,1} = ρ1,1 then
6: r ← max{ρ1,0, ρ0,1, ρ1,1}
7: end if
8: ctx←Context(ρ1,0,ρ0,1,ρ1,1,ρ−1,1)
9: s←Sign(ρ1,0,ρ0,1,ρ1,1,ρ−1,1)
10: r ← r + C[ctx] · s
11: r ← min{r, maxval}
12: returnmax{r, 0}
13: end procedure

ALGORITHM 3.1 Prediction step of JPEG-LS image compression algorithm.

update of the algorithm is a good example on how compression algorithms

develop. The decorrelation is donewith amore sophisticated prediction al-

gorithm: the prediction-model uses an edge-detectionmechanism coupled

witha correctionalgorithm. The correctionalgorithmcalculates the context

ctx based on the surrounding gradients ρ−1,1 − ρ0,1, ρ0,1 − ρ1,1, and ρ1,1 − ρ1,0

and applies the appropriate correction using a predefined correction table

C. Finally the data is coded using Golomb coding (Golomb, 1966).

OBSERVATION 3.3 Thedevelopmentof JPEG fromtheuseof a rather simple

decorrelationmethod toamore sophisticatedone is common in thedevelop-

mentof compressionalgorithms. Wherepreviouslytheneighbourhoodwas

sufficient, now edge probabilities are calculated and corrections aremade.
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FIGURE 3.1 Neighbourhoods used from lossless image compression methods. The

left top row represents those used by JPEG (ITU-T.81, 1992) and JPEG-LS (ITU-T.87,

1998). The left bottom row is used by Motta et al. (2000), Wu and Memon (1997),

Moffat (1991), and Langdon and Rissanen (1981). The right column represents those

used by Howard and Vitter (1993). The X depicts the pixel to be predicted.

The available information for making a prediction and decorrelating the

data is the same, since the sequence inwhich the data points are traversed

is the same. But the further the techniques advance themore sophisticated

themethods are to extract the right information from the neighbourhood.

Further developments in the area of lossless image compression im-

proved upon the context calculation and patterns of neighbourhoods to

be considered. If lossless compression is expected, then most of the algo-

rithms switch to a prediction-based algorithm for decorrelation of the data

(Li andOrchard, 2001;Aiazzi et al., 1999;Weinberger et al., 2000;Neves and

Pinho, 2009; Taquet and Labit, 2012). Some of these neighbourhoods are

represented in Figure 3.1. Due to brevity, only a few of these patterns are

listed. Please refer to SalomonandMotta (2010) for anoverviewof the topic.

Lossy image compression algorithms often change to amore time-efficient

method thanprediction-basedcompression, like theabovementioned JPEG

(ITU-T.81, 1992). The decorrelation methods applied in lossy compression

are diverse: neural networks (Toderici et al., 2017), centroids (Karadimitriou

and Tyler, 1998), wavelets (Bruylants et al., 2015), Haar transforms (Haar,

1910), discrete cosine transform (Ahmed et al., 1974), aswell as perceptual

methods (Alakuijala et al., 2017).

The keen readermight observe similaritieswithmulti-dimensional in-

terpolationmethods. Both problem fields are related. In mathematics the

problem described above is known as Lagrange,Hermite, or Birkhoff in-

terpolation problem. The Lagrange interpolation problem defines the
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challenges of interpolation on amulti-dimensional grid if only the actual

values are considered. TheHermite interpolation problem considers ad-

ditionally the derivative of the multi-dimensional problem. Finally, the

Birkhoff interpolation problem, considers the interpolation of the actual

value, the derivative and possible missing values. For more details, please

refer to Burden and Faires (1997); Sauer and Xu (2006); Allasia et al. (2018);

Krislock andWolkowicz (2012); Schultz (1970) and Olver (2006).

3.2.2 Time-Series Compression

Since one of the coordinate variables of climate data is representing tem-

poral information, there are strong similarities between climate and time-

series data. There are only a few scientific communitieswhich need lossless

compression of time-series data. One of these communities is medicine,

specifically neurology (Sriraam, 2012; Sriraam and Eswaran, 2008; Srini-

vasan and Reddy, 2010).

Sriraam (2012) and Sriraam and Eswaran (2008) developed a lossless

compression algorithm for Electroencephalography (EEG) data using a

prediction-based compression algorithm. The authors train three neural

networks (e.g. single-layer perceptron) and two linear prediction models

i.e. auto-regressive (AR) and finite impulse response filter (FIR) for decorre-

lation. This prediction step is then followed by a statistical errormodelling

scheme (Sriraam and Eswaran, 2008). Since recording EEG is time-critical

the authors define computational efficiency (CE) as their qualitymetric:

CE = CR

processing time
(3.1)

The results indicate that there is almost no performance difference between

neural networks and linear predictions. Among the different predictors

used, it is found that the single-layerperceptronyields thebest compression

results closely followed by the ARmodel.

Pelkonen et al. (2015) introduce a lossless time-series compression al-

gorithm for high velocity data for in-memory time-series databases. The

algorithm uses a prediction-based method in which the delta-of-delta is

computed. Delta compression refers to techniqueswhen, instead of storing

the absolute values of the time-series data, the differences between the in-
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dividual data points are stored. This difference calculation can be applied

recursively,which results in the delta-of-delta definition. The difference is

calculated using XOR (see Eq. 2.14). Because of the high data velocity, the

XOR operation results in a high leading zero count (LZC). These residuals

are saved and finally coded using variable length-coding. The results in-

dicate high throughput possibilities ‘[to] efficiently store monitoring data

comprising of over 700 million points per minute’ (Pelkonen et al., 2015).

An additional analysis of less frequent time-series datawould also be inter-

esting as the correlations between the time stepswould likely be lower than

those obtainedwith high frequency time-series data.

OBSERVATION 3.4 Lossless compressionmethods for time-series data use

mostly prediction-basedmethods.

Lossy time-series compression algorithms are applied in a lot of com-

munities: databases (Deri et al., 2012), haptic telepresence systems (Kuschel

et al., 2006), artificial intelligence (Fink and Gandhi, 2011; Del Testa and

Rossi, 2015), sensor networks (Huamin Chen et al., 2005), and smart grids

(Eichinger et al., 2015). As in the previous section about lossy image com-

pression,manyof thesealgorithmsusedifferent transformation techniques

likewavelets and DCT to decorrelate the data.

There are other interesting time-seriesmodels for compression of time-

series data. These models are so-called forecasting models. One of these

models is the Auto Regressive IntegratedMoving Average (ARIMA)model

first introduced byBox and Jenkins (1976). TheARIMAmodel helps identify

interdependencies in time-series data and is applied bydifferent communi-

ties e.g. economics (French et al., 1987; Pai and Lin, 2005), telecommunica-

tions andmultimedia (Al Tamimi et al., 2008; De la Cruz et al., 1998; Garrett

andWillinger, 1994) and social studies (Chen et al., 2008).

3.2.3 Floating-Point Compression

In the last couple of years the development of compression algorithms for

floating-point data experienced a renaissance (Cayoglu et al., 2019b). The

reason for the increasing interest in floating-point data compression is the

amount of data from the next generation of high-resolution models that

can simulate increasingly complex systemswith fast HPC systems. The first
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FIGURE 3.2 Memory representation of double precision floating-point values. While

the decimal representation differs in one position, the last five bytes of the memory

representation are different. The memory representation is given in hexadecimal.

The differences in each representation are emphasised. This figure is taken from

Engelson et al. (2002).

articles introducing novel lossless floating-point compression algorithms

for scientific datawere Engelson et al. (2002); Isenburg et al. (2005); Ratana-

worabhan et al. (2006) and Lindstrom and Isenburg (2006).

Engelson et al. (2002) develop a lossless compression method for

floating-point time-series data using delta compression. In thenext step La-

grange extrapolation (Waring, 1779) is used for prediction. The authors also

explain theproblemwithmemoryrepresentationof floating-pointdata (see

Fig. 3.2). Even if thedecimal representationof twonumbers canbeverysim-

ilar, this does not need to be the case for the representation inmemory. This

problem is also addressed by Isenburg et al. (2005) and later extended in

Lindstrom and Isenburg (2006).

Isenburg et al. (2005) use the Lorenzo predictor (Ibarria et al., 2003) for

decorrelation of the data and use range coding (Martin, 1979) in the final

step. To prevent the pitfalls of binarymemory representation the authors

split the residual in different blocks and code them separately. More details

of this methodwill follow in Chapter 7.

Ratanaworabhan et al. (2006) follow a different approach in residual

calculation. Like Engelson et al. (2002), the authors try to address the prob-

lem of memory representation by delta compression in conjunction with

an additional correction step. The correction is calculated using previous

errors saved in a hash table. The key of each correction is calculated using

the current context. The context is defined by the last three deltas in the

data. Afterwards, the residual is calculated using XOR difference and saved

on disk using Range Coding (Martin, 1979).

Fout and Ma (2012) focus on high throughput compression. They pro-

pose an asymmetric compression methodwhere the context is calculated

based on the last four values in the source. Each of the 16 predictors cal-
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culate a prediction for the context and the best predictor is chosen. This

information is saved for future use. If the same context reoccurs, a recalcu-

lation isnotnecessary. The residual is being calculatedusingXORandcoded

using Golomb Coding (Golomb, 1966). The information about the chosen

predictor is saved in a nibble and passed on to the decoder.

Gomez and Cappello (2013) describe a masking technique to decrease

the entropyof the data. The data is split into several blocks. For each block a

signaturevalue is calculated ‘based on themost frequentvalue for the given

bit column’ (Gomez and Cappello, 2013). The appropriate masks are then

calculated and coded. The masks are then saved using the zlib compres-

sion library (Deutsch andGailly, 1996). Experimental results suggest that in

some cases a reordering of themasks results in high CF. The reorganisation

is done by splitting and rearranging each byte block in the data.

Ainsworth et al. (2017) analyse the effects of decimation and define a

formula to calculate a priori the lower bound and the expected CR using

decimation depending on the stride size. The authors propose a compres-

sion algorithm based on their experimental results. Although the proposed

compression algorithm performsworse than those it is comparedwith, the

uniqueness of theirwork lies in the analysis and calculation of the expected

CR.

Due to the challenges mentioned above and low compression factors

achieved using lossless compression, severalworking groups turned their

focus on lossy compression of floating-point data. Currently there are two

dominating lossy compression algorithms for floating-point data: Squeeze

(SZ) and zip floating-point (ZFP). Both algorithms apply different decorre-

lation algorithms for the data. SZ uses a prediction-based algorithm,while

ZFP applies a transformation-based algorithm.

SZ is introduced in Di and Cappello (2016) and has since been updated

several times: In Tao et al. (2017b) the authors improve the applied pre-

dictors and achieve better compression results for absolute as well as rel-

ative error bound lossy compression. Tao et al. (2018) improve the algo-

rithm upon the fixed peak signal to noise ratio (PSNR) error bound, Liang

et al. (2018a) regarding the point-wise relative error bound and Liang et al.

(2018b) improve the predictionmodel of the algorithm. The current model

of SZ (Liang et al., 2018b) works with three predictors: the Lorenzo pre-

dictor (Ibarria et al., 2003), the mean-integrated Lorenzo predictor, and a
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linear-regression based predictor. The authors sample the dataset to iden-

tifywhich predictionmodel to use for the data. Some predictionmodels are

‘uniformly skewed from the original values if the error bound is relatively

large’. Therefore, the authors introduce themean-integrated Lorenzo pre-

dictor for datasets with low variance coupled with a relatively large error

bound. In these cases the Lorenzo predictor performs badly,which results

in artefacts in the reconstructed data. SZ first chooses the best Lorenzo pre-

dictor based on data sampling. Afterwards, the regression coefficients of

the linear-regressionbasedpredictor is calculated. In the last step, eachdata

block is compressed using either the regression-based predictor or the best

Lorenzopredictor. This choice is based on the estimatedprediction errors of

each predictor for the current data block. Finally, the errors pass through a

quantisation step and areHuffman coded (Huffman, 1952). Further, domain

specific versions of SZ are available for cosmology simulations (Tao et al.,

2017a) and quantum chemistry (Gok et al., 2018).

ZFP is introduced in Lindstrom (2014) and works with an orthogonal

block transformation for decorrelation of the data. The decorrelation step

is as follows (Lindstrom, 2014): the data is split into 4× 4× 4 blocks, aligned
by common exponent, converted to a fixed-point representation and trans-

formed using an orthogonal block transform. Afterwards, in the coding

step, the transform coefficients are ordered by the expected magnitude,

sorted by bit plane and coded using embedded coding (Hong and Ladner,

2002). There are domain specific versions of ZFP: Lindstrom et al. (2016)

customise the ZFP algorithm for seismicwaveform tomographydata. There

are several other lossy compression algorithms for floating-point data.

Due to the different nature of their decorrelation steps SZ and ZFP per-

form better for different data. Tao et al. (2019) introduces an automatic on-

line selection process between these two methods, to choose the optimal

lossy compression algorithm for any given data.

Marin et al. (2016) focus on high throughput lossy compression and rely

on fast integral transformations, such as the discrete Chebyshev transform

(DChT) (Chebyshev, 1853) and the discrete Legendre transform (DLT) (Leg-

endre, 1790) for the decorrelation of the data. The data is mapped to the

spectral space, truncated using a user-defined error threshold andHuffman

coded (Huffman, 1952) using binary symbols.
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Lakshminarasimhan et al. (2011) develop the lossy compression algo-

rithm Sort-And-B-spline Error-bounded Lossy Abatement (ISABELA) for

spatio-temporal data. The authors focus on in-situ compression,which pro-

cesses the data ‘in-tandemwith the simulation by utilising either the same

compute nodes or the staging nodes’. For spatial decorrelation the data is

first split into windows of a certain size, the values inside eachwindow is

sorted and then decorrelated using cubic B-splines (Bartels et al., 1987). The

original index position of each data pointwithin the correspondingwindow

and the coefficients of the splines are later saved on disk. The temporal de-

pendencies are decorrelated by comparing eachwindowwith the previous

one and using delta coding for the result.

Liu et al. (2017) develop a lossy compression algorithmby truncating the

last s bits of a double precision floating-point value, in such away, that the

remaining 64minus s bits arewithin the user specified relative point-wise

error threshold. The authors suggest saving the truncated bits in remote

storage and applying these on the data only if full precision is desired.

Lu et al. (2018) performdifferent experimentswith lossycompression al-

gorithms to identifygood compressibility indicators to predictwhich lossy

compression algorithmwill perform best for any given dataset. Following

data features are identified as good compressibility indicators: cumulative

distribution function (CDF),byte entropy, coreset size (indicating thenum-

ber of unique symbols composing > 90% of the data), and auto-correlation

whichmeasures the extent towhich each symbol dependsupon theprevious

symbol. The experimental results show that in general SZ exceeds the per-

formance of ZFP, which in turn exceeds that of ISABELA. Since ISABELA

and SZ are asymmetric compressionmethods, the decoding throughput is

higher than the coding throughput. Further, the authors suggest different

subsampling methods for SZ and ZFP. A random block-based sampling is

suggested for ZFP and a Gaussianmodel is suggested for SZ.

Velegar et al. (2019) suggest using singular value decomposition (SVD)

for the lossy compression of data. Originally proposed for scalable diagnos-

tic analysis, the authors suggest using SVD for low rank representations of

the data to reach compression factors of about 1000.

Dunton et al. (2019) proposes using matrix decompositions for the

decorrelation of data and introduce a novel single-pass algorithm for high

throughput computing of interpolative decompositions. Lossy compres-
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sion factors ‘exceeding 400 are achievedwhile maintaining accuracywith

respect to first- and second-order flow statistics’ (Dunton et al., 2019). The

difficulty in using SVD or other matrix decompositions are error thresh-

olds. None of thesemethods support relative or absolute thresholds for con-

trolled information loss during lossy compression. For this reason, these

methods are not yetwidely used.

OBSERVATION 3.5 If lossless compression is the goal, almost all proposed

algorithms use prediction-based compression algorithms for decorrelation

of the data. Lossy compression promises very high compression factors

compared to lossless compression. The authors of lossy compressionmeth-

ods often choose transformation-based compression algorithms,with the

exception of SZ.

3.3 Compression of Other Data

This section introduces compression techniques used in video, audio, and

text compression. For reasons of brevity, only themost commonmethods

are described in this section. Please see Salomon and Motta (2010) for a

more comprehensive study.

Dictionary-basedcompressionmethodsareverysuccessful in compress-

ing textual data. One of the most used (and extended) dictionary-based

method is Lempel Ziv (LZ) introduced in Ziv and Lempel (1977). The algo-

rithm decorrelates the data using references to previous occurrences of the

words in the text. Thedata is traversedusing twobuffers called search space

and look-ahead buffer. The text is traversed from the beginning to the end.

During the traversal the search space consists of the last s characters of

the text and the look-ahead buffer consists of the current and u upcoming

characters of the text with s � u. If the current character is found in the

search space the algorithm tries to match every following character from

the look-ahead buffer. The offset and match length is then saved on disk.

The DEFLATE algorithm introduced in Deutsch (1996) and implemented in

zlib (Deutsch and Gailly, 1996) is based on LZ coupled with Huffman cod-

ing (Huffman, 1952) as is the Lempel–Ziv–Markov chain Algorithm (LZMA)

algorithm implemented in 7z (Pavlov, 2019).
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Video compression algorithms are usually lossy (Salomon and Motta,

2010) and use prediction-based compression for decorrelation. A video sig-

nal consists of several frames or pictures. For compression the frames are

split into Intra (I),Bidirectional (B), andPredictive (P) frames. An I frame is

encoded independently, aP frame is encodedusingpreceding IandP frames,

and aB frame is encoded using preceding and following I andP frames. The

number of encoded frames is usuallyB > P > I . Some decorrelation tech-

niques applied to these frames are according to Salomon andMotta (2010):

subsampling (only any other frame is encoded), differentiation (compar-

ing each pixelwith the pixel at the same position on the previous frame and

delta coding if thedifference is abovea certain threshold), block comparison

(differentiating by comparing pixel blocks), motion compensation (similar

to LZ compression by referring to blocks from the previous frame), frame

segmentation, and distortionmeasures.

