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VISCO-ACOUSTIC FULL WAVEFORM SEISMIC INVERSION:
FROM A DG FORWARD SOLVER TO
A NEWTON-CG INVERSE SOLVER˚

THOMAS BOHLEN: , MARIO RUBEN FERNANDEZ: , JOHANNES ERNESTI; ,

CHRISTIAN RHEINBAY; , ANDREAS RIEDER; , AND CHRISTIAN WIENERS;

Abstract. In this paper we present a holistic framework for full waveform inversion (FWI)
in the visco-acoustic regime. FWI entails the reconstruction of material parameters (such as
density and sound speed) from measurements of reflected wave fields (seismograms). We derive a
discontinuous Galerkin (DG) solver for the visco-acoustic wave equation and incorporate it into
an inverse solver. For the DG discretization we provide a block diagonal preconditioner for the
efficient computation of the time steps by GMRES which yields a convergence estimate in space
and time. Numerical tests illustrate these results. Furthermore, we set up an inverse solver of well
established Newton-CG type, and we express the required Fréchet derivative and its adjoint in
the DG setting. Reconstructions from simulated cross-well seismograms highlight the challenges
of FWI and demonstrate the performance of the scheme. Some of the inversion experiments use
seismograms generated by an independent FDTD forward solver to avoid an inverse crime.

Key words. full waveform inversion, Newton-CG, CG-REGINN, discontinuous Galerkin
discretization, inverse crime

AMS subject classifications. 65M32, 65M60

1. Introduction. The aim of full waveform inversion (FWI) is to find material
parameters such as density and wave speeds which can explain the full information
content of seismic recordings. Thereby, the full signal content is fitted iteratively
by full numerical solutions of the wave equation. The most important practical ad-
vantage of FWI has been discovered in the last three decades and verified in many
practical applications. This is the much increased resolution of reconstructed seis-
mic wave velocity models compared to traveltime tomography reconstructions. The
second advantage, which is not yet fully exploited, is the inversion of secondary ma-
terial parameter models such as seismic wave attenuation. In order to improve the
reconstruction of multi-parameter models much attention has been given in recent
years to derive different formulations of adjoint equations and to implement higher
order optimization schemes for FWI in attenuating media. In recent years these
developments have been conducted mainly in the time-domain because of the higher
computational efficiency of time-domain versus frequency-domain implementations
[1, 9, 27, 28].

In this work we present and combine three novel aspects of time-domain FWI
in visco-acoustic media. Firstly, we present a modified formulation of the system
of first order visco-acoustic wave equations which is physically more intuitive than
previous formulations. This formulation, which is based on results of [29], allows
the elegant derivations of adjoint equations which only show slight differences to
the modified forward equations. Secondly, we implement an inexact Newton-CG
method to explore its potential for the reconstruction of seismic velocity and atten-
uation. Thirdly, we solve the new systems of forward and adjoint equations using a
higher-order discontinuous Galerkin (DG) finite-element method showing sufficient
accuracy in space and time. To prove our new concept we present a first success-
ful mono-parameter reconstruction of local anomalies of seismic wave velocity and
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attenuation in a cross-well setting. In this simplified scenario the ground truth of
velocity and attenuation could efficiently be recovered even when the observed data
was computed by an independent Finite Difference Time Domain (FDTD) forward
solver (thereby avoiding an inverse crime).

Our paper is organized as follows. In the next section we introduce our visco-
acoustic model explaining carefully the used damping mechanisms by spring and
dashpot elements. Further, existence and uniqueness of the solution of the resulting
evolution equation is shown in a semigroup setting. Thus, the full waveform forward
operator F is well defined, which maps the parameters of the visco-acoustic wave
equation (density, pressure wave speed, attenuation) to the wave field. The tradi-
tional modus operandi to solve the corresponding inverse problem is the minimiza-
tion of misfit functionals. We dwell a little on this approach before we introduce
our algorithm CG-REGINN [25] of inexact Newton type which directly attacks the
nonlinear operator equation. As the Fréchet derivative F 1 and its adjoint opera-
tor are crucial ingredients we derive analytic expressions for both and explain how
we evaluate those in a discrete setting. Section 3 is devoted to our discontinuous
Galerkin discretization of the visco-acoustic equation, especially to the derivation of
a preconditioner for the GMRES iteration with which we compute the implicit time
steps. Various convergence tests compiled in section 4 exhibit the expected rates
in time and space. Finally, the performance of our inverse solver is demonstrated
elaborately by simulated cross-well experiments (section 5). The paper ends with a
conclusion including an outlook on further research.

2. Full waveform inversion in the visco-acoustic regime.

2.1. The equations of visco-acoustics for generalized standard linear
solids. The description of wave propagation in the time domain requires a rheologi-
cal rock model for attenuation. For this purpose the so-called Generalized Standard
Linear Solid (GSLS) is widely applied [20]. In this model L Maxwell bodies (spring
κl and dashpot nl in series; l “ 1, . . . , L) are connected in parallel with a spring
κ0. A combination of the single spring with one Maxwell body is called relaxation
element.

The system of first order wave equations for visco-acoustic media describes the
evolution of pressure p and particle velocity vector v. It consists of the balance of
momentum

(2.1a) % Btv “ ∇p` f

and the constitutive equation

(2.1b) Btpptq “ κ∇ ¨ vptq `
ˆ t

0

9κpt´ sq∇ ¨ vpsqds

where the total unrelaxed P-wave modulus of the GSLS is κ “ κ0 ` ¨ ¨ ¨ ` κL.
The individual κl (l “ 1, . . . , L) denote the unrelaxed P-wave modulus for the i-th
Maxwell body. Here, κ0 is the modulus of the single spring which equals the relaxed
P-wave modulus of the overall GSLS.

The time derivative of the relaxation function of the GSLS reads

(2.1c) 9κpsq “ ´
L
ÿ

l“1

κl
τl

exp
´

´
s

τl

¯

depending on L (unknown) unrelaxed P-wave moduli κl ą 0 and L (unknown)
stress relaxation times τl ą 0, l “ 1, . . . , L. The unrelaxed P-wave moduli κl are
identical and can be derived by scaling the unrelaxed P-wave modulus of the single
spring:

(2.2a) κ1 “ ¨ ¨ ¨ “ κL “ κ0τp.
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In seismic and seismological applications it can be assumed that attenuation is
constant within a narrow frequency range rωmin, ωmaxs. This effect is quantified by
the quality factor Q which is the rate of the full energy over the dissipated energy [2]:

(2.2b) Qpωq “
1` τpα1pωq

α2pωq

with

α1pωq “
L
ÿ

l“1

ω2τ2
l

1` ω2τ2
l

and α2pωq “
L
ÿ

l“1

ωτl
1` ω2τ2

l

.

The medium-dependent scaling factor τp quantifies the level of attenuation. To
realize a frequency independent attenuation (Qpωq “ const, ω P rωmin, ωmaxs ) the
parameter τp together with the L relaxation times τl can be determined by a least-
squares optimization for an assumed background medium [2, 4]. In this optimization
the same relaxation times can be used for different levels of attenuation, i.e. different
values of τp. They can thus be determined a priory and kept fixed during the
inversion process. Therefore, only the parameter τp which quantifies the effects of
attenuation needs to be updated.

In addition to the attenuation level τp we require mass density % and the relaxed
P-wave modulus κ0 to describe waves in visco-acoustic media. By defining

(2.2c) κ0 “
v2

p%

1` α1pω0qτp

we can assure that waves propagate with phase velocity vp at a reference frequency
ω0 P rωmin, ωmaxs, see, e.g., [3, 4, 9].

Within this setting, the aim of visco-acoustic full waveform inversion is to iden-
tify the three parameters %, vp, and τp condensed in a parameter vector

µ “
`

%, vp, τp
˘

P Padm Ă P :“ L8pΩ;R3q

within a physically meaningful parameter set

Padm “
 

µ P P : µpxq P r%min, %maxs ˆ rvmin, vmaxs ˆ rτmin, τmaxs f.a.a. x P Ω
(

for given 0 ă %min ă %max, 0 ă vmin ă vmax, and 0 ă τmin ă τmax.

2.2. A semigroup setting for visco-acoustics. The framework of mono-
tone operators applies to (2.1) and yields uniqueness and existence of a solution as
we demonstrate in this section (see also [29, 17] for visco-elasticity).

We consider a bounded Lipschitz domain Ω Ă Rd with a disjoint decomposition
of the boundary Γdyn Y Γstat “ BΩ, and a finite time interval r0, T s.

Introducing the decomposition of the total pressure p “ p0` p1` ¨ ¨ ¨ ` pL with

(2.3) plptq “ κl

ˆ t

0

exp
`

´ τ´1
l pt´ sq

˘

∇ ¨ vpsqds, l “ 1, . . . , L ,

rewrites (2.1) into the system

% Btv ´∇p “ f ,(2.4a)

Btp0 ´ κ0∇ ¨ v “ g0 ,(2.4b)

Btpl ´ κl∇ ¨ v ` τ´1
l pl “ gl , l “ 1, . . . , L ,(2.4c)

where we include right-hand sides in all components. It is worth noting that this
formulation is equivalent to the conventional formulations where so-called memory
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variables and corresponding PDEs are introduced to avoid the explicit calculation of
convolutions in the constitutive equations (2.3). In our modified formulation (2.4),
which is due to Zeltmann [29], we, however, avoid the introduction of memory vari-
ables. Instead, we introduce individual pressures p0 and pl corresponding to the
single spring and each Maxwell body, respectively. The overall constitutive equa-
tions then naturally separates into the constitutive relation for the spring (p0, κ0)
and each Maxwell body (pl, κl, τl) where the relaxation frequencies ωl “ τ´1

l define
the center frequency at which the l-th Maxwell body operates. We therefore consider
our modified system to be physically more intuitive than previous formulations.

