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Precision tests of nonadiabatic perturbation theory with measurements on the DT molecule
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First-principles calculations are presented for fundamental vibrational splitting energies of tritium-bearing
molecular hydrogen species with the improved treatment of the nonrelativistic, relativistic, and quantum
electrodynamic energy contributions resulting in a total uncertainty of 0.000 11 cm−1 for DT, or about a 100-
times improvement over previous results. Precision coherent Raman spectroscopic measurements of Q(J = 0–5)
transitions in DT were performed at an accuracy of <0.000 4 cm−1, representing an even larger 250-fold
improvement over previous experiments. Perfect agreement between experiment and theory is found, within
1σ , for all six transitions studied.
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I. INTRODUCTION

Seventy years after its development, quantum electrody-
namics (QED) has emerged to be the best-tested theory
in physics. While QED is most accurately tested from the
measurement of the anomalous magnetic moment of a free
electron [1] and atomic recoil measurements [2,3], tests in
the bound atomic hydrogen system are at present limited by
effects of the proton structure [4,5]. Precision tests in the
hydrogen atom rely ultimately on the narrowest transition
involving the long-lived 2S quantum state with a natural
lifetime of 0.12 s [6]. In contrast, the additional rotational and
vibrational degrees of freedom in H2 give rise to a multitude of
states in the ground electronic manifold with extremely long
lifetimes on the order of 105–106 s [7]. In addition, access
to all six isotopic variants of molecular hydrogen enables a
robust validation of nonadiabatic perturbation theory.

The additional complexity of the four-body molecular
hydrogen system presents formidable challenges in first-
principles calculations. The last decade has shown great im-
provements in calculation of the nonrelativistic energies using
a perturbative approach [8,9], or a recent nonperturbative
treatment [10]. Concurrent developments in the calculation of
relativistic [11], QED [12], and associated recoil corrections
have led to sub-MHz accuracies in level energies of the stable
molecular hydrogen species H2, HD, and D2 [13], but have
not been applied to tritiated isotopologues until now.
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Parallel progress in experiments has resulted in an ac-
curate measurement of the dissociation energy of the H2

molecule [14,15], the measurement of its fundamental vi-
brational splitting [16], as well as very weak quadrupole
overtone transitions [17–19]. Similar spectroscopic studies
have also been applied to the other stable D2 (cf. [20–22])
and the mixed isotopologue HD (cf. [23–26]). On the other
hand, very few precision studies have been undertaken on the
tritium-bearing species [27–29], on account of difficulties in
handling radioactive tritium. If these practical challenges were
overcome, access to tritium-bearing species T2, HT, and DT
would double the number of molecular hydrogen test systems.

Here we present highly accurate calculations of the rovi-
brational transitions for all tritiated molecular hydrogen that
are two orders of magnitude more accurate than previous
studies [30]. This improvement is obtained by applying a
recently developed nonadiabatic perturbation theory approach
to obtain accurate nonrelativistic energies [9], as well as by
systematic treatment of leading-order, higher-order, and recoil
relativistic and QED corrections based on nonrelativistic wave
functions. The calculations are benchmarked by accurate mea-
surements of DT transition energies, which enables precision
tests in tritiated species that are now sensitive to QED effects.

II. EXPERIMENT

As for the experimental study, we use the nonlinear
frequency-mixing scheme of coherent anti-Stokes Raman
spectroscopy (CARS), illustrated in the inset of Fig. 1. An
anti-Stokes coherent beam is produced for signal detection, at
frequency ωAS = 2ωP − ωS corresponding to λAS ∼ 464 nm,
whenever the frequency difference between the pump (ωP)
and Stokes (ωS) frequencies is in resonance with a vibra-
tional mode (ωR) in the molecule. The high-resolution CARS
setup has been described in a previous work on T2 [31].
An injection-seeded and frequency-doubled Nd:YAG laser
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FIG. 1. Q(1) transition of the DT X 1�+
g (v = 0 → 1) Raman

band, probed at different peak intensities and plotted with respect
to the Stokes frequency ωS (lower frequency axis) and the Raman
shift ωR (upper axis). The solid lines through the DT data points are
Gaussian fits, with the line centers exhibiting ac-Stark shifts. The
transmission peaks of the stabilized etalon and saturated I2 spectrum
used in the relative and absolute frequency calibrations of ωS are also
plotted. Inset: Nonlinear four-wave mixing scheme.

provides the pump beam (λP ∼ 532 nm), while the Stokes ra-
diation (λS ∼ 623 nm) originates from a narrow-band pulsed
dye amplifier (PDA) system [32], which is seeded by a
continuous-wave (cw) ring dye laser. DT at a partial pressure
of 4 mbar is contained in a 4-cm3 gas cell, prepared from a
4:1 mixture of D2 and T2 at the Tritium Laboratory Karlsruhe
and transported to LaserLaB Amsterdam for the spectroscopic
measurements [33].