While it ispossible to compressdigital audiodatausing lossless compres-

sionmethods, this might not be beneficial if the piece does not have strong

reoccurring characteristics. Similar to human sight, human perception of

sound has inefficiencies which can be utilised more effectivelywith lossy

compression algorithms. Two of these techniques are (Salomon andMotta,

2010): silence compression and companding. Silence compression is a

technique inwhich very short samples (up to three samples) are treated as

if theywere silent. Companding (aword composed from compression and

expanding) refers to a technique which makes use of human perception

of sound. Sounds with low amplitudes need generally more precise sam-

ples than soundswith higher amplitudes. Therefore, the sampling rate for

higher amplitude sounds can be reducedwithout effecting the human per-

ception.

Robinson (1994) introduces a lossless audio compression algorithmwith

Lagrange interpolation for decorrelation and RICE codes (Rice and Plaunt,

1971) for coding of the data. Josh Coalson (2019) extends upon these ideas

and introduces the FLAC compression algorithm. Next to the fixed lin-

ear predictors employed by Robinson (1994) Coalson suggests using lin-

ear predictive coding (LPC) first introduced in Rabiner and Schafer (1978).

These predictors analyse the auto-correlation of the data. FLAC applies the

Levinson-Durbin recursion (Levinson, 1946) to solve the system of linear
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equations and calculate the optimal predictor coefficientsminimising resid-

uals. Finally, the residuals are coded using Rice coding (Rice and Plaunt,

1971).

This chapter gave a brief overview of related work. First, research pa-

pers directly related to lossy and lossless compression of climate datawere

discussed. A thorough search of the relevant literature yielded two studies

on lossless compression of climate data. This lack of in-depth analyses is

the raison d’être of this thesis.

Next, relatedwork of data compression that shares similaritieswith cli-

mate data were presented. Our findings suggest that most of the lossless

compression algorithms apply a prediction-based compression algorithm,

while lossy compression algorithms tend to use transformation-based com-

pression methods. Further, the algorithms differ mostly in their way of

using the available information,while the information sources being used

are often the same. The results suggest that a good compression algorithm

has to have the ability to adjust to the information available and assess the

quality of the available information.
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CHAPTER 4

Data Analysis and
Identification of
Redundant Information
Decorrelation is a key step in the design of a good compression algorithm.

For successful decorrelation, it is important to understand the intrinsics

of the data to be compressed. This understanding is the reason why cus-

tom compression techniques like JPEG are more successful in compress-

ing images i.e. domain-specific data. Knowledge about the internal struc-

ture helps to identify redundant informationwhich can then be removed to

achieve better compression factors. This chapter describes different analy-

sis techniques to achieve this understanding for climate data. The analyses

described here help to overcome the first challenge described in Chapter 1.

Section 4.1 gives a short motivation about the different analysis tech-

niques. These techniques are then described in detail in Section 4.2. This is

then followed by a description of the experimental setup in Section 4.3 and

theevaluationof the experimental results inSection4.4. Finally, Section4.5

concludes the chapterwith a summary and possible futurework.

4.1 Motivation

The Earth’s atmosphere is a chaotic system. While mankind nowhas a bet-

ter understanding of the Earth’s atmosphere than a couple of decades ago,

there are still atmospheric interactions that are not fully understood or not

known tomankind.

The goal of this chapter is to use data analysis to gain insights into the

interactions of variables. The current temperature is more comparable to

ameasurement from an hour ago, than to ameasurement taken lastweek.
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But does the relationship change for daily or monthly data? Does the inter-

action between temperature and humidity at the Equator differ from those

at the polar regions? Finding out about these relationshipswill help to iden-

tify types of relationships that can exist between variables. Once these are

recognised, methods can be developed that automatically recognise these

relationships.

The goal is to develop a method that can identify these types of rela-

tionships during the traversal of the data. That method then can assess the

most significant information in the immediate context to calculate a good

prediction for any data point in the data.

4.2 Proposed Methods

For the analysis of climate variables and their interrelations three different

analysis are carried out. Each of these techniques focuses on a different

relationship aspect.

First, a variance analysis is conducted. The goal of the variance analysis

is to identifyvariations in distribution for each variable. The analysis helps

to identifywhich dimension is themost important information source. The

less variance a variable has across a dimension, the easier it is to predict

along that dimension. Each data point is analysed for irregularities along

each of the dimensions. Doing this for each data point helps to identify

context-based differences e.g. changes depending on location on the globe,

time of the year or elevation level. Since datasets with several temporal

resolutions are available, these relationships are calculated for long and

short-term data. It is important to identify relationships at several time

scales, since the temporal resolution of climate datamay range fromhourly

data tomonthly or yearly data.

Next, analyses from information theory are carried out. Foremost the

Shannon Entropy is calculated. The Shannon Entropy can be used as a

threshold for themaximum achievable bits per float for each variable. But

the Shannon Entropy does not consider interdependencieswithin the data.

Temporal relationships can therefore not be analysed using Shannon En-

tropy. In order to discover these kind of relationships the Sample Entropy

is calculated. Analysing the Shannon and Sample Entropy of the datawill

help to set a lower limit for the achievable CR. It is important to note that
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the gained information from either entropy analyses is bound to each vari-

able and does not entail information across variables. A third experiment

is conducted to gain that information: mutual information.

Mutual information expresses the interdependency between two vari-

ables. It expresses the information gained about one variable by observing

the other. This information helps to identify how close the relationship be-

tween two variables is.

4.3 Experimental Setup

4.3.1 Data

Three datasets with different temporal resolutions are used for the anal-

yses. These datasets originate from a climate simulation run using the

ECMWFHamburg/Modular Earth Submodel System Atmospheric Chem-

istry (EMAC) climate model (Jöckel et al., 2006). They have a 128 × 64 hor-
izontal grid (longitude × latitude) and 47 vertical levels. Three different
temporal resolutions are used:

• One month (January, 2013) with 74 time steps i.e. every 10 hours

(hourly data)

• One year (2013)with 365 time steps i.e. every 24 hours (daily data)

• Fourteen years (2000-2013) with 168 time steps i.e. every month

(monthly data)

The hourly datawith 10 hour temporal resolution are the original simula-

tion output. The daily andmonthly data are generated by taking daily and

monthlymeans from the original simulation output.

The variables used for the experiments are temperature, zonal and

meridional wind as well as specific humidity. The zonal winds flow along

the latitudes, crossing each longitudinal line with a positive direction im-

plyingwind flow fromwest to east. Themeridionalwinds travel along the

longitudes and cross each latitude. Figure 4.1 depicts an exemplary zonal

band (NASA, 2019) alongwhich the zonalwind is calculated. All variables

are available as single precision floating-point values.
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4.3.2 Experiments

FIGURE 4.1 Zonal band

Five experiments, the results of which are presented in the

next section,were conducted to explore the data.

Long-Term Variance Analysis. The first experiment analy-

ses the long-term relationships of all four variables. The

monthlydataset is being used for this analysis. It provides

the longest temporal information. Therefore it is themost

suitable dataset to identify long-term relationships. The

variance across each dimension for each of the data points

are calculated. In case of climate data these are: time, lati-

tude, longitude and altitude. Less variability along a dimensionmeans that

it is a good candidate for decorrelation.

Short-Term Variance Analysis. The steps conducted for the short-termvari-

ance analysis are the same as the ones for the long-term analysis. Themost

significant change is the data being used. For the second experiment, the

daily datawith the highest temporal resolution is being used.

Shannon EntropyAnalysis. The third experiment is conductedwithall three

datasets. Since the PMF of the datasets is not known a discretization tech-

niquemustbeapplied to identifyit. For theanalysis of theShannonEntropy

and the experiments described in the following sections, a binning strategy

is applied for discretization. Therefore, a slightly different definition of the

Shannon Entropy is being used than the one defined in Eq. 2.4:

H(X) = lim
b→∞

− ∑
xi∈X

Pb(xi) · log2(Pb(xi))
 (4.1)

where X = {x1, x2, . . . , xn} is the alphabet of the source, b defining the bin
size andPb(·) the appropriatePMFgivenadiscretizationof Xwithbin size b.

Here, the ShannonEntropy is being calculatedwith ever increasing binning

sizes until the entropy plateaus at a certain value.

Sample Entropy Analysis. The fourth experiment is conducted to calculate

the Sample Entropy (see Eq. 2.5). Since the Sample Entropy builds upon

the Shannon Entropy a discretization of the data is necessary. Based on

the results of the previous experiment a discretization with a bin size of

50 is used. The Sample Entropy expresses the correlationwithin a variable

across a predefined dimension. For the analysis of the Sample Entropy the
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altitude dimension is chosen. This decision has been made based on the

results of the long-term and short-termvariance analyses. The experiment

is conductedwith all three datasets.

Mutual Information. Finally, the mutual information of all pairs of vari-

ables are calculated. For the analysis of the data described in Section 4.3.1

the normalisedmutual information NMI is used:

NMI(X, Y ) = MI(X, Y )
mean(H(X), H(Y )) (4.2)

MI(X, Y ) =
∑

xi∈X

∑
yj∈Y

P (xi, yj) log
(

P (xi, yj)
P (xi) · P (yj)

)
(4.3)

whereX and Y are the alphabet of each dataset,P (·) the PMF,MI(·) themu-

tual information and H(X) the Shannon Entropy of X . The same binning

strategy for discretization as in the previous experimentswith b = 50 is cho-
sen. TheNMI(·) scales the results of themutual informationMI(·) between
0 (i.e. no information) and 1 (i.e. high correlation).

4.4 Evaluation

The results of the previously defined experiments are presented in this sec-

tion.

4.4.1 Long-Term Variance Analysis

In the following the results of the long-term variance analysis for the

monthly dataset are presented. The results are depicted in Fig. 4.2.

Temperature. The results suggest that for temperature temporal and lon-

gitudinal information are the most stable (see Fig. 4.2a). If the data point

is around the Equator [−20 ◦N; +20 ◦N] themost stable information source

is the temporal dimension. Any data point x outside the latitude range of

x < −20 ◦N and x > 20 ◦N ismore similar to its neighbouring data point on

the longitudinal dimension. A possible explanation for this finding is that

the temperature distribution ismore uniform over time at the Equator than

at the poles. Another interesting finding is depicted in the last panel. For

thefirst 17 altitude levels ([1000hPa; 340hPa]) the longitudinal and temporal
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(a) Temperature

(b) Zonal Wind

(c)Meridional Wind

(d) Specific Humidity

FIGURE 4.2 Long-term variance analysis on a global scale for each variable. Since

the altitude is flipped in the data, the abscissa of the last column is descending. Low

altitudes are on the far left and high altitudes on the far right.
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information have the same variance. At higher altitudes the longitudinal

information is more stable than the temporal. The drop around level 21

(100 hPa) is likely due to the tropopausewhich is roughly at this level.
Zonal Wind. The panels suggest that if longitudinal information is avail-

able, it should be used almost all the time for decorrelation of zonal wind

(see Fig. 4.2b). This is in agreementwith the zonalwind direction depicted

in Fig. 4.1. The only exception is in the last panel, for data points at low al-

titudes (x < 540 hPa; level: 35 < x < 47). Here the data suggests using
temporal information for decorrelationmight reduce prediction errors.

Meridional Wind. The meridional winds are most similar across the tem-

poral dimension (see Fig. 4.2c). In almost all cases the temporal dimension

has the least variability. Should the temporal dimension bemissing, the re-

sults suggest the use of the neighbouring points on the same latitudes (third

panel from left). This is again in agreementwithFig. 4.1 formeridionalwind

along the longitudes and crossing the latitudes.

Specific Humidity. The last variable analysed is the specific humidity (see

Fig. 4.2d). It is a diagnostic variable and can be derived from temperature

and water vapour. Therefore it is no surprise, that it shows similar prop-

erties as temperature. Around the Equator the smallest variance is across

the temporal dimension. Should the temporal dimension be missing it is

recommended to use longitudinal information for decorrelation (and vice

versa). Should the data point be at pressure levels 47− 24 (i.e. x > 155 hPa)
thepreferreddimension should be time, otherwise the longitude is the ideal

candidate for decorrelation.

OBSERVATION 4.1 Most often the data points along the temporal and longi-

tudinal dimension are the best sources of information for decorrelation of

long-term climate simulation output. Having information about the repre-

sented information (e.g. wind direction) or calculationmethod for diagnos-

tic variables (specific humidity in relation to temperature) will help in the

decorrelation step.

4.4.2 Short-Term Variance Analysis

Next, the short-termvariances are analysed. Due to brevity, only the plots

for temperature are depicted in Fig. 4.3 and 4.4. The remainder of the plots

can be found in Appendix A.
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FIGURE 4.3 Short-term variance analysis for temperature across time for the north-

ern hemisphere. For reasons of brevity, only the lowest altitudes are displayed.
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FIGURE 4.4 Short-term variance analysis for temperature across longitude along the

latitudes. For reasons of brevity, only the lowest altitudes are displayed.
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Temperature. Overall the variance across the temporal dimension (Fig. 4.3)

is lowerwithvariances of up to 70Kelvin than along the longitudinal dimen-

sionwith up to 110Kelvin (Fig. 4.4). There is high temporal variance at low

and high altitudes of the northern hemisphere. The high variance in tem-

poral dimension is not observed in the southern hemisphere (not depicted).

This difference in the northern and southern hemisphere is likely due to

the respective season for each hemisphere since January data were used.

It is common that temperatures fluctuate more during thewinter months

(northern hemisphere) than during the summer months (southern hemi-

sphere).

The temporal stability at the Equator and the instability at the poles is

nicelydepicted in Figure4.4. There are highdynamics at the poles (latitudes

> 35 ◦N and latitudes <−35 ◦N), but the Equator is stable.

Fig. 4.3 also suggests that longitudinal information is more important

than latitudinal. The differences in variance seem to follow along amerid-

ional line which suggests that cells at the same latitude but neighbouring

longitudemight be a good candidate for prediction. This suggests that the

results from the long-term experiment can also be seen in the short-term

data for temperature.

Zonal Wind. What is true for temperature also applies to zonal wind: The

temporal variance is half than the longitudinal variance. The results indi-

cate that temporal variance is mostly stable except for the region just below

the tropopause between 500hPa−120hPa. The zonalwind ismost unstable

around the Equator andmoves along the latitudes.

Meridional Wind. Contrary to temperature and zonalwind, the variance of

themeridionalwind is lowest across altitudes (max. ~ 80 m/s) and latitudes

(max. ~ 120 m/s). Therefore, the data point at the next altitude/latitude is

themost likely candidate for a good prediction. Spot-like patterns are seen

in variance across time at different altitudes. These patterns are similar

in northern and southern hemisphere. The variance across the latitudes is

highest just below the tropopause between 111 hPa− 520 hPa. The chaotic
pattern continues through here.

SpecificHumidity. Thevarianceof specifichumidityis lowandonlyappears

at the lowest altitudes. While there are highervariances around the Equator

due to their lowmagnitude (max. 1.2e − 5) it can be assumed that specific

humidity is mostly stable.
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OBSERVATION 4.2 Results from the long-term analysis are reappearing in

the short-termanalysis. Temporal and longitudinal data are themost stable

sources of information for anygivendatapoint for temperature, zonalwind

and specific humidity.

OBSERVATION 4.3 Latitudinal data is more stable for meridional wind.

Therefore, usingdata points at the same latitude for thepredictionof merid-

ional wind is more likely to be a successful candidate for decorrelation of

meridionalwind.

OBSERVATION 4.4 The respective season has an influence on the tempera-

turevariabledependingon the locationon theglobe. Although the temporal

dimension is often the most stable, during the winter months there is an

increase in variance compared to the summermonths.

4.4.3 Entropy Analysis

The results of the Shannon and Sample Entropy analysis are depicted in

Figure 4.5. The number of bins used for discretization is depicted on the

abscissa in Figure 4.5a. With the bin size, the calculated entropy in the data

also increased. For all data variables, a plateauwas reachedwith a bin size

of ~ 30. Although the rise of the Shannon Entropyof each dataset is slightly
different, the final plateau value is the same. The entropy for all four vari-

ables is between 12.3 and 12.5 bits. With this information the lower limit for

the CR can be calculated. For single precision floating-point numbers a CR

of 12.3/32 = .384 (i.e. CF of 32/12.3 = 2.60) might is achievable.

Sample Entropy incorporates auto-correlation for calculating the en-

tropy. The results shown in Figure 4.5b suggest that the monthly data has

a higher auto-correlation than the daily or hourly data for all of the vari-

ables. The onlyexception to this is themeridionalwind between level 30-25.

Here the monthly data have a higher Sample Entropy than the other data,

indicating that there aremore irregularities at these altitudes.

There is almost no difference in Sample Entropy of the daily and hourly

data for temperature and zonalwind. Bothvariables followclosely the same

curvature and differentiate only little (< 0.04) from each other. The same

can not be said formeridionalwind and specific humidity, the differences

between the Sample Entropy of the daily and hourly data exceeds more

often andmore significantly (~ 0.1) thanwith the other two variables.
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While there are two peaks at the 25 and 3 level mark (i.e. 540 hPa and
11 Pa) in the hourly and daily data for temperature, those do not appear

as significant in the monthly data. It is possible that the peak at level 3 is

caused by the polar vortex seen at high altitudes in the short-term data (see

Fig. 4.3).