To write (2.4) in compact operator notation we form the tuple

y :“ pv, p0, . . . , pLq P Y :“ L2pΩ;Rd`1`Lq.

Depending on µ P Padm and the relations (2.2), we define the operators

Mpµqy “ p%v, κ´1
0 p0, . . . , κ

´1
L pLq ,(2.5a)

Dpµqy “ p0, 0, pκ1τ1q
´1p1, . . . , pκLτLq

´1pLq ,(2.5b)

Ay “ ´p∇pp0 ` ¨ ¨ ¨ ` pLq,div v, . . . ,div vq ,(2.5c)

with κl “ κlpµq defined by (2.2). We set

Lpµq “MpµqBt `Dpµq `A.

For the operator A we choose a domain

DpAq “
 

y P Y : Ay P Y , n ¨ v|Γdyn
“ 0 , pp0 ` . . .` pLq|Γstat

“ 0
(

so that pAy,yq0,Ω “ 0 for y P DpAq.
Now we show that a solution y of (2.4) exists, i.e., we solve

Lpµqysolptq “ bptq a.e. in p0, T q , yp0q “ 0 .

Lemma 2.1. For given b P H1p0, T ;Y q the evolution problem Lpµqysol “ b with
ysolp0q “ 0 has a unique solution

ysolptq “

ˆ t

0

exp
`

ps´ tqMpµq´1pDpµq `Aq
˘

Mpµq´1bpsqds , t P r0, T s,(2.6)

in U “
 

y P H1p0, T ;Y q X L2p0, T ;DpAqq : yp0q “ 0
(

.

Remark 2.2. For the analysis of the inverse problem in Banach spaces, regular-
ity of the right-hand side is required, see [16, 29]. A mild solution is also obtained
under weaker regularity.

Proof. The operator Dpµq`A is monotone satisfying
`

pDpµq`Aqy,y
˘

0,Ω
ě 0

for y P DpAq, so that the evolution equations is dissipative. Moreover, the operator
Mpµq `Dpµq `A is surjective, which is shown as follows:

For given g “ pgv, g0, . . . , gLq P Y consider

`

pMpµq `Dpµq `Aqy, z
˘

0,Ω
“
`

g, z
˘

0,Ω
, z P DpAq ,

i.e., we construct a solution pv, p0, . . . , pLq P DpAq with p “ p0 ` ¨ ¨ ¨ ` pL of

%v ´∇p “ gv(2.7a)

κ´1
0 p0 ´∇ ¨ v “ g0 ,(2.7b)

κ´1
l pl ` pκlτlq

´1pl ´∇ ¨ v “ gl , l “ 1, . . . , L .(2.7c)
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In the first step, we show that the solution of (2.7) in DpAq can be obtained by
solving the elliptic problem (2.9) below for p in V “

 

q P H1pΩq : q|Γstat
“ 0

(

. The
following formal calculations are provided to establish (2.9). To this end, (2.7) is
rescaled to

v ´ %´1∇p “ %´1gv(2.8a)

p0 ´ κ0∇ ¨ v “ κ0g0 ,(2.8b)

pl ´
κlτl
τl ` 1

∇ ¨ v “ κlτl
τl ` 1

gl , l “ 1, . . . , L ,(2.8c)

so that we obtain

p “ p0 ` ¨ ¨ ¨ ` pL

“

´

κ0 `
κ1τ1
τ1 ` 1

` ¨ ¨ ¨ `
κLτL
τL ` 1

¯

∇ ¨ v ` κ0g0 `
κ1τ1
τ1 ` 1

g1 ` ¨ ¨ ¨ `
κLτL
τL ` 1

gL

“ κ̄∇ ¨ v ` ḡ

with κ̄ “ κ0 `
κ1τ1
τ1`1 ` ¨ ¨ ¨ `

κLτL
τL`1 and ḡ “ κ0g0 `

κ1τ1
τ1`1g1 ` ¨ ¨ ¨ `

κLτL
τL`1gL. Testing

(2.8a) with q P V yields
`

v,∇q
˘

0,Ω
´
`

%´1∇p,∇q
˘

0,Ω
“ p%´1gv,∇q

˘

0,Ω

and using n ¨ v|Γdyn
“ 0 gives

`

%´1∇p,∇q
˘

0,Ω
“
`

v,∇q
˘

0,Ω
´ p%´1gv,∇q

˘

0,Ω
“ ´

`

∇ ¨ v, q
˘

0,Ω
´ p%´1gv,∇q

˘

0,Ω

resulting in
`

%´1∇p,∇q
˘

0,Ω
`
`

κ̄´1p, q
˘

0,Ω
“
`

κ̄´1ḡ, q
˘

0,Ω
´ p%´1gv,∇q

˘

0,Ω
, q P V .(2.9)

Thus, we can solve (2.9) for p P V and then we set

v “ %´1∇p` %´1gv ,

so that
`

v,∇q
˘

0,Ω
“
`

κ̄´1pḡ ´ pq, q
˘

0,Ω
, q P V,

gives v P Hpdiv,Ωq and n ¨ v|Γdyn
“ 0. Defining p0, . . . , pL by (2.8b) and (2.8c)

finally yields a solution pv, p0, . . . , pLq P DpAq of (2.7).
Thus, the operator ´Mpµq´1pDpµq`Aq generates a semigroup which follows, e.g.,
from [23, Thm. 12.22] and the unique solution (2.6) has the stated regularity, see,
e.g., [23, Thm. 12.16].

Lemma 2.1 transfers to the adjoint problem (wave equation ‘backwards in time’)

Lpµqadyadptq “ rptq a.e. in p0, T q , yadpT q “ 0 ,(2.10)

where Lpµqad “ ´MpµqBt `Dpµq ´A is the adjoint operator such that
`

Lpµqysol,yad
˘

0,p0,T qˆΩ
“
`

ysol,Lpµqadyad
˘

0,p0,T qˆΩ

for all ysol,yad P H1p0, T ;Y q X L2p0, T ;DpAqq with ysolp0q “ yadpT q “ 0. Analo-
gously to (2.6), the solution for the adjoint problem is given by

yadptq “

ˆ t

T

exp
`

ps´ tqMpµq´1pDpµq ´Aq
˘

Mpµq´1badpsqds , t P r0, T s ,

in Uad “
 

y P H1p0, T ;Y q X L2p0, T ;DpAqq : ypT q “ 0
(

.
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2.3. Full waveform inversion: the inverse problem. We define the non-
linear forward operator (parameter-to-solution map) by

F : Padm Ă P ÝÑ U , µ ÞÝÑ y ,

i.e., LpµqFpµq “ b.
The operator F has been intensively studied in [16, 29], especially its Fréchet

derivative and the adjoint operator thereof have been rigorously established in a
functional analytic framework. For the reader’s convenience we derive these opera-
tors below using a rather formal computation.

Let sobs P S “ L2p0, T ;RSq be a vector of measurements of the pressure at
receiver points r1, . . . , rS P Ω (seismograms), and let Ψ: Y ÝÑ RS be a linear
measurement operator (approximating the point evaluation). The operator extends
to Ψ P L

`

L2p0, T ;Y q,Sq.
The inverse problem aims to reconstruct µ P Padm such that

ΨrFpµqs “ sobs .

The above operator equation is a restricted version of a locally ill-posed problem,
see [17], so that regularization is required.

In the following, we present two approaches to approximate a solution of this
problem. The standard approach minimizes misfit functionals, e.g., of the form

J pµq “ 1

2

›

›ΨrFpµqs ´ sobs

›

›

2

0,p0,T q
(2.11)

where } ¨ }0,p0,T q denotes the norm in L2p0, T ;Y q. The minimizer is obtained by
computing a critical point of J where the linearization J 1pµq P LpP ,Rq is given by

J 1pµqrδµs “
`

ΨrFpµqs ´ sobs,ΨrF 1pµqrδµss
˘

0,p0,T q
(2.12)

depending on the linearized forward operator F 1pµq P LpP ,Uq.
Lemma 2.3. The Fréchet derivative ylin “ F 1pµqrδµs P U is the solution of

Lpµqylin “ ´M 1pµqrδµsBty
sol ´D1pµqrδµsysol , yp0q “ 0 ,(2.13)

where ysol “ Fpµq solves the forward problem.1

Proof. Defining the Lagrange functional

Lpµ,y, zq “
`

Lpµqy ´ b, z
˘

0,p0,T qˆΩ

we observe that Lpµ,Fpµq, zq “ 0 for all µ P Padm and z P L2p0, T ;Y q. Taking the
formal Fréchet derivative Dµ with respect to µ yields

0 “ Dµ

´

Lpµ,Fpµq, zq
¯

rδµs

“

´

Dµ

`

LpµqFpµq
˘

rδµs, z
¯

0,p0,T qˆΩ

“

´

M 1pµqrδµsBty
sol `D1pµqrδµsBty

sol `LpµqF 1pµqrδµs, z
˘

0,p0,T qˆΩ

and thus the assertion.

