# Modifying SBA-15 with Binary Elements of Chromium and Molybdenum for Improved Catalytic Performance in the Oxidative Dehydrogenation of Isobutane to Isobutene

Yuki KATO<sup>1</sup>, Shinya NITTA<sup>2</sup>, Kenta ORIBE<sup>2</sup>, Masahiro KATOH<sup>3</sup>, Wataru NINOMIYA<sup>1</sup> and Shigeru SUGIYAMA<sup>3</sup>\*

 <sup>1</sup>Otake R&D Center, Mitsubishi Chemical Corporation, 20-1, Miyuki-cho, Otakeshi, Hiroshima 739-0693, Japan
 <sup>2</sup>Department of Chemical Science and Technology, Tokushima University, Minamijosanjima, Tokushima-shi, Tokushima 770-8506, Japan
 <sup>3</sup>Department of Applied Chemistry, Graduate School of Technology, Industrial and Social Science, Tokushima University, Minamijosanjima, Tokushima-shi, Tokushima 770-8506, Japan

Keywords: Oxidative Dehydrogenation, Isobutane, Isobutene, SBA-15, Chromium, Molybdenum

In the oxidative dehydrogenation of isobutane to isobutene, selectivity and stability were improved by introducing chromium and molybdenum into SBA-15. The direct synthesis method (DM) was used to introduce these binary elements into SBA-15. Use of the DM resulted in a higher specific surface area of the catalyst and a greater dispersion of chromium and molybdenum species compared with a corresponding binary catalyst prepared using the incipient wetness impregnation method (IM). Selectivity to isobutene was improved, along with a decrease in the selectivities to CO and CO<sub>2</sub> with the introduction of greater amounts of molybdenum, which suggests that molybdenum must suppress the tendency of isobutene to over-oxidate to either CO or CO<sub>2</sub>. The molybdenum species must be in close proximity to the chromium species, which results in the formation of an active Cr-O-Mo site.

# Introduction

Methyl methacrylate (MMA) monomer is a major material in the composition of functional chemicals such as films, sheets, pellets, optical fibers, coatings and paints. Various industrial processes are used to produce MMA monomers. More than half of these are acetone cyanohydrin (ACH) processes. In Asia, however, C<sub>4</sub> direct oxidation is the main method (Ninomiya, 2014). In this process, tert-butanol (TBA), or isobutene, is used as the main raw material. Since TBA is produced from isobutene, the development of a method for the production of isobutene is a key for direct C<sub>4</sub> oxidation. Isobutene is generally derived from ethylene via FCC (fluid catalytic cracking) processes. It is often pointed out, however, that the supply of isobutene is undoubtedly insufficient (Nagai, 2001). Therefore, the present study was focused on the oxidative dehydrogenation (ODH) of isobutane as a potential supply of isobutene (Eq. (1)). On the other hand, some laboratories (Ohta et al., 2004; Airaksinen et al., 2005; Korhonen et al., 2007) have focused on direct dehydrogenation (DH) of isobutane to isobutene with an absence of oxygen in the reactant stream. Direct DH is an endothermic reaction, which normally requires a higher reaction temperature that results in easy

Received on July 9, 2018, Accepted on February 3, 2019 DOI:10.1252/jcej.18we202 deactivation of the catalysts due to the formation of carbon deposits. By contrast, ODH is an exothermic reaction that is conducted at a lower temperature. ODH has a serious drawback, however, because the isobutene selectivity is low. Based on earlier papers concerning the ODH of isobutane (Jibril et al., 2005; Moriceau et al., 2000; Wang et al., 2009), our group has investigated various metal-doped meso-porous catalysts for the ODH of isobutane to isobutene and confirmed that mesoporous silica catalysts modified with chromium are suitable for this reaction (Sugiyama et al., 2013, 2015; Ehiro et al., 2015, 2016a, 2016b; Kato et al., 2018). From a practical point of view, however, it is preferable to reduce the amount of chromium in the catalysts as much as possible due to toxicity. For this purpose, we focused on meso-porous silica catalysts modified with binary elements of chromium and another element. In the present paper, the catalytic performances of SBA-15 modified with chromium and molybdenum was examined based on preliminary experiments using binary systems.