OBSERVATION 4.5 The drop of Sample Entropy in the monthly data, cou-

pled with the information of a rather stable Shannon Entropy across the

three datasets, suggests that the variations in themonthly data are locally

constrained. These regions seem to span a greater area for temperature and

zonalwind, since the drop in Sample Entropy is more severe.

OBSERVATION 4.6 Temperature and zonalwind do not fluctuate often over

time, as the curvature of the Sample Entropy for the daily and hourly data

follow each other closely.

4.4.4 Mutual Information Analysis

Unlike the previous analyses, MI analysis does not search for relationships

within a variable, but between variables. The results are illustrated in Fig-

ure 4.6.

Temperature. Temperature has the highestNMIwith specific humidityand

zonalwind. TheNMI gets as high as 0.6 at certain altitudes. The interdepen-
dence between temperature and specifichumidity is expected, since specific

humidityisderived fromtemperature. Thehighcorrelationwithzonalwind

is unexpected. Since temperature is correlatedwith both variables, it is no

surprise that the experiments also show a high correlation between zonal

wind and specific humidity. TheNMI of temperature and zonalwind follow

the same curvature as the NMI of temperature and specific humidity. For

low altitudes (i.e. levels > 33) the NMI between temperature and specific

humidity is high. At altitudes above the tropopause (levels < 25) there is a

sudden increase in NMI between zonalwind and specific humidity.

Figure 4.6a depicts the time average of NMI. There is a clear seasonal

dependency between temperature, zonalwind and specific humidity. Dur-

ing the spring/summer months of the northern hemisphere (fromMarch

till August), there is a valley in the NMI between temperature and specific

humidity, while the NMI of temperature and zonalwind peaks at that time

period. The seasonality of this relationship can be observed in themonthly
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(a) Shannon Entropy

(b) Sample Entropy

FIGURE 4.5 Entropy Analysis: (a) Shannon Entropy for different bin sizes and (b)

Sample Entropy along altitude levels. Since the altitude is flipped in the data, the

abscissa is descending. Low altitudes are on the far left and high altitudes on the far

right.
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data depicted in Figure 4.6a. There is a yearly reoccurring pattern. The NMI

between temperature andmeridionalwind isnon-existentwithvalues rang-

ing between 0.05−0.1 across the temporal dimension andbetween 0.05−0.2
across the altitudes. Although the NMIwithmeridionalwind is low, there

is a seasonal pattern observable. Two peaks are reoccurring yearly at the

summermonths and at the beginning of the year.

Zonal Wind. The zonal wind has a seasonal correlation with temperature

and specific humidity along the temporal dimension. The pattern visible

in the daily data is yearly reoccurring. The peak is reached in the sum-

mer months of the northern hemisphere. The two local minima are often

reached at the beginning of spring andmid-autumn of the northern hemi-

sphere. Generally, the correlation of zonalwindwith temperature andwith

specific humidity is not as strong as the correlation between temperature

and specific humidity. An exception to this occurs at high altitudes (levels

< 20). At these altitudes the correlation between zonal wind and specific

humidity peakswith ~ 0.4 for the daily andmonthly data and ~ 0.53 for the
hourly data. The correlation between zonal wind and specific humidity is

the third strongest across the temporal dimension.

Meridional Wind. Themeridionalwind has the lowest correlationwith any

of the other variables. There is no difference for the temporal or thevertical

dimension. At correlations across time the high altitudes seem to be higher

correlated than the loweraltitudes, but still belowall other correlationswith

a NMI< 0.2.

Specific Humidity. Since specific humidity is a diagnostic variable and can

be derived from temperature it shares a lot of its similaritieswith tempera-

ture regarding NMI. It is correlatedwith zonalwind,which increaseswith

the altitude. At high altitude levels (i.e. levels 23-7 [130 hPa − 1 hPa]) the
correlation between specific humidity and zonalwind is higher than that of

specific humidity and temperature. However, this connection only occurs

when considering the NMI across time (Fig. 4.6a). For the NMI across alti-

tudes (Fig. 4.6b), the NMI to temperature dominates theNMIwith the zonal

wind.

OBSERVATION 4.7 There is a clear seasonal correlation of temperaturewith

zonalwind andwith specific humidity. This relationship is reoccurring over

several years based on the results of the monthly data. Additionally, the
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monthly data shows the highest NMI compared to the other datasets. The

development of the temperature variable seems to be a good indicator for

the prediction of zonalwind and specific humidity.

OBSERVATION 4.8 At high altitudes there is a significant correlation be-

tween zonalwind and specific humidity. A seasonal pattern similar to the

one of temperature is appearing in the zonalwind data.

4.5 Summary

Different data analysis techniques are used in this chapter to identify rela-

tionships between andwithin variables. Five experiments are conducted to

learn about the interaction of climate variables.

First, long-termcorrelations are studied. To this end, a decade of climate

simulation is analysed. The experiments show that temporal and longitu-

dinal dimensions are the best sources of information. It is indicated that

the data point along these dimensions fluctuate less and are thereforemore

suitable for context-based predictions.

Second, a short-termvariance analysis is conducted. The results of the

long-term analysis are confirmed here. Data points along the temporal di-

mension are themost stable information source for predictions,while those

at the horizontal grid depend on the variable.

The third and fourth experiments are carried out to understand the en-

tropy of the data. The result of the Shannon Entropy shows that themaxi-

mumachievable compression ratio (CR) is 0.3875 (compression factor (CF) =

2.58). The Sample Entropy implies that there is high auto-correlation in the

data (especially for themonthlydata). These results support that a betterCR

than 0.3875 are achievable if auto-correlation effects are considered during
the decorrelation.

Finally, the mutual information between the variables is examined.

There is a seasonal correlation of temperature with zonal wind and with

specific humidity. The correlation also extends onto zonalwind and specific

humidity, specifically at high altitudes.

Overall, the results show that there are preferred dimensionswhich are

stable for information gathering. These dimensions should be preferred

when predicting data points. However, the experiments also show that the

position of the data point on Earth plays a strong role in determining the
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context which to be used for the prediction. It is therefore recommended

not to use a fixed ”template”, but to build the context iteratively and change

it on-the-fly. This ensures that information from all dimensions is used.

4.6 Code and Data Availability

The data of the environmental indices and an implementation of the anal-

ysis methods described above are available under GNU GPLv3 license at

https://github.com/ucyo/climate-data-analysis (Cayoglu, 2019a).
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CHAPTER 5

Data Decorrelation using
Information Spaces and
Contexts

This chapter addresses challenges one and four, defined in Chapter 1. The

concept of Information Spaces (IS) and its components Information Con-

texts (IC) are presented. IS and IC help to adapt the compression algorithm

to the data to be compressed by identifying newpatterns and relationships

during the compression process.

In prediction-based compression all data points are processed in a pre-

defined sequence. Often, the data is traversed according to the layout in

which it is mapped on the disk. This means that already at the start of the

compression procedure, information that can be used for each prediction

is fixed. In addition, a reorganisation of the data, e.g. by transposition, can

lead to a significantly different compression factor thanwith the original

data.

Especially, since the results in the previous chapter suggest, that a more

successful decorrelation is possible if the context used for the prediction is

adjusted for each data point. The results presented in this chapter have been

published in parts in Cayoglu et al. (2018c).

After a short motivation in Section 5.1 the proposed method is intro-

duced in Section 5.2, the experimental setup is described in Section 5.3, and

the experiments are evaluated in Section 5.4.
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FIGURE 5.1 Adjacent data points for a d-dimensional object according to Eq. 5.1.

5.1 Motivation

A good decorrelationmethod is crucial for a good compression algorithm.

But how to decidewhich neighbouring cells to use for prediction? The num-

ber of data points at distance n in a d-dimensional object is given by the

following formula:

a(n, d) = (2n + 1)d − 1 (5.1)

where thefirst term (2n+1)d describes thenneighbouringdatapointsbefore

and after the data point to be predicted along each dimension (see Fig. 5.1).

Since climate data is structured as a tesseract the equation above results in

a(1, 4) = 34−1 = 80 adjacent data points and potential information sources.

If not only adjacent data points, but data points at intermediate distances

are considered e.g. adjacent cells of adjacent cells a(2, 4) = 624, the number

of potential data points grows very fast. Therefore, an adaptivemethod for

the selection of good neighbouring cells is needed. Themethod proposed in

this chapter provides this selection.

5.2 Proposed Method

The proposed method adapts for each data point the context on which its

prediction is based. IS is defined as follows:

DEFINITION 5.1 (information space) The IS of a data point si to be predicted

is the set of already traversed data points sk ∈ Si
0 within a certain range r of

si.

IS(si) = {sk | ∀sk ∈ Si
0 : ai

j − r ≤ ak
j ≤ ai

j + r} (5.2)
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where an
m defines the coordinate position at dimension m of element n in

sequence S. The restriction r is necessary to locally constrain the available

information for the prediction of si.

The IS can be divided into several components to isolate the informa-

tion contained along the various dimensions. These components are called

information context (IC):

DEFINITION 5.2 (information context) The ICs split the IS into different sub-

sets based on their information level for each dimension and if applicable

to each combination of dimensions.

ICp
l (si) = {sk :

d∑
j=0

[ai
j = ak

j ] = l}p (5.3)

with 0 ≤ p ≤
(

d
l

)
being the index position of ICl at level l and [ · ] defined as

follows:

[P ] =

1 if P is true

0 else

Each IC contains information along one or more dimensions. Each IC

within a level can contain overlapping data pointswith other ICs, but none

is a subset of the other. This distribution of data allows predictions to be

made on the basis of information from different dimensions and later to

merge them into a single consolidated prediction.

EXAMPLE: INFORMATION SPACE AND CONTEXT

Given a grid of size 3 × 4 and the following sequence S defined by its

coordinate positions on a grid: S =
(
(0, 1), (0, 2), (0, 3), (1, 0), (1, 2), (1, 3),

(2, 0), (2, 1), (2, 2), (1, 1), (0, 0), (2, 3)
)
. For the prediction of s10 at position

(1, 1) the resulting IS is depicted in Figure 5.2a. This IS consists of the five
ICs depicted in Figure 5.2b. These ICs can then be used to improve the

prediction of the value at s10 by using one of the consolidationmethods.

63



(a) Information Space (b) Information Context

FIGURE 5.2 The IS for the example above is depicted in (a). The value to be predicted

is depicted as a dotted x and the values known at the time of prediction are marked

with a filled x. The IS can be split into five ICs on two levels. (b) The ICs can then be

used to predict the value. This figure is adapted from Cayoglu et al. (2018c).

5.2.1 Consolidation of Predictions

Each IC calculates a prediction. These predictions then are consolidated

to a single prediction. Therefore, appropriate consolidation methods are

necessary. Five different techniques are implemented and tested:

• Average (AV)

Takes the average of the IC predictions.

• Minimum (Min)

Takes theminimum of the IC predictions.

• Maximum (Max)

Takes themaximum of the IC predictions.

• LastBest (LB)

Trackswhich ICwas best for si−1 and uses its prediction.

• Reforced (R)

ICs are sorted by the number of data points used fromeach dimension

and given a preference list of dimensions, the ICwith the most data

points from themost preferred dimension is used.

The motivation behind using Minimum and Maximum for consolidation

is to find out if the predictor has a bias towards one or the other. With the

introductionof IS and IC, aswell asmethods for consolidation, the traversal

methods are nowdescribed inmore detail.
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FIGURE 5.3 Four different traversal path tested during the experiments. This figure

is taken from Cayoglu et al. (2018c).

5.2.2 Traversal Methods

In order to ensure an ideal use of the IS a closer lookat the traversalmethods

is necessary. Complementary traversal methods could improve predictions

if more similar data points are traversed back to back. For this purpose

three alternative traversal methods, besides the usual linear traversal, are

suggested in this section (an example for each traversal method is given in

Fig. 5.3):

Linear Traversal. The linear traversal processes the data along a predefined

order of dimensions. For the given two dimensional example (Fig. 5.3) the

order is to first traverse the x-axis and then the y-axis.

Chequerboard Traversal. The sequence based on the chequerboard traver-

sal is structured like a mosaic. First every other value along the preferred

dimension is traversed. Afterwards the remaining data points are traversed.

As in the linear traversal an ordermust first be determined for the dimen-

sions. In the example the order of dimensions is first x-axis and then y-axis.

Blossom Traversal. This traversal is structured like a blossoming rosewhich

spreads around the starting point. Here, too, an ordermust be determined

in which the dimensions will be processed. In the example the traversal

follows a clockwise rotation starting at 12 o’clock.
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Block Traversal. The block traversal follows a sequence around the starting

point with the aim of building fully connected blocks. In the two dimen-

sional case this may look like a spiral around the starting point. Again, an

order for the dimension is considered.

5.2.3 Predictors

Each IC calculates a prediction for the data point to be predicted. There are

several predictors that can be used for this. The following 12 predictors are

implemented and evaluated in the experiments:

• Akumuli from Eugene (2017)

• LastValue fromGoeman et al. (2002)

• Stride, TwoStride, and Stride Confidence fromGoeman et al. (2002)

• Ratana 3 and Ratana 5 fromRatanaworabhan et al. (2006)

• Pascal 1, Pascal 2, . . . , and Pascal 5 (see Appendix B)

The details for the individual predictors can be found in the respective

articles. Pascal x are predictor based on the Lagrange polynomials detailed

inAppendixB.Thedifferentvariationsof thepredictorsRatanaxandPascal

x define the number of elements used for the prediction. In case of Ratana

3 thiswould be: Si−1
i−3 = si−3si−2si−1.

5.3 Experimental Setup

This section describes the simulation data used in the experiments and

moves on to the metrics for evaluation and concludes with a description

of the experiments.

5.3.1 Data

The data used for the compression experiments in this chapter is obtained

from a climate simulation created by the ECMWFHamburg/Modular Earth

Submodel System Atmospheric Chemistry (EMAC) model (Jöckel et al.,

2006). It consists of a 128 × 64 grid (longitude × latitude) with 47 vertical
levels. The following temporal resolutions are used:

• Onemonth (January, 2013)with 74 time steps (every 10 hours)
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TABLE 5.1 Variables available in each dataset being used in the experiments.

Variable Abbreviation

Specific Humidity Spec. Hum.

Relative Humidity Rel. Hum.

Pressure Press.

DryAir Temperature Temp.

ZonalWind (W-E) Wind (W-E)

MeridionalWind (S-N) Wind (S-N)

• One year (2013)with 365 time steps (every 24 hours)

• Fourteen years (2000-2013)with 168 time steps (everymonth)

The model output is given as single precision floating-point values. The

selection of variables used are shown in Table 5.1.

5.3.2 Metrics

Metricsarenecessaryfor evaluating theexperimental results. Threemetrics

are used for the evaluation of the experiments: leading zero count (LZC),

compression ratio (CR), and standard deviation (SD). LZC is ameasure for

the quality of the prediction. It represents the number of bits not needed to

be saved on disk:

LZC(r) = #Significant Zeros of r + 1 (5.4)

with r representing a residual according to Equation 2.14. Anothermetric

used in the evaluation of the experimental results is the CR of the files∗ (see

Eq. 2.17).

Further, the standard deviation (SD) of the LZC is calculated. The SD

gives an indication for the vulnerability of the prediction to the structure of

the data. The larger the SD, themore vulnerable the predictor is.

∗Pleasenote that this is not thefinal compression ratio, since the codingprocess creates
additional overhead.
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5.3.3 Experiments

Several experiments are conducted to investigate each step of the proposed

algorithm.

Expt 1: Influence of Starting Point. First, the influence of different start-

ing points on the compression rate are analysed. For this purpose, random

blocks†with 1024 data points are build from each data set and for each vari-

able. Then, ten starting points are chosen randomly and the blocks are com-

pressed. This setup provides unbiased information on whether and how

susceptible each predictor (and therefore the compression algorithm) is for

changing starting positions of the applied traversal.

Expt 2: Traversal Order of Dimensions. Sincemost predictionmethods use

the linear traversal method (see Chapter 3), the second experiment analy-

ses how the order of dimensions influences the CR. First, the data is split

randomly into blocks with 1024 data points. Then, a list of every possible

dimension ordering is generated. Afterwards, the data is traversed using

linear traversal according to each of the permutations from the former list.

This experiment provides information if the predictors need to adapt to the

data.

Expt 3: New Traversal without the use of Information Spaces. In the third

experiment the newly proposed traversal methods are tested. The predic-

tors are not adjusted to the new traversal methods. Since most of the pre-

dictors consider the traversal sequence as a data stream, this change should

cause changes in CR.

Expt 4: New Traversal with the use of Information Spaces. Finally, experi-

mentswith fully adjusted predictors to information space and the various

consolidationmethods are conducted. The Stride predictor is used as a fall-

back predictor, if no IS can be constructed (e.g. at the start or in case of an

empty IC).

†Most compression algorithm split the data into several blocks and compress each
separately to save time during decompression bydecompressing only the requested blocks
of data.
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TABLE 5.2 [Expt 1] LZC±SD across predictors with varying starting points for daily,
monthly and 10h dataset. The three highest SD for each dataset are highlighted.

