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Similarities between Insect Swarms and Isothermal Globular Clusters
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Previous work has suggested that disordered swarms of flying insects can be well modeled as self-
gravitating systems, as long as the “gravitational” interaction is adaptive. Motivated by this work
we compare the predictions of the classic, mean-field King model for isothermal globular clusters
to observations of insect swarms. Detailed numerical simulations of regular and adaptive gravity
allow us to expose the features of the swarms’ density and velocity profiles that are due to long-
range interactions, and are captured by the King model phenomenology, and those that are due to
adaptivity and short-range repulsion. Our results provide further support for adaptive gravity as a

model for swarms.

I. INTRODUCTION

Insect swarms are a canonical example of collective an-
imal behavior [1, 2], displaying group-level cohesion and
stability even in the presence of environmental noise [3—
8]. But while in many other forms of collective animal
motion, such as flocking, schooling, and herding [2], the
movement of individuals is coordinated, swarms are dis-
tinguished by their lack of globally aligned motion and
the swarm state is not described by any order parameter.

It is thought that many swarming insect species such
as Chironomus riparius, the midge species we con-
sider here, interact predominantly via long-range acous-
tic sensing [9]. Indeed, a theoretical model that as-
sumes that midges accelerate toward the sounds pro-
duced by other individuals has produced nontrivial re-
sults that are in good agreement with empirical obser-
vations [10, 11]. The acoustic field produced by flying
insects has a monopole component whose intensity falls
off according to an inverse-square law [12], a scaling that
is similar to the way the gravitational pull between ob-
jects falls off with distance. Dipole and other higher-
order multipole components decay more rapidly, and are
thus weaker than the monopole component. It is there-
fore tempting to speculate, as Okubo [3] and then Gor-
bonos et al. [10] did, that midge swarms are analogous
to N-body self-gravitating systems, where cohesion origi-
nates from the gravitational pull between the bodies com-
promising the system. A key contribution from ref. [10]
was to incorporate the adaptive gain of typical biologi-
cal sensors, which leads to results that are different from
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Newtonian gravitation but are in good agreement with
empirical measurements of swarms.

This adaptive-gravity model was shown in ref. [10] to
capture many global features of midge swarms. For ex-
ample, it correctly reproduces the linear radial depen-
dence of the mean acceleration of midges towards the
swarm center, the scaling of this acceleration with the
swarm size, and the virial-like relation between the mean
kinetic and potential energies of the whole swarm.

The analogy between swarms and self-gravitating sys-
tems is further appealing because it is well known that
gravity can produce complex dynamical behavior from
simple interactions—just as is thought to be the case for
collective animal behavior [13]. Thus, by making a link
between these two distinct systems, we can draw on the
intuition built up from studying gravity to gain insight
into collective animal behavior.

In this paper, we examine this analogy more closely by
studying the spatial variation of the number density and
the velocity of individuals. We compare to the classic
King model for the mass distribution in isothermal glob-
ular clusters [14] (see appendix A). Although we find
some similarities with the observed swarms, there are
also significant differences. These discrepancies reveal
the limitations of a pure gravitational model for swarms.
Furthermore, we aim to explore which of the observed
global features of the midge swarm arise from the long-
range nature of the interactions and which depend also
on the property of adaptivity. Long-range interactions
are of course a feature of regular gravity, and therefore
also appear in globular clusters, which are well described
by the King model. We would then expect that features
that are crucially dependent on adaptivity, which is not
present in regular gravity, will be missing from a King-
model description of the swarm. We find that the addi-



tion of adaptivity, which we can introduce only using nu-
merical simulations, together with short-range repulsion
produces mass distributions and dynamics that capture
all the main features of the midge swarm data. Thus,
our results provide significant further support for adap-
tive gravity as a model for the swarm behavior.