$$i - C_4 H_{10} + \frac{1}{2} O_2 \longrightarrow i - C_4 H_8 + H_2 O$$
 Eq. (1)

# 1. Experimental

# 1.1 Preparation of catalysts

Unmodified SBA-15 (SBA-15) was prepared using a method reported by Zhao *et al.* (1998). Pluronic 123 (P123) (Sigma-Aldrich Co. LLC.) (6.00 g) and KCl (Wako Pure Chemical Industries, Ltd.) (6.72 g) were

Correspondence concerning this article should be addressed to S. Sugiyama (E-mail address:sugiyama@tokushima-u.ac.jp)

added to a 2M HCl aqueous solution (Wako Pure Chemical Industries, Ltd.) (180)mL). Tetraethylorthosilicate (TEOS) (Shin-Etsu Chemical Co., Ltd.) (11.48 g) was added to the solution, which was then stirred for 8 min. The solution was then maintained at 317 K for 24 h under static conditions. The resultant solution was reacted in an autoclave at 373 K for 24 h to achieve hydrothermal synthesis. A white precipitate was recovered via filtration after the solution was washed with distilled water and then dried at 332 K for 2 days. Finally, the resultant solid was calcined at 823 K for 6 h (heating rate = 1.8 K/min) to yield SBA-15.

In order to introduce chromium and molybdenum into SBA-15, a direct synthesis method (DM) reported by Grieken et al. (2009) was employed. It should be noted that Cr-Modified SBA-15 via the DM showed great catalytic performance (Kato et al., 2018). The chromium and/or molybdenum were introduced into SBA-15 using Cr(NO<sub>3</sub>)<sub>3</sub> 9H<sub>2</sub>O (Sigma-Aldrich Co. LLC.) and/or  $(NH_4)_6Mo_7O_{24} \cdot 4H_2O$  (Wako Pure Chemical Industries, Ltd.) as the corresponding precursors after the addition of TEOS during the preparation of unmodified SBA-15. The amounts of Si, Cr and Mo were adjusted to achieve atomic ratios of Si:Cr:Mo = 100:0.1:0.1, 100:1:1, 100:2:2, 100:2:0, 100:0:2, 100:2/3:2, and 100:2:2/3. The resultant catalysts were designated Cr,Mo-SBA-15 (Cr:Mo = 0.1:0.1, 1:1, 2:2, 2/3:2, and 2:2/3, respectively). In the case of introducing either chromium or molybdenum, Cr or Mo was adjusted to achieve atomic ratios of Si:Cr = 100:2 or Si:Mo = 100:2. The resultant catalysts were designated Cr-SBA-15 and Mo-SBA-15. Additionally, incipient wetness impregnation (IM) (Wang et al., 2009) was also employed. For the IM, the unmodified SBA-15 (1.50)g) and  $Cr(NO_3)_3 \cdot 9H_2O$ and (NH<sub>4</sub>)<sub>6</sub>Mo<sub>7</sub>O<sub>24</sub>·4H<sub>2</sub>O were added to distilled water (20 mL) and stirred at room temperature. The amount of each element was adjusted as an atomic ratio of Si:Cr:Mo = 100:2:2. The resultant slurry was dried at 333 K for 12 h and calcined at 823 K for 5 h (heating rate = 1.8 K/min). The resultant catalyst was designated Cr,Mo-SBA-15\* (Cr:Mo = 2:2).