Daily Monthly 10h

Akumuli 11.550± 0.041 12.890± 0.036 12.730 ± 0.029
Last Value 13.040± 0.004 14.200± 0.003 14.310± 0.003
Stride 13.300± 0.007 14.950± 0.006 14.240± 0.005
Stride Conf 10.770 ± 0.056 11.190 ± 0.124 13.640 ± 0.053
Stride 2 12.360± 0.011 13.590± 0.010 13.800± 0.006
Ratana 3 12.760 ± 0.048 14.240 ± 0.038 13.840 ± 0.024
Ratana 5 12.760 ± 0.048 14.240 ± 0.039 13.840± 0.023
Pascal 1 13.040± 0.004 14.190± 0.003 14.310± 0.003
Pascal 2 11.420± 0.005 12.570± 0.005 12.970± 0.004
Pascal 3 13.150± 0.009 14.780± 0.008 13.880± 0.006
Pascal 4 12.510± 0.011 14.200± 0.010 13.070± 0.008
Pascal 5 12.050± 0.014 13.450± 0.014 12.380± 0.010

5.4 Evaluation

In this section the results of the experiments are presented and evaluated.

5.4.1 Expt 1: Influence of Starting Point

The influence of different starting points on the LZC is depicted inTable 5.2.

The achieved LZC seems to be independent of the initial value formost pre-

dictors since each SD is very low. The Stride Conf (SC) predictor has the

highest SD in themonthly data record. Here, the LZC is 11.19with a SD of

0.124which is about 1.1%. Overall, the SD seemsvery low for anyof the pre-

dictors, but the SC and Ratana x predictors seem to be themost prone. The

SD of the remaining predictors are usually around 3‰. This is amagnitude

lower than the ones of SC and Ratana.

This sensitivity can also be observed in the difference plots depicted in

Figure 5.4. AtAkumuli and Pascal the two starting points of (11, 7) and (5, 3)
the different sequences are clearlyvisible. After a short time, the predictors

calculate the same predictions as if the starting point had not changed. This

is not the casewith Stride Conf and Ratana. The differently calculated pre-

dictions aremuchmore scattered and do not showa uniform pattern.
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FIGURE 5.4 [Expt 1] Difference plot of LZC for two different starting points. The start-

ing points are at (11, 7) and (5, 3) and the temperature variables is used. Difference
plots are unitless. This figure is taken from Cayoglu et al. (2018c).
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OBSERVATION 5.1 There is a steady increase of SD of Pascal xwith increas-

ing x. Themorevalues are used for theprediction, thehigher thefluctuation.

This is valid across all datasets. The reason for this is that high order poly-

nomials such as Pascal 4 and Pascal 5 lead to large local fluctuations and

thereforeworse extrapolation.

OBSERVATION 5.2 The starting point has little to no effect on the compres-

sion factor or rather the LZC. SC and the Ratana predictors seem to be the

most prone to starting point changes. Overall, all predictors show good

stability for starting point changes.

5.4.2 Expt 2: Traversal Order of Dimensions

In the second experiment the effects of the traversal order are analysed

(see Table 5.3). The standard deviation increased several magnitudes,which

confirms that a simple linear traversal through the data in an arbitrary or-

der does not lead to success. In comparison to Expt 1 the LZC decreased

by 10 − 40% and SD increased significantly. SD reaches rates higher than

21% for Pascal 1. These fluctuations are illustrated in Figure 5.5. The figure

suggests that the traversal order of the dimensions greatly influences the

compression rate. This explains the high variance in the LZC depicted in

Table 5.3. The LZC of the predictions arewildly disrupted for Pascal 3 and

Ratana 3. The traversal order (0, 1, 2) seems to be almost consistently better

than the order of (1, 2, 0) for Akumuli.

OBSERVATION 5.3 The predictors are more prone to changes regarding

the traversal direction. The SD is several magnitudes stronger than with

changes of the starting point. This vulnerability is shown by all the predic-

tors. This supports the premise, that the context fromwhich the predictions

aremade, must adapt to the data.

5.4.3 Expt 3: New Traversal without the use of Information

Spaces

The effects of the various traversal methods on the LZC are analysed in

the third experiment. Inmost cases the predictors are performing best us-

ing linear traversal. Only in two cases one of the new traversal methods

performs better: The Akumuli predictor reaches a LZC of 5.360 using block
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FIGURE 5.5 [Expt 2] Difference plot of LZC for traversal orders (0, 1, 2) and (1,2,0).

This figure is taken from Cayoglu et al. (2018c).
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TABLE 5.3 [Expt 2] LZC±SD across predictors for all possible dimension orders using
linear traversal for daily, monthly and 10h dataset. The three highest SD for each

dataset are highlighted.

Daily Monthly 10h

Akumuli 9.90± 0.98 9.81± 1.09 10.70± 0.57
Last Value 10.82 ± 1.59 10.82 ± 1.55 10.87 ± 1.90
Stride 10.95± 1.43 11.26± 1.50 10.71± 1.82
Stride Conf 9.53± 0.68 9.50± 0.66 9.88± 1.00
Stride 2 10.27 ± 1.48 10.13 ± 1.56 10.24± 1.88
Ratana 3 10.77± 1.19 10.79± 1.38 10.85± 1.60
Ratana 5 10.77± 1.19 10.79± 1.38 10.84± 1.60
Pascal 1 10.82 ± 1.59 10.82 ± 1.55 10.87 ± 1.90
Pascal 2 9.30± 1.47 9.17 ± 1.58 9.37± 1.83
Pascal 3 10.56± 1.22 10.86± 1.40 10.07 ± 2.03
Pascal 4 9.69± 1.27 9.87± 1.45 9.25± 2.00
Pascal 5 8.85± 1.27 9.13± 1.40 8.34 ± 2.17

traversal compared to 5.213 using linear traversal. Stride Conf reaches a
LZC of 11.990 using block traversal compared to 11.843 using linear traver-
sal. This suggests that the linear traversal (given the correct ordering) is a

safe choice.

Figure 5.6 depicts the maximum reached LZC for each variable across

predictors for themonthly dataset. While the linear traversal is several bits

better than the other traversal methods, the results suggest an order for

the other traversal methods: Block traversal is better than Blossom traver-

sal, and Blossom traversal is better than Chequerboard traversal. There are

several reasons for this:

Chequerboard. Due to the usage of every other data point in the first half

of the algorithm (see Section 5.2.2) the data locality of the points in the

sequence is scattered. This hasmore significance at the borders of the data

cube since a jump might occur very often depending on the size of each

dimension. The value differences caused by a jump from a long dimension

to a smaller dimension can be greater than those between dimensions of

the same size, since the travelled distance is greater.
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FIGURE 5.6 [Expt 3] Depicted is the maximum reached LZC for each variable in the

daily dataset without the use of IS. This figure is taken from Cayoglu et al. (2018c).

Blossom vs Blocks. While the difference between both traversal algorithms

is small, the data suggests that block traversal is reaching higher LZCs on

average for the tested predictors. The reason for this is the building and

prediction structure used by the block traversal. The number of interpola-

tions compared to extrapolations is higher in the block traversal than in the

blossom traversal.

5.4.4 Expt 4: New Traversal with the use of Information

Spaces

Finally, the proposed method is evaluated in combination with the new

traversal methods. An overview of the overall results is given in Table 5.4.

The LZC increases by 9.6± 0.4 % and the SD decreases by 23.5± 0.9 % on av-

erage. For Pascal 5 the LZC climbs from 9.4 to 12.4 bits (+31.4%, 10h dataset,

LB consolidation)while the effective SD declines by 5.1%.

Performance of Individual Predictors. Next, all predictors are ranked by

their LZC performance on each dataset. Each predictor compressed the

data twice. Once with and once without the use of IS and the respective

consolidationmethods (see Section 5.2.1). The results are given in Table 5.5.
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TABLE 5.4 [Expt 4] Changes on average due to the application of IS for each dataset

with linear traversal

10h daily monthly

∆LZC 12.26% 9.03% 7.60%
∆SD −12.91% −29.17% −34.72%

TABLE 5.5 [Expt 4] Ranking of individual predictors for each dataset. Due to reasons

of space the Pascal x predictor is abbreviated with Px. The consolidation method is

given in round brackets, if the predictor used the proposed method.

10h daily monthly

Predictor LZC Predictor LZC Predictor LZC

1. P2 (LB) 13.29 1. P3 (LB) 13.33 1. P3 (LB) 15.88
2. P3 (LB) 13.13 2. P2 (LB) 13.26 2. P3 (R) 15.76
3. P1 (LB) 13.00 3. P3 (R) 13.11 3. P4 (LB) 15.75
...

...
...

...
...

...

17. P1 12.30 16. P2 12.48 12. P2 14.86
17. Last Value 12.30 18. Stride 12.47 13. Stride 14.84
23. P2 12.11 19. P1 12.40 14. P3 14.62

Thehighest LZCsare achievedbypredictorsusing ISwith 15.88 (monthly

dataset), 13.33 (daily dataset) and 13.29 LZCs for the 10h dataset. These re-
sults are achievedwith the Last Best (LB) consolidationmethod by Pascal 3

(for themonthly and daily dataset) and Pascal 2 (10h dataset).

The best predictors not using IS are ranked 12th (14.86 LZC, monthly),

16th (12.48 LZC, daily) and 17th (12.30, 10h) overall. While the best predictor

for themonthly and daily dataset is Pascal 2, the best performance for the

10h dataset is achieved by Pascal 1.

Using IS helps Pascal 3 to improve the LZC from 11.40 to 13.13 LZC for

the 10h dataset. It jumped from 50th to the 2nd place in the ranking. This

is a huge gain considering the data are single precision values and the goal

is lossless compression.

The results for each consolidation and traversal method for the daily

dataset are presented in Figure 5.7. Table 5.8 lists the CR for each variable.

For reasons of brevity, only the results of the daily dataset are displayed,

since the results of themonthly and 10h datasets are similar.
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TABLE 5.6 [Expt 4] LZC comparison (higher is better) of proposed consolidationmeth-

ods and commonmethod (SQ) with linear traversal. These results are obtained using

the daily dataset.

Block Blossom Cheq. Linear

AV 70.69% 76.63% 67.04% 77.26%
LB 90.85% 105.82% 80.48% 107.55%
Max 73.08% 83.40% 65.86% 83.82%
Min 83.30% 89.74% 66.41% 90.16%
R 88.60% 100.77% 69.73% 105.07%

SQ 64.83% 69.70% 66.32% 100.00%

Comparing of Traversal Methods. In the following, the compression

method using linear traversal and no IS is defined as the commonmethod.

The relative differences for each traversal method coupled with each con-

solidationmethod using IS comparedwith the commonmethod is given in

Table 5.6 for the LZC and in Table 5.7 for the SD. The result of the common

method is depicted in the lower right corner.

The linear traversal delivers better LZC results than all the other traver-

sal methods. The LB consolidation is the best performing consolidation

method no matter which traversal method is used. Therefore, it is no sur-

prise that using LB for consolidation and linear traversal endwith the high-

est increase in LZC on average across all predictorswith 7.55%. The LB con-

solidation also has less fluctuation in its results than most other traversal

methods. Table 5.7 shows a reduction in SD of almost 50% for LB using lin-

ear and block traversal. The results are interesting since the order of perfor-

mance suggested in Section 5.4.3 of Block > Blossom > Chequerboard does

not seem to be valid anymore. Chequerboard still performsworst, but the

Blossommethod outperforms Block in every case regarding the LZC.

Maximum andMinimum Consolidation. TheMaximumandMinimumcon-

solidationmethodsare introduced togain informationaboutpossiblebiases

of the predictions. Though the LZC of both methods is similar, the SD of

Maximum is many times worse than that of the Minimum. Using Block

traversal the SD of the Maximum method increases by a factor of three

compared to that of the Minimum. This indicates that the predictors are

somewhat biased against theminima.
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TABLE 5.7 [Expt 4] SD comparison (lower is better) of proposed consolidation meth-

ods and commonmethod (SQ) with linear traversal. These results are obtained using

the daily dataset.

Block Blossom Cheq. Linear

AV 214.50% 167.36% 195.66% 178.82%
LB 50.47% 63.67% 223.30% 50.66%
Max 253.35% 212.16% 537.39% 215.39%
Min 80.04% 87.71% 316.41% 95.48%
R 112.90% 122.96% 418.52% 60.37%

SQ 168.09% 194.27% 201.06% 100.00%

Performance per Variable. In this section the performance of IS with re-

spect to each individual variable is discussed, since the performancemight

depend on the variable under consideration. The results are represented in

Table 5.8. A comparison of the best performing IS and the commonmethod

is depicted in Figure 5.8. In this comparison, there is not a single dominat-

ing consolidationmethod. The Reforced (R) and LB consolidationmethods

achieve thebestCR fordifferentvariables. LBperformsbest regardingwind

fields and the pressure variable. R performs best regarding humidity and

temperature. There is no clear winner, but they always share the first two

places among themselves. It should also be noted, that if LB is not perform-

ing best, it is alwayswithin< .005 bits. This is not the case for R. Here, the
difference is on average ~ 0.113 bits.

OBSERVATION 5.4 Given the results of the previous experiments and the

fact that LB is always close to R in caseswhere it is only the second best con-

solidationmethod, the experiments suggest using LB as the standard con-

solidationmethod and the linear traversalmethod as the standard traversal

method in the future.

5.5 Summary

This chapter analyses the performance of different prediction-based com-

pression algorithms on climate data.
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TABLE 5.8 [Expt 4] Highest achieved compression rate using the best traversal and

prediction method per variable for the daily dataset.

Spec. Rel. Wind Wind

Press. Hum. Hum. Temp. (N-S) (E-W)

AV 0.376 0.659 0.673 0.520 0.736 0.795
LB 0.337 0.623 0.644 0.464 0.681 0.740
Max 0.350 0.657 0.671 0.512 0.729 0.775
Min 0.375 0.654 0.673 0.508 0.725 0.786
R 0.360 0.619 0.641 0.459 0.692 0.750
SQ 0.381 0.631 0.655 0.488 0.713 0.772
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FIGURE 5.8 [Expt 4] LZC per variable using the best traversal and prediction method

per variable for the daily dataset. This figure is taken from Cayoglu et al. (2018c).

The results show that changing the starting point of the compression al-

gorithmhas onlynegligible effects on the compression rate,while changing

the traversal direction can influence the compression rate significantly. In-

formation Spaces (IS) introduced in this chapter suggest thatwith the help

of IS it is possible to improve the predictions of each predictor. More im-

portantly, the stability of the predictions are increased. The Information

Contextswhich define the Information Space help consolidate information

from several dimensions. This results in higher quality forecastswith less

fluctuation than that of the commonmethod.
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The advantages of the proposedmethod are higher stability and better

compression ratios. The use of IS increases the complexity of the process.

The calculation of IS in each step is memory intensive and creates an over-

head. However, the potential advantages of this newmodel have not yet

been exhausted.

There are still different optimisation possibilities. For example, possible

weights can be consideredwhich can be usedwithin the Information Con-

texts for the prediction. The individual Information Contexts can be eval-

uated by calculating a grading factor (such as information density) which

allows decidingwhich IC to use or to avoid. The different layers of ICs could

also be considered separately during the grading process. However, the

current configuration achieves already a 10% improvement on LZC and de-

creases the standard deviation of the compression results by over 20% on

average. The use of Information Spaces offers newpossibilities and levers

to further increase compression rates and gain independence from the in-

ternal structure of the data.

5.6 Code and Data Availability

The data and an implementation of the concepts described in this chap-

ter are available under GNU GPLv3 license at https://github.com/ucyo/

informationspaces (Cayoglu, 2018a).
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CHAPTER 6

Data Approximation
using ARIMA Models
The concept of IS introduced in the previous chapter helps adapt the com-

pression algorithm to the data being compressed. In this chapter amethod

for lossy compression of time-series data is presented. This makes it possi-

ble to store existing knowledge about the interactions of climate variables

in the encoder using established climate indices. Therefore the encoder can

use this information to decorrelate the data. The contribution of this chap-

ter helps tackle the third challenge described in Chapter 1. The results pre-

sented in this chapter have been published in parts in Cayoglu et al. (2017).

6.1 Motivation

Here, options for compressing environmental indices by using a statistical

method based on the Auto Regressive IntegratedMoving Average (ARIMA)

model introduced in Box and Jenkins (1976) are investigated. The ARIMA

model helps identify interdependencies in the dataset. The introduced

method shows that it is possible to improve the accuracy of lossily com-

pressed data byapplying an adaptive compressionmethodwhich preserves

selected data with higher precision. It takes advantage of the interdepen-

dencies of themodel and improves the correlation between the original and

reconstructed data while using negligible more storage. Established envi-

ronmental indices are saved using a lossy compressionmethod for later use

by the encoder. The indices are being used for seasonal forecasting of rain-

fall, temperature andmonsoon precipitation. These indices help improve

the decorrelation performed by the encoder.
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FIGURE 6.1 Flowchart of data compression using the proposed method (ARIMA

approach) compared to the direct approach. This figure is taken from (Cayoglu et al.,

2017).

6.2 Proposed Method

Two different approaches are used to obtain compressed indices. Figure 6.1

illustrates both approaches. The proposedmethod using an ARIMAmodel

is depicted as ‘ARIMA approach’. The second approach illustrates the usual

process by applying compression directly on the indices and is described as

‘Direct approach’.

After calculating the indices an ARIMA model is build for each index.

The results from the ARIMA model are then compressed. After this step

several data points are selected by replacementmethods. These data points
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are then replaced by ones with higher precision. The following sections

describe theARIMAmodel, the applied compressionmethod, and the avail-

able replacementmethods.

6.2.1 Model

The ARIMA model tries to find interdependencies in the dataset and was

first introduced by Box and Jenkins (1976). It assumes that each datum in

a time-series is dependent on its previous values and can be expressed by

a function of its previous values. Because of the seasonal dependency in

weather dynamics the proposed method uses a seasonal ARIMA model

(Chattopadhyay and Chattopadhyay, 2014) for monthly and the original

ARIMAmodel (Box and Jenkins, 1976) for daily data. The seasonal ARIMA

model is being described by the following notation:

ARIMA(p, d, q)(P, D, Q)s

with (p, d, q) representing the non-seasonal auto-regressive (p), difference
(d) andmoving-average (q) order and (P, D, Q) the equivalent seasonal order
with period length s.