Recordings of the Q(1) Raman transition at different in-
tensities are shown in Fig. 1, manifesting ac-Stark broad-
ening and shifting. The cw-seed frequency for the ωS

radiation is calibrated using a HeNe-stabilized etalon in com-
bination with an absolute frequency reference from satu-
ration I2 spectroscopy [34]. The cw-pulse frequency offset
induced by frequency chirp effects in the pulsed-dye ampli-
fication [32,35,36] is measured and corrected for [37]. The
frequency of the ωP pulse is monitored online using a high-
resolution wavemeter (High Finesse Ångstrom WSU-30),
which is periodically calibrated against several absolute fre-
quency standards at different operating wavelengths, includ-
ing calibrations against a Cs clock with the aid of an optical
frequency comb. This wavemeter also measures the correct
frequency that includes any chirp-induced frequency offset as
verified when using a narrow-band titanium sapphire pulsed
laser source with an adjustable cw-pulse frequency offset used
in Ref. [14]. The Raman shift, ωR = ωP − ωS , is derived from
the simultaneous frequency calibrations of both pump ωP and
Stokes ωS laser frequencies.

The ac-Stark shift for the Q(1) transition is plotted in Fig. 2,
panel (a), as a function of the pump IP and Stokes beam IS

intensities, and in panel (c) as a function of the total intensity,
IP + IS , of both pump and Stokes beams. It was established
that the extrapolation to the unperturbed zero-intensity fre-
quency by fitting a plane in (a) or a line in (c) yields the same
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FIG. 2. (a) The ac-Stark extrapolation for the Q(1) line position
by fitting a plane (blue-shaded area) spanned by the pump, IP, and
Stokes, IS , laser intensities separately. (b) Full widths at half maxi-
mum plotted against the total intensity IP + IS . The zero-intensity ωR

value obtained in (a) is consistent with a linear fit in (c) using the
total intensity as an independent parameter.

value within 2 MHz. This linear dependence is expected since
the polarizabilities at λP and λS for both the v = 0 and v = 1
levels of molecular hydrogen are very similar [38]. In this
manner, the ac-Stark dependence on the total intensity for all
other Q(J = 0, 2–5) transitions was treated by linear extrap-
olation and found to be accurate to 6 MHz. The full widths
at half maximum are plotted in Fig. 2(b), which extrapolates
to the Doppler width at zero intensity. Collisional shifts on
the DT transitions are conservatively estimated to be ∼1 MHz
(for DT:D2:T2 partial pressures of 4:8:0.5 mbar), based on in-
vestigations of the stable molecular hydrogen species [39–41].
Since we cannot vary the pressure of DT, we have verified the
estimates by pressure-dependent measurements of D2 in an
identical gas cell. The hyperfine structure of DT is expected to
be similar to that of HD with the hyperfine splittings spanning
within ∼1 MHz, and is not observed in our Doppler-limited
linewidths. Possible shifts in the hyperfine center of gravity of
the transitions are expected to be well below a MHz and are
neglected. Table I shows the uncertainty contributions, where
a final uncertainty of 12 MHz or 4×10−4 cm−1 is estimated
for the Q(J = 0, 2–5) lines. The Q(1) transition has a slightly
smaller uncertainty due to more measurements collected for
the assessment of systematic shifts. The reproducibility of

TABLE I. Systematic and statistical contributions to the fre-
quency uncertainties in the DT fundamental vibrational Raman tran-
sitions. Values are given in MHz.

Contribution Q(J �= 1) Q(1)

Pump (ωP) calibration 6 6
Stokes (ωS) cw calibration 2 1
Stokes cw-pulse chirp correction 5 5
ac-Stark analysis 6 3
Collisional shift 1 1
Statistics 7 5

Combined (1σ ) 12 10
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FIG. 3. (a) Comparison of the experimental and calculated DT
Raman splittings demonstrating very good agreement. The data
points (squares) represent the experiment-calculation differences,
ωexp − ωcalc, while the error bars represent the combined experimen-
tal and theoretical uncertainties. (b) A comparison of D2 Q(J) lines
(circles) also measured with the present CARS setup and DT gas cell
are shown. In addition, a comparison of D2 molecular beam mea-
surements in Ref. [42] (triangles) is also plotted in (b). The dashed
lines indicate the average of experiment-calculation differences (data
points) of all measured transitions, while the shaded regions indicate
the standard deviation.

measurements performed on multiple days is indicated in the
statistics entry in Table I.

