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Abstract: In this work, a sensor system mechanically integrated in an electromechanical cylinder is 
presented with the goal of measuring relevant quantities for condition monitoring. The system 
monitors those parts of the cylinder which are mainly affected by wear processes, i.e., spindle drive 
and ball bearings. Primarily low-cost MEMS sensors, e.g., for acceleration/vibration, IR emission, 
and position, are integrated on specially designed ring PCBs which are mounted at the front of the 
spindle ball screw nut allowing, e.g., the detection of spindle defects. 
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1. Introduction 

Besides their classical applications in assembly and handling systems, electromechanical 
cylinders (EMCs) are increasingly applied as feed drive in machine tools, due to their unique 
combination of high loads, precision, and flexibility. Although EMCs are considered to be highly 
reliable, they nevertheless contribute with the largest share of machine tool failure causes, approx. 
38% [1]. Especially the spindle drive and ball system were assessed to be the critical components 
suffering from wear due to internal damaging processes such as abrasion and strong alternating  
loads [2]. Therewith, the spindle drive is a highly promising measuring point for condition 
monitoring of EMCs. 

2. Concept and Evaluation 

The sensor system is designed as prototype, containing a wide range of (partially redundant) 
sensors and measurands (Table 1) that will be individually evaluated and compared in laboratory 
tests in order to significantly simplify the system for future practical application. Actually, it consists 
of two separate subsystems: First, two stacked sensor PCBs (Figure 1b) are mounted on the front 
surface of the ball screw inside the cylinder housing (Festo ESBF-BS-63-400-5P, ⌀ 63 mm, 400 mm 
stroke, 5 mm pitch, 7 kN max. force) containing in total 9 MEMS sensors as described in Table 1.  

Therewith, the PCBs are linearly traversing coupled with the spindle nut with a ribbon cable led 
out through the rotation lock groove to the external data acquisition unit. 
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Table 1. Sensors used in integrated sensor system. 

Measurand Location Description Sensor Type 
Sensitivity; 
Bandwidth 

Linear stroke encoder 
(magnetoresistive) 

PCB on ball screw nut (1); 
magnetic scale in groove 
of spindle housing 

Sensitec: GLM 
715 

GMR Wheatstone bridges 
(sin/cos) with 1.57 mm 
pole pitch 

9 mV/V; 1 MHz 

Rotary encoder 
(magnetoresistive) 

Housing of spindle drive 
(2); scale: thread structure 

AL780 with bias 
magnet 

AMR Wheatstone bridges 
(sin/cos) with 5 mm pole 
pitch 

11 mV/V; 1 MHz 

Acceleration/vibration 

PCB on ball screw nut (1) 

Analog Devices: 
ADXL001 

Capac. MEMS—1 axis 16 mV/g; 22 kHz 

ADXL335 Capac. MEMS—3 axes 
300 mV/g; 550–1600 
Hz 

Freescale 
FXLN8371QR1 

Capac. MEMS—3 axes 
57–229 mV/g; 600–
2700 Hz 

Sound emission 

Knowles: 
SPH0642HT5H-1 MEMS microphone 

−38 dBV/Pa; 10–10,000 
Hz 

SPH0641LU4H-1 MEMS microphone 
−26 dB FS; 10–80,000 
Hz 

IR emission 
Micro-Hybrid 
TS1x80BA 

1-ch thermopile det.  295 V/W DC; 25 Hz 

IR emission  
Micro-Hybrid 
PS1x3C10 

1-ch pyroel. det.  2 kV/W AC; 16 Hz 

Temperature 
Microchip 
TC1047 

Integrated thermistor 10 m V/°C; ~1 Hz 

 
Figure 1. (a) Mechanical integration of the sensor system inside the EMC and (b) realization of the 
stacked sensor ring PCBs with spindle shaft inside in a disassembled cylinder. 

Furthermore, the rotary position of the spindle shaft is measured by an AMR Wheatstone bridge 
sensor [3] with external bias magnet provided by our project partner Sensitec generating the support 
field which interacts with ferromagnetic thread teeth. The sensor itself is positioned fixed at the 
cylinder housing close to the ball bearing (cf. Figure 1a) pointing to the thread with a working 
distance of 1 mm. During rotation, the relative position of sensor and tooth changes periodically 
resulting in sine and cosine sensor signals (Figure 2a). Using arctangent function a saw tooth signal 
can be used to linearly map the translation of spindle nut. The measurement error was estimated to 
be less than 100 μm (Figure 2a) assuming an ideally constant movement. Figure 2b shows the derived 
velocity signal and the integrated position of the spindle nut (requires zeroing at the beginning) with 
a position error of approx. 1.7 mm after six strokes (0.68% error). Thus, the actual rotational speed 
can be measured which allows to adapt the feature extraction based on this information e.g., detecting 
amplitudes of characteristic vibration frequencies that vary with velocity as shown in the following. 