The general equation for seasonal ARIMA is as follows:

Φ(Bs)φ(B)(xt − µ) = Θ(Bs)θ(B)εt (6.1)

with xt representing the target value at time t, µ the expectedmean value of

the data, εt the error term of the model, and Bk the backpropagationwith

Bkxt = xt−k and following components:

Seasonal AR : Φ(Bs) = 1− Φ1B
s − · · · − ΦP BP ·s

AR : φ(B) = 1− φ1B − · · · − φpBp

SeasonalMA : Θ(Bs) = 1 + Θ1B
s + · · ·+ ΘQBQ·s

MA : θ(B) = 1 + θ1B + · · ·+ θqB
q

with i representing the time step before the target value,Φ(Bs) the seasonal
auto-regressive (AR) parameter, φ(B) theARparameter,Φi the seasonal AR

coefficients,φi theARcoefficients,Θ(Bs) the seasonalmoving-average (MA)
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parameter, θ(B) theMA parameter,Θi the seasonalMA coefficients and θi

the MA coefficients of the model. The (partial) auto-correlation function

(ACF) is used for analysing the data and the selection of the range of AR and

MA parameters. ACF is defined as follows:

ACF =
∑n

t=k+1(Yt − Y )(Yt−k − Y )∑n
t=1(Yt − Y )2 (6.2)

with k ∈ N representing the temporal lag, Yt time-serieswith start at time

t and Y themean value of the time-series. The coefficientsΦi, φi,Θi and θi

are optimised using the Akaike’s Information Criterion (AIC) introduced in

Akaike (1974).

6.2.2 Compression

The zfp compressionmethod introduced in Lindstrom (2014) is being used

for the compression of the indices. It has already been applied successfully

on climate data (Baker et al., 2016) and supports lossyaswell as lossless data

compression. The following notation is being used throughout the thesis:

zfpPR, where PR denotes the precision of the applied compression. In case of

single precision floating-point numbers, a lossless compressionwould be

denoted as zfp32.

6.2.3 Replacement Methods

The proposed ARIMAmethod improves compression by replacing several

data points by ones with higher precision. Those points are chosen by the

replacementmethods described in this section.

Let xb = xb
1x

b
2 . . . xb

n be a lossily compressed time-serieswith b represent-

ing the bits preserved from the original time-series. A lossless compression

for single precision floating-point numberswould be depicted as x32 while

the most lossy compressionwould be x1. Further, let k ∈ N be the number

of data points to be replaced, let l ∈ N be the number of additional pre-

cision bits to be saved and block size bs = max{p, q} represent either the
auto-regressive ormoving-average order of the ARIMAmodel. The param-

eter bs helps identify data contributing to the calculation of a datum xb
i . The

updated time-series is represented by x̂ = x̂1x̂2 . . . x̂n. Further on let sort(X)
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be the sorted set of X, argsort(X) the arguments of the sorted set of X and

S(t, X) the t previous values of each element of X :

sort(X) =
{

xi | xi ≤ xi+1 ∧ xi ∈ X

}
(6.3)

argsort(X) =
{

arg xi | xi ≤ xi+1 ∧ xi ∈ X

}
(6.4)

S(t, X) =
{

x− j | j ≤ t ∧ j ∈ N ∧ x ∈ X

}
(6.5)

The algorithm differentiates between the followingmethods to choose

the data points being replaced.

First. The first k values are replaced.

x̂i =

xb+l
i if i ≤ k

xb
i else

(6.6)

Even. The k values being replaced are evenly distributed over the whole

time-series. The time-series is split in bl =
⌊

k
bs

⌋
+1 evenlydistributed blocks

with size
⌊

n
bl

⌋
andM midpoints.

M =
{

j ·
⌊

n

bl

⌋
| j ∈ N ∧ j ≤ bs

}

x̂i =


xb+l

i if i ∈ [m−
⌊

bs
2

⌋
, . . . , m +

⌊
bs
2

⌋
)withm ∈M

xb
i else

(6.7)

Special. The cumulative correlation (Eq. 6.8) of the time-series is calculated,

the results sorted and those data points replaced, which contribute to the

datawith the lowest correlation.

C =
{

r1,j | j ∈ N ∧ j ≤ n

}
(6.8)

C ′ = argsort(C)

x̂i =

xb+l
i if arg i ≤ kwith i ∈ S(bs, C ′)

xb
i else

(6.9)
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Rolling. The rolling correlation (Eq. 6.10)withwindow size bs is calculated,

the results sorted and those data points replaced which contribute to the

datawith the lowest correlation.

R =
{

rj−bs,j | j ∈ N ∧ bs < j ≤ n

}
(6.10)

R′ = argsort(R)

x̂i =

xb+l
i if arg i ≤ kwith i ∈ S(bs, R′)

xb
i else

(6.11)

Cumcorr. The cumulative correlation of the time-series is calculated (Eq.

6.8) and the datum identifiedwhich is followed by the biggest consecutive

drop in correlation. The data responsible for this datum is then replaced.

Afterwards the processwill be repeated until k data points are replaced.

C =
{

r1,j | j ∈ N ∧ j ≤ n

}
(6.12)

C ′ =


ci if ci+1 ≥ 0

b∑
j=0

ci+j elsewith ci+j < 0 ∧ b ∈ N
(6.13)

C ′′ = argsort(C ′)

x̂i =

xb+l
i if arg i ≤ kwith i ∈ S(bs, C ′′)

xb
i else

(6.14)

6.3 Experimental Setup

The following sections describe the steps to create the climate indices, the

metrics used and the conducted experiments.

6.3.1 Data

The data used in this chapter is obtained from a simulation with the

ECMWFHamburg/Modular Earth Submodel System Atmospheric Chem-

istry (EMAC) (Jöckel et al., 2006) model. It consists of a 128× 64 (longitude,
latitude) horizontal grid with six vertical levels (from 1000 hPa to 10 hPa)

and spans a time period from the beginning of 1979 till the end of 2013with
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TABLE 6.1 Spatial borders and variables used for calculating indices with tempera-

ture (T), pressure (p) and westerly wind (u).

Index Variable Lat [°N] Lon [°E] Lev [hPa]

ENSO34 T −5 to 5 190 to 240 1000
QBOx u −5 to 5 0 to 360 indicated by x

NAO p Lisbon and Reykjavík 1000

10h time steps. The following variables are available as single precision

floating-point values: ozone, pressure, dry air temperature and westerly

wind.

The following climate indices are created for investigation: El Niño

SouthernOscillation3.4 (ENSO34),NorthAtlanticOscillation (NAO),Quasi-

BiennialOscillation (QBO)at 30 (QBO30)and50hPa (QBO50). These indices

showhigh significance in climate research (de Guenni et al., 2017; Nowack

et al., 2017; Hurrell and Van Loon, 1997; Hurwitz et al., 2011) and help in

numericalweather predictions and seasonal forecasting. ENSO34 is being

used in forecasting rainfall, NAO in forecasting seasonal temperature for

Europe and QBO is being used for predictingmonsoon precipitation. Each

index is createdwith two temporal resolutions: monthly and daily. For the

calculationof ENSO34andQBOxa spatial subsetof thedataaccording toTa-

ble 6.1 is selected. Next the zonal andmeridional means are calculated. The

NAO index is calculated using the difference in surface pressure between

Lisbon and Reykjavík. Afterwards yearly monthly mean and multi-year

monthlymean for all indices are calculated. Themulti-yearmonthlymean

is then subtracted from the corresponding yearly monthly mean and di-

vided by themulti-year standard deviation for eachmonth. This concludes

the process for the monthly indices. For the daily indices these steps are

repeatedwith respective daily resolution. A histogram of each index is de-

picted in Figure 6.2 and a summary of their characteristics are given in Ta-

ble 6.2.
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FIGURE 6.2 Histogram of each weather index in monthly resolution. The indices are

dimensionless. This figure is taken from Cayoglu et al. (2017).
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TABLE 6.2 Information about the monthly indices.

ENSO34 NAO QBO30 QBO50

mean 0.000 0.000 0.000 0.000
std 0.936 0.822 0.997 0.995
min −2.208 −2.626 −1.876 −2.464
25% −0.656 −0.421 −1.011 −0.934
50% 0.001 −0.016 0.097 0.364
75% 0.693 0.397 0.999 0.869
max 2.273 3.097 1.472 1.383

skewness 0.028 0.393 −0.161 −0.565
kurtosis −0.481 2.055 −1.474 −1.149

6.3.2 Metrics

For evaluating the forecasting model the Root Mean Square Deviation

(RMSD) is used. The reconstructed index from the lossy compression is

evaluated using the Pearson correlation coefficient rs,e (Pearson, 1896):

rs,e =
∑e

i=s(xi − x̄)(yi − ȳ)√∑e
i=s(xi − x̄)2

√∑e
i=s(yi − ȳ)2

(6.15)

with s and e representing the starting and respectivelyending indices of the

time-series, xi representing the original value, x the original mean value,

yi the reconstructed value, and y the reconstructedmean value. The reason

for choosing the Pearson correlation coefficient as ametric is that most of

the time the correlation between the index and otherweather phenomena

is being analysed. Therefore it is of utmost importance to reconstruct an

index correlated to the original index. The compression quality ismeasured

using the bits per float (bpf) metric (see Eq. 2.19) and the CR (see Eq. 2.17).

6.3.3 Experiments

Several experiments are carried out to investigate possible compression

methods. The first experiment focuses on lossless compression of the in-

dices. Since the datasets are single precision floating-point data zfp32 is

used for compression.
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TABLE 6.3 Results of (seasonal) ARIMA model run for monthly and daily data.

Index Model RMSD

Monthly data

ENSO34 ARIMA(3, 0, 2)(1, 0, 0)12 5.067e08
NAO ARIMA(1, 0, 0)(1, 0, 0)12 8.195e09
QBO30 ARIMA(2, 0, 3)(1, 0, 0)12 1.088e07
QBO50 ARIMA(1, 1, 1)(1, 0, 1)12 2.909e06

Daily data

ENSO34 ARIMA(5, 2, 4)(0, 0, 0)0 4.686e04
NAO ARIMA(2, 0, 2)(0, 0, 0)0 1.440e07
QBO30 ARIMA(5, 0, 4)(0, 0, 0)0 1.084e07
QBO50 ARIMA(5, 0, 4)(0, 0, 0)0 4.488e08

Furthermore, a lossy compression is analysedwith the aim of achieving

the smallest possible deviation for a given error limit. For this experiment

an error bound of τ = 1e−5 is set so that r1,n ≥ 1.0− τ is always satisfied.

Finally, a third experiment is conducted to analyse what effect a grad-

ual decline in precision from zfp32 to zfp01 has on the correlation coeffi-

cient. Further, it is analysed if replacing several data points with a higher

precision improves the correlation coefficient. These indiceswith updated

data are described by the following notation: zfpPR+lwith l representing the

number of additional precision bits. The notation zfp06+02 depicts a lossy

compressionmethodwith six precision bitswhere several data points have

two additional bits of precision. For the following experiments five and ten

percent of the datawith l ∈ {1, 2, 3} are replaced.

6.4 Evaluation

6.4.1 Model

Since ARIMA can only be applied to stationary data, the Dickey-Fuller-Test

(DF-test) introduced byDickey and Fuller (1979) is conducted to analyse the

indices for stationariness. All indices are stationarywith a confidence level

of 99%. The results of the DF-test are represented in Table 6.4.
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TABLE 6.4 Results of DF-test.

ENSO34 NAO QBO30 QBO50

DFTTest Statistic −5.341 −17.571 −7.447 −9.257
Critical Value (1%) −3.446 −3.446 −3.447 −3.447
Critical Value (5%) −2.869 −2.868 −2.869 −2.869
Critical Value (10%) −2.571 −2.570 −2.571 −2.571

TABLE 6.5 BPF of lossless compression of daily and monthly data for the residuals

of the ARIMA model and direct approach. CR > 32 bits are highlighted red, since this

means the compressed file is actually bigger than the original data. Header files are

excluded.

Monthly data Daily data

Index ARIMA Direct ARIMA Direct

ENSO34 33.371 32.762 33.072 32.300
NAO 33.371 33.067 33.071 32.821
QBO30 33.219 32.152 33.031 30.753
QBO50 33.451 32.457 33.051 31.009

The (seasonal) ARIMAmodel can reconstruct all indiceswith good accu-

racy. TheRMSDof the reconstructed indices formonthlydata is better than

the one for the dailydata. ARIMAmodelswithdifferentiation steps, QBO50

formonthly data and ENSO34 for daily data, performworst in their respec-

tive group. Detailed results are described in Table 6.3. The Pearson corre-

lation coefficient r1,n for all indices is 1.0± 2e−12. Figure 6.3 illustrates the
ARIMAmodel for NAO and QBO30. It can be seen, that the reconstructed

index defined by the ARIMAmodel represents the original index verywell.

6.4.2 Compression

First, the ARIMA approachwithout replacements is being comparedwith

the direct approach. In Section 6.4.3 the results of the proposed algorithm

including the replacementmethods is comparedwith the direct approach.

Lossless. The experimental results show that lossless compression of the

ARIMA output is resulting in bigger files thanwithout compression. A loss-

less compression applied directlyon the indices returns similar results. The

only exceptions are the QBO30 and QBO50 indices at daily resolution. The
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TABLE 6.6 CR for lossy compression of daily and monthly data with τ = 1e−5 as
error threshold. Header files are excluded.

Monthly data Daily data

Index ARIMA Direct ARIMA Direct

ENSO34 0.386 0.371 0.658 0.322
NAO 0.386 0.386 0.377 0.370
QBO30 0.381 0.357 0.376 0.273
QBO50 0.668 0.362 0.377 0.281

file size of the QBO30 and QBO50 daily data is decreasing by four percent

for QBO30 and three percent for QBO50. Detailed results are presented in

Table 6.5.

Strict Lossy Compression. Lossy compression with τ = 1e−5 achieves in
most cases a CR of ~ 0.4. The ARIMA approach achieves a CR of 0.381 on av-
erage formonthlyand dailydata. The only exceptions areQBO50 (monthly)

and ENSO34 (daily) which reach a CR of ~ 0.663. Detailed results are pre-
sented in Table 6.6.

This deviation is due to the differentiation step during model building.

This additional calculation step increases error propagationwhich results

in additional precision bits needed tomeet the threshold τ .

It is no surprise that the direct method achieves smaller CRs for these

two indices. The compression ratio of QBO50 (monthly) is down from 0.668
to 0.362 and ENSO34 (daily) from 0.658 to 0.322. While applying lossy com-

pression directly on themonthly indices does not improve the NAO index,

the CR for QBO30 and ENSO34 are slightly improved by three and one per-

cent, respectively.

The daily data show better results on average (from 0.37 to 0.30). Only
the NAO (monthly) index does not showanydecrease or increase regarding

CR by the direct approach.

Lossy Compression with Gradual Decline. The third and last experiment is

conducted to analyse the effects of amore andmore aggressive lossy com-

pressionmethod. The precision level of the lossy compression algorithm is

gradually reduced from zfp32 to zfp01.
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Applying lossy compression on daily andmonthly data directly shows

that the NAO index is performing worst regarding CR. The results of the

ARIMA approach are similar to the strict lossy compression. It looks like

the difference step of the ARIMAmodel (see Table 6.3) has a negative effect

on the correlation.

OBSERVATION 6.1 The results until nowsuggest that the additional calcula-

tion steps needed for generating theARIMAmodel have a negative effect on

the compressed indices. This effect is expected due to the interdependence

in the ARIMAmodel and thus the error propagation. The accuracy of each

datumdepends onall calculations doneup to that point. The later thedatum

in the time-series, the greater is the effect of calculation errors. This effect is

evenmore significant if anARIMAmodelwith a differentiation step is used.

This can be seen in the CR of QBO50 in themonthly dataset and ENSO34 in

the daily dataset (see Table 6.6). Overall, the ARIMA approach (without re-

placement) is causing a 1− 3% loss in storage space for themonthly indices

and 10% for the daily indices.

OBSERVATION6.2 Most interestingare theresults for theNAOindex. While

the other indices show similar behaviour in gain and loss of CRwith both

approaches, the NAO index does not. The direct and ARIMA approach have

no effect on the CR of themonthly indices and only negligible effect on the

daily indiceswith 0.007 difference inCR. A closer look at the index (Table 6.2

and Figure 6.2) reveals properties unique for NAO which can provide an

explanation for its behaviour. The standard deviation of the NAO index

is the lowest with 0.822 and the first and third quartile are the closest to

the mean with −0.421 and 0.397. Additionally, the NAO index has several

outliers. Theminimumandmaximumhave the highest absolute distance to

themean regarding of all indices. In addition to these properties, the NAO

index shows an unbiased skewness and kurtosis (see Table 6.2). The NAO

index is heavy tailedwith a slight asymmetry on the right tail.

This unique position of NAO can also be observed in conjunctionwith

the replacementmethods. While the ENSO34, QBO50 and QBO30 indices

behave similar to each other, NAO does not. Because of these similarities

only the replacement results for NAO and QBO30 are presented in the next

section.
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6.4.3 Replacement Methods

The results of the former section suggest that CR and r1,n for a lossy com-

pression algorithmusing theARIMAapproach areworse than for the direct

approach. This is due to the interdependency of the data. If one or several

of these data points deviate too far from its original datum, then itwill nega-

tivelyeffect the calculation of the followingdata. But there is a possibility to

use this interdependency for the benefit of themethod. If those data points

which have a negative impact on the reconstruction of each index can be

identified, they can then be replaced by oneswith higher precision. In the

following, first the indices reconstructedbythedifferent replacementmeth-

ods are compared with the original ARIMA output. Afterwards, they are

comparedwith the directly compressed indices.