A minimum of the misfit functional can be approximated, e.g., by a Gauß-
Newton algorithm. Since the problem is ill-posed, J needs to be augmented by
additional regularization terms. In our approach, which we present in the following
subsection, regularization is guaranteed by an inexact Newton iteration applied
directly to the nonlinear problem.

1In (2.13), D1pµq denotes the formal Fréchet derivative of the map D : Padm Ă P ÝÑ LpY q,
µ ÞÝÑ Dpµq, see (2.5b). Thus, D1pµqrδµs P LpY q. Same comment applies to M .
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2.4. CG-REGINN: An inexact Newton-CG method. Alternatively to the
optimization problem (2.11), we can construct an iterative method solving the non-
linear equation

Φpµsolq “ sobs ,(2.14)

where Φ :“ Ψ ˝ F : Padm ÝÑ S is the parameter-to-seismogram map. The real-
ization of the Newton method requires the evaluation of the linearization Φ1pµq P
L
`

P ,Sq and an appropriate initial guess µ0 P Padm. Then, for k “ 1, 2, . . . , the
update Mµk P P is determined by approximately solving Φ1pµkqrMµks “ ´rk for
rk “ Φpµkq ´ sobs. As mentioned above, the original nonlinear equation is locally
ill-posed and thus we expect its linearization to be ill-posed as well. Therefore, we
solve the corresponding least squares ansatz by minimizing

Mµk ÞÝÑ
1

2

›

›Φ1pµkqrMµks ` rk
›

›

2

0,p0,T q
(2.15)

using a regularization scheme.

Remark 2.4. Actually, before we apply the Newton scheme we compose F with
a transformation yielding virtually an unconstrained equation for the transformed
parameters, see Appendix A. For the ease of presentation, we will stick to the
formulation with constrained parameters however.

A minimizer Mµk P P of (2.15) fulfills the normal equation

`

Φ1pµkqrMµks ` rk,Φ1pµkqrδµs
˘

0,p0,T qˆΩ
“ 0 , δµ P P .(2.16)

Introducing the adoint operator of Φ1pµkq yields a linear system in the Banach
space P 1. Here, we solve the normal equation approximately in a discrete space
Ph Ă P which allows to define the L2 adjoint Φ1pµqad P LpS,Phq

`

Φ1pµqrδµs, s
˘

0,p0,T q
“
`

δµ,Φ1pµqads
˘

0,Ω
, µ P Padm , δµ P Ph , s P S .(2.17)

Then, we solve (2.16) approximately in the discrete Hilbert space Ph Ă L2pΩ;R3q

using conjugate gradients (CG). The resulting regularization scheme for (2.14) is
called CG-REGINN [25, 19], see Algorithm 2.1.

Algorithm 2.1 CG-REGINN for (2.14)

Input: µ0 P Ph % starting guess; sobs P L2p0, T ;RSq % seismograms
Output: µk P Ph % approximate solution of (2.14)

1: k Ð 0, r0 Ð Φpµ0q ´ sobs

2: while not termination do
3: determine ϑk and jmax,k % according to (2.18) and (2.19)
4: pMµk, jkq Ð CG(rk,µk,ϑk,jmax,k) % call of Algorithm 2.2
5: µk`1 Ð µk ` Mµk

6: rk`1 Ð Φpµk`1q ´ sobs

7: % Here, a safeguarding step might be added, see Remark 2.5
8: k Ð k ` 1
9: end while

10: return µk

In line 4 of Algorithm 2.1, the CG method (Algorithm 2.2) is called to compute
the Newton update Mµk from (2.16) in a stable way. To this end, the parameters
ϑk and jmax,k are passed to the CG method. They steer adaptively the magnitude
of regularization depending on the local degree of ill-posedness by stopping the
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iteration either because the residual of the actual iterate is sufficiently small or a
maximal number of iteration steps has been reached (line 12 of Algorithm 2.2). In
line 3 of Algorithm 2.1 we used the following strategy for choosing ϑk and jmax,k

(other strategies are also possible, see [24, Sec. 6] for an explanation):

(2.18) ϑk :“ min
 

0.999, rϑk
(

where

rϑk :“

$

’

’

’

&

’

’

’

%

1 : k “ 0,

}r1}0,p0,T q { }r
0}0,p0,T q : k “ 1,

1´
jk´2

jk´1
p1´ ϑk´1q : jk´1 ą jk´2 ^ k ě 2,

0.9ϑk´1 : otherwise.

Finally,

(2.19) jmax,k :“

$

’

&

’

%

1 : k “ 0,

2 : k “ 1,

jk´1 ` jk´2 : k ě 2.

Algorithm 2.2 Conjugate Gradient (CG) algorithm for (2.16) restriced to Ph

Input: rk P S, µk P Ph, ϑ P p0, 1q, jmax P N
Output: Mµk P Ph, jk P N

1: j Ð 0, β Ð 0, r̃0 Ð rk

2: p0, f0 Ð 0 P Ph
3: repeat
4: j Ð j ` 1

5: dÐ Φ1pµkqadrr̃j´1s P Ph

6: pj Ð d` β }d}20,Ω p
j´1

7: q Ð Φ1pµkqrpjs P S

8: αÐ }d}20,Ω{}q}
2
0,p0,T q

9: f j Ð f j´1 ` αpj

10: r̃j Ð r̃j´1 ´ α q
11: β Ð 1{}d}20,Ω
12: until }r̃j}0,p0,T q ď ϑ}rk}0,p0,T q or j ě jmax

13: Mµk Ð f j , jk Ð j
14: return pMµk, jkq

Remark 2.5. In a reasonable mathematical setting, the nonlinear residuals rk “
Φpµkq´ sobs can be shown to be strictly decreasing [19, Thm 3.1]. In the geophysi-
cal applications, it is not clear whether the mathematical assumptions are justified.
Therefore one should check for monotonicity and, if necessary, enforce it by back-
tracking or other strategies:

if }rk`1}0,p0,T q ě }r
k}0,p0,T q then

tÐ 1
repeat
tÐ 0.9 t
µk`1 Ð µk ` tMµk

rk`1 Ð Φpµk`1q ´ sobs

until }rk`1}0,p0,T q ă }r
k}0,p0,T q
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end if

The above repeat-loop terminates as Mµk is a decent direction at µk of the misfit
functional J (2.11), see [19, Lem. 2.2].

2.5. Computing the Fréchet derivative and its adjoint. The realization
of the CG method requires to evaluate Φ1pµqrδµs and Φ1pµqads. By definition of Φ
and the linearity of Ψ, we have

Φ1pµq “ Ψ ˝ F 1pµq , Φ1pµqad “ F 1pµqad ˝Ψad ,

where the adjoint operator F 1pµqad P L
`

L2p0, T ;Y q,Ph
˘

is given by

`

F 1pµqrδµs, z
˘

0,p0,T qˆΩ
“
`

δµ,F 1pµqadrzs
˘

0,Ω
, δµ P Ph , z P L2p0, T ;Y q .

Lemma 2.6. We have that µad “ F 1pµqadrzs P Ph is given as the solution of
the variational problem

`

µad, δµ
˘

0,Ω
“ ´

`

M 1pµqrδµsBty
sol `D1pµqrδµsysol,yad

˘

0,p0,T qˆΩ
, δµ P Ph ,

where ysol “ Fpµq solves the forward problem and yad P Uad solves

Lpµqadyad “ z , yadpT q “ 0 ,(2.20)

see (2.10).

Proof. The assertion follows readily from ylin “ F 1pµqrδµs and

`

F 1pµqadrzs, δµ
˘

0,Ω
“
`

z,F 1pµqrδµs
˘

0,p0,T qˆΩ

“
`

Lpµqadyad,ylin
˘

0,p0,T qˆΩ

“
`

yad,Lpµqylin
˘

0,p0,T qˆΩ

“ ´
`

yad,M 1pµqrδµsBty
sol `D1pµqrδµsysol

˘

0,p0,T qˆΩ

using (2.20) and (2.13).

In our application, the discrete parameter space Ph contains functions being
cell-wise constant with respect to the mesh Ω “

Ť

KPK K̄ (see the following section
for more details about the mesh). Thus, we obtain from Lemma 2.6 by testing with
basis vectors

 

ejK : K P K, j “ 1, 2, 3
(

of Ph that

µad
j |K “

´1

|K|

`

Bµj
Mpµq|KBty

sol ` Bµj
Dpµq|Ky

sol,yad
˘

0,p0,T qˆK

with the derivatives BµjMpµq|K “M
1pµqrejKs and BµjDpµq|K “D

1pµqrejKs.

By the definitions of κ0 “
v2p%

1`ατp
with α “ α1pω0q and κl “ τpκ0, l “ 1, . . . , L ,

see (2.2), we obtain

B%κ
´1
l “ ´%´1κ´1

l , Bvpκ
´1
l “ ´2v´1

p κ´1
l , l “ 0, . . . , L ,

Bτpκ
´1
0 “ v´2

p %´1α , Bτpκ
´1
l “ ´pvpτpq

´2%´1 , l “ 1, . . . , L .