II. DENSITY PROFILES

I1.1. Density profiles: King’s model and midge
swarms

We begin by considering the mass distributions pre-
dicted for regular gravity (such as in globular clusters)
by the original King model. This model has been well
studied previously. Chavanis et al. [15], for example, de-
scribed the solution space for globular clusters by fixing
the cluster mass and varying the other system parame-
ters, such as temperature, cluster radius, energy, and so
forth. To adapt this model for swarms, we use a fixed in-
verse temperature 3, which describes isothermal globular
clusters. In addition to being simple to implement (see
appendix A), this choice is motivated by the observation
that swarms of different sizes empirically display roughly
the same amount of kinetic energy per midge [16, 17]. For
large globular clusters, a King model with fixed temper-
ature gives a roughly constant kinetic energy per particle
(independent of system size (Fig. 4)). With this assump-
tion, we compute the density profiles predicted by the
King model (Fig. 1(a,b)), using Egs. A15 and A16. Note
that for easier comparison between the different models,
we plot the density profiles for all the models in Fig. 1,
and the corresponding quantitative measures in Fig. 2.

The King model predicts two distinct branches of so-
lutions, which are clearly observed when we plot quan-
titative measures of the distributions such as the total
mass M (Fig. 2(a), where we assume that all midges have
the same mass), the density at the center py (Fig. 2(b)),
and the kurtosis (Fig. 2(c)) as functions of the over-
all swarm size R;. Here, R, is defined as the mean
distance of a midge from the center of mass of the
swarm: Ry = [;°r®p(r)dr/ [;° v?p(r)dr, where p(r) is
the density profile. The two branches are termed “sta-
ble” and “unstable” (shown in blue and red, respectively,
in Fig. 2(a~c)), and are distinguished by the sign of the
heat capacity (positive or negative, respectively) of the
cluster in the canonical ensemble [15]. It is found em-
pirically that globular clusters reside on the unstable
branch [15], presumably due to the strong destabilizing
effects of “slingshots”—that is, anomalously high accel-
eration events that arise due to close encounters.

In Fig. 1(c,d) we plot the empirical density profiles
measured for laboratory midge swarms. Details of the
laboratory setup and measurement protocols are given
in refs. [4] and [18]. The primary difference between the
data in Fig. 1(c) and (d) is that the swarms in (c) were ob-
served in a cubical laboratory enclosure measuring 91 cm
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FIG. 1. (a, b) Two families of density profiles computed from
the King model (Egs. A15-A16) for different initial conditions,
with shapes that are qualitatively similar to results from real
swarms (c, d). (a) corresponds to the unstable branch, and
(b) to the stable branch (see the discussion in the text). (c,
d) Two families of density profiles measured in real swarms
in two different laboratory setups (see text). (e) Density pro-
files of simulated swarms using the adaptive gravity model.
Simulations were run using N = 12 and Rs = 16.2 (blue);
N =24 and R, = 11.8 (red); N = 32 and R, = 11.5 (green);
and N = 48 and R, = 12 (black). (f) Density profiles of
simulated swarms including adaptivity and short-range repul-
sion. Simulations were run using N = 12 and R, = 6 (blue);
N =24 and R, = 6.7 (red); N = 32 and Rs = 8.2 (green);
and N = 48 and R, = 8.1 (black).
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on a side, while the enclosure for the swarms in (d) mea-
sured 122 cm on a side.

Qualitatively, the density profiles from the swarms are
similar in many aspects to those computed from the King
model, though the agreement is not exact. To illuminate
these similarities and differences further, we computed
the same distribution measures for the swarms as for the
King model, shown in Fig. 2(d-f). The density at the cen-
ter of the midge swarm (pg) was obtained in Figs. 2(e,h k)
by fitting a Gaussian to the density profile near the cen-
ter of mass. We see in Fig. 2e that pg slightly decreases
with increasing swarm size, which qualitatively fits the
stable branch of the King model (where this decrease is
much steeper). The total number of midges (as a proxy
for the total mass) increases slowly with the swarm ra-
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FIG. 2. (a-c) Total mass M (a), density at the center pg
(b), and kurtosis (c) as a function of the swarm size R for a
series of King model solutions. The blue line corresponds to
the stable branch in the canonical ensemble and the red one
to the unstable one. The kurtosis of a Gaussian distribution
in three dimensions, 5/3, is denoted by the horizontal dashed
line. (d-f) The same quantities computed from the measured
data for real swarms. (g-i) The same quantities computed for
simulated swarms with adaptivity. (j-1) The same quantities
computed for simulated swarms with adaptivity and short-
range repulsion.

dius, a feature exhibited by the unstable branch of the
King model (the stable branch has the opposite relation).