Replacement of 5% and 10%of Data. Several tests are carriedout to analyse

howmanydata points need to be replaced to see an effect on the correlation

coefficient r1,n. Table 6.7 illustrates the effects for themonthly indices. Most

of the time the gain in correlation by replacing ten instead of five percent

of the data is negligible. There are two exceptions to this: The increase in

correlation from 0.468 to 0.624with zfp02+01 on the NAO index and the in-

crease from 0.691 to 0.935with zfp04+01 on the QBO30 index. It should be

pointed out that the correlation value of 0.935 with zfp04+01 is almost as

good as using zfp05 for thewhole indexwhich has a correlation coefficient

of 0.972.

A more striking and disappointing finding is that replacing data with

higher precision did not always increase the correlation coefficient. While

the NAO index showed no decline, the correlation coefficient of QBO30

dropped in several cases. Most of the time the drops where < 0.01, but
the most significant dropwas for QBO30 from 0.139 to 0.027with zfp02+01

which is a drop of ~ 80%. Further research is needed to analyse why these

drops occur in the lowest precision level. Figure 6.4 illustrates the correla-

tion coefficient of each replacementmethod from zfp02+01 to zfp06+03.

Replacement Methods. Figure 6.5 illustrates the correlation coefficient r1,t

at month t for zfp06+03 with ten percent replacement. The NAO index is

represented best by the special method. The reason for this seems twofold:
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TABLE 6.7 Pearson correlation by replacing five and ten percent of the monthly in-

dices. Replacements causing a worsening of the Pearson correlation are highlighted

red and those resulting in an improvement are highlighted green. The replacement

method being used is ‘Special’.

zfp02 zfp03 zfp04 zfp05 zfp06

NAO (5%)

l = 0 0.354 0.725 0.924 0.979 0.994
l = 1 0.468 0.825 0.950 0.983 0.996
l = 2 0.506 0.826 0.952 0.984 0.996
l = 3 0.519 0.831 0.953 0.984 0.996

NAO (10%)

l = 0 0.354 0.725 0.924 0.979 0.994
l = 1 0.624 0.864 0.959 0.987 0.997
l = 2 0.692 0.870 0.964 0.989 0.997
l = 3 0.705 0.878 0.965 0.989 0.997

QBO (5%)

l = 0 0.139 0.482 0.635 0.972 0.986
l = 1 0.027 0.566 0.691 0.967 0.996
l = 2 0.039 0.591 0.692 0.973 0.993
l = 3 0.042 0.596 0.677 0.985 0.995

QBO (10%)

l = 0 0.139 0.482 0.635 0.972 0.986
l = 1 0.050 0.575 0.935 0.968 0.996
l = 2 0.082 0.615 0.940 0.973 0.993
l = 3 0.084 0.607 0.944 0.987 0.996
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First, the special method decideswhich datum to replace depending on

the lowest correlation coefficient. The correlation coefficient at each time

step is sorted and those data replaced, which contribute to the lowest cor-

relation. With this property the special method can compensate best for

sudden changes in the index. Especially, the first drop at the beginning of

the NAO index and the one at t = 50 are not having as big of an impact on

the correlation coefficientwith the special replacementmethod compared

to the others. This is illustrated on the right of Figure 6.5.

Second, the model being used for the NAO index is

ARIMA(1, 0, 0)(1, 0, 0)12. Every single datum is only depending on its

immediate predecessor and the one at the same time the previous year.

A single datum is only depending on two previous values. This small

dependence helps in (1) correcting more data points and (2) limiting error

propagation.

The ARIMA approach improves the reconstruction of the NAO index

significantly. The reconstruction has a better correlation coefficient on each

time step t than the direct approachwith onlyusing negligiblemore storage

space (see Table 6.8). For the QBO30 index the rollingmethod has the high-

est correlation coefficient (see Figure 6.5). The rollingmethod calculates the

rolling correlation coefficientwithwindow size bs = max{p, q}where p de-

scribes the auto-regressive and q themoving-average of the ARIMAmodel.

The coefficients are then sorted and those data replacedwhich contribute

to the datawith the lowest correlation.

Unfortunately, in the case of the QBO30 index the ARIMA approach is

not consistently better. In the beginning of the time-series with t < 50
it performs significantly better: The direct approach drops to 0.991 while
the ARIMA approach stays constantly above 0.997. Afterwards the direct
approach performs better until t = 175where the ARIMA approach starts

to outperform the direct approach again.

For the daily indices the results are different. Because of the increased

number of calculation steps, the error propagation has a more severe im-

pact. While the correlation coefficient for the direct approach is at 0.999 for
QBO30 and 0.997 for NAO, the best ARIMAapproach can only achieve 0.994
for QBO30 and 0.996 for NAO. Table 6.9 shows the results for zfp06+03 on
daily andmonthly data.
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TABLE 6.8 CR for NAO and QBO30 index after invocation of the ARIMA approach and

replacing ten percent of the data. Header files are excluded.

zfp02 zfp03 zfp04 zfp05 zfp06

NAO (5%)

l = 0 0.094 0.120 0.150 0.182 0.213
l = 1 0.097 0.123 0.153 0.185 0.217
l = 2 0.100 0.126 0.156 0.188 0.220
l = 3 0.104 0.129 0.159 0.191 0.223

NAO (10%)

l = 0 0.100 0.133 0.167 0.200 0.229
l = 1 0.103 0.137 0.170 0.203 0.232
l = 2 0.106 0.140 0.173 0.206 0.235
l = 3 0.110 0.143 0.176 0.209 0.238

QBO (5%)

l = 0 0.099 0.117 0.134 0.151 0.169
l = 1 0.103 0.121 0.137 0.154 0.172
l = 2 0.106 0.124 0.140 0.157 0.176
l = 3 0.109 0.127 0.143 0.160 0.179

QBO (10%)

l = 0 0.105 0.124 0.148 0.171 0.200
l = 1 0.108 0.127 0.151 0.174 0.203
l = 2 0.111 0.130 0.154 0.178 0.206
l = 3 0.114 0.133 0.157 0.180 0.210

TABLE 6.9 Correlation coefficient for zfp06+03 for daily and monthly data.

Monthly data Daily data

NAO QBO30 NAO QBO30

First 0.994 78 0.997 55 0.996 00 0.994 04
Even 0.995 00 0.986 90 0.996 11 0.988 14
Special 0.996 86 0.995 75 0.995 98 0.988 99
Rolling 0.994 28 0.997 79 0.996 08 0.994 09
Cumcorr 0.994 69 0.997 26 0.995 98 0.984 00

Direct 0.994 76 0.997 74 0.996 69 0.999 38
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Effects on Storage Space. Until now only the impact on the Pearson corre-

lation coefficient is analysed. But the additional precision bits used by the

replacementmethods have a negative impact on the CR. The effects on the

CR are depicted in Table 6.8where l is the number of precision bits added.

The introduced replacement methods are conceptualised to use only a

certain amount of additional storage space. Theywere designed to use only

l additional precision bits for k data points of the indices (see Section 6.2.3).

This design decision allows to limit exactlyhowmuch additional storage

space is being used by eachmethod. This precaution is reflected in Table 6.8.

In theworst case one percent more storage space is needed. This occurred

whenusing zfp06+03 and replacing ten percent of the data. The compression

ratio increased from 0.200 to 0.210.

6.5 Summary

In this chapter the efficiency of compression algorithms for environmental

indices are investigated. A lossy compression method for climate indices

is developed based on an established statistical method known as the Auto

Regressive IntegratedMoving Average (ARIMA)model. The indices exam-

ined are derived from the El Niño Southern Oscillation (ENSO), the North

AtlanticOscillation (NAO) and theQuasi-BiennialOscillation (QBO) indices.

Each index describes a different aspect of large-scale atmospheric dynam-

ics.

An adaptive compression algorithm is introduced to improve the loss-

ily compressed indices. The experimental results show that it is possible to

improve the accuracy of the reconstructed data by replacing several data

pointswith slightly higher precision. The improved reconstruction can re-

produce the chosen indices to such a high degree that statistically relevant

information needed for describing climate dynamics is preserved. The com-

pressed indices have the same diagnostic performance than the original

indices.

This study shows that ARIMAmodels using a differentiation step have

difficulties and performworse than models without differentiation steps.

The experimental findings indicate that time-series data which can be ex-

pressed with small auto-regressive and moving-average order can be im-
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proved significantly. Further analysis should focus on the aspect why cer-

tain time-series data like the QBO30 do not show the same improvement in

reconstruction as the NAO index.

6.6 Code and Data Availability

The data of the environmental indices and an implementation of the re-

placementmethods described above are available underGNUGPLv3 license

at https://github.com/ucyo/adaptive-lossy-compression (Cayoglu, 2017).
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CHAPTER 7

Data Coding and Residual
Calculation
So far, themethodspresentedhave concentratedon either thedecorrelation

or the approximation of data. Information spaces help to adapt the com-

pression algorithm to the data to be compressed. TheARIMAmodel defines

a lossy compressionmethod for time series data that adds prior knowledge

to the encoder. This chapter contributes to the final step of a compression

algorithm by introducing a novel coding algorithm.

Coding is the final step of a compression algorithm. The actual compres-

sion of the data is happening in this step. In prediction-based compression

this step startswith the calculation of the residual between prediction and

truevalue. Currentlythereare twoestablished formsof residual calculation:

Exclusive-or and numerical difference. This chapter summarises both tech-

niques and describes their strengths andweaknesses. Further, it is shown

that shifting values improves upon some of the weaknesses. Shifting the

prediction and truevalue to a binarynumberwith certain properties results

in a better compression factorwithminimal computational costs. This gain

in compression factor enables the usage of a less sophisticated prediction

algorithm to achieve higher throughput during compression and decom-

pression. In addition, a new coding scheme is introduced which helps to

achieve a 10% increase on average in compression factor compared to the

current state-of-the-artmethods. The results presented in this chapterhave

been published in parts in Cayoglu et al. (2019b).

In the following section, the twomethods for the residual calculation are

described. Section 7.2 introduces the proposed method by first describing

the value shift, then the preparation of the residual followed by the actual
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coding of the residual. Section 7.3 explains the experimental setup and is

followed by the evaluation of the experiments. Finally, an overviewof the

results and possible steps for furtherwork is given.

7.1 Motivation

The biggest challengewith compression of floating-point data is the poten-

tially infinite candidate space formaking a prediction. While compression

of textual data uses a 26 letter alphabet, the number of words of a certain

length occurring in an English text is rather limited. This is not the case for

numerical data like floating-points.

There are an infinitenumber of possible real numbers betweenarbitrary

two numbers. While the precision of a single or double precision floating-

point value is limiting these numbers, the number of possible values is still

large compared to the English alphabet. A single precision floating-point

value x using the IEEE754 standard (754-2008, 2008) has a 32 bits precision.
One bit is being used for the sign, eight for the exponent and 23 for theman-

tissa. The exponent represents the largest power of two, that is still smaller

than x. Themantissa represents the difference between x and the exponent.

With 23 bits for the mantissa, the IEEE754 standard allows 223 = 8388608
values between each power of two. For values between 2 and 4 this results
in a resolution of 2.4e− 7. This is the candidate space for the prediction of
x if it is known beforehand that the searched value lies within this range.

This is often not the case.

As Section 2.1.4 explains, a prediction-based compression algorithm

makes a prediction for each data point. Afterwards, the difference between

the true value and the prediction is being calculated. If the prediction is

good, this residual will have a large LZC. These bits are disregarded and

the remaining residuals are saved on disk. The original value can be recon-

structed losslesswith the same predictor and the remaining residual. The

calculationmethod for the residual determines the size of the residual and

the necessary steps to reverse the operation during decompression. There-

fore, the residual calculation is of great importance.

Again, the two established methods for residual calculations are (see

Eq. 2.14 and 2.15):

diffxor(ŝi, si) = ŝi ⊕ si (7.1)
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diffabs(ŝi, si) = | ŝi − si | (7.2)

with si being a data point in a source S and ŝi a prediction for si based on a

subset of S.

Bothmethods have their strengths andweaknesses. The first approach

(Eq. 7.1) uses an eXclusive OR (XOR) operation for residual calculation. The

advantage of this approach is that it is avery fast operation onmodernhard-

ware. Another advantage is that the reverse operation applied during de-

compression is literally the same operationwith si = ŝi ⊕ diffxor(ŝi, si). No
information is needed to be transferred between encoder and decoder. The

disadvantage of XOR is that two numbers representing very close values

can still produce a very large residual. This is due to the two’s-complement

binary representation of floating-point numbers defined by the IEEE754

floating-point standard 754-2008 (2008) first introduced in 1985. This pit-

fall can be observed if ŝi and si are close, but on opposite sides of a power of

two e.g. ŝi = 256.321 and si = 255.931. While the absolute difference is 0.39,
the residual calculated using Eq. 7.1 is diffxor = 16762689 and using Eq. 7.2
is diffabs = 15041. These residuals need to be saved on disk and the former

residual needs 24 bitswhile the latter only 14 bits.

The second approach (Eq. 7.2) uses the absolute difference of the two

numbers. In other words, it represents the amount of binary numbers

between the two values using two’s-complement binary representation.

Since the accuracy of two’s-complement binary representation of a value

is limited, the value range of the compared values plays a central role

in residual calculation using this approach. Given ŝi = 847, 390.837 and
si = 847, 794.417 the difference is 403.58, but diffxor = 6458. At first glance
the prediction of ŝi = 847, 390.837 for si = 847, 794.417 seems to be worse

than ŝi = 256.321 for si = 255.931. But using Eq. 7.1 it is still considered
a better prediction due to the two’s-complement binary representation of

floating-point values.

The advantage of diffabs is that the resulting residual is always smaller

or atworst the same size as the residual calculated by diffxor. The disadvan-

tage is that additional information needs to be stored about the prediction

ŝi. Without the informationof ŝi being above or belowsi a successful decom-

pression can not happen. Another disadvantage is that to avoid an overflow

or underflowone cannot calculate diffabs in a single computation contrary
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Residual
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Difference sign

Residual

Leading Zero Count

Following One Count

......
XOR

Abs.Diff

Range Enc

Range Enc

Shift

Range Enc

BWT

BWT

FIGURE 7.1 Flowchart of the residual calculation and coding phase of the current

state of the art lossless compression algorithm for floating-point data (top) and the

proposed method (bottom). This figure is taken from Cayoglu et al. (2019b).

to diffxor. The calculation must be split into two steps by first calculating

max(ŝi, si) and then subtracting the smaller one from the bigger. This is

especially important if the values are close to the smallest or biggest repre-

sentable number for single and double precision floating-point numbers,

because of a possible overflow respectively underflow. In the following sec-

tion a novel algorithm for calculating and coding the residual using XOR

residual calculation is introduced.

7.2 Proposed Method

Chapter 3 introduced several state-of-the-art lossless compression algo-

rithms for floating-point values. The current state-of-the-art lossless com-

pression algorithm for floating-point data is fpzipwhich was introduced

in Lindstrom and Isenburg (2006). In the following, the coding scheme of

fpzip is compared to the coding scheme introduced in this chapter. Both

methods are depicted in Figure 7.1. The coding scheme of fpzip is on top and

highlightedwith a dark grey background. The proposed coding scheme is

on the bottom and highlighted with a light grey background and further

referred as pzip.

The first step of the proposed algorithm is to shift ŝi and si to a value

range more suitable for difference calculation. Afterwards the diffxor dif-

ference calculationmethod is applied to the data. The residual is then split

into three streams: leading zero count (LZC), following one count (FOC),

106



and residual. The first two streams are transformed using Burrow-Wheeler-

Transform (BWT) andwritten on disk using range encoding (RE). The third

and final stream is saved verbatim on disk. In the following section each of

these steps is described inmore detail.

7.2.1 Shifted XOR

At the beginning of this chapter it is mentioned that the disadvantage of

using XOR for residual calculation is that small differences between ŝi and

si might result in large residuals if both values are on opposite sides of a

power of two. A closer look at the XOR operation helps to understand this

challenge. The XOR is defined as follows:

ŝi ⊕ si = (ŝi ∨ si) ∧ ¬(ŝi ∧ si) (7.3)

= (ŝi ∧ ¬si) ∨ (¬ŝi ∧ si)

The bit of ŝi ⊕ si at index i is set, if the bit of ŝi is different than the bit of

si at index i. The bit is unset if they are the same. In the example given in

Figure 7.2 the XOR calculation has a small LZC of eight and a rather large

following one count (FOC) of ten. The FOC is defined as the number of set

bits following the most significant unset bits in a binary representation.

Although the example is deliberately chosen so that FOC is large, these in-

p ⊕ t = 00000000111111111100011101000001
bin(t=255.931) = 01000011011111111110111001010110
bin(p=256.321) = 01000011100000000010100100010111

11 13 15 311917 21 23 25 27 29index 1 3 5 7 9

FIGURE 7.2 An example for the XOR residual calculationmethod. This figure is taken

from Cayoglu et al. (2019b).

stances occur very frequentlywhen XOR is used for difference calculation.

An advantage, however, is that extreme caseswith very large FOC arewell

predictable. Due to thehighnumber of zeros at positions 10-18 it canbe esti-

mated that a possible bit flip is imminent and therefore can act accordingly.