In view of (2.5) we thus get for y “ pv, p0, . . . , pLq P Rd`1`L

B%Mpµq|Ky “ ´%
´1
K κ´1

0,K

`

v, p0, τ
´1
p,Kp1, . . . , τ

´1
p,KpL

˘

,

BvpMpµq|Ky “ ´2v´1
p,Kκ

´1
0,K

`

v, p0, τ
´1
p,Kp1, . . . , τ

´1
p,KpL

˘

,
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BτpMpµq|Ky “ ´v
´2
p,K%

´1
K

`

0,´αp0, τ
´2
p,K p1, . . . , τ

´2
p,K pL

˘

,

and

B%Dpµq|Ky “ ´%
´1
K κ´1

0,Kτ
´1
p,K

`

0, 0, τ´1
1 p1, . . . , τ

´1
L pL

˘

,

BvpDpµq|Ky “ ´2v´1
p,Kκ

´1
0,Kτ

´1
p,K

`

0, 0, τ´1
1 p1, . . . , τ

´1
L pL

˘

,

BτpDpµq|Ky “ ´pvp,Kτp,Kq
´2%´1

K

`

0, 0, τ´1
1 p1, . . . , τ

´1
L pL

˘

.

For p%ad
K , v

ad
p,K , τ

ad
p,KqKPK “ F 1pµqadrbs P Ph and yad “ pwad, qad

0 , . . . , qad
L q we con-

clude for each K P K that

%ad
K “

1

|K|

ˆ T

0

ˆ
K

˜

Btv
sol ¨wad(2.21a)

´
1

κ0,K%K

ˆ

psol
0 qad

0 `
1

τp,K

L
ÿ

l“1

pBtp
sol
l `

1

τl
pl

solq qad
l

˙

¸

dxdt ,

vad
p,K “

1

|K|

´2

κ0,Kvp,K

ˆ T

0

˜ ˆ
K

Btp
sol
0 qad

0(2.21b)

`
1

τp,K

L
ÿ

l“1

pBtp
sol
l `

1

τl
psol
l q q

ad
l

¸

dxdt ,

τad
p,K “

´1

|K|

ˆ T

0

ˆ
K

˜

α

v2
p%K

Btp
sol
0 qad

0(2.21c)

`
1

vp,Kτ2
p,K%K

L
ÿ

l“1

pBtp
sol
l `

1

τl
psol
l q q

ad
l

¸

dxdt .

Remark 2.7. The above construction restricts the operators Φ1pµq and F 1pµq
to the discrete space Ph in order to define proper adjoints in an L2 sense. The
natural, infinite dimensional formulation involves the Banach space P “ L8pΩ,R3q,
see [16, 17, 29]. By identifying L2p0, T ;Y q and L2p0, T ;RSq with their duals, this
yields the Banach space adjoint

Φ1pµq˚ “ F 1pµq˚Ψad with F 1pµq˚ P L
`

L2p0, T ;Y q,L8pΩ,R3q1
˘

.

Following the proof of Lemma 2.6, this implies for δµ P P and z P L2p0, T ;Y q

@

F 1pµq˚rzs, δµ
D

P 1,P
“
`

z,F 1pµqrδµs
˘

0,p0,T qˆΩ

“ ´
`

M 1pµqrδµsBty
sol `D1pµqrδµsysol,yad

˘

0,p0,T qˆΩ

“

3
ÿ

j“1

ˆ

δµj ,

ˆ T

0

`

BµjMpµqBty
sol ` BµjDpµqy

sol
˘

¨ yad dt

˙

0,Ω

with M 1pµqrδµs “
ř3
j“1 δµj BµjMpµq and D1pµqrδµs “

ř3
j“1 δµj BµjDpµq. Thus,

for each component of pµ˚1 , µ
˚
2 , µ

˚
3 q “ F 1pµq˚rzs, we obtain

µ˚j “

ˆ T

0

`

Bµj
MpµqBty

sol ` Bµj
Dpµqysol

˘

¨ yad dt P L8pΩq
1.(2.22)

Since ysol,yad P L2p0, T ;Y q the integral represents in fact a function in L1pΩ,R3q

and (2.21) is obtained by averaging (2.22) for each cell K P K.
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3. A discontinuous Galerkin method. The visco-acoustic wave equation
is approximated in the discontinuous finite element space

Yh “
 

yh P L2pΩ;Rd`1`Lq : yh|K P PkpRd`1`Lq for all K P K
(

with polynomial degree k ě 0. Here, the domain Ω is decomposed into open convex
polyedral sets K Ă Ω, called cells, that is, Ω “

Ť

KPK K̄ (K is the set of all cells).
Let FK be the set of faces of K, and set F “

Ť

K FK . For inner faces f P FXΩ,
let Kf be the neighboring cell such that f̄ “ BK X BKf . On boundary faces
f P F X BΩ we set Kf “ K. Let nK be the outer unit normal vector on BK.

For yh P Yh the restriction to K is denoted by yh,K “ yh|K . On inner faces
f P F X Ω we define ryhsK,f “ yh,Kf

´ yh,K . On boundary faces f P F X Γkin, we
set rvhsK,f “ 0 and rphsK,f “ ´2ph, and on f P F X Γstat we set rvhsK,f “ ´2vh
and rphsK,f “ 0.

For fixed µ P Ph and t P p0, T q, we consider the discretized problem in space

(3.1) MhBtyhptq `Ahyhptq `Dhyhptq “ bhptq

where the discrete operators Mh,Dh P LpYh,Yhq and the right-hand side bh P
L2p0, T ;Yhq are the Galerkin approximations defined by

`

Mhyh, zh
˘

0,Ω
“
`

Myh, zh
˘

0,Ω
,

`

Dhyh, zh
˘

0,Ω
“
`

Dyh, zh
˘

0,Ω
,

`

bh, zh
˘

0,Ω
“
`

b, zh
˘

0,Ω
, yh, zh P Yh .

Further, Ah “
ř

KPKAh,K P LpYh,Yhq is the DG approximation with full upwind
flux given by

`

Ah,Kyh, zh
˘

0,K
“ ´

`

∇ph,K ,wh,K
˘

0,K
´
`

∇ ¨ vh,K , qh,K
˘

0,K

´
ÿ

fPFK

1

ZK ` ZKf

`

rphsK,f ` ZKf
nK ¨ rvhsK,f , qK,h ` ZKnK ¨wh,K

˘

0,f

for yh “ pvh, p0,h, . . . , pL,hq, zh “ pwh, q0,h, . . . , qL,hq P Yh with ph “ p0,h ` ¨ ¨ ¨ `

pL,h, qh “ q0,h`¨ ¨ ¨`qL,h and impedance ZK “
?
κ%|K , see [13, 14] for details. For

the construction and the subsequent analysis of the DG method, we assume that
the material parameters are constant in every K P K.

In time we use the implicit mid-point rule with fixed time step size Mt “ T {N
and time step tn “ nMt. Starting with y0

h “ 0, the approximations ynh P Yh of (3.1)
are defined by

MhBMt{2y
n´1{2
h `Ahy

n´1{2
h `Dhy

n´1{2
h “ b

n´1{2
h , n “ 1, . . . , N,

with BMt{2y
n´1{2
h “ 1

Mt py
n
h´y

n´1
h q, y

n´1{2
h “ 1

2 py
n´1
h `ynhq, and b

n´1{2
h “ bhptn´1{2q,

so that ynh is determined by the linear system

(3.2)
´

Mh `
Mt
2
Ah `

Mt
2
Dh

¯

ynh “
´

Mh ´
Mt
2
Ah ´

Mt
2
Dh

¯

yn´1
h ` Mt bn´1{2

h .

Note that this scheme is reversible and unconditionally stable.
Now we show that the linear system (3.2) is well-posed and we estimate the

condition number with respect to the energy norm. To this end we introduce the

energy norm
›

›yh
›

›

2

Mh
“

`

yh,yh
˘

Mh
via the weighted inner product

`

yh,yh
˘

Mh
“

`

Mhyh,yh
˘

0,Ω
.
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Lemma 3.1. We have for yh P Yh that

´

M´1
h

`

Mh `
Mt
2
Ah `

Mt
2
Dh

˘

yh,yh

¯

Mh

ě
›

›yh
›

›

2

Mh
,(3.3a)

›

›

›
M´1

h

`

Mh `
Mt
2
Ah `

Mt
2
Dh

˘

yh

›

›

›

Mh

ď C
›

›yh
›

›

Mh
(3.3b)

with C “ 1 ` Mt
`

C1vp,refh
´1 ` C2

˘

where C1 ě 0 depends on the mesh quality,
the polynomial degree k of the discrete space Yh, and on material parameters with
respect to a reference velocity vp,ref ą 0. The constant C2 ě 0 only depends on the
relaxation parameters τl, l “ 1, . . . , L.

Proof. We have for yh “ pvh, p0,h, . . . , pL,hq P Yh and ph “ p0,h ` ¨ ¨ ¨ ` pL,h

`

Ahyh,yh
˘

0,Ω
“

1

2

ÿ

KPK

ÿ

fPFK

1

ZK ` ZKf

´

›

›rphsK,f
›

›

2

0,f
` ZKZKf

›

›nK ¨ rvhsK,f
›

›

2

0,f

¯

,

cf. [14, Sect. 4.3]. Further,
`

Dhyh,yh
˘

0,Ω
ě 0 and

´

M´1
h

`

Mh `
Mt
2
Ah `

Mt
2
Dh

˘

yh,yh

¯

Mh

“
›

›yh
›

›

2

Mh
`

Mt
2

`

pAh `Dhqyh,yh
˘

0,Ω
.