For the first evaluation, we focus on vibration monitoring using the FXLN accelerometer; data 
acquisition is externally performed using a NI USB 6343 (fs 20 kHz, res. 16 bit). The EMC is driven 
with defined velocities and without external load. As Figure 3 indicates, characteristic frequencies 
can be observed in the amplitude spectrum, that are, in particular, the fundamental mechanical 
frequency and its first harmonics. As described by Crocker [4], especially (1) is an indicator for 
imbalance whereas anomalies of (2) point to misalignment. Besides, rollover frequencies of ball 
bearing, outer (4) and inner (5) ring, and spindle (9) are visible as well as rotating field (5) and rotating 
field multiplied by the number of pole pairs (10) of the servo motor (Festo EMMS-AS). In addition, 
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const. amplitude curvatures above 500 Hz suggest structural resonances of the housing. The peak 
acceleration in radial direction was measured to be up to ±3 g. 
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Figure 2. (a) Excerpt of sine and cosine signals of spindle teeth measurement, derived arctangent 
signal and position error during constant velocity phase (20 mm/s); (b) speed measurement and 
absolute position integrated during positioning with six velocity levels (10, 20, 30, 50, 75, 100 mm/s). 
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Figure 3. Amplitude spectra of FXLN accelerometer in radial (y-axis) direction with varying rotation 
speed from 10 (~50 mm/s) to 20 Hz (~100 mm/s).  

To evaluate the sensor system in a condition monitoring scenario, we induced a local abrasion 
of the spindle at stroke position 185 mm and recorded several stroke movements with varying 
velocity and three repetitions. For signal processing, short-time Fourier transform (STFT) was applied 
(length 10,000/overlap 2000 samples) with subsequent feature extraction and selection as previously 
demonstrated [5]. Feature extraction captures in total of 210 statistical parameters such as median, 
variance, skewness, and kurtosis in different intervals of the amplitude spectra of three acceleration 
axes (FXLN sensor). The features are selected by F-value ranking of univariate ANOVA and 
dimensionally reduced to three discriminant functions (DFs) using Linear Discriminant Analysis 
(LDA). With this approach the maximum class separation can be obtained. The latter algorithms are 
supervised learning methods, i.e., require class-annotated data which were given as velocity 
information and local spindle condition traversed by the spindle nut. Figure 4a shows the resulting 
3D-projection of sensor data with the planes DF1-DF2 and DF1-DF3 separating the different velocity 
levels and spindle conditions, respectively. Here, 10, 20, and 50 mm/s velocity classes were used for 
training and 30 mm/s velocity was used for evaluation. It can be seen that the intermediate velocity 
class fits the data-based model and that the fault identification rate improves with increasing velocity. 
Figure 4b shows the plot of DF3 over stroke position clearly indicating the defect. The maximum is 
blurred, first, due to the interaction of balls and spindle defect over a distance of 30 mm and, second, 
also results from the STFT temporal blur. Furthermore, especially at low speeds with accordingly 
higher local resolution, two local maxima can be seen indicating the entry and exit points of the 
spindle nut passing over the defect.  
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Figure 4. (a) LDA projection of 30 selected vibration features, n = 2883; classification rate determined 
with 10-fold CV for Mahalanobis distance classifier; (b) deliberate abrasion as local defect of the 
spindle and corresponding signal of DF3 vs. stroke position (moving average over 10 data points). 

3. Conclusion and Outlook 

Based on low-cost MEMS sensors, the multi-parameter sensor system captures relevant 
measurement quantities for the condition assessment of EMCs including multi-axes acceleration, 
sound and IR emission, as well as temperature and rotary/linear position. With the latter, it could be 
shown, that rotational speed can be measured as relevant parameter for feature extraction, i.e., 
obtaining characteristic vibration frequencies combining all required quantities for an integrated 
stand-alone condition monitoring system. Furthermore, the stroke position dependent analysis of 
signals can be used for fault analysis and diagnosis differentiating between globally superimposed 
disturbances and local anomalies such as defects of the spindle. In future, we plan to miniaturize the 
system to enhance the usable travel distance of the cylinder, and, second, to investigate the feasibility 
for residual lifetime prognosis during long-term tests of cylinder in combination with multivariate 
statistical analysis taking all available sensors into account.  
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