

High-fidelity multiphysics simulations for Light Water Reactors in the McSAFE H2020 project

L. Mercatali (KIT), V. H. Sanchez-Espinoza (KIT), M. Garcia (KIT), D. Ferraro (KIT), U. Imke (KIT),

J. Leppänen (VTT), V. Valtavirta (VTT), S. Kliem (HZDR), P. Van Uffelen (JRC)

Contents		
The McSAFE H2020 project		
• High-fidelity multiphysics		
 Coupling approaches 		
 Depletion 		
 Conclusions 		

- Predictive simulations = backbone of nuclear reactor safety
- Most of the tools developed when computing resources and capabilities were limited
- Shift towards high-fidelity methods taking advantage of progress in computing (hardware/software)
- Reactor operating closer to their safety limits due to less conservative safety evaluations
- Core analysis relies mainly on deterministic neutronic codes (daily work)
- Alternative/supplementary option:
 - Use **MC codes** capable of simulating the neutron transport without approximations
 - Obtain reliable data for any core state at fuel pin level (experimental data at pin level is scarace and not easy to be measured)
 - Potential use taking advantage of **HPC** and **parallelization**

- Three-year project (09.2017 08.2020)
- Participants:
 - 9 research institutions: KIT, VTT, HZDR, JRC, CEA, NRI, KTH, DNC, Wood
 - 3 industry partners: EKK, CEZ, EdF
- High-fidelity multiphysics for safety analysis of LWRs:
 - Monte Carlo neutron transport: **Serpent2**, **Tripoli4**, **MCNP**, **MONK**
 - Subchannel thermalhydraulics: **SUBCHANFLOW (SCF)**
 - Fuel-performance analysis: **TRANSURANUS (TU)**
- Main developments
 - Serpent2-SCF(-TU) coupling for steady-state, burnup and transient problems
 - Optimization of steady-state and transient capabilities for HPC
 - Optimization for massive (full-core pin-by-pin) depletion problems
- Validation with plant data
 - PWR-Konvoi
 - VVER-1000

3 18.11.2019

- Main objectives:
 - Avoid approximations (multi-scale approach) in neutronics
 - Calculate local safety parameters directly:
 - Burnup cycle.
 - Transient scenarios.
 - Provide reference solutions for lower order methods

Neutronics:

- Continuous-energy Monte Carlo neutron transport
- Pin-by-pin power tallying and burnup calculation

Thermal-hydraulics:

- Pin-level subchannel thermal-hydraulics
- Coolant and fuel safety parameters

Fuel performance:

- Pin-level thermomechanical analysis
- Fuel safety parameters

200e+03

1.50e+03

1.00e+03 5.00e+02

Coolant temperature (k

5.93e+02

5.84e+02

- Master-slave internal coupling:
 - SCF and TU (slaves) modularized and embedded in Serpent2 (master).
 - Traditional approach, reference for performance.

Object-oriented coupling:

- Serpent2, SCF and TU modularized and coupling scheme implemented in a separate supervisor program.
- More innovative approach, potential benefits from the object-oriented design.
- Main features:
 - > Inheritance-based APIs.
 - > Object-oriented supervisor.
 - > Mesh-based feedback.
- Numerical method:
 - Operator splitting.
 - Picard iterations.
 - Pin-by-pin feedback.

Serpent2:

- Multiphysics interfaces based on superimposing meshes on the tracking geometry to set densities and temperatures and get power
- Internal meshes represented as unstructured meshes for feedback exchange

SUBCHANFLOW:

- Subchannel model defined by hydraulic parameters and connectivity
- Channel and rod geometry given by coolant and fuel unstructured meshes for feedback exchange and interpolation

TRANSURANUS:

- Solution scheme independent for each rod
- Rod mesh to manage input and output between the multiphysics interface and each solver instance

- Standard steady-state neutronic-thermalhydraulic coupling:
 - Power calculated by Serpent2 and used in SCF as heat source
 - Cooling conditions calculated by SCF and ρ_{cool} , T_{cool} and T_{fuel} used in Serpent2
 - Iterative scheme with pin-by-pin feedback
- Verification with the VERA Core Physics Benchmark (PWR) [1]

[1] "Development of an object-oriented Serpent2-SUBCHANFLOW coupling and verification with Problem 6 of the VERA Core Physics Benchmark", M. García, D. Ferraro, et al., M&C2019.

Result	Keff	ΔKeff (pcm)
VERA-CS	1.16361	-
RMC-CTF	1.16239±0.00010	-90
MC21-CTF	1.16424±0.00003	47
MCNP6-CTF	1.16500±0.00006	103
Serpent2-SCF (OO)	1.16552±0.00003	141
Serpent2-SCF (MS)	1.16560±0.00003	147

- Monte Carlo depletion scheme with thermalhydraulic feedback:
 - Burnup calculation integrated in Serpent2
 - Predictor-corrector and Stochastic Implicit Euler (SIE) methods
 - Iterative quasi-stationary scheme with pin-by-pin feedback
- Verification with TVSA-type fuel assemblies (VVER-1000) [2]

[2] "Serpent/SUBCHANFLOW coupled burnup calculations for VVER fue assemblies", D. Ferraro, M. García, et al., PHYSOR2020 (submitted).

Serpent2-SCF-TU: motivation

Crack -

Pellet gap

- Fuel behavior during burnup:
 - Extremely complex multi-physics problem
 - Important for safety assessment
 - Potential impact on the Doppler feedback
- SCF approach:
 - Thermal properties: c_P(T), k(T), α_T(T)
 - Gap width: thermal expansion, cracking and swelling dependent on burnup
 - Gap conductance: radiation and conduction
- TU approach:
 - Full thermomechanic analysis
 - Main relevant physics
 - Validated extensively
 - Reference solution

Xe, Kr,

Grain boundaries

C, I, S, Cs, Se, Tc

enriched

in Pu

precipitates:

Rb. Cs. Ba.