Measurements of the Q(0), Q(1), and Q(2) transitions of
the fundamental band of D2with 8-mbar partial pressure inside
the same DT cell were also performed. High-accuracy D2

measurements using molecular beams have been performed
with a completely different spectroscopic approach [16,42],
allowing for the in situ assessment of any other systematic
effects. D2 comparisons with Ref. [42] yield an average
deviation, shown in Fig. 3, that is consistent with and vali-
dates the independently estimated uncertainty of the present
CARS study. These experimental results are compared with
the theoretical results presented in the following discussion.

III. THEORY

In order to calculate molecular rovibrational levels and
transition energies accurately, we use a variant of nonrelativis-
tic quantum electrodynamics (NRQED)—an effective theory
approximating QED at low-energy scales [12]. It assumes an
expansion of the binding energy in powers of the fine-structure
constant α,

E (α) = α2 E (2) + α4 E (4) + α5 E (5) + α6 E (6) + · · · , (1)

where E (i) is a contribution of order αi m (with the electron
mass m) and may include powers of ln α. Each E (i) can be ex-
pressed as an expectation value of some effective Hamiltonian
with the nonrelativistic wave function. The E (i) terms can be
calculated directly (see, e.g., [10,43–45]) or expanded further
in the m/μn mass ratio [with μn = MAMB/(MA + MB)—
the nuclear reduced mass] in the spirit of the nonadiabatic
perturbation theory (NAPT) [9,46]. This yields the well-
known components of the nonrelativistic energy—the Born-
Oppenheimer (BO) energy E (2,0), the adiabatic correction

E (2,1), and the nonadiabatic correction E (2,2) for a given
rovibronic state. Similarly, NAPT enables the relativistic E (4)

and QED E (5) corrections to be evaluated as a sum of the
leading (infinite nuclear mass) and the recoil (finite mass)
components, although finite mass QED corrections have not
yet been incorporated.

The Schrödinger equation for a hydrogen molecule iso-
topologue, written in a center-of-mass frame, with the origin
in the geometric center of the nuclei, is

(H + Hn − E (2) ) |�(�r1, �r2, �R)〉 = 0, (2)

where

H = −1

2

( �∇2
1 + �∇2

2

) + V, (3)

V = − 1

r1A
− 1

r1B
− 1

r2A
− 1

r2B
+ 1

r12
+ 1

R
, (4)

Hn = − 1

2μn

( �∇2
R + �∇2

el

) +
(

1

MA
− 1

MB

)
�∇R �∇el, (5)

and where the 1, 2 indices denote electrons, A, B denote
nuclei, �R = �RA − �RB, and �∇el = ( �∇1 + �∇2)/2. The last term
in Hn is present in heteronuclear isotopologues and is a source
of the gerade/ungerade mixing effects, of relevance to the DT
species investigated here. Within NAPT, the wave function is
represented as

�(�r1, �r2, �R) = ψ (�r1, �r2)Y (�n)χ (R)/R + δ�(�r1, �r2, �R), (6)

where one assumes 〈δ�|ψ〉el = 0 (integration over electronic
coordinates only), Y (�n) is a spherical harmonic, and �n =
�R/R. Here ψ (�r1, �r2) is an eigenfunction of the electronic
Schrödinger equation,

H |ψ〉 = E (2,0)(R)|ψ〉, (7)

with the eigenvalue dependent on the internuclear distance
R. In the NAPT leading order, the function χ satisfies the
following nuclear equation,

HNχ (R) = E (2,0)χ (R), (8)

HN = − 1

2μn

d2

dR2
+ E (2,0)(R) + J (J + 1)

2μnR2
, (9)

where J is the rotational quantum number. E (2,0)(R) from
the electronic Schrödinger equation (7) serves as a potential
for the movement of the nuclei, present in the nuclear equa-
tion (8). We solve Eq. (8) with a discrete variable representa-
tion method [47,48] for χ , which is then used in a perturbative
manner to calculate the rovibrational energy contributions
〈χ |E (i,k)(R)|χ〉, where E (i,k)(R) denotes a correction of the
order αi m(m/μn)k to the electronic potential. Regarding E (2),
its BO approximation E (2,0) is surely not accurate enough
for our purposes. At the same time, direct calculation of
E (2,1) and E (2,2) is not very convenient. This is why the
nuclear Schrödinger equation is solved again instead—with
the NAPT-corrected Hamiltonian, including the nonadiabatic
effects up to the (m/μn)2 level

H̃N =
[
− d

dR

1

2μ‖(R)

d

dR
+ J (J + 1)

2μ⊥(R)R2
+ W ′

‖(R)

R
+ Y (R)

]
.