#### **1.2 Characterization of catalysts**

The X-ray diffraction (XRD) patterns and N<sub>2</sub> adsorption/desorption isotherms of the catalysts were analyzed for structural properties. The XRD patterns were measured using SmartLab/R/INP/DX (Rigaku Co.) with a Cu Ka radiation monochromator at 45 kV and 150 mA. After the pretreatment at 473 K for 5 hours under vacuum, N2 adsorption/desorption isotherms of the catalysts were measured using a BELSORPmax12 (MicrotracBEL) at 77 K, and then the specific surface areas were estimated via BET. The acidic properties of the catalysts were measured for NH<sub>3</sub> temperatureprogramed desorption using BELCAT а

(MicrotracBEL) under the following conditions. First, each catalyst was exposed to 50 sccm of He gas flow at 773 K for 1 hour as pretreatment. Second, the catalyst was treated under 50 sccm of a 5% NH<sub>3</sub>/He gas flow for 30 min at 373 K to promote the adsorption of NH<sub>3</sub> as a main treatment. Finally, the catalysts were maintained under He gas at 50 sccm for 15 min and was then heated from 373 K to 883 K (heating rate = 10 K/min) under a flow of He gas at 30 sccm. The desorbed NH<sub>3</sub> from the catalyst was then monitored using a BELMass (MicrotracBEL) quadruple mass spectrometer, which showed a mass signal of m/e = 16 for NH<sub>3</sub>. Given that the NH<sub>3</sub> parent peak showed a mass signal of m/e = 17, however, the desorbed NH<sub>3</sub> is thought to have been strongly influenced by H<sub>2</sub>O.

#### 1.3 Evaluation of catalytic performances

The catalytic performances were measured with a fixed-bed continuous flow reactor under atmospheric pressure at 723 K. Each catalyst was pelletized and sieved to 0.85-1.70 mm. The catalysts (0.25 g) were then placed into a reactor. The catalyst pretreatment was carried out with less than 12.5 mL/min of O<sub>2</sub> gas flow at 723 K for 1 h before the evaluations of catalytic performance. The evaluations were carried out under 15 mL/min of a reactant gas flow, which consisted of  $P(\text{iso-C}_4\text{H}_{10}) = 14.4 \text{ kPa}, P(\text{O}_2) = 12.3 \text{ kPa and } P(\text{He}) =$ respectively, partial 74.6 kPa, as pressure. Homogeneous reactions were not detected under these conditions. The reaction products were detected via an on-line gas chromatograph (GC-8APT, Shimadzu Corp.) using a thermal conductivity detector (TCD) and a capillary gas chromatograph (GC-2025, Shimadzu Corp.) equipped with a flame ionization detector (FID). The columns in TCD-GC consisted of a Molecular Sieve 5A (0.2 m× $\Phi$ 3 mm) for the detection of O<sub>2</sub>, CH<sub>4</sub>, and CO and a HayaSep R (0.2 m× $\Phi$  3 mm) for the detection of CO<sub>2</sub>, C<sub>2</sub>, C<sub>3</sub>, and C<sub>4</sub> species. An Rt-Almina BOND/Na<sub>2</sub>SO<sub>4</sub> (30 m× $\Phi$  0.53 mm) was used as a capillary column in the FID-GC to provide detailed characterizations of C<sub>4</sub> species.

The catalytic performances were estimated on a carbon basis. The carbon balance between the reactant and the products was within  $\pm 5\%$  and other products were lower alkanes less than C<sub>3</sub> except for main products such as isobutene, CO and CO<sub>2</sub>.

## 2. Results and Discussion

# 2.1 Catalytic performances

Figure 2 shows the catalytic performances of unmodified SBA-15 (SBA-15), Mo-SBA-15, Cr-SBA-15 and Cr,Mo-SBA-15 (Cr:Mo = 2:2). The conversion of isobutane for SBA-15 and Mo-SBA-15 were quite low, indicating that Mo did not contribute to the hydrogen abstraction from isobutane. However, the selectivity to isobutene was significantly improved from less than 40% for SBA-15 to approximately 60% for