Zr, Nb, Mo, Tc

Serpent2-SCF-TU: burnup scheme

- Main features [3]:
 - Semi-implicit burnup scheme
 - Fully coupled neutronics, depletion, thermalhydraulics and thermomechanics
 - Independent depletion in Serpent2 (detailed) and TU (simplified)
 - SCF simple fuel-rod solver replaced by TU thermomechanical analysis
- Verification [4]:
 - PWR depletion problem based on the VERA Benchmark
 - Comparison with Serpent2-SCF (w/o TU)

[3] "A Serpent2-SUBCHANFLOW-TRANSURANUS coupling for pin-by-pin depletion calculations in Light Water Reactors", M. García, D. Ferraro, et al., Annals of Nuclear Energy (in press).

[4] "Serpent2-SUBCHANFLOW-TRANSURANUS pin-by-pin depletion calculations for a PWR fuel assembly", M. García, D. Ferraro, et al., PHYSOR2020 (submitted).

- Gap temperatures:
 - Minor differences in cladding temperatures due to material properties
 - Significant differences in fuel outer temperatures relative to the temperature step in the gap

- Gap properties:
 - Heat transfer coefficient underpredicted by SCF (~50% on average)
 - Gap width over predicted by SCF (~0.005mm)
 - Larger gap temperature increase for SCF

- Fuel temperatures:
 - Significant underprediction by SCF
 - Differences mostly due to conductivity degradation with burnup

18 18.11.2019

L. Mercatali AAA Workshop – December 2, 2019 (GRS)

Fuel-performance results:

Takeaways from fully coupled burnup

- Gap behavior:
 - Significant improvement in the conductivity and width using TU.
 - Reference solution for SCF to improve correlations
- Fuel temperatures:
 - Underprediction in SCF up to ~350K (centerline) and ~175K (average)
 - Reference solution for SCF to improve material properties
- Neutronics:
 - Minor impact in local and global results
- Safety parameters:
 - No significant impact on neutronics
 - No impact on DNBR calculation
 - Large improvement in fuel temperatures
 - Pin-by-pin fission gas release
 - Pellet-cladding interaction modelled

Collision-based Domain Decomposition

- Traditional parallel scheme for Monte Carlo transport:
 - Particle-based parallelism with domain replication
 - Usually excellent speedup, but no memory scalability
- Collision-based domain decomposition:
 - Data decomposition for burnable materials
 - Memory scalability, acceptable speedup

- Verification with the X2 VVER-1000 benchmark [6]:
 - ~150 pcm agreement with measured data at EOC (critical state)
 - Good agreement in global results

[6] "Serpent/SUBCHANFLOW coupled calculations for a VVER core at hot full power", D. Ferraro, M. García, et al., PHYSOR2020 (submitted).

Subchannel coarsening

- Coarsening method [7]:
 - Build the subchannel model
 - Superimpose a mesh defining zones
 - Merge subchannels and condense hydraulic data for each coarse channel

[7] "A subchannel coarsening method for Serpent2-SUBCHANFLOW applied to a full-core VVER problem", M. García, D. Ferraro, et al., PHYSOR2020 (submitted).

- **<u>Goal</u>**: Monte Carlo simulations of transients with feedback
 - \rightarrow "move towards high fidelity calculations"

Development of dynamic MC-methods for transients analysis

- Development of time-dependent dynSERPENT-SCF e.g. implementation of methods to account for the prompt neutron and gamma heat deposition in the coolant
- Development of time-dependent dynTRIPOLI-SCF
- Development of time-dependent dynMCNP-SCF
- Variance reduction for MC-codes with dynamic capability to improve the efficiency of time-dependent MC solutions e.g. Uniform Fission Sites (UFS)
- Methods for optimal parallel scalability of MC-TH codes for dynamic simulations to take profit of massively parallel environments in the frame of industry-like applications
- Verification of developed tools on 3x3 pin cluster or PWR minicore (3x3 FA)

Code-to-code verification with Tripoli4-SCF [8]

Validation with SPERT-IIIE experiments [9]

[8] "Serpent/SUBCHANFLOW pin-by-pin coupled transient calculations for a PWR minicore". D. Ferraro, M. García, et al. Annals of Nuclear Energy (in press).

[9] "Serpent/SUBCHANFLOW pin-by-pin coupled transient calculations SPERT-IIIE hot full power tests", D. Ferraro, M. García, et al., Annals of Nuclear Energy (submitted).

Dissemination

- Project web-page: www.mcsafe-h2020.eu
- User Group
- Synthesis reports
- Newsletters
- Training Course
 - March 25-27, 2020 (KIT)

- Development stage (first two years) almost over
- Serpent2-SCF(-TU) coupling implemented and optimized
- Validation stage (last year) beginning, preparation of experimental data and core specifications in progress
- Depletion calculations:
 - Serpent2-SCF-TU fully-coupled depletion scheme:
 - > Improvement in the modelling of the fuel during irradiation
 - Minor impact on the neutronic solution
 - > Large impact on safety parameters such as gap behavior and fuel temperature
 - Optimization for full-core pin-by-pin problems:
 - Subchannel coarsening methodology for SCF and CDD for Serpent2
- The project will deliver improved and validated high-fidelity numerical simulations tools that can be used by different end-users to provide reference solutions to deterministic codes for safety demonstration