(10)
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TABLE II. Calculated contributions to the Q(1) transition energy (in units of cm−1) in the fundamental band of tritium-bearing molecular
hydrogen. EFS is the finite nuclear size correction with rp = 0.841 4(19) fm [52], rd = 2.127 99(74) fm [52], and rt = 1.759 1(363) fm [53],
for the proton, deuteron, and triton sizes, respectively. The fine-structure constant α, Rydberg constant R∞, and Bohr radius a0 are taken
from [52], as are the respective proton, deuteron, and triton electron mass ratios: mp/m = 1 836.152 673 43(11), md/m = 3 670.482 967 88(13),
mt/m = 5 496.921 535 73(27).

Contribution T2 DT HT

E (2) 2 463.346 322(61) 2 741.729 99(11) 3 431.573 40(44)
E (4) 0.014 837 5(1) 0.016 339 6(1) 0.019 890 6(1)
E (4,0) 0.014 806 83 0.016 296 89 0.019 804 22
E (4,1) 0.000 030 62 0.000 042 72 0.000 086 36
E (5) −0.012 686 6(79) −0.014 105 2(96) −0.017 606 9(156)
E (6) −0.000 113 5(3) −0.000 126 2(4) −0.000 157 8(5)
E (7) 0.000 006 1(15) 0.000 006 8(17) 0.000 008 5(21)
EFS −0.000 008 2(3) −0.000 011 3(2) −0.000 007 0(2)
Total 2 463.348 358(62) 2 741.732 09(11) 3 431.575 53(44)

All the functions μ‖(R), μ⊥(R), W ′
‖(R), and Y (R) in

the above are defined and provided as analytic fits in
Refs. [9,46,48]. Note that Y (R) incorporates both the adia-
batic and nonadiabatic effects, and the g/u-mixing term from
Eq. (5) in particular.

The E (4) and E (6) corrections are calculated as

E (4) = E (4,0) + E (4,1), (11)

E (6) = 〈χ |E (6,0)(R)|χ〉
+ 〈χ | E (4,0)(R)

1

(E (2,0) − HN )′
E (4,0)(R)|χ〉, (12)

where

E (4,0) = 〈χ |E (4,0)(R)|χ〉, (13)

E (4,1) = 〈χ |E (4,1)(R)|χ〉
+ 2 〈χ | E (4,0)(R)

1

(E (2,0) − HN )′
E (2,1)(R)|χ〉. (14)

The rest: E (5), E (7), and EFS (the correction due to the
finite nuclear sizes) are calculated just as expectation val-
ues with χ (R). All needed potentials are taken from the
following: E (2,0)(R), Refs. [8,48]; E (2,1)(R), Ref. [49]; the
nonadiabatic potentials in Eq. (10), Refs. [9,48]; E (4,0)(R),
Ref. [11]; E (4,1)(R), Ref. [13]; E (6,0)(R), Ref. [12]. The po-
tentials E (7,0)(R) and EFS(R) make use of the electron-nucleus
Dirac δ values obtained in Ref. [11]. Their calculation method
follows the approach of Refs. [13,45], respectively (based, in
turn, on Ref. [50]). The leading QED contribution E (5,0)(R)
combines results from Refs. [11,12,51]. More details con-
cerning particular potentials are available in Ref. [48]. The
theoretical uncertainty of an E (i) component includes the
missing next term E (i,kmax+1) ≈ E (i,kmax ) m/μn, where kmax is
the highest included term in the m/μn expansion. For E (2),
E (i,kmax ) is E (2,2) ≈ E (2) − 〈χ |E (2,1)(R)|χ〉 − E (2,0); for E (4)

it is E (4,1); and E (i,kmax ) = E (i,0) = E (i) for i = 5 and 6, as
well as for EFS. The uncertainties also include an estimate
of the numerical error of the respective potential used, and
the EFS error comprises a contribution from uncertainties of
the nuclear radii. For E (7), for which only an approximate
formula is known, a relative 25% error is used instead [45].