The kurtosis of the midge swarms falls in a range of
values between the King model branches, and is signif-
icantly larger (i.e., the swarms have heavier tails than
they would if they were Gaussian) than the density pro-
files along the King model stable branch (which are very
close to Gaussian). Note that the kurtosis is a standard
measure to quantify simple but non-Gaussian distribu-
tion shapes (as long as they are monotonically decreas-
ing functions, as shown in Fig. 1). Thus, it provides an
interpretable way of comparing the different models, and
highlights discrepancies between the midge swarms and
the King model behavior.

II.2. Density profiles: modified gravity models

To attempt to reconcile the model predictions with the
empirical results for real swarms, we consider two modi-
fications to normal Newtonian gravity. First, since par-
ticles in the simulations have a strong tendency to de-
velop anomalously high accelerations due to slingshots

and thus to evaporate from the cluster, it is common to
include a softening parameter € (with units of length) to
the gravitational force [19], so that

. 1
Fi =CY #ij———s 1
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where C is a constant with units of (force x length?), 7; is
the position vector for midge 7, and #;; is the unit vector
pointing from midge ¢ to midge j. This “epsilon”-gravity
modifies the force at short distances, up to | — 7| =
O(€). We chose a value of € = /15 ~ 3.87, so that it is
smaller than the mean swarm size R, (Figs.1,15) but is
still effective in preventing slingshots and maintaining a
stable swarm.

In addition, we simulated our previously introduced
adaptive-gravity model [10]. In this case, the effective
force felt by midge ¢ due to midge j is given by

_fo =C Z puy T_Afj RadQ 1
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(2)
The logic underlying this model is that the strength of
the signal received by each midge should be renormalized
by the total buzzing noise due to all the other midges, to
mimic the typical adaptive gain of biosensors [20]. We
define a length scale, R,q, over which this adaptivity oc-
curs, and when r;; > VN Ra.4, such that the distance
between a pair of midges is much larger than the adap-
tive range, the model reduces to epsilon-gravity (which
itself reduces to Newtonian gravity when e = 0). Within
the range of adaptivity, where the midges are close to
each other compared to R,q, the term R;dz is negligible
in the denominator of the second factor in Eq. 2, and we
see that the vectorial sum of the first factor is simply di-
vided by the scalar sum in the second factor. This gives
rise to what we term “perfect adaptivity,” where the re-
sponse does not depend on the absolute intensity of the
background signal.

Finally, we also simulated the adaptive-gravity model
with an additional short-range repulsion between the
midges. This effect was empirically observed and mea-
sured in real swarms [21], and was implemented in an
earlier simulation scheme [10]. This type of effective in-
teraction arises due to midges avoiding collisions while
flying. Here we use a repulsive force with a cutoff to
capture this effect, given by

where we take L. =~ 0.2 R,q. We chose this value as it
was the minimal value for L. that produced a noticeable
effect on the qualitative features of the swarms, as com-
pared with those without repulsion (see below). Larger
values of L. would make the repulsion force dominant
in small, finite-size swarms, and we wanted to stay in
the regime where the long-range gravity-like interactions



play the dominant role for the large-scale organization of
the swarm. In the simulations we worked in the regime
where Ry/L. ~ 4, which is within the range observed in
the experiments Rs/L. ~ 4 — 16 [21].