Hence, (3.3a) holds true. The second assertion (3.3b) follows from

›

›

›
M´1

h

`

Mh `
Mt
2
Ah `

Mt
2
Dh

˘

yh

›

›

›

Mh

ď
›

›yh
›

›

Mh
`

Mt
2

´

›

›M´1
h Ahyh

›

›

Mh
`
›

›M´1
h Dhyh

›

›

Mh

¯

and from estimates for
›

›M´1
h Ahyh

›

›

Mh
and

›

›M´1
h Dhyh

›

›

Mh
. Therefore, we use

the inverse inequalities [6, Chap. 1.4.3]

h }∇ph}0,K ` h1{2 }ph}0,BK ď Cinv}ph}0,K ,

h }∇ ¨ vh}0,K ` h1{2 }n ¨ vh}0,BK ď Cinv}vh}0,K , pvh, ph, 0, . . . , 0q P Yh , K P K,

with Cinv ą 0 depending on the mesh quality and the polynomial degree k of the
discrete space Yh. We introduce a reference velocity vp,ref ą 0 such that

a

κ{ρ ď
vp,ref. Then, there exists a constant Cparam ą 0 only depending on the parameter
variation such that }κ´1{2ph}0,Ω ` }ρ

1{2vh}0,Ω ď Cparam}yh}Mh
.

Now, with zh “M
´1
h Ahyh “ pwh, q0,h, . . . , qL,hq P Yh and qh “ q0,h`¨ ¨ ¨`qL,h

we obtain

›

›M´1
h Ahyh

›

›

2

Mh
“
`

Ahpvh, p0,h, . . . , pL,hq, pwh, q0,h, . . . , qL,hq
˘

0,Ω

“ ´
`

∇ph,whq0,Ω ´
`

∇ ¨ vh, qh
˘

0,Ω

`
ÿ

K

ÿ

fPFK

1

ZK ` ZKf

`

rphsK,f ` ZKf
nK ¨ rvhsK,f , qK,h ` ZKnK ¨wh,K

˘

0,f

ď Cinvh
´1

˜

}ph}0,Ω}wh}0,Ω ` }vh}0,Ω}qh}0,Ω

`
ÿ

K

ÿ

fPFK

´ 1

ZK ` ZKf

}ph}0,K}qK}0,K `
ZKf

ZK ` ZKf

}vh}0,K}qh}0,K

`
ZK

ZK ` ZKf

}ph}0,K}wh
›

›

0,K
`

ZKZKf

ZK ` ZKf

}vh}0,K
›

›wh}0,K

¯

¸



VISCO-ACOUSTIC FULL WAVEFORM INVERSION 13

ď Cinvvp,refh
´1

˜

}κ´1{2ph}0,Ω}ρ
1{2wh}0,Ω ` }ρ

1{2vh}0,Ω}κ
´1{2qh}0,Ω

`
ÿ

K

ÿ

fPFK

´

}κ´1{2ph}0,K}κ
´1{2qK}0,K ` }ρ

1{2vh}0,K}κ
´1{2qh}0,K

`}κ´1{2ph}0,K}ρ
1{2wh

›

›

0,K
` }ρ1{2vh}0,K

›

›ρ1{2wh}0,K

¯

¸

ď Cinvvp,refh
´1

˜

`

}κ´1{2ph}0,Ω ` }ρ
1{2vh}0,Ω

˘`

}κ´1{2qh}0,Ω ` }ρ
1{2wh}0,Ω

˘

`
ÿ

K

ÿ

fPFK

`

}κ´1{2ph}0,K ` }ρ
1{2vh}0,K

˘`

}κ´1{2qK}0,K ` }ρ
1{2wh

›

›

0,K

˘

¸

ď 3Cinvvp,refh
´1

´

}κ´1{2ph}0,Ω ` }ρ
1{2vh}0,Ω

¯´

}κ´1{2qh}0,Ω ` }ρ
1{2wh}0,Ω

¯

ď 3Cinvvp,refh
´1Cparam}yh}Mh

}zh}Mh

which yields }M´1
h Ahyh

›

›

Mh
ď 3Cinvvp,refh

´1Cparam}yh}Mh
. Taking into account

that
`

M´1
h Dhyh,Dhyh

˘

0,Ω
“
`

κ´1
1 τ´2

1 p1,h, p1,h

˘

0,Ω
` ¨ ¨ ¨ `

`

κ´1
L τ´2

L pL,h, pL,h
˘

0,Ω

ď max τ´2
l

›

›yh
›

›

2

Mh
,

the assertion (3.3b) follows with C1 “ 3CinvCparam and C2 “
1
2 max τ´1

l .

In order to achieve well-balanced convergence in space and time, we choose
time step and mesh size such that vpMt “ Ophq. Moreover, in our application the
dissipation rate Mt

`

Dhyh,yh
˘

0,Ω
is much smaller than the energy

`

Mhyh,yh
˘

0,Ω

so that Mtτ´1
l is small. Then, we obtain from (3.3) that the linear system (3.2) with

block-diagonal preconditioner M´1
h is well-conditioned with C “ Op1q. Hence, the

error of GMRES iterates yn,0h ,yn,1h ,yn,2h , . . . is bounded by

›

›yn,kh ´ ynh
›

›

Mh
ď C

´

1´ C´2
¯k{2

›

›yn,0h ´ ynh
›

›

Mh
,

see [26, Chap. 6.11.4], i.e., every time step can be computed within a few GMRES
steps.

The convergence of the DG method can be estimated by the equivalent space-
time scheme, see [8, Sect. 3]: Let Uh Ă H1p0, T ;Yhq be the discrete space of lin-
ear splines in time with respect to the time grid 0 ă t1 ă ¨ ¨ ¨ ă tN . Further,
yhp0q “ 0 for yh P Uh. Let ymidpoint

h P Uh be the discrete solution defined by
ynh P Yh solving (3.2). Provided that the solution ysol P U of Ly “ b is in
H2

`

p0, T q; Hq`1pΩ;Rd`1`Lq
˘

, q ď k, we obtain the estimate in space and time

›

›ysol ´ ymidpoint
h

›

›

Lh
ď C1

`

Mt` hq
˘

´

›

›B2
t y

sol
›

›

0,p0,T qˆΩ
`
›

›Dq`1ysol
›

›

0,p0,T qˆΩ

¯

,

compare [7, Thm. 5]. The above error is expressed in the weigthed graph norm of
the operator Lh:

›

›z
›

›

Lh
“

b

`

Mhz, z
˘

0,p0,T qˆΩ
`
`

M´1
h Lhz,Lhz

˘

0,p0,T qˆΩ
, z P H1p0, T ;Yhq .

Remark 3.2. Extrapolation of the midpoint rule

(3.4) yn,ex
h “

4

3
ηMt{2 ´

1

3
ηMt ,
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yields a scheme of higher order where ηMt and ηMt{2 are defined by

´

Mh `
Mt
2
Ah `

Mt
2
Dh

¯

ηnMt “
´

Mh ´
Mt
2
Ah ´

Mt
2
Dh

¯

yn´1,ex
h ` Mt bn´1{2

h ,

´

Mh `
Mt
4
Ah `

Mt
4
Dh

¯

η
n´1{2
Mt{2 “

´

Mh ´
Mt
4
Ah ´

Mt
4
Dh

¯

yn´1,ex
h `

Mt
2
b
n´1{4
h ,

´

Mh `
Mt
4
Ah `

Mt
4
Dh

¯

ηnMt{2 “
´

Mh ´
Mt
4
Ah ´

Mt
4
Dh

¯

η
n´1{2
Mt{2 `

Mt
2
b
n´3{4
h .

Evaluating the corresponding Butcher tableau (Table 1) we observe that the discrete
scheme is of order 4 in time.

1{2 1{2
1{4 0 1{4
3{4 0 1{2 1{4

´1{3 2{3 2{3

Table 1: Butcher tableau of the extrapolated midpoint rule.

4. Accuracy of the DG approximation. In two numerical tests we evaluate
the convergence properties in space and time of the discrete scheme introduced in
section 3. The first test considers the optimal case with known smooth solution,
and then a more realistic setting is tested where estimates for the convergence rates
are derived by extrapolation.

4.1. Convergence in homogeneous media. For the first test we fix ω ą 0
and we choose κ0, τp ą 0 such that p1` Lτpqκ0 “ 1, % “ 1.

In this setting,

ysolpt, xq “

¨

˚

˚

˚

˚

˚

˚

˝

pt´ 1qω cospωx1q sinpωx2q

pt´ 1qω cospωx2q sinpωx1q

κ0 sinpωx1q sinpωx2q

τpκ0 sinpωx1q sinpωx2q

¨ ¨ ¨

τpκ0 sinpωx1q sinpωx2q

˛

‹

‹

‹

‹

‹

‹

‚

solves the visco-acoustic equation for given right-hand side

bpt, xq “

¨

˚

˚

˚

˚

˝

0
2pt´ 1qω2 sinpωx2q sinpωx1q

2pt´ 1qω2 sinpωx1q sinpωx2q ` sinpωx1q sinpωx2q{τ1
¨ ¨ ¨

2pt´ 1qω2 sinpωx1q sinpωx2q ` sinpωx1q sinpωx2q{τL

˛

‹

‹

‹

‹

‚

,

Dirichlet boundary values ysolptq|BΩ, and initial values ysolp0q.
For our calculations we use L “ 1, κ0 “ 0.85, τp “ 3{17pQ « 2{τp « 11q, τ1 “

0.0001 and ω “ π
4 , Ω “ p0, 4q2, and T “ 1. The initial value y0

h for our calculations
is the interpolation of ysolp0q in the finite element space Yh. As time integrator
we use the implicit midpoint rule (3.2) with a fixed step size Mt “ 0.001. Since
the solution is linear in time, the time integrator is exact, and we only study the
convergence in space.