Total theoretical uncertainties of all the transitions reported
in this paper are dominated by the missing E (2,3) in the
nonrelativistic contribution. The calculated contributions to
the Q(1) transition energy in the fundamental vibrational
splitting (v = 0 → 1) for all tritiated species DT, HT, and
T2 are listed in Table II. The theoretical results obtained here
are in agreement with Ref. [30], with the present accuracy of
0.000 11 cm−1 representing more than a 100-fold improve-
ment. The 0.02 cm−1 uncertainty in Ref. [30] is dominated by
the uncertainty in the nonadiabatic nonrelativistic correction
(E (2,2)), and only includes leading-order relativistic (E (4,0))
and QED corrections using a Bethe logarithm that is 20% off
from the modern value, or a deviation of >0.001 cm−1 in E (5).

IV. RESULTS, DISCUSSIONS AND CONCLUSION

The experimental and theoretical values for Q(J = 0–5)
transition energies in DT are listed in Table III. The present
measurements with 0.0004 cm−1 accuracy are consistent with,
but are two orders of magnitude more precise than, the previ-
ous investigation in Ref. [28]. The comparison of the present
experimental and theoretical values demonstrates excellent
agreement as listed in Table III and shown graphically in
Fig. 3, with the differences (indicated by data points) falling
well within 1σ of the combined measurement and calculation
uncertainty (represented by the error bars).

TABLE III. Fundamental vibrational (v = 0 → 1) splittings of
the Q(J) transitions in DT. The measured values appear in the
second column while the theoretical values are listed in the third
column, with uncertainties indicated within parentheses. The last col-
umn is the difference (ωexp − ωcalc) with the combined experiment-
calculation uncertainty indicated. All values in units of cm−1.

Line Experiment Calculation Difference

Q(0) 2 743.341 71 (40) 2 743.341 74 (11) −0.000 03 (41)
Q(1) 2 741.732 04 (33) 2 741.732 09 (11) −0.000 05 (35)
Q(2) 2 738.516 59 (40) 2 738.516 97 (11) −0.000 38 (41)
Q(3) 2 733.704 70 (40) 2 733.704 66 (11) +0.000 04 (41)
Q(4) 2 727.307 34 (40) 2 727.307 55 (11) −0.000 21 (41)
Q(5) 2 719.341 93 (40) 2 719.342 02 (11) −0.000 09 (41)
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In summary, we have determined Q(J = 0–5) transition
energies of the fundamental band of DT with a 250-fold
improvement over all other previous measurements. Highly
accurate calculations are also presented with similar im-
provements of uncertainty. Studies using the heavier tritiated
species are useful in disentangling various mass-dependent
effects that have been frequently overlooked in the litera-
ture [54]. In view of a present 2.7σ discrepancy in experiment
and calculations in the dissociation energy of HD [44] while
there is perfect agreement for H2 and D2, investigations on
heteronuclear species such as DT may be helpful in the
resolution of the HD discrepancy.

Since the present experimental and theoretical values are
in very good agreement, these can be used to constrain hypo-
thetical long-range fifth forces between hadrons [55]. In fifth-
force investigations on diatomic molecules, the hypothetical
interaction is parametrized as a Yukawa potential,

V5(R; α5, λ5) = N1N2
α5 exp (−R/λ5)

R
h̄c, (15)

where α5 and λ5 are the interaction strength and length
parameters, respectively, while R is the distance between the
two nuclei of nuclear numbers N1 and N2. The most stringent
constraint for these hypothetical fifth forces in the range
λ5 ∼ 1 Å is derived from HD+ [56] yielding α5 < 8×10−10α,
where α is the electromagnetic coupling strength. This tight
bound is largely due to the sub-MHz uncertainties obtained in

the HD+ measurements. Applying the method in Ref. [55] on
the DT Q(1) transition, the strength of a fifth force for an inter-
action range of ∼1 Å is constrained at α5 < 2×10−8α, which
is more than an order of magnitude weaker than the HD+

derived bound. With the sixfold enhanced sensitivity of DT
with respect to the lightest species H2 as seen from Eq. (15),
the present DT results yield a limit that is slightly more
stringent than that of H2. This is despite the H2 (v = 0 → 1)
Q lines [16,42] having 2.7 times better accuracy than the
present DT study. With the inherent sensitivity of the heav-
ier tritiated species (with Nt = 3) this limit can be further
tightened when an accuracy in the kHz level is reached, for
example by using techniques recently applied to HD [25].
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