With these interaction laws, we considered several
different swarm sizes R, as defined above. We used
R,q = 10 = R;, placing us in the regime where adap-
tivity affects the vast majority of the midges in the
swarm. Unlike for regular gravity, where we can use
the coarse-grained King model, for adaptive-gravity we
do not have at present an equivalent coarse-grained de-
scription. Therefore, to explore the spatial distribution
of mass in the adaptive gravity model we turned to nu-
merical simulations. We used a scheme for performing
N-body dynamics originally developed by Aarseth (see
Appendix 4.B of [22]), which allows for accurate numeri-
cal integration using fourth-order equations of motion. A
complete description of the numerical method is given in
ref. [19]. The acceleration of each mass in the simulation
is computed by the direct summation of the forces due
to the other N — 1 bodies following the form of the force
law. The scheme was designed to work efficiently for up
to N = 50, well within the range of typical midge swarms
[4, 18]. For further details about the simulation see the
appendices B, F and G. Initially, particles were placed
randomly in a simulation box of varying side lengths, in
order to control the kinetic energy of the system. This
was achieved (except for the epsilon-gravity system; see
below) by varying the initial conditions of the simulations
until the kinetic energy per particle was within 10% of
the desired value in the long-time limit (Fig. 13). The
initial velocities were zero, but under the influence of the
forces the particles accelerated and eventually reached a
quasi-stationary state (Figs. 5-7) that exhibits the dis-
tinct non-Gaussian velocity statistics (Fig. 8) observed
in real swarms [4]. Note that we do not include explicit
noise in the simulations, and the trajectories become er-
godic due to the natural tendency of N-body gravitating
systems to be chaotic.

We now compare the same quantitative features of the
density profiles computed from the numerical simulations
to those from the King model and the empirical swarm
measurements. Note that the theoretical calculations of
the King model and the simulations are done in arbi-
trary units of length, while the experimental measure-
ments have an inherent length scale (Figs.1, 2). Wherever
possible we normalized the axes to become dimensionless
(such as in Figs.3,10,11), but it is not always obvious how
to do so.

We start with the epsilon-gravity interaction (Eq. (1),
using € = 3.8, which was much smaller than the swarm
size Rs; Fig. 15). Not surprisingly, some measures
(Fig. 15(b,c)) seem to agree well with the stable branch
of the King model (Fig. 2a-c), since close-encounter sling-
shots are greatly suppressed by the softened gravity.
Other similarities include a decrease in the size R, and
sharp decrease in pg for larger swarms.

Comparing to real midge swarms, we find that the

decrease in pg for larger swarms in epsilon-gravity
(Fig. 15¢) is qualitatively similar, though somewhat
stronger (Fig. 2e). This similarity suggests that this fea-
ture arises from the long-range character of the interac-
tions between the midges, and that adaptivity only acts
to weaken it (see below). The epsilon-gravity force law
does not agree very well with another observed feature
of the midge swarms (Fig. 2(d)), where the size increases
with the number of particles. Note that for epsilon-
gravity, we were not able to keep the kinetic energy per
particle constant when changing the overall number of
particles in the swarm (Fig. 14).

Figures 1(e) and 2(g-1) show the results from adaptive-
gravity simulations (Eq. (2), using Req = 10). Note that
the swarms cover a much smaller range of sizes (R;),
compared to the real (Figs. 1(c,d) and 2(d-f)) or epsilon-
gravity swarms (Fig. 15). This is due to the sharp in-
crease in the density at the center when the number of
particles increases combined with the fixed kinetic energy
per particle, thereby maintaining a roughly constant Rj.
We find that py decreases with increasing R, similar to
the observations in real swarms (as well as epsilon-gravity
and the stable branch of the King model). The kurtosis
is similar to the values seen in the real swarms. However,
just as for epsilon-gravity and the stable branch of the
King model, the biggest discrepancy with the real swarms
is the relation between the number of particles (midges)
and Ry, which we find in the simulations to be a decreas-
ing function (Fig. 2(g)) even though it is increasing in
real swarms (Fig. 2(d)).

We therefore also tested the addition of a short-
range repulsion (Eq. 3) to the adaptive-gravity simula-
tion (Figs. 1(f) and 2(j-1)). This additional ingredient
makes py roughly independent of Ry while not changing
the kurtosis significantly. Both measures are in reason-
able agreement with the real swarm data, considering the
small range of swarm sizes in the simulations. The pri-
mary change as a result of the short-range repulsion is
the appearance of an overall increasing relation between
the number of particles and swarm size (Fig. 2(j)). This
feature, which is observed in the real swarms (Fig. 2(d)),
is absent from all the simulations that contain only long-
range attractive interactions. This model therefore cap-
tures qualitatively all the main features of the density
profiles of the midge swarms.