We start with a coarse mesh K0 with h0 “ 2´1 resulting to hj “ 2´jh0 on mesh
level j obtained by uniform refinement. Let yj,k be the numerical solution on level j
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for the DG scheme with polynomial degree k. We observe optimal convergence
Ophk`1

j q, cf. Table 2.

j }yj,0 ´ y
sol}0,C }yj,1 ´ y

sol}0,C }yj,2 ´ y
sol}0,C }yj,3 ´ y

sol}0,C

0 5.539 ¨ 10´1 2.807 ¨ 10´1 9.324 ¨ 10´3 4.886 ¨ 10´4

0.88 1.95 3.14 4.01
1 3.004 ¨ 10´1 7.288 ¨ 10´2 1.059 ¨ 10´3 3.033 ¨ 10´5

0.94 1.99 3.07 4.04
2 1.563 ¨ 10´1 1.837 ¨ 10´2 1.262 ¨ 10´4 1.843 ¨ 10´6

0.97 2.00 3.03 4.01
3 7.971 ¨ 10´2 4.595 ¨ 10´3 1.542 ¨ 10´5 1.145 ¨ 10´7

Table 2: Convergence in space for different polynomial degrees k: the rate on level j

is computed as log2
}yj,k´ysol

}0,C
}yj`1,k´ysol}0,C

and written in bold face in between the involved

j-rows. The norms are evaluated on the space time cylinder C “ p0, T q ˆ Ω.

4.2. A test configuration for an application in seismics. Now we study
a configuration which is close to our intended real application. This configuration
allows us to calibrate the choice of the discretization parameters with respect to the
evaluation of seismograms in the inverse algorithm. Thus, our numerical solver is
sufficiently accurate in time and in space.

We consider the square Ω “ p0, 2000q2 (our length unit is meter) and we select
piecewise constant material parameters µ “ p%, vp, τpq P Ph:

vppxq “

#

1.05vbg , x P ∆1 “ p900, 1100q ˆ p600, 800q ,

vbg, else ,

%pxq “

#

1.05%bg , x P ∆2 “ p900, 1100q ˆ p900, 1100q ,

%bg, else ,

τppxq “

#

4.00τbg , x P ∆3 “ p900, 1100q ˆ p1200, 1400q ,

τbg, else .

The background values can be found in Figure 1. Further we choose L “ 5 damping
mechanisms and use the relaxation times obtained by the extended τ -method [3] to
approximate a constant quality factor Q “ 15 in the frequency range 1 Hz–50 Hz.
Numerical values are listed in Figure 1. A plot of the realized Q (2.2b) with these
relaxation times can be seen in Figure 2.

The source is modeled by a Ricker wavelet a P C8pRq at the position xsource P Ω.
This corresponds to the right-hand side b given by

(4.1) b “ p0, 0, bp,0q , bppt, xq “ aptq δxsource
pxq , t P p0, T q , x P Ω ,

where the Ricker wavelet is chosen with central frequency ω0{p2πq “ 25 Hz and a
small shift away from the origin

aptq “ αpt´ 3π{ω0q with αptq “ p1´ ω2
0t

2{2q expp´pω0t{2q
2q , t P R .

The geometric setting of our test scenario can be seen in Figure 1. To model the
measurements, we use in this subsection only one source at xsource “ p600, 1370q
(indicated by shot4 in Figure 1) and S “ 64 equidistant measurement points (re-
ceivers)

rs “ p1350, 370` 20sq P Ω , s “ 0, . . . , 63,
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on the line t1350u ˆ r370, 1620s, see Figure 1.
The linear measurement operator Ψh,s P LpYh,Rq at receiver rs is a point

evaluation of the pressure ph “ p0,h ` ¨ ¨ ¨ ` pL,h, that is,

Ψh,spvh, p0,h, . . . , pL,hq “ phprsq , pvh, ph,0, . . . , ph,Lq P Yh .

Remark 4.1. The right hand side bh of the discretized problem (3.1) can be
evaluated analytically for the source term from (4.1): for any test function φh P Yh
we have that

`

bptq,φh
˘

0,Ω
“ αptqφh,3pxsourceq

where φh,3 is the third component of φh.

600 90011001350 2000

370

600

800
900

1100
1200

1400

1620

2000

shot0

shot1

shot2

shot3

shot4

shot5

r0

r63

Ω

∆3

∆2

∆1

ROI

vbg 3500 m{s τl
v∆1 3675 m{s 0.3207 s
ρbg 2000 kg{m3 0.0748 s
ρ∆2

2100 kg{m3 0.0153 s
τbg 0.0767 0.0034 s
τ∆3

0.3375 0.0013 s

Fig. 1: Geometry, source positions, inclusions, and receiver positions for the con-
vergence test. The region of interest (ROI) for FWI is indicated as light green
rectangle.

For the numerical test we use an extended domain Ωext Ą Ω such that waves
with speed 3500 m{s can never reach any receiver after reflecting at a boundary. In
the DG finite element space we fix the polynomial degree k “ 2 for all calculations
below. Our coarse mesh has mesh size h0 “ 50 and the meshes on the higher levels
are obtained by bisecting the mesh size. We emphasize that the initial mesh and
hence all finer meshes are aligned with the supports ∆i, i “ 1, 2, 3, of the three
inclusions.

In time we use the uniform meshes with time step sizes Mtm “ 0.00064 ¨ 2´m,
m “ ´1, 0, 1, 2, 3, .... The linear system in every time step (3.2) is solved approx-
imately by a preconditioned GMRES iteration with a reduction factor2 10´4. In
our tests 2–5 GMRES steps are required in average.

Let yj,m P Uh be the DG solution with level j in space and level m in time.
Then the numerically computed seismogram sj,m P H1p0, T ;R64q is given by

(4.2) psj,mqs “ Ψh,syj,m, s “ 0, . . . , 63,

2The iteration is stopped when the relative residuals of the GMRES iterates are below the
reduction factor.
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j fj,0 fj,1 fj,2 fj,3
0 2.106 ¨ 10´1 2.097 ¨ 10´1 2.095 ¨ 10´1 2.094 ¨ 10´1

3.34 3.35 3.35 3.35
1 2.080 ¨ 10´2 2.062 ¨ 10´2 2.058 ¨ 10´2 2.058 ¨ 10´2

3.04 3.01 3.02 3.03
2 2.534 ¨ 10´3 2.559 ¨ 10´3 2.534 ¨ 10´3 2.534 ¨ 10´3

Table 3: Convergence of seismograms in space for fixed polynomial degree k “ 2,

where fj,m “
}sj`1,m´sj,m}0,p0,T q

}s3,3}0,p0,T q
are normalized differences of calculated seismo-

grams of two consecutive space levels. The rate on level j in column m is computed
as log2

fj,m
fj`1,m

and written in bold face between the involved j-rows. The implicit

midpoint rule was used as time-stepping scheme.

where the discrete measurement operator acts only on the spatial variable of yj,m.
Hence, psj,mqs is a linear spline function in time.

We observe cubic convergence in space (Table 3) and using the implicit midpoint
rule we even obtain quadratic convergence in time (Table 4).

To estimate the approximation error in the seismograms we use extrapolation to
the limit3, see, e.g., [10, Chap. 4.2.8]: Let s0, s1, s2 be three seismograms computed
on sucessive discretization levels. From s2´s1 and s1´s0 the numerically observed
error reduction rate r is computed, which then defines the extrapolated seismogram
by sex “ r

r´1s2 ´
1
r´1s1 used as a substitute for the unknown exact seismogram.

We extrapolate first in space. Since we observe cubic convergence in space
(Table 3) we obtain with r “ 23

sex
m “

8

7
s3,m ´

1

7
s2,m m “ 0, 1, 2, 3 ,

for different time levels. Now we interpolate in time where we observe quadratic
order (Table 4), and with r “ 22 we obtain

sex “
4

3
sex

3 ´
1

3
sex

2 .

With the extrapolated seismogram sex we estimate that the normalized error for
the finest seismogram s3,3 in space and in time is smaller than 0.05%, see Table 5.
In the following section we use the space discretization at level j “ 1 and the time
step Mt “ 0.0005 P pMt0,Mt1q. Interpolating the corresponding values of Table 5 we
expect a relative error of roughly 2% for this space and time discretization.

We also computed the seismograms with the extrapolated implicit midpoint
rule, see Table 6. If we lower the reduction factor to 10´8 in GMRES we clearly
observe fourth-order convergence which we do not observe with the reduction factor
10´4. We only ran one test for this time stepping scheme, since the feasibility of
higher order implicit methods in time in the context of FWI is not in the focus here.