Mo-SBA-15. Therefore, Mo did not contribute to the over-oxidation of isobutene to CO and CO<sub>2</sub>. As expected from our previous paper on the effect that Cr exerts on the oxidative dehydrogenation of isobutane (Kato et al., 2018), Cr -SBA-15 showed the highest conversion of isobutane from among the four catalysts, as shown in Figure 1. It is interesting that the binary system for Cr,Mo-SBA-15 (Cr:Mo = 2:2) showed an advantageous nature for both Mo-SBA-15 and Cr-SBA-15, which resulted in higher isobutene selectivity and stable activity during 6 h on-stream for Mo-SBA-15 and a higher conversion of isobutane for Cr-SBA-15, respectively, resulting in a higher level of isobutene yield and the suppression of a remarkable level of deactivation observed using Cr,Mo-SBA-15 (Cr:Mo = 2:2) for 6 h on-stream. It is unique when a binary catalyst reflects the advantages of the individual elements of Mo and Cr.

Figure 3 shows the catalytic performances of Cr,Mo-SBA-15 (Cr:Mo = 2:2) at several ratios of  $P(O_2)$ to  $P(iso-C_4H_{10})$  as reactant gas flow component. As the ratio of the partial pressure of  $P(O_2)$  to  $P(\text{iso-C}_4H_{10})$ was increased, the conversion of isobutane was increased, while the selectivity to isobutene was decreased, followed by an increase in the selectivities for CO and CO<sub>2</sub>. As pointed out in our previous papers (Sugiyama et al., 2015; Ehiro et al., 2015, 2016a, 2016b; Kato et al., 2018; Wang et al., 2009), in catalysts modified with Cr alone, Cr<sup>6+</sup> was an active site for this reaction. During oxidative dehydrogenation, Cr<sup>6+</sup> was reduced to Cr<sup>3+</sup>, followed by the re-oxidation of  $Cr^{3+}$  to  $Cr^{6+}$  with gaseous O<sub>2</sub>. Therefore, it is reasonable that the re-oxidation rate of Cr3+ was promoted with an increase in the partial pressure of O<sub>2</sub> gas, and the total reaction rate was also increased. There are several reaction routes to CO or CO<sub>2</sub>, as shown in Figure 1 In this process, some of the parallel reactions of isobutane to CO or CO2 are included because selectivities to CO and CO2 were not close to zero even when the conversion of isobutane was quite low as with the SBA-15 or Mo-SBA-15 shown in Figure 1. However, as shown in Figure 3, the main cause of a decrease in the selectivity to isobutene seems to have been due to promotion of the consecutive reactions of isobutene to CO or CO<sub>2</sub> (Route (2) and (3) in Figure 1) since the selectivities to CO and CO<sub>2</sub> were decreased with an increase in the conversion of isobutane.



Fig. 1 Reaction route of isobutane



Fig. 2 Catalytic performances when using SBA-15, Mo-SBA-15, Cr-SBA-15 and Cr,Mo-SBA-15 (Cr:Mo = 2:2) for the ODH of isobutane at 723 K



Fig. 3 Catalytic performances of Cr,Mo-SBA-15 (Cr:Mo = 2:2) for the ODH of isobutane under a reactant gas under different levels of partial pressures at 723 K

Figure 4 shows the catalytic performances of Cr,Mo-SBA-15 (Cr:Mo = 0.1:0.1, 1:1, 2:2), with differing, but equal, amounts of Cr and Mo. The conversion of isobutane was enhanced when the amounts of introducing of Cr and Mo were increased from Cr:Mo = 0.1:0.1 to Cr:Mo = 1:1. However, the conversion of isobutane did not increase at the introduction of Cr:Mo = 2:2. Additionally, isobutene selectivity remained at a higher level, regardless of the ratio. As a result, the highest yield of isobutene was detected when using Cr,Mo-SBA-15 (Cr:Mo = 1:1 and 2:2).