These results allow us to clearly delineate the proper-
ties of the midge swarm that are due to the long-range
(adaptive) gravity interactions, namely the large kurto-
sis (heavy tails) and a slow decrease of the density at
the swarm center for increasing swarm sizes. The short-
range repulsion is responsible for inflating the size (Rj)
of swarms with increasing number of midges, which is
counter to the behavior of purely long-range interactions
(both epsilon and adaptive gravity).



IIT. VELOCITY PROFILES

So far we have considered the spatial density distribu-
tion of the swarm. We now turn to the spatial distri-
bution of the velocities of the particles in the swarm, as
another way to distinguish between the different mod-
els and compare to the observations from real swarms.
We therefore computed the average speed of midges as a
function of the distance r away from the center of mass of
the swarm using the dataset from the larger midge enclo-
sure [18]. As shown in Fig. 3(a), these speeds are essen-
tially independent of position (as also noted in ref. [17]).
Thus, the mean kinetic energy of a midge is also statis-
tically uniform in space (Fig. 11a).

The simulated speed profile for epsilon-gravity is shown
in Fig. 3b. We see that the velocity decreases rapidly
with increasing radius from the swarm center, in good
agreement with the profiles calculated from the King
model but contrary to the data for real swarms. By
contrast, the velocity profile computed using adaptive-
gravity (Fig. 3(c)) is rather flat, with a small increase of
speed for small r, presumably because the potential is
too strongly softened in the swarm center. The velocity
profile becomes even smoother when short-range repul-
sion is included (Fig. 3(d)), and is similar to the empirical
results for real swarms. We find similar results for the
standard deviation of the speed (Fig. 11).

The uniformity of the velocity profile across the swarm
(Figs. 3, 11) serves as strong support for the adaptive-
gravity model. Note that the midges do not move at
constant instantaneous speed when flying through the
swarm, and that the global velocity distribution has long
(nearly exponential) tails (see [4] and Fig. 8), so it is
not obvious a priori that there would not be some ra-
dial dependence in the local velocity distribution. There-
fore, the novel observation of a flat velocity distribution
(shown in Figs. 3a, 11a) in midge swarms is a challenge
that must be met by any theoretical model. We demon-
strate that this property does not arise in the simplest
gravitational model (King model), and so it is not a con-
sequence of long-range interactions alone. The additional
property of adaptivity, however, recovers this character-
istic, and we therefore view this as strong support for
this model.

Finally, we considered the relation between mean
acceleration and speed for swarms of different sizes
(Fig. 10) [17]. We find that epsilon-gravity fails to re-
produce the observed collapse of the curves for all swarm
sizes, while the adaptive gravity captures this relation ex-
tremely well. This agreement gives added support to the
adaptive-gravity model. It demonstrates that this model
accounts for this observation, and there is no need for
additional (velocity-dependent) interactions [17].
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FIG. 3. Mean speed as a function distance from the center of
the swarm, normalized by the speed at the center. Data are
shown for (a) real laboratory swarms, (b) epsilon-gravity, (c)
adaptive gravity, and (d) adaptive gravity with short-range
repulsion. The brown curves in (b) correspond to a family
of King model solutions (Fig. la,b), computed numerically
according to Eq. (A23). In (d), we truncated the plot at
r ~ 2 R, since outside this radius the particles are not part
of the cohesive region (i.e., the swarm) (see Fig. 12).

IV. CONCLUSION

Taken together, our results provide further evidence
that the interactions in insect swarms are well de-
scribed by the adaptive-gravity framework, together with
a short-range repulsion. This highlights that two key
ingredients—long-range interactions and adaptivity—are
essential. This model naturally captures many of the un-
usual properties of swarms, some of which have surpris-
ing similarities to globular clusters. Adaptivity, however,
also induces additional effects. When the binding to the
swarm is adaptive, the forces on one midge due to the
other midges are not additive, and as a consequence the
sum of the forces felt by all of the midge need not van-
ish, as it must for Newtonian gravity [10]. The center
of mass of the swarm can therefore experience accelera-
tions [23]. Such fluctuations have the potential to change
fundamentally the characteristics of individual flight pat-
terns; for example, Reynolds and Ouellette [23] showed
that center of mass fluctuations allow for the emergence
of Lévy flight patterns. Centre-of-mass movements may
also help to stabilize insect swarms against environmen-
tal perturbations [24].