3The extrapolation technique relies on an error expansion and assumes that the numerical
results are in the asymptotic regime which is not guaranteed for our application.
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m g0,m g1,m g2,m g3,m

0 2.273 ¨ 10´2 3.164 ¨ 10´2 3.218 ¨ 10´2 3.211 ¨ 10´2

2.00 2.00 2.01 2.00
1 5.677 ¨ 10´3 7.900 ¨ 10´3 8.014 ¨ 10´3 8.028 ¨ 10´3

1.99 2.00 2.00 2.01
2 1.430 ¨ 10´3 1.972 ¨ 10´3 1.997 ¨ 10´3 1.996 ¨ 10´3

Table 4: Convergence of seismograms in time for the implicit midpoint rule and

fixed polynomial degree k “ 2, where gj,m “
}sj,m`1´sj,m}0,p0,T q

}s3,3}0,p0,T q
are normalized

differences of calculated seismograms of two consecutive time levels. The rate on
level m and for fixed j is computed as log2

gj,m
gj,m`1

and written in bold face between

the involved m-rows.

j “ 0 j “ 1 j “ 2 j “ 3
}sex

m´sex
}0,p0,T q

}sex}0,p0,T q

m “ 0 0.20466 0.02798 0.04056 0.04250 0.04278

m “ 1 0.21682 0.01609 0.00857 0.01041 0.01069

m “ 2 0.22018 0.02106 0.00182 0.00239 0.00266

m “ 3 0.22104 0.02256 0.00241 0.00044 0.00067

Table 5: Normalized error estimates
}sj,m´sex

}0,p0,T q

}sex}0,p0,T q
for different space j and time

levels m.

m g0,m g1,m g2,m g3,m

´1 2.691 ¨ 10´4 5.087 ¨ 10´4 5.352 ¨ 10´4 -
3.98 3.98 3.97 ´

0 1.703 ¨ 10´5 3.234 ¨ 10´5 3.405 ¨ 10´5 3.402 ¨ 10´5

3.99 3.99 3.99 3.99
1 1.069 ¨ 10´6 2.031 ¨ 10´6 2.139 ¨ 10´6 2.137 ¨ 10´6

4.00 4.00 4.00 4.00
2 6.674 ¨ 10´8 1.273 ¨ 10´7 1.339 ¨ 10´7 1.337 ¨ 10´7

Table 6: Convergence of seismograms in time for the extrapolated implicit midpoint

rule and fixed polynomial degree k “ 2 where gj,m “
}sj,m`1´sj,m}0,p0,T q

}s3,3}0,p0,T q
are nor-

malized differences of calculated seismograms of two consecutive time levels. The
rate on level m and for fixed j is computed as log2

gj,m
gj,m`1

and written in bold face

between the involved m-rows.

5. Reconstruction. In this section we present an application of the combina-
tion of the inexact Newton-CG method with the DG method as forward solver. The
goal is to give a proof of concept. Therefore we keep the configuration, the model
and the inversion strategy as elementary as possible to explore the performance of
the new combination in visco-acoustic media. We choose the same crosswell sce-
nario as in our test of convergence using the geometry in Figure 1. We assume
that the source time function is known and do not apply a source time function
inversion. The background model is used as initial model. A multi-scale strategy
by sequential frequency filtering is not required as the model perturbations are local
and no cycle skipping is observed in the considered frequency range. We also do
not apply a preconditioning of the gradient to reduce artifacts around sources and
receivers.

In realistic applications there are always more than one source, say, we have
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Algorithm 5.1 KCG-REGINN

Input: µ0 P Ph % starting guess; sobs P L2p0, T ;RSqΣ % seismograms
Output: µk P Ph % approximate solution of (2.14)

1: k Ð 0, shot Ð 0,
2: while not termination do
3: µk0 Ð µk

4: repeat
5: rkshot “ sobs,shot ´ Φshotpµ

k
shotq

6: determine ϑkshot and shotkmax,shot % according to (2.18) and (2.19)

7: pMµkshot, jkq Ð CG(rkshot,µ
k
shot,ϑ

k
shot,shotkmax,shot) % call of Algorithm 2.2

8: µkshot`1 Ð µkshot ` Mµkshot

9: shot Ð shot` 1
10: until shot ě Σ
11: shot Ð 0
12: µk`1 Ð µknshots´1

13: k Ð k ` 1
14: end while
15: return µk

Σ P N sources (we use Σ “ 6, see Figure 1). If a source fires we call it a shot. For
each of our shots we have a forward operator Φshot, shot “ 0, . . . ,Σ´1, which maps
the model parameters µ to the corresponding seismogram sshot (as in (4.2) for each
shot). Thus we are lead to Σ subproblems

(5.1) Φshotpµq “ sobs,shot , shot “ 0, . . . ,Σ´ 1 ,

where sobs,shot is the observed/measured seismogram.
To reduce the numerical effort per iteration step we provide a Kaczmarz variant

of CG-REGINN (Algorithm 2.1) where all equations in (5.1) are processed individually
and cyclically by CG-REGINN (Algorithm 5.1). Kaczmarz solvers are well established
and explored in the inverse problem community, see, e.g., [18, 12, 11, 21, 22].

In all our experiments KCG-REGINN is stopped after 10 iterations (passes through
the while-loop). As Σ “ 6 the model parameter is updated 60 times.

We work with the same geometrical layout as before, see Figure 1. We also use
the same attenuation described there, τbg “ 0.0767 and the τl’s given in Figure 1.
Within this setting we approximate a nearly constant Q “ 15 in the relevant fre-
quency range given by the center frequency ω0{p2πq “ 25 Hz of the source. The
background values %bg “ 2000 kg{m3 and vbg “ 3500 m{s are also those from subsec-
tion 4.2.

For the inversion of vp we increased the corresponding background value by 5%
in ∆1, by 10% in ∆2, and decreased it by 5% in ∆3. For the inversion of τp the
parameter τp is given by λτbg for a factor λ ą 0 such that the approximate values
for Q (2.2b) are (the values for λ are in parentheses): 5p4.4q, 10p1.7q and 30p0.45q in
∆1, ∆2, and ∆3, respectively. The behavior of the Q’s over frequency can be seen
in Figure 2. The numerical values of all involved parameters of our reconstruction
experiments are listed in Table 7. The larger contrast in τp compared to vp is needed
so that the wave is noticeably attenuated on its short (relative to its wavelength)
way from the sources to the receivers.

We apply a monoparameter strategy for each parameter individually, this means
only one parameter is reconstructed in every experiment. The starting guess µ0 for
Algorithm 5.1 was always chosen as the background value of the parameter under
consideration.
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1 5 10 15 20 25 30 35 40 45 50
/2  [Hz]

5
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20
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30

Q

Fig. 2: Approximation of Q (2.2b) over the frequency range 1´ 50 Hz for the four
different material areas in the test configuration, see Figure 1 and right table in
Table 7. The dashed lines indicate the constant target values for Q.

vbg 3500 m{s τl
v∆1 3675 m{s 0.3207 s
v∆2 3850 m{s 0.0748 s
v∆3

3325 m{s 0.0153 s
ρbg 2000 kg{m3 0.0034 s
τbg 0.0767 0.0013 s

τbg 0.0767 τl
τ∆1 0.3375 0.3207 s
τ∆2 0.0345 0.0748 s
τ∆3

0.1304 0.0153 s
ρbg 2000 kg{m3 0.0034 s
vbg 3500 m{s 0.0013 s

Table 7: parameters for the monoparameter reconstructions. Left: parameters for
reconstructing vp. Right: parameters for reconstructing τp.

For each parameter setup we invert three different input data sets so that we are
able to compare reconstructions with and without inverse crime. Inverse crime (IC)
means generating synthetic measurements with the same forward solver used later
during inversion. Committing an IC results in ‘over-optimistic’ reconstructions
which lack typical artifacts originating from the continuous model, see [5]. For
instance, source modeling is a delicate and sensitive task which leads to an additional
modeling error causing artifacts which are virtually not visible in reconstructions
from IC data. This effect can be seen clearly below in the experiments with respect
to the scaling parameter τp. Moreover, our experiments (Figure 5 and Figure 6
below) demonstrate that IC data disguise the true ill-posed nature of this inverse
problem indeed: the results from the strong IC data are better than those by weak
or no IC data. Stronger artifacts superimpose the otherwise meaningful outcome.

Our first two data sets are generated by the DG solver introduced in the previous
section. The first set was produced using the ansatz space from the inverse solver
(strong IC), for the second set we discretized the visco-acoustic equation on a finer
grid in space with higher degree polynomials (j “ 2, k “ 3 in the notation of
section 4) (weak IC). The third set was obtained by the FDTD code SOFI [4] (no
IC). Due to different implementations of the source it was necessary to rescale the
FDTD data. For this the whole FDTD dataset was multiplied by the quotient of
the maximal amplitude of the traces of the DG and the FDTD data.
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The quality of the reconstructions is measured by the relative L2- and L8
distances to the analytic ground truth4, however, restricted to the region of interest
ROI “ r650, 1300sˆr370, 1620s which is located between sources and receivers (light
green rectangle in Figure 1).