**Figure 5** shows the catalytic performances of Cr,Mo-SBA-15 (Cr:Mo = 2:2) and Cr,Mo-SBA-15\*

(Cr:Mo = 2:2), in which SBA-15 was modified with the same amounts of Cr and Mo while the preparation method differed. On Cr,Mo-SBA-15\* (Cr:Mo = 2:2), the isobutene selectivity was decreased in contrast to an increase in CO and CO<sub>2</sub> selectivities. Therefore, the catalyst prepared by the DM was clearly preferable for this reaction than that prepared by the IM. The reason will be discussed later. Figure 6 shows the catalytic performances when using Cr,Mo-SBA-15 (Cr:Mo = 2:2, 2:2/3, 2/3:2), in which the ratio of Cr to Mo was changed. The conversion of isobutane was increased when the ratio of Cr to Mo was changed from Cr:Mo = 2:2 to Cr:Mo = 2:2/3 or 2/3:2, and isobutene selectivity was decreased with increases in CO and CO<sub>2</sub> selectivities. As a result, the yield of isobutene was enhanced with the change in ratio.



Fig. 4 Catalytic performances of Cr,Mo-SBA-15 (Cr:Mo = 0.1:0.1, 1:1, 2:2) for the ODH of isobutane at 723 K



Fig. 5 Catalytic performances of Cr,Mo-SBA-15 (Cr:Mo = 2:2) prepared via the DM method and Cr,Mo-SBA-15\* (Cr:Mo = 2:2) prepared via the IM method for the ODH of isobutane at 723 K



Fig. 6 Catalytic performances of Cr,Mo-SBA-15 (Cr:Mo = 2:2, 2:2/3, 2/3:2) for the ODH of isobutane at 723 K

#### 2.2 Characterization of catalysts

XRD and N<sub>2</sub> adsorption/desorption isotherm measurements were carried out for the analysis of structural properties. The upper and lower figures in Figure 7 show the XRD patterns within the lower and higher diffraction angles, respectively, of SBA-15, Cr,Mo-SBA-15 (Cr:Mo = 2:2) and Cr,Mo-SBA-15\* (Cr:Mo = 2:2). As shown by pattern (A) in the lower angle range of Figure 6, the diffractions of SBA-15 were recognized as a two-dimensional pore structure (Zhao *et al.*, 1998) due to the detection of (100), (110)and (200). The pattern (C) of Cr,Mo-SBA-15\* (Cr:Mo = 2:2) also showed peaks at the same angles. Therefore, Cr,Mo-SBA-15\* (Cr:Mo = 2:2) possessed the same pore structure as unmodified SBA-15. Also with Cr-SBA-15, Mo-SBA-15 and Cr,Mo-SBA-15 (Cr:Mo = 0.1:0.1 and 1:1), diffraction peaks due to (100), (110) and (200)were detected as with pattern (A) but shifted to an angle lower than unmodified SBA-15, which indicated an increase in d-spacing (not shown). In the case of Cr, Mo-SBA-15 (Cr:Mo = 2:2), a similar pattern as other catalysts was detected but the intensity was lower. In the higher angle ranges, only the diffraction of Cr, Mo-SBA-15\* (Cr:Mo = 2:2) showed the peaks assignable to crystalline MoO<sub>3</sub> at 20 = 12.8, 23.4, 25.7, 27.4, 33.7 and 39.1°, as reported by Hanawalt et al. (1938).

Figure 8 shows the N<sub>2</sub> adsorption/desorption isotherms of SBA-15, Cr,Mo-SBA-15 (Cr:Mo = 2:2) and Cr,Mo-SBA-15\* (Cr:Mo = 2:2). Additionally, **Table 1** shows the specific surface areas of various catalysts, as analyzed via BET. These catalysts exhibited type IV isotherms and all isotherms had the characteristic shapes for capillary condensation into a mesopore at  $p/p_0 = 0.4$ -0.8 with a hysteresis loop. However, only Cr,Mo-SBA-15 (Cr:Mo = 2:2) commenced capillary condensation at approximately  $p/p_0 = 0.4$ -0.8.