These results suggest that it may be fruitful in the fu-
ture to consider modifications of the interactions within
the King model as a general framework for describing the
behavior of active systems with long-range interactions,
whatever their form. The proper analytical treatment
of a King model augmented with an adaptive-gravity
interaction law remains as a challenge for future stud-
ies. Finally, future work on swarm modeling in partic-



ular should explore the effects of adding self-propulsion
and stochasticity (noise), both of which are absent from
the current models but certainly present for real insects.
This kind of more realistic description of the motion of
individual midges may also be required for the theory
to describe the response of the midge swarm to external
perturbations [7, 8], and in particular the dynamics of
this response.
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Appendix A: The King Model

Most globular clusters are well-fit by the King
model [25], as it captures their basic structure and main
observed features [26]. This model is one of a series
of models that assume a Maxwell—Boltzmann distribu-
tion of the velocities, although it is well-known that a
self-gravitating system cannot actually be in thermody-
namic equilibrium. This fact is a result of the long-range
nature of the interactions and the Boltzmann entropy
which has no maximal value in an unbounded domain.
Therefore, self-gravitating systems, as part of their out-
of-equilibrium nature, have a strong tendency to evap-
orate over time. Since evaporation is a slow process,
the system can be considered to be in a quasi-stationary
state for times that are much shorter than the evapora-
tion time, and the Maxwell--Boltzmann distribution can
therefore serve as a good approximation.

In order to write a quasi-stationary expression for the
distribution f(7,¥) (that is, as a function of position and
velocity but not of time) we start from the collisionless
Boltzmann equation:

of

§Vf=VV- o

(A1)

where V' = V(r) is a spherically symmetric gravitational

potential. The density is defined by

p:/M%

and it determines the gravitational potential through the
Poisson equation

(A2)

AV =47 Cp, (A3)
where C is a constant with dimensions of mass -
length? /time? which for the gravitational force is the
gravitational constant. A simple solution to this set
of equations ((Al) and (A3)) is given by the Maxwell-
—Boltzmann distribution with a singular power-law be-
havior in the spatial part:

; (A4)

where (3 is a positive constant which is identified with the
inverse temperature.

This solution is singular at the origin, unbounded and
has infinite mass since

M(r) <. (A5)
The singularity at the origin can be fixed by introducing
regular boundary conditions:
V(0) = const, V'(0) =0, (A6)
but this does not fix the asymptotic behavior. Numeri-
cal solutions of equations ((A1) and (A3)) with boundary
conditions (A6) are solutions of isothermal spheres (since
# is constant). Far from the center at r > (C p(0) )2
the isothermal sphere solutions approach the singular so-
lution (A4). Although the solution is not singular at the
center, it is still unbounded and has infinite mass (see for
instance [27], p. 480-484).

The steady-state mass distribution that solves the
Poisson-Boltzmann equations is singular, proportional to
p(r) o< 1/r2. To find physical solutions, it is necessary to
introduce a cut-off. The assumption in the King model
is that a cluster cannot keep stars whose velocity exceeds
a finite escape velocity. Therefore the velocity distribu-
tion should drop to zero at a finite limiting velocity. As
a result, the cluster has a finite radius. Different cut-offs
in the velocity distribution give different limiting radii.
Observationally the finite boundary is set by the tidal
forces of the galaxy with which the globular cluster is
associated, which become dominant at a certain distance
from the cluster center. The resulting velocity distribu-
tions are simply the Maxwell—Boltzmann distributions
minus a constant. Let us assume the following form at
the origin:



where « is a positive constant. This way the fastest parti-
cles v > v,(0) are subtracted from the distribution. The
distribution of the velocities at » = 0 is defined by two
parameters: [ (which determines the width of the distri-
bution) and v,.(0), the escape velocity.