5.1. Inversion for vp. Variations in vp produce differences in the phase or
traveltime between the predicted and observed waveforms: high and low velocity
anomalies lead to an advance and delay of traveltime, respectively (see Figure 4,
first row, left). The reconstructions of the P-wave velocity vp after 10 iterations
are shown in Figure 5. We see that the case of strong IC produces slightly weaker
artifacts than the weak IC case. For the case of no IC artifacts are further strength-
ened. For all cases the reconstructions of vp are of good quality. The parameter vp

is thus not much affected by systematic errors in the observed seismograms.
The seismograms obtained for the final and true models at the receivers r0, r31,

and r63 for the case of no IC are compared in Figure 4. Already after 10 iterations
we obtain a nearly perfect fit of seismograms (Figure 4, first row, right) indicating
the fast convergence of KCG-REGINN in our mono-parameter crosswell setting. The
convergence history is presented in Figure 3 (left): L2- and L8-errors relative to
the initial error are plotted as function of the iteration number for the strong and
the no IC scenario. We observe a fast and monotone decrease of the L2-error in
agreement with the theoretic results [19, Thm 3.1]. Only 10 iterations were required
to achieve a stable result.

0 2 4 6 8 10

0.6

0.8

1

1.2

iteration

relative L2{L8-errors for vp in ROI

sIC,L=5 L2 sIC,L=5 L8
nIC,L=5 L2 nIC,L=5 L8

0 2 4 6 8 10
0.4

0.6

0.8

1

1.2

iteration

relative L2{L8-errors for τp in ROI

sIC,L=5 L2 sIC,L=5 L8
nIC,L=5 L2 nIC,L=5 L8

Fig. 3: Relative L2{L8 errors in ROI “ r650, 1300s ˆ r370, 1620s for the strong
IC(sIC) and no IC (nIC) data for vp (left) and τp (right).

5.2. Inversion for τp. The reconstruction of the level of attenuation τp is
generally challenging in practical applications due to the presence of coherent noise
which mainly affects the recorded amplitudes (and not the phase). Those amplitude
fluctuations can easily cause wrong updates of attenuation because attenuation is
most sensitive to amplitude variations at different receivers. The effect of attenua-
tion on recorded seismograms can be nicely identified in Figure 4 (second row, left).
Here the signal amplitudes of the observed FDTD data increase and decrease when
waves travel through a zone with lower and higher attenuation, respectively.

Another challenge associated with the inversion of attenuation is the broad
range of values for the level of attenuation τp that must be expected in real applica-

4As our parameters are represented by piece-wise constant functions, see subsection 2.5, we
have an analytic formula for the L2-norm.
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tion. The relative changes in τp are generally much higher than those in vp for the
same earth model. To overcome this challenge we reduce the parameter range of τp
and force positivity by the ansatz τp “ exp τ̃p, see Remark 2.4. The derivatives with
respect to this new parameter can be calculated via the chain rule, see Appendix A
for details.

In Figure 4 we compare seismograms for the initial and final model at the re-
ceivers r0, r31, and r63 for the case of no IC. Already after 10 iterations we observe
again a nearly perfect data fit (Figure 4, second row, right). This means that the
final attenuation model can perfectly explain the observations. The final recon-
structions are plotted in Figure 6 for the three cases of IC. In this mono-parameter
configuration both positive and negative deviations of the attenuation parameter τp
can be recovered surprisingly well by KCG-REGINN. A good reconstruction is achieved
if the deviation from the background is sufficiently large, i.e. if the effect in the ob-
served seismograms exceed the systematic errors produced by the forward solver.
Compared to the reconstructions of vp (Figure 5), the reconstructions of τp are
affected more severely by IC, i.e. systematic amplitude errors in the used forward
solvers. The strongest artifacts develop in the vicinity of the source locations when
the FDTD data (no IC) is inverted. These strong local artifacts are visible in the
differences of the two model norms shown in Figure 3 right. At higher iteration
numbers the L8 error becomes noticeably larger than the L2 error. This is not the
case in the reconstructions of vp (from about the sixth iteration) due to the absence
of strong local artifacts.

The development of τp for all iterations of KCG-REGINN for the case of no IC
data can be studied in Figure 7. We see the nice and smooth convergence of the
reconstructed model to the true model in the center between the two boreholes.
Unfortunately, the artifacts around the sources develop simultaneously. The arti-
facts around the sources also appear in real data applications and can be reduced
by a gradient taper and a simultaneous source time function inversion.

6. Conclusions. In this work we presented a modified formulation of the sys-
tem of forward equations for visco-acoustic media which allows the derivation of the
corresponding adjoint equations in an elegant way. The new equations are solved
by a discontinuous Galerkin method which shows sufficient accuracy in space and
time for a simple but realistic geophysical application, a cross-well scenario. In this
cross-well setting the inexact Newton-CG methods converges fast to the true mod-
els of attenuation and velocity within a few iterations only. Therefore, the results
proof the concept of the suggested framework to be flexible and efficient in realistic
applications. Our next goal is to develop this strategy towards more realistic appli-
cations. For this purpose we will first extend the framework to visco-elastic media
to account also for shear waves and surface waves which generally appear in land
seismic recordings. In the long term we plan to apply the new framework to land
seismic field data where the data is affected by topographic variations of the earth
surface. In this context the inherent advantages of the DG method in simulation
strong contrast interface such as free surface topography become most beneficial.

Appendix A. Formulas for the adjoint Fréchet operator under forced
positivity. If we consider the ansatz ρ “ exp ρ̃, τp “ exp τ̃p, vp “ exp ṽp and
invert for ρ̃, τ̃p, ṽp we make sure that only positive values are reconstructed. This
ansatz gives the parametrization

pρ, κ´1
0 , κ´1

1 , . . . , κ´1
L q

“

ˆ

exppρ̃q,
1` α exppτ̃pq

expp2ṽp ` ρ̃q
,

1` α exppτ̃pq

expp2ṽp ` ρ̃` τ̃pq
, . . . ,

1` α exppτ̃pq

expp2ṽp ` ρ̃` τ̃pq

˙

.
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Fig. 4: Comparsion of the “no inverse crime” measured (blue) and reconstructed
(orange) seismograms from shot 3 for receivers r63, r31, and r0 (top to bottom).
First row: reconstruction experiment for vp; second row: reconstruction experiment
for τp Left: initial seismograms (orange); right: final reconstructed seismograms
(orange).

If we follow the steps of section 2 we get the following formulas for the adjoint
operator, compare (2.21),

ρ̃ad
K “

1

|K|

ˆ T

0

ˆ
K

˜

´ exppρ̃qBtv
sol ¨wad `

1` α exp pτ̃pq

exp p2ṽp ` ρ̃` τ̃pq

ˆ

exp pτ̃pqp
sol
0 qad

0

`
1

τp,K

L
ÿ

l“1

pBtp
sol
l `

1

τl
pl

solq qad
l

˙

¸

dxdt ,

ṽad
p,K “

1

|K|

ˆ T

0

ˆ
K

˜

2` 2α exp pτ̃pq

exp p2ṽp ` ρ̃` τ̃pq

ˆ

exp pτ̃pqp
sol
0 qad

0

`
1

τp,K

L
ÿ

l“1

pBtp
sol
l `

1

τl
pl

solq qad
l

˙

¸

dxdt ,

τ̃ad
p,K “

1

|K|

ˆ T

0

ˆ
K

˜

´
α exp pτ̃pq

exp p2ṽp ` ρ̃q
psol

0 qad
0
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`
1

exp p2ṽp ` ρ̃` τ̃pq

ˆ L
ÿ

l“1

pBtp
sol
l `

1

τl
pl

solq qad
l

˙

¸

dx dt .

At the end of the inversion we can insert the reconstructed parameters into the
exponential function and retrieve ρ, vp, τp.

There is an additional benefit from this re-parametrization: it rescales the orig-
inal parameters via the logarithm and therefore reduces the absolute and relative
difference between the parameters, for instance, 3500{0.02 is of order 6 whereas
log 3500{ log 0.02 is of order 1. Huge differences in scale are typically encountered
in multiparameter inversion [15].
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0.90 0.95 1.00 1.05 1.10 0.90 0.95 1.00 1.05 1.10

0.90 0.95 1.00 1.05 1.10 0.1 0.0 0.1

0.90 0.95 1.00 1.05 1.10 0.1 0.0 0.1

0.90 0.95 1.00 1.05 1.10 0.1 0.0 0.1

Fig. 5: Inversion for vp. First row: ground truth vtrue
p (left) and initial value v0

p

(right). Second to fourth row: results for strong IC data, weak IC data, and FDTD
data. Left: 10-th iterate v10

p of KCG-REGINN. Right: error v10
p ´ vtrue

p .
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0.100.45 1.70 4.40 5.00 0.100.45 1.70 4.40 5.00

0.100.45 1.70 4.40 5.00 1 0 3

0.100.45 1.70 4.40 5.00 1 0 3

0.100.45 1.70 4.40 5.00 1 0 3

Fig. 6: Inversion for τp. First row: ground truth τ true
p (left) and initial value τ0

p

(right). Second,third and fourth row: results for strong IC data, weak IC data and
no IC data. Left: 10-th iterate τ10

p of KCG-REGINN. Right: error τ10
p ´ τ true

p . In this
experiment the Background is Q “ 15 and L “ 5.
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0.100.45 1.70 4.40 5.00 0.100.45 1.70 4.40 5.00 0.100.45 1.70 4.40 5.00

0.100.45 1.70 4.40 5.00 0.100.45 1.70 4.40 5.00 0.100.45 1.70 4.40 5.00

0.100.45 1.70 4.40 5.00 0.100.45 1.70 4.40 5.00 0.100.45 1.70 4.40 5.00

Fig. 7: First 9 iterates of KCG-REGINN for τp with no IC data. For the 10-th iterate
see Figure 6 (4-th row, left).
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