Fig. 7 XRD patterns of SBA-15 (A), Cr,Mo-SBA-15 (Cr:Mo = 2:2 (B)) and Cr,Mo-SBA-15\* (Cr:Mo = 2:2) (C)

The specific surface areas of the Cr,Mo-SBA-15 series were at higher levels and the greatest surface area was 872 m<sup>2</sup>/g for Cr,Mo-SBA-15 (Cr:Mo = 0.1:0.1). Cr,Mo-SBA-15\* (Cr:Mo = 2:2) prepared via the IM at 270 m<sup>2</sup>/g, which was the lowest surface area of all catalysts used in the present study.



**Fig. 8** N<sub>2</sub> adsorption-desorption isotherms of SBA-15 (A), Cr,Mo-SBA-15 (Cr:Mo = 2:2 (B)) and Cr,Mo-SBA-15\* (Cr:Mo = 2:2) (C)

 Table 1 The specific surface area of various catalysts analyzed via BET

|                                | Specific     |
|--------------------------------|--------------|
| Catalyst                       | surface area |
|                                | $[m^2/g]$    |
| SBA-15                         | 660          |
| Cr,Mo-SBA-15 (Cr:Mo = 0.1:0.1) | 872          |
| Cr,Mo-SBA-15 (Cr:Mo = 1:1)     | 520          |
| Cr,Mo-SBA-15 (Cr:Mo = 2:2)     | 780          |
| Cr-SBA-15                      | 746          |
| Mo-SBA-15                      | 678          |
| Cr,Mo-SBA-15* (Cr:Mo = 2:2)    | 270          |

Figure 9 shows the NH3-TPD of SBA-15, Mo-SBA-15, Cr-SBA-15, Cr,Mo-DBA-15 (Cr:Mo = 0.1:0.1, 1:1, 2:2) and Cr,Mo-SBA-15: (Cr:Mo = 2:2) for measuring acidic property. A peak was detected at approximately 493 K on only Cr,Mo-SBA-15\* (Cr:Mo = 2:2), while no peak was detected for either SBA-15 or all SBA-15 modified with Cr and/or Mo catalysts. These results rule out the possibility that stronger acid sites promoted the parallel or consecutive reactions that contributed to decreases in isobutene selectivity (Takita *et al.*, 2005).



Fig. 9 NH<sub>3</sub>-TPD of SBA-15, Mo-SBA-15, Cr-SBA-15, Cr,Mo-DBA-15 (Cr:Mo = 0.1:0.1, 1:1, 2:2) and Cr,Mo-SBA-15\* (Cr:Mo = 2:2)

#### Reaction mechanism and the effect of 2.3 introducing molybdenum

In previous papers (Sugiyama et al., 2016; Kato et al., 2018), we have proposed the structures of the Cr species and a reaction mechanism. Figure 10 (left image) shows the Cr species introduced into the silica framework of meso-porous materials and how two types of oxygen bridge Si and Cr to form a terminal double bond. Additionally, each Cr has either one or two elements of terminal oxygen. In the case that Cr have two terminal oxygens, as shown Figure 11, the terminal oxygen absorbs isobutane, which results in the formation of an isobuthylcarbenium cation and H<sup>-</sup>. from Then, isobutene released the is isobuthylcarbenium cation, while the remaining H<sup>-</sup> and absorbed H<sup>+</sup> by O<sup>-</sup> formed from another terminal oxygen forms H<sub>2</sub>O with oxygen, which is then released. However, if isobuthylcarbenium cation is attacked by another terminal oxygen, consecutive reactions from isobutene to CO or  $CO_2$  (Routes (2) and (3) in Figure 1) seem to be promoted and isobutene selectivity is decreased. Finally, chromium species reduced to Cr<sup>3+</sup>. Normally, chromium species are exist as Cr<sup>6+</sup> or Cr<sup>3+</sup> species absorbing because chromium isobuthylcarbenium cation and Cr4+ are transition state. Sugiyama et al. (2015) and Ehiro et al. (2016a) also reported that Cr<sup>6+</sup> is reduced to Cr<sup>3+</sup> during the reaction. In the case of SBA-15 modified with molybdenum and chromium, a Cr-O-Mo bond can be formed like binary metal oxide complex as shown Figure 10 (right image), and it is reasonable to assume that the likelihood of the existence of terminal oxygen is decreased. As a result, the possibility that terminal oxygen will attack the isobuthylcarbenium cation is undoubtedly decreased as shown Figure 12. Therefore, the consecutive reactions (Routes (2) and (3) in Figure 1) are suppressed, followed by an enhancement of isobutene selectivity. In this case. Mo species can take part of chromium reduction and Cr species may be more easily reoxidized to Cr<sup>6+</sup>. This mechanism is similar to a mechanism of selective oxidation of propylene to acrolein over Bi-Mo catalyst system reported by Burrington et al. (1983). Additionally, Cr species do not need to be Cr<sup>3+</sup>. Therefore, modification with Mo helped the suppression of catalytic deactivation. As shown in Figure 6, Cr and Mo seem to have a component ratio that is the most suitable for a binary metal oxide complex.







Modification of the silica framework with Cr Fig. 10 alone (left) or with both Cr and Mo (right)



Fig. 11 Reaction mechanism of isobutane to isobutene on SBA-15 introduced only Cr



Fig. 12 Reaction mechanism of isobutane to isobutene on SBA-15 introduced Cr and Mo

#### Conclusions

The maximum yield of isobutene from Cr,Mo-SBA-15 (Cr:Mo = 2:2) was only slightly improved compared with SBA-15 modified with Cr alone. Cr,Mo-SBA-15 (Cr:Mo = 2:2) showed significant improvement, however, in isobutene selectivity and in the suppression of deactivation. Isobutene selectivity was increased as a result of decreases in CO and CO<sub>2</sub> selectivities. Therefore, Mo plays an important role in suppressing over-oxidation to CO and CO<sub>2</sub>. Additionally, the yield

of isobutene was enhanced when the component ratio of Cr to Mo was changed from Cr:Mo = 2:2 to either Cr:Mo = 2:2/3 or 2/3:2. Although it remained unclear where the molybdenum locates, the improvement in the catalytic performance seems to have been achieved not by the particles of each metal oxide but by their proximity that is promoted by a suitable component ratio within the framework of SiO<sub>2</sub>.

## Acknowledgements

This study was supported by JSPS KAKENHI Grant Number JP17K19014 and by the Research Clusters Program of Tokushima University (1702001), for which we are grateful.