According to Jeans’ theorem, any steady-state solution
of the collisionless Boltzmann equation is a function of
the integrals of motion (see for instance [28], p. 220).
Since energy is the integral of motion in a star cluster
the distribution function can be written as a function of
the energy F:

We express the cut-off as an escape energy E. such that
f=0for E > E.. The escape energy corresponds to an
escape velocity at a point r through:

(A8)

2
E, = “6(2’") + V(). (A9)
a eBV(0)-E.) [e—B(E—Ee) —-1], E<E.
J(E) =
0 E>E..
(A10)

where « is a positive constant.
Substituting the distribution function into (A2) and
changing variables give us:

w = <§) ’ v (A11)
x(r) =B (E.—V(r)) (A12)
Thus we get
dmae X(O)(%)%I(X), r < R,
p= (A13)
0 r> R,
where
vz
I(z) = e=w’ 1) 2 duw, Al4
@=[" (e et a1

and R, is the radius of the cluster such that v.(R.) = 0,
and x(Re) = 0. In other words, any star that succeeds
in reaching R. escapes the cluster and is no loner a part
of the cluster.

When we substitute the density (A13) in the Poisson
equation (A3) we get the fundamental equation of the

King model
1 d 2 I(x)
——= Al
i (C%) =109 —
with the boundary conditions
x(0) =k, x'(0)=0, (A16)

where the rescaled dimensionless distance is

¢=r(dmCBp(0))k.

The set of King solutions for the density is a one param-
eter family of solutions which are conveniently parame-
terized by k, the rescaled potential at the center.

Using the expression for the density (A13) and the fun-
damental equation (A15), we can write the mass in the
following way:

M(r) = 47r/0 p(r') r'dr’ =

— — (47 p(0)"% (BC)"2 N (C).

Note that here too, in the limit ¥ — oo, the singular
solution (A4) is recovered (see [26]).

In Fig. 4 we give the average kinetic energy (per unit
mass) as a function of Ry for various King solutions. The
average kinetic energy (per unit mass) (Fj) is given by:

(A17)

(A18)

(Ey) = / 2 f(7,9)d>F d>T, (A19)
when f(7, ) is normalized so that
/ 2 f(7,0)d>F d>T (A20)

In the case of an isotropic distribution of velocities and
spherical symmetry we get:

ve(T) ve(r)
2(r) = d 2 dv .
v (r) /0 v® fr,v) U//O v® f(r,v)dv

(A21)
Substituting (A10) and changing variables according to
(A11) and (A12) we obtain:

= ;/Oﬂ (eX_w2 - 1) wt dw /1(x) (A22)
for 7 < R.. Integration by parts gives us:
6 J r
where
v 2
In(z) = /0 w e dw. (A24)

Repeating the steps in Eqgs. (A21)-(A23) with additional
integration over the spatial directions gives the average
kinetic energy:

1,0 3 [ r2drex(t)
S0 ==
2 58 |7

Jo(x(r))

(Bk) = r2dr ex(r) Jy (x(r ))

(A25)

In Fig. (4) (v?) is given for a series of solutions of
Eq. (A15) with different values of k. For simplicity we
take 8 = 3/5 in this figure.
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FIG. 4. The average kinetic energy (per particle) as a function
of R for a series of King solutions. The blue and the red lines
stand for the stable and unstable branches in the canonical
ensemble respectively. Note that in the limit of large clusters
the average kinetic energy is approximately independent of
the cluster size.

The local velocity dispersion of a spherically symmetric
distribution function is defined by [26]

2
o2(r) = - 3(” (A26)
The average velocity is given by
Re 2 g0 (ve(r) 3 d
<’U> _ fOR r-ar OU o) v f(r,v) ’07 (A27)
fo °r2dr fo"‘ v2 f(r,v)dv

and then we can write the dispersion normalized by the
average velocity:

o(r) _ 4 [Js(x(r) [ Jo rdreX) Js(x(r))
(v) 3V5 \ Ja(x(r)) fOR“rzdreX(’")Jz;(X(r))

(A28)

Appendix B: The Time Evolution of the Swarm in
the Simulation

Here we show a typical oscillatory behavior as a func-
tion of time of the half-mass radius (Fig. 5) and the size
of the swarm (defined as the mean distance from the cen-
ter of the swarm) in Fig. 6 for initial conditions that do
not cause evaporation (over the time segment that is pre-
sented here). In Fig. 7, we show that the same swarm
with different initial conditions evaporates over the same
time segment (Fig. 7). Such cases were not considered as
stable in this paper, and were ignored.