The proposed shift to overcome thisweakness of XOR can be calculated in

two steps: The first step is to calculate a shift value s to be added to the pre-

diction ŝi so that s = g(ŝi)− ŝi is satisfied,where g(ŝi) is defined as follows
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for single precision floating-point values:

g(ŝi) =



15∑
k=1

22k−1 if ŝi < 230

14∑
k=0

22k if 230 ≤ ŝi < 231

16∑
k=1

22k−1 if 231 ≤ ŝi < 232

15∑
k=0

22k if 232 ≤ ŝi

(7.4)

The binary representation of each of the goals is a fluctuation of set and

unset bits. An example for the goal is the following:

g1 =
15∑

k=1
22k−1 and g2 =

15∑
k=0

22k

bin(g1) = 00101010101010101010101010101010

bin(g2) = 01010101010101010101010101010101

Finally, the shifted prediction ŝi +s and shifted truevalue si +s are calcu-

lated. Afterwards, the residual calculation proceeds as usualwith applying

the XOR operation to the shifted values calculating the residual:

diffs
xor(ŝi, si, s) = (ŝi + s)⊕ (si + s) (7.5)

The shift value can be recalculated without any information transfer be-

tween the encoder and decoder, since the decoder can recalculate the shift s

with the information it has.

7.2.2 Splitting of the Residual

In the next step, each residual is split into three components: LZC, FOC

and the remainder of the residual. This split is performed for each data

point. The respective component of each residual is thengroupedand coded

together. As mentioned before, the LZC specifies how many of the Most

Significant Bits (MSB) are unset. Due to the LZC definition, the block of

unset bits is always followed by a block of set bits of size ≥ 1. The FOC

determines the size of this block. The sum of LZC and FOC for a residual
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is restricted to 32 (64) for single (double) precision floating-point values.

The left-over bits are captured as the third component in the remainder.

Since the bit following FOCwill be unset, this bitwill not be included in the

remainder.

Given the previous example with ŝi = 256.321 and si = 255.931 the fol-
lowing components are obtained for the residual of ŝi ⊕ si:

ŝi ⊕ si = 00000000111111111100011101000001

LZC(ŝi ⊕ si) = 8

FOC(ŝi ⊕ si) = 10

RES(ŝi ⊕ si) = 0011101000001

where RES represents the remaining residual in binary representation.

7.2.3 Coding of LZC/FOC

In the next step, the LZC and FOC are coded. First, the LZCs and FOCs

are reordered using the Burrow-Wheeler-Transform (BWT) introduced in

Burrows andWheeler (1994). The BWTalgorithm rearranges a given set of

values in such a way, that same values are more likely to appear one after

another compared to the original data. Finally, the newly transformed LZC

and FOC are coded using Range Encoding (Martin, 1979). Since LZC and

FOC are independent from each other the BWT and RE can be performed

concurrently.

7.3 Experimental Setup

7.3.1 Data

Two different datasets are used for the experiments conducted in this chap-

ter. The first dataset is a synthetic dataset generated using a Gaussian dis-

tribution with different mean and standard deviations. These data cover

a wide range of possible datasets that can be compressed with both com-

pression algorithms. The synthetic data is used for the analysis of the XOR

residual calculationwhen the data is close to a power of two.
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The seconddataset is obtained froma climate simulationusing the ICON

model (Schröter et al., 2018). The simulation is performed for an analy-

sis of the POLar STRAtosphere in a Changing Climate (POLSTRACC) (POL-

STRACC, 2019; Oelhaf et al., 2019) campaign,which performed flight mea-

surements between December 2015 andMarch 2016 near the northern po-

lar region. This dataset consists of two different vertical resolutions. The

datasets consist of a 901 × 351 structured horizontal grid (longitude×lati-
tude) with 47 (respectively 90) vertical levels and four time steps with six

hour resolution.

The following single precision floating-point variables are available:

geopotential, vertical velocity, potential vorticity, cloudwater, cloud ice con-

tent, specific humidity, temperature, virtual temperature, zonalwind, vor-

ticity andmeridionalwind.

7.3.2 Metrics

Two metrics are used for evaluating the coding algorithms: compression

factor (CF) and throughput. CF puts the file size before and after compres-

sion into relation (see Eq. 2.16). The higher the CF, the better the coding

algorithm. The second quality measure for the coding algorithms is the

throughput, which indicates the amount of data processed per unit of time

(see Eq.2.18). The higher the throughput, the faster the algorithm.

7.3.3 Experiments

Several experiments are carried out to test currently available coding

schemes aswell as the proposedmethod.

State-Of-The-Art Compression Algorithm. The first experiment is con-

ducted to identify the best currently available lossless compression algo-

rithm. For this, several general-purpose and custom floating-point com-

pression algorithms are run. This experiment is run using the climate data

described in the previous section.

Shifted XOR. In the next experiment the behaviour of XOR residual calcu-

lation is analysed. These results help identify weaknesses of the method.

Themain focus during this experiment are the difficult caseswhere the val-
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ues are close to powers of two. This experiment is run using the synthetic

data described in the previous section. Further, possibilities to improve the

throughput of the compression algorithm are analysed.

Splitting of the Residual. The third experiment is conducted to analyse the

residuals. The distribution of set and unset bits in the residual are analysed.

This distribution gives clues if the residual still contains information or

whether it is white noise. Like in the previous experiment the synthetic

dataset is being used for this experiment.

Performance of Coding Methods. The fourth experiment helps to assess

available transformation and codingmethods. For data transformation the

BWT (Burrows andWheeler, 1994) andMove-to-front (Ryabko, 1980) algo-

rithms are analysed. Analysed data coding methods are range encoding

(RE), Huffman Coding and run-length encoding (RLE). These transforma-

tions and coding schemes are applied on the original data aswell as its delta.

This experiment is run using the climate data.

Comparison of pzip and fpzip. Finally, the proposed method is compared

with the state-of-the-art lossless compression algorithm fpzip regarding

compression factor, throughput aswell as the theoretical complexity of the

compression algorithm.

All experiments are conducted on an Intel i5-7200Uwith 2.5 GHz run-

ning GNU/Linux 4.19.28 Debianwith 16 GiB RAM. A native C implementa-

tion of fpzip is used. The proposed algorithm is implemented in Rust 1.33.0-

nightly.

7.4 Evaluation

7.4.1 State-Of-The-Art Compression Algorithms

Various state-of-the-art compression algorithms are run using the cli-

mate simulation output to determine the currently best compression algo-

rithm for floating-point data. The applied compression applications are:

blosc (Alted, 2010), fpzip (Lindstrom and Isenburg, 2006), xz, bzip2, zip,

brotli (Alakuijala and Szabadka, 2016), spdp (Claggett et al., 2018), and fpc

(Burtscher and Ratanaworabhan, 2008). All algorithms were set to max-

imise the compression factor. The results are illustrated in Figure 7.3.
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FIGURE 7.3 Average CF and throughput of the climate simulation dataset with cur-

rently available lossless compression algorithms. This figure is adapted from Cayoglu

et al. (2019b).

The graph indicates that fpzip performs best with a compression fac-

tor ~ 2.4. The runner-up is blosc with a compression factor of ~ 2.0. The
throughput of fpzip is not as good as those of brotli, spdp or fpc, but taking

into account themediocre performance of these algorithms regarding com-

pression factor, it can be argued that fpzip is currently the best performing

algorithm regarding lossless compression of floating-point data.

OBSERVATION 7.1 While theremight be usage scenarioswhere fpzip is not

themost successful compression algorithm, the results indicate that fpzip

is on average the best performing algorithm for lossless compression of

floating-data regarding compression factor. Every future algorithm should

measure itself against these results.

7.4.2 Shifted XOR

In the following, the average LZC of a residual is analysed. The residuals

are calculated using XORwith different Gaussian distributions using the

synthetic dataset.

The results are illustrated in Figure 7.4. LZC fallsmost severelywhen the

value is a power of two (marked bydotted lines). The intensity of these LZC

dips are greater the smaller the standard deviation is in the data. The closer
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TABLE 7.1 Effects of using a shifted XOR with a more sophisticated prediction al-

gorithm (Lorenz) and inferior one (Last Value). Depicted are the Throughput and

average LZC with and without (round brackets) shift operation.

Climate variable Prediction Throughput [MiB/s] Avg. LZC

Temperature
Lorenz 19.86 (22.32) 24.01 (23.75)
Last Value 31.33 (36.15) 22.89 (22.65)

Zonalwind
Lorenz 18.23 (18.68) 19.88 (19.61)
Last Value 30.27 (37.49) 18.12 (17.83)

Geopotential
Lorenz 18.86 (19.92) 29.05 (28.85)
Last Value 32.10 (37.91) 28.92 (28.83)

the two comparedvalues are to each other at this range, themore important

it is to move out of this range and perform the residual calculation in a

differentvalue range. The shiftoperation introduced in theprevious section

is depicted by the solid vertical lines. It achieves a higher LZC and thus

reduces the final compression factor of the data.

One more advantage of shifting values to a more welcoming value

range is the possibility to increase throughput. Shifting the values enables

throughput increase byallowing theusageof a simplerpredictionmodel for

compression. The shift operation compensates theweaknesses of a simpler

and faster predictor. Table 7.1 shows that using a simple prediction model

(Last Value) a 50% higher throughput can be achieved,while the LZC is still

close to that of a more sophisticated predictor. For details on the Lorenz

and LastValue predictionmethods, see Lindstrom and Isenburg (2006) and

Cayoglu et al. (2018c).

OBSERVATION 7.2 The compressionperformance is dependent on thevalue

ranges covered by the data as well as its distribution. A shifted residual

calculation can improve the LZC and help to reduce the final compression

factor of the data.

OBSERVATION 7.3 The shifted XOR calculation improves the average LZC

and therefore the compression factor. It allows theuseof simplerprediction

models for higher throughputwith comparable average LZCs.
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7.4.3 Splitting of the Residual

In this section the residuals generated by XOR are analysed for statistical

significance in the distribution of set and unset bits.

The results depicted in Figure 7.5 indicate that the distribution of set and

unset values is not uniform. The horizontal blue lines indicate the uniform

distribution. This suggests that information is still contained in the residual,

as otherwise an even distribution of set and not set bits (e.g. white noise)

would be expected. The number of set bits at themost significant positions

of the residual occur at a much higher rate than the number of unset bits.

Evenwith a length of six bits, there is a clear difference to the expected even

distribution. This unequal distribution is caused by bit flips caused by the

application of theXOR residual. This observation lead to the splitting of the

residual intomultiple streams described in Section 7.2.2.

OBSERVATION 7.4 There is a skewed distribution of the set and unset bits

if XOR residual calculation is being used. This unequal distribution shows

that there is information in the residual and that the compression factor

can be further increased. Amethod to extract this information is to encode

the number of FOCs separately.

7.4.4 Performance of Coding Methods

The transformation and codingmethods analysed for this experiment are:

Burrow-Wheeler-Transform (bwt), Delta difference (diff), Huffman coding

(huff), Range coding (range), Move-To-Front (mtf), and Run-length Coding

(rle). These coding methods are applied to the LZC and FOC. This experi-

ment is conducted using the climate simulation output. Exemplary results

for temperature are shown inTable 7.2, since the performance is similar for

the other variables. The BWT transformation coupledwith Range Coding

performs best regarding LZC. Regarding FOC it performs only third best

behind BWT+Huffman Coding and Huffman Coding.

Huffman Coding (without any transformation steps) performs best re-

garding FOC. This is due to the small value range of FOC. The downside of

Huffman Coding is that the codelist used for coding the datamust be trans-

ferred to the decoder. Such a necessity does not exist for Range Coding.
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TABLE 7.2 File size of temperature data after transformation and coding schemes.

The values are in Bytes. The abbreviations are: Burrow-Wheeler-Transform (bwt),

Delta difference (diff), Huffman coding (huff), Range coding (range), Move-To-Front

(mtf), Run-length Coding (rle). The best performing codingmethod for each category

is highlighted.

Transformation and

CodingMethods FOC LZC

bwt_diff_huff 29 715 223 41 347 759
bwt_diff_range 30 187 482 35 727 381
bwt_huff 21 625 804 50 204 194
bwt_mtf_diff_huff 32 046 132 45 767 747
bwt_mtf_diff_range 32 531 946 40 367 196
bwt_mtf_huff 25 382 523 37 223 861
bwt_mtf_range 25 958 407 32 657 611
bwt_mtf_rle_diff_huff 44 054 552 50 393 489
bwt_mtf_rle_diff_range 44 836 681 50 698 553
bwt_mtf_rle_huff 32 794 335 38 277 196
bwt_mtf_rle_range 33 716 265 38 402 906
bwt_range 22 043 891 28 862 090
diff_huff 29 451 797 37 695 831
diff_range 29 720 133 36 274 895
huff 21 625 389 50 203 689
mtf_diff_huff 31 908 557 46 008 528
mtf_diff_range 32 408 277 44 602 439
mtf_huff 25 374 374 35 935 034
mtf_range 25 782 694 34 990 704
mtf_rle_diff_huff 43 577 596 51 026 248
mtf_rle_diff_range 44 320 799 51 588 757
mtf_rle_huff 32 380 683 38 119 328
mtf_rle_range 33 313 109 38 667 389
range 22 489 931 42 918 321
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FIGURE 7.6 Time spend in each step of the compression algorithm. This figure is

taken from Cayoglu et al. (2019b).

OBSERVATION 7.5 The BWTalgorithm coupledwith Range Coding outper-

formsmost codingmethods. While it is not optimal for FOC coding, it still

performs good. With regard to the added value of using a single coding

process for FOC and LZC, BWT+Range Coding is chosen.

7.4.5 Comparison of pzip and fpzip

In the last experiment pzip and fpzip are compared. The direct comparison

of pzip and fpzip regarding CF and throughput is shown in Table 7.3. This

experiment is conducted using the climate simulation output.

As can be seen from the table, in almost all cases the proposed algorithm

outperforms fpzip in relation toCF.Theonlyexception is cloudwater,where

pzip achieves a CF of 67.59 and fpzip 73.28. This is due to the high number of

fill values in the cloudwater data. Due to the coding scheme used by fpzip,

it can compress exact predictions better than pzip. Future research must

determinewhether an alternative scheme should be used in such a case. In

every other case pzip outperforms fpzip by ~ 10% on average. The perfor-

mance of pzip for cloud ice content should be emphasised. The proposed

algorithm achieves an improvement of 36.9% compared to fpzip.

Although the compression factor is better, the throughput of fpzip can-

not be achieved with the current implementation of pzip. On average the

pzip implementation is about six times slower than fpzip.
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In order to analyse the bottleneck, each individual step of pzipwas timed

during execution. The result is depicted in Fig. 7.6. Themajority of the time

is spend in the coding step, specifically executing the BWT transformation.

This is due to thememory footprint of BWT.While the time complexity of

both algorithms are the samewith O(n), the memory consumption is dif-

ferent. The currently known best implementation of BWT has a memory

complexityof O(n log σ) (Okanohara and Sadakane, 2009)with σ represent-

ing the number of elements in the alphabet. The time complexity of BWT

isO(n) (Okanohara and Sadakane, 2009). The current implementation of

pzip cannot use the L1, L2 and L3 caches of the CPU as effectively as fpzip.

The reason for this is that the current setup of pzip is executed in blockmode

(see Section 2.1.1). This leads to an increased number of cachemisseswhich

in turn reduces throughput.

OBSERVATION 7.6 The compression factor of pzip is inmost cases ~ 10% bet-

ter than fpzip the state-of-the-art lossless compression algorithms for real-

world climate data. The BWT transformation is the most time consuming

task. More research is needed to optimise the coding step of the algorithm.

7.5 Summary

In this chapter different codingmethods for data compression are analysed.

It is shown that shifting the prediction and true value before calculating the

residual results in abetter compression factorwithminimal additional com-

putational costs. This shift enables the use of less sophisticated predictors

with higher throughput.

The experimental results implicate that the compression performance

is dependent on the value range covered by the data and its distribution.

The shifted XOR calculation eliminates the disadvantages of XOR residual

calculation bymoving the data to amore favourablevalue range. UsingXOR

for residual calculation, results into a skewed distribution of set and unset

bits. This non-uniform distribution suggests, that there is still information

contained in the residual. By splitting the residual into LZC, FOC and the

remaining residual, a decorrelation of this information is achieved. The
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proposed coding schemeoutperforms current state-of-the-art compression

methodsby~ 10%with respect to the compression factor for the climatedata

used.

The time complexity of fpzip and pzip are the same, while the memory

footprint of pzip is higher. Further research is needed for special case data

such as cloudwater, where the data consists mostly of fill values.

7.6 Code and Data Availability

The code of the proposed compression algorithm described above

is available under GNU GPLv3 license at https://github.com/ucyo/

xor-and-residual-calculation (Cayoglu, 2019b).
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CHAPTER 8

Compression Framework
This chapter introduces a compression framework to enable scientists to

design and develop custom compression algorithms. The results presented

in this chapter have been published in parts in Cayoglu et al. (2018b).

8.1 Motivation

The proposedmodular framework supports the creation of individual pre-

dictors, which can be customised and adjusted to the data at hand. The

framework provides interfaces and customisable components, which are

the building blocks to implement custom modules that are optimised for

particular applications. Furthermore, the framework provides additional

features such as the execution of benchmarks and validity tests for sequen-

tial and parallel execution of compression algorithms.

8.2 Proposed Method

Themain goal of the framework is to provide state-of-the-art compression

algorithms for domain scientists. It provides off-the-shelf solutions and a

lowbarrier for customisation. In this section the structure of the proposed

framework is described. The framework consists of two core components:

objects andmodifiers.

DEFINITION 8.1 (Object) Here, objects represent the current state of the

data during the compression process (see Fig. 8.1). Theymay includemeta-

data about previous states, but once they have been created they are im-

mutable.
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Float Array

Data File

Integer Array

Sequence Object Prediction Array

Residual Array

Coded Object

Coded File

read

map encode

flatten

predict

Encoding starts here
(counterclockwise)

Decoding starts here
(clockwise)

write

subtract

FIGURE 8.1 State diagram of a prediction-based compression algorithm. The label

on the arrows define the transitions. The colour emphasises the similarity of the

states. Data files are yellow,multi-dimensional arrays are green and customelements

white. This figure is taken from Cayoglu et al. (2018b).

DEFINITION 8.2 (Modifier) Modifiers operate on objects and are the only

way to transform one object to another. Each modifier has exactly one

method and can only operate on one kind of object. This setup prevents

mistakes by allowing only a singleway of interaction. A prediction-based

compression algorithm consists of fivemodifierswith the following tasks:

• Mapper

Mapping floating-point values to integers

• Sequencer

Transforms an array into a data stream

• Predictor

Predicts next datum on the data stream, based on past values

• Subtractor

Calculates the residual between prediction and true value

• Coder

Prepares residuals to bewritten on disk

Themodifiers aredesigned for the tasksdetailed inSection2.1.4. Theobjects

are the outcome of these tasks. The default compression function of the

framework is shown in Algorithm 8.1.

Since the interface of eachmodifier is standardised it is easy to replace

eachmodifier of the compression algorithm by a custom implementation.

Apart from these components the framework provides additional modules
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1: procedure Compress(arr, mapper, sequencer, predictor, subtractor, . . .)
2: iarr ← mapper.map(arr) .Mapper
3: seq ← sequencer.flatten(iarr) . Sequencer
4: pred← Array.new()
5: for i = 0 to seq.size do
6: p← predictor.predict()
7: pred.append(p) . Predictor
8: predictor.update(seq[i])
9: end for
10: rarr ← subtractor.subtract(iarr, seq, pred) . Subtractor
11: coded← coder.code(rarr) . Coder
12: return coded
13: end procedure

ALGORITHM 8.1 Compression function of proposed framework.

to help the domain scientist during the design phase of a compression algo-

rithm. These are for ensemble predictors, quality assessment, parallel com-

pression and random subsetting. These additional modules are described

in the following.

Ensemble Predictors. It is rather unlikely that there is one predictor that

dominates all other predictors. For example, if it is known that a certain

predictor performswell for temperature, but bad for greenhouse gas ozone,

the framework should provide the possibility to switch between predictors

or to average the result of the predictors (see Chapter 5).

For these cases the framework supports ensemble predictors. An ensem-

ble predictor is defined by a list of predictors, a cost function and if neces-

sary a consolidationmethod. The cost function determines the rank of the

predictors. A consolidation function defines how the various predictions of

the ensemble should be consolidated.

An example for an ensemble predictor is given in Algorithm 8.2. Here

the predictors are ranked based on their performance prior to the current

data point i.e. last bestmethod (see Section 5.2.1) given a predefined traver-

sal sequence (step four in Section 2.1.4). Please note the similarities in the

syntax of Alg. 8.1 and Alg. 8.2. Since there is no distinguishing property of

ensemble and non-ensemble predictors, the framework supports the nest-

ing of ensemble predictors. An ensemble predictor may consist of several

other ensemble predictors.
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1: function predict( )
2: pred← defaultpredictor
3: if lastbestpredictor 6= Null then
4: pred← lastbestpredictor
5: else
6: pred← predictors[lastbestpredictor]
7: end if
8: return pred.predict()
9: end function
10:

11: function cost(prediction, truth)
12: return abs(truth− prediction)
13: end function
14:

15: function update(truth)
16: predictions← Hashmap.new()
17: for all p in predictors do
18: prediction← p.predict()
19: predictions[p]← cost(prediction, truth)
20: end for
21: sorted← sortByValue(predictions, ascending = True)
22: lastbestpredictor ← sorted[0]
23: end function

ALGORITHM 8.2 An ensemble compression algorithm using the best predictor from

previous prediction.
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Quality Assessment. The Quality Assessment (QA) module provides in-

formation about the achievable compression ratio of the current setup

and dataset. QA hooks into the compression process at step five (see Sec-

tion 2.1.4) and calculates the LZC of the residual array. The residual ar-

ray provides enough information about the performance of the predictors

and expected CR. The average LZC can then be compared to the Shannon

Entropy (Shannon, 1948) of the dataset. The Shannon Entropy quantifies

the average amount of information represented by a random datum of the

dataset.

Parallel Compression. The frameworkprovidesanadditionalmodulewhich

can support thedomain scientist in search for a compressionmethod: paral-

lel processing. The proposed framework contains a parallelizationmodule,

which can either chunk the data in blocks and compress each on a differ-

ent thread or run a different predictor on each threadwith the same input

file. This leads to a less time-consuming development of a compression

algorithm.

Random Subsetting. Since the design of a compression algorithm is an it-

erative process, it would be a daunting task for the scientist to have to com-

press gigabytes of data on each test, only to realise that a certain parameter

needs to be fixed or a predictor eliminated. Therefore, the framework sup-

ports random subsetting of datasets. The subsetting is defined bysize, error

margin and possible dimension constraints.

These features help the scientist define a custom compressionmethod

for their data. The framework defines the necessarycomponents andhelper

modules for customisation and grading of compression algorithms,while

at the same time providing easy to use predefined algorithms. In the next

section the actual implementation of the framework is described.

8.3 Implementation

An implementation of the framework is available at Cayoglu (2018b). The

provided framework is implemented in Python 3 and uses as backendmod-

ules scipy (Oliphant, 2007), pandas (McKinney, 2010) and xarray (Hoyer and

Hamman, 2017). It has been testedwithfiles inNetCDF formatwithClimate

and Forecast Metadata Conventions. The use of established open source
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Array

Prediction Array

array : np.ndarray
dtype : np.int

Residual Array

array : np.ndarray
dtype : np.int

Integer Array

array : np.ndarray
dtype : np.int

Float Array

array : np.ndarray
dtype : np.float

from_netcdf(filename)
from_dataarray(dataarray)
from_random()
from_numpy()

Coded Object

array : np.ndarray
info  : dict

Sequence Object

sequence : list
shape    : tuple
data     : np.ndarray
dtype    : np.dtype

Object

FIGURE 8.2 UML class diagram for object components. This figure is taken from

Cayoglu et al. (2018b).

software provides a good basis for uptake, future cooperations and possible

extensions of the framework. The details of the implementation of the core

components are presented here.

Theclassdiagramused for the implementationof theobject components

is shown in Fig. 8.2. As described in Section 8.2 the objects do not have the

possibility to mutate itself or others. Except for Float Array, none of the

objects has methods to manipulate its contents. The additional methods

implemented in Float Array are for initialisation from common data types

such as numpy (Oliphant, 2006) arrays or netcdf (Rewand Davis, 1990) data

files.

The Prediction Array and Residual Array inherit from Integer Array.

While these classes do not provide additional functionality compared to the

Integer Array, they are necessary to provide strong distinction of objects on

which eachmodifier can operate.

Figure 8.3 depicts possible modifiers to be used as components of the

framework. This is a none exhaustive list of modifiers and should exemplify

the large number of possible options in designing a compression algorithm.

Themodifierswhich are implemented at the time of publication are empha-

sised. A description for eachmodifier is included in the documentation of

the implementation.
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Float Array

Integer Array

Sequence Object

Data File

Ordered
Raw Binary

Linear
Chequerboard
Blocks
Blossom

Prediction Array

Akumuli
Last Value
Stride
2 Stride
Stride Confidence
Hashed
Lorenzo
Pascal
...
Majority Vote
Union Rank (history h)
Union Rank Infinite
Exponential Rank (decay d)

Sequence Object

Huffman Coding (AV)
Rice Coding
Golomb Coding
Asym. Num. Sys. Coding (AV)
Arithmetic Coding (AV)
Range Coding (AV)

Coded Object

Residual Array

Prediction Array

XOR
Subtraction

FIGURE 8.3 A none exhaustive list of modifiers to exemplify the large number of

possible combinations. Emphasised are the modifiers which are implemented and

part of the framework at the time of publication. This figure is taken from Cayoglu

et al. (2018b).

8.4 Summary

In recent years, climate sciences have experienced a breakthrough in terms

of possible fine-granular simulations. Next-generation climate models

make it possible to carry out high-resolution simulations on HPC systems.

This led to a significant increase of storage space. In this chapter amodular

framework for the compression of climate data is presented.

The framework provides all necessary components to design, test and

grade various prediction-based compression algorithms. It also supports

the use of ensemble predictors tomerge predictions based on different pre-

dictors, quality assessmentmethods to help assess the performance of the

predictionmethods, parallel compression for concurrent execution of pre-

dictors aswell as random subsetting for unbiased result acquisition during

the development of a compression algorithm. Although the framework is

mainlyused by climate researchers, it is conceivable to use it in conjunction

with other structured floating-point data.

8.5 Code and Data Availability

An implementation of the framework described above is available under

GNUGPLv3 license at https://github.com/ucyo/cframework (Cayoglu, 2018b).
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CHAPTER 9

Conclusions and Outlook
This chapter gives an overviewof themain contributions of this thesis and

possible future research directions.

9.1 Conclusions

Thegoal of this thesis is toprovide insights andcontributions to the state-of-

the-art in compression algorithms for structured floating-point data. The

main challenge in the compression of floating-point data is the candidate

space for making a prediction compared to e.g. textual data. All compres-

sion algorithms use the same principle: Identify and remove redundant in-

formation in the decorrelation step (based on a context), optionally further

align the data in the approximation step, and find a more compact repre-

sentation in the coding step. This thesis provides contributions to each of

these three steps.

The analyses of variance, entropy and mutual information show that

there is no ideal context for value prediction. The ideal context depends on

the time, resolution and location of the data point. The described analyses

for the identification of redundant information and the introduction of in-

formation spaces and contexts contribute to the decorrelation of the data.

The use of information spaces helps to identify newpatterns and relation-

ships within variables for the current data. Using IS achieves an improve-

ment of 10% on average for LZC and a reduction of the standard deviation

for the compression factor by an average of more than 20% for the climate

data used.

The lossyARIMA compression algorithm provides a novel approxima-

tion algorithm for stationary time-series data. This method allows the in-

tegration of prior knowledge about the interactions of the variables into
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the encoder. These two contributions close the circle and allowthe compres-

sion algorithmtoworkwithprior knowledge and information fromthedata

available.

A thorough literature review indicates that a significant part of the

prediction-based compression algorithms for floating-point data uses XOR

for the residual calculation. This kind of residual calculation is improved by

the novel coding algorithm described in this thesis. The analysis and sub-

sequent comparisonwith state-of-the-art compression algorithms shows

that the codingalgorithmpresented in this thesis achieves thebest compres-

sion factors for structuredfloating-point data. The proposed coding scheme

outperforms current state-of-the-art compressionmethods by ~ 10%with

respect to the compression factor for the climate data used.

These contributions are of coursemeaningless if they cannot be used by

the community. In the spirit of Open Science, all contributions have been

made public aswell as open source and can be reproduced by all interested

parties. Please read the last section of each chapter for access to the code

and/ordata. Inaddition, all core contributionsarepublished ina framework

that simplifies the development of a custom compression algorithm.

This researchwas initiated by the needs of climate science, but the appli-

cation of its contributions is not limited to it. The results of this thesis can

be used to develop or improve any compression algorithm for structured

floating-point data.

9.2 Outlook

The following is a collection of ideas that could be investigated to advance

the compression of floating-point data.

Real Number Representation. The currentlymost used representation for

real numbers is the IEEE754 floating-point standard 754-2008 (2008) first

introduced in 1985. As already described in the background section, this

form of representation has weaknesses when comparing two numbers or

calculating thedifference. There are otherways fordescribing real numbers:

fixed-point representation (e.g. Q number format), floating-bars, or posits.

An in-depth analysis of these representations and their respective differ-

ences could help solve the problem with powers of two that the IEEE754

floating-point has.
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Coding of LZC/FOC. The coding algorithm described in this thesis still has

redundant information in its residual. Preliminary experiments show that

there is high mutual information between LZC and FOC. Future research

could analyse if the sum of these values behaves differently compared to

eachsingle stream. Thenonevalue (e.g. FOC) couldbe inferred fromthesum

and the remainder (e.g. LZC). This could further improve the compression

factor.

Routing Problem of Ideal Traversal Paths. Two decisions are crucial for the

performance of a prediction-based compression algorithm: traversal path

andpredictionmethod. The traversalpathdefineswhat information is avail-

able for calculating the prediction. The predictionmethod defines how this

information is used tomake a final prediction. Both of these problems are

strongly coupled. The first part of the problem could be formulated as a

routing problem: Each data point is a nodewith 80 edges (number of adja-

cent cells in a tesseract) and the value difference of both nodes as weights

for the edges. The shortest path through all nodes is now the smoothest

curve and therefore themost predictable. The difficulty then no longer lies

in the prediction of the data points, but in the compact representation of

the route since this has to be passed on to the decoder.

Compression Using Adaptive Quantisation. Quantisation is a process of

mapping values from one domain space to the other e.g. by rounding or

truncation. Usuallythe sourcedomain is continuousand thedestinationdis-

crete. Instead of a predefined interval inwhich the simulationmodelwrites

its output, an adaptive quantisationmethod could be developed,which de-

cides if anoutput should be generatedbasedon thedata. This decision could

be based on a grade,which classifies howwell the current data can be inter-

polated or predicted. This could be developed as a lossless or lossy compres-

sion algorithm. It only depends on the gradingmodel and the extent of the

quantisation applied to the data.

Machine Learning for Lossy and Lossless Compression. Since a coupleyears,

machine learning is in the centre of attention across different scientific

fields. Neural networks achieve unprecedented results in object recogni-

tion and classification of images and several other fields. Themost promis-
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ingmodels for compression are 3D convolutions and recurrent models e.g.

long short-termmemory (LSTM)models. Currently these models are con-

sidered for the whole compression process on its own e.g. Bellard (2019)

and not as an extension for established algorithms. There should bemore

research focusing on using LSTM for parts of a prediction-based compres-

sion algorithm. This can be either for the prediction step (e.g. memory of

previous values) or for the definition of the traversal path (e.g. memory

of good traversal dimensions). Both should lead to a better prediction and

therefore a better compression factor.

Predictor Based on Lagrange, Hermite, and Birkhoff Interpolation. There

are already several prediction-based compression algorithms using La-

grange interpolation for one dimensional predictors with very good com-

pression results e.g. Robinson (1994). A natural extension of the Lagrange

interpolation are themultivariate interpolation techniques of Hermite and

Birkhoff. Hermite interpolation considers the actual value and its deriva-

tive for multivariate interpolation, while Birkhoff also considers missing

values. An in-depth analysis of these interpolation techniques for multi-

variate prediction could increase the prediction quality. These results could

be integrated into the information spaces described in this thesis.
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APPENDIX A

Variance Analysis
In this appendix further results of thevarianceanalysisdescribed inSection

4.3.2 are shown.
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FIGURE A.1 Short-term variance analysis for specific humidity across time for the

northern hemisphere.

138



FIGURE A.2 Short-term variance analysis for specific humidity across longitude along

the latitudes.
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FIGURE A.3 Short-term variance analysis for specific humidity across latitudes.
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FIGURE A.4 Short-term variance analysis for meridional wind across altitudes for

the northern hemisphere.
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FIGURE A.5 Short-term variance analysis for zonal wind across time for the northern

hemisphere.
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FIGURE A.6 Short-term variance analysis for zonal wind across longitude along the

latitudes.
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APPENDIX B

Pascal Predictor
In this appendix the pascal predictor is discussed in more detail. Given a

Sequence S = s1s2 . . . sn−1sn with n elements, the Pascal k predictormakes

a prediction for an element si using the last k elements in the sequencewith

k � n. The predictor is based on an predictionmethod used in audio com-

pression (Robinson, 1994) and polynomial interpolation. The Pascal k is the

optimal predictor for datawithoutwhite noise and on a uniform gridwhich

can be described by a polynomial function f of degree i − 1 (Eq. B.1). The
coefficients of Pascal 1-5 are shown in Table B.1. The name Pascal has been

chosen, because the coefficients can also be derived from Pascal’s triangle.

In the following the conducted experiments are described.

f(x) =
i∑

j=1
aj · xj (B.1)

The coefficients of Pascal k predictor can predict a polynomial function

of order k − 1 exactly.

LEMMA B.1 Given the n-th order backwards difference∇n
h[p](x) the opti-

mal coefficients are p(x) = ∑n
i=1(−1)i+1

(
n
i

)
p(x − i) for uniform spacing

h = 1.

TABLE B.1 Coefficients for Pascal k predictor using the last k values for prediction of
si.

Predictor Formula

Pascal 1 ŝi = si−1

Pascal 2 ŝi = 2 si−1 − si−2

Pascal 3 ŝi = 3 si−1 − 3 si−2 + si−3

Pascal 4 ŝi = 4 si−1 − 6 si−2 + 4 si−3 − si−4

Pascal 5 ŝi = 5 si−1 − 10 si−2 + 10 si−3 − 5 si−4 + si−5
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Proof This can be shown using finite differences (which are zero in orders

higher than those of the polynomial function):

∇n
h[p](x) =

n∑
i=0

(−1)i
(

n

i

)
p(x− ih)with h = 1 and∇n

h[p](x) := 0

0 =
n∑

i=0
(−1)i

(
n

i

)
p(x− i)

0 = −10
(

n

0

)
p(x) +

n∑
i=1

(−1)i
(

n

i

)
p(x− i)

p(x) =
n∑

i=1
(−1)i+1

(
n

i

)
p(x− i)
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