#### Literature Cited

- Airaksinen, S. M. K. and A. O. I. Krause; "Effect of Catalyst Prereduction on the Dehydrogenation of Isobutane over Chromia/Alumina," *Ind. Eng. Chem. Res.*, 44, 3862–3868 (2005)
- Burrington, J. D., T. C. Kartisek and K. R. Grasselli; "Mechanism of Nitrogen Insertion in Ammoxidation Catalysis," *J. Catal.*, 81, 489– 498 (1983)
- Ehiro, T., A. Itagaki, M. Kurashina, M. Katoh, K. Nakagawa, Y. Katou, W. Ninomiya and S. Sugiyama; "Effect of the Template Ion Exchange Behaviors of Chromium into FSM-16 on the Oxidative Dehydrogenation of Isobutane," *J. Ceramic Soc. Japan*, **123**, 1084–1089 (2015)
- Ehiro, T., A. Itagaki, H. Misu, M. Kurashina, K. Nakagawa, M. Katoh, Y. Katou, W. Ninomiya and S. Sugiyama; "Oxidative Dehydrogenation of Isobutane to Isobutene on Metal-Doped MCM-41 Catalysts," *J. Chem. Eng. Japan*, **49**, 136–143 (2016a)
- Ehiro, T., A. Itagaki, H. Misu, K. Nakagawa, M. Katoh, Y. Katou, W. Ninomiya and S. Sugiyama; "Effects of Acid Treatment on the Acidic Properties and Catalytic Activity of MCM-41 for the Oxidative Dehydrogenation of Isobutane," *J. Chem. Eng. Japan*, 49, 152–160 (2016b)
- Grieken, R. van, J. M. Escola, J. Moreno and R. Rodriguez; "Direct Synthesis of Mesoporous M-SBA-15 (M = Al, Fe, B, Cr) and Application to 1-Hexene Oligomerization," *Chem. Eng. J.*, **155**, 442–450 (2009)
- Hanawalt, J. D., H. W. Rinn and L. K. Frevel; "Chemical Analysis by X-Ray Diffraction - Classification and Use of X-Ray Diffraction Patterns-," *Indust. Eng. Chem. Anal.*, **10**, 457–512 (1938)
- Jibril, B. Y., N. O. Elbashir, S. Al-Zahrani and A. E. Abasaeed; "Oxidative Dehydrogenation of Isobutane on Chromium Oxidebased Catalyst," *Chemical Engineering and Processing*, 44, 835– 840 (2005)
- Kato, Y., H. Misu, S. Shimazu, M. Katoh, W. Ninomiya and S. Sugiyama; "Introduction of a Small Amount of Chromium to Enhance the Catalytic Performance of SBA-15 for the Oxidative Dehydrogenation of Isobutane to Isobutene," *J. Chem. Eng. Japan*, 51, 400–406 (2018)
- Korhonen, S. T., S. M. K. Airaksinen, M. A. Bañares and A. O. I. Krause; "Isobutane Dehydrogenation on Zirnonia-, Alumina- and Zironia/Alumina-Supported Chomia Catalysts," *Appl. Catal. A*; *Gen.*, 333, 30–41 (2007)
- Moriceau, P., B. Grzybowska, L. Gengembre and Y. Barbaux; "Oxidative Dehydrogenation of Isobutane on Cr-Ce-O Oxide:II. Physical Characterizations and Determination of the Chromium Active Species," *Appl. Catal. A; Gen.*, **199**, 73–82 (2000)
- Nagai, K.; "New Development in the Production of Methyl Methacrylate," *Appl. Catal. A; Gen.*, **221**, 367–377 (2001)
- Ninomiya, W.; "Industrialised Polyoxometalate Catalyst-Heteropolyacid Catalyst for Selective Oxidation of Methacrolein to Methacrylic Acid," *Catal. (Shokubai)*, **56**, 360–366 (2014)

- Ohta, M., Y. Ikeda and A. Igarashi; "Preparation and Characterization of Pt/ZnO-Cr<sub>2</sub>O<sub>3</sub> Catalyst for Low-Temperature Dehydrogenation of Isobutane," *Appl. Catal. A; Gen*, **258**, 153–158 (2004)
- Sugiyama, S., Y. Nitta, Y. Furukawa, A. Itagaki, T. Ehiro, K. Nakagawa, M. Katoh, Y. Katou, S. Akihara and W. Ninomiya; "Oxidative Dehydrogenation of Isobutane to Isobutene on FSM-16 Doped with Cr and Related Catalysts," *J. Chem. Chem. Eng.*, 7, 1014–1020 (2013)
- Sugiyama, S., T. Ehiro, Y. Nitta, A. Itagaki, K. Nakagawa, M. Katoh, Y. Katou, S. Akihara, T. Yasukawa and W. Ninomiya; "Acidic Properties of Various Silica Catalysts Doped with Chromium for the Oxidative Dehydrogenation of Isobutane to Isobutene," *J. Chem. Eng. Japan*, 48, 133–140 (2015)
- Takita, Y., X. Qing, A. Takami, H. Nishiguchi and K. Nagaoka; "Oxidative Dehydrogenation of Isobutane to Isobutene III Reaction Mechanism over CePO<sub>4</sub> Catalyst," *Appl. Catal. A; Gen.*, **296**, 63–69 (2005)
- Wang, G., L. Zhang, J. Deng, H. Dai, H. He and C. T. Au; "Preparation, Characterization and Catalytic Activity of Chromia Supported on SBA-15 for the Oxidative Dehydrogenation of Isobutane," *Appl. Catal. A*, 355, 192–201 (2009)
- Zhao, D., J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka and G. D. Stucky; "Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores," *Science*, 279, 548–552 (1998)