1 1 1 1 1 1
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1 1 1
1000

FIG. 5. The half-mass radius (normalized by its mean value)
as a function of simulation time for a swarm with adaptivity
(Rqaq = 5) and 50 individuals. The half-mass radius is defined
as the minimal radius that bounds half of the individuals in
the swarm. Over the sampled time period the swarm seems
to be stable for the randomly chosen initial conditions, which
means that the evaporation takes place on a longer time scale.
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FIG. 6. The size of the swarm (normalized by its mean value)
as a function of simulation time for the same swarm as in
Fig. 5 ,where the size is defined as the mean distance from
the center of the mass of the swarm.

Appendix C: The velocity and acceleration
distributions

The distribution of a single component of the velocity
in the simulation is given in Fig. 8 for various swarm
sizes. In Fig. 9 we give the similar distribution of a single
component of the acceleration. The structure of the tails
is similar to the distributions that were obtained from
the laboratory data [4].
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FIG. 7. The size of the swarm (normalized by its mean value)
as a function of simulation time for a swarm with adaptivity
(Raqa = 5) and 50 individuals. Here, in this example, different
initial conditions lead to evaporation at earlier times than
the previous example in Fig. 6. In the examples that we
considered in this paper, we did not include time segments
similar to this one that showed significant evaporation.
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FIG. 8. The distribution of the x component of the velocity
normalized by its standard deviation for different simulated
swarms with adaptivity (Req = 5). A reference Gaussian
curve is shown in black.

Appendix D: The relation between mean
acceleration and speed

It was observed in [17] that if we take the mean accel-
eration of the right or left hemisphere of the swarm sep-
arately, its absolute value is a monotonically increasing
function of the speed. The observational data from [17]
for various sizes of swarms is reproduced here in Fig. 10d
where the speed is normalized with respect to its mean
value. Comparing with the simulation results (for e-
gravity in Fig. 10a, adaptivity in Fig. 10b and adaptiv-
ity with short-range repulsion in Fig. 10c¢) for swarms of
different sizes, we see that in the cases with adaptivity
(with and without repulsion) all the graphs collapse at

Log P(ay)

(ay=<a,>)/oux
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FIG. 9. The distribution of the z component of the acceler-
ation normalized by its standard deviation for different sim-
ulated swarms with adaptivity (Rsq = 5). The acceleration
distribution is bounded and cannot reach values that are too
far from the average value. This is a result of the addition of
the adaptivity and the softening parameter € to the simula-
tion, which are needed to slow down the evaporation of the
swarm. A reference Gaussian curve is shown in black.

low velocities to have approximately the same accelera-
tion, whereas in the e-gravity case there are various values
of acceleration at low velocities that do not agree with
the observational data in Fig. 10d. One can also see that
with repulsion there is more noise at high velocities. The
agreement that we see here between adaptivity and the
observational data suggests that adaptive gravity natu-
rally explains the dependence of the acceleration on the
mean velocity, without the need to invoke any additional
explicit velocity-dependent forces [17].

Appendix E: The standard deviation of the speed in
the simulations and the laboratory measurements

In addition to the uniformity of the average veloc-
ity across the midge swarm in the observational data
(Fig. 3), we observe the same uniformity for the stan-
dard deviation of the speed (Fig. 11). The addition of
adaptivity to the model recovers this behavior, as seen in
Fig. 11.

In Fig. 12 we see the full range of velocity profiles and
standard deviations of the speed for the simulations that
include adaptivity and repulsion. For r > 2 R, the ve-
locities are found to increase to very high values and the
density is very low. This region corresponds to particles
that were expelled out of the swarm at high velocities
due to the short-range repulsive interactions. We there-
fore do not consider this regime to be meaningful with
respect to the properties of swarms.
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FIG. 10. The mean value of a single component of the accel-
eration versus the speed (normalized by the average speed)
of the left hemisphere (blue), right hemisphere (red), and
both hemispheres (black). The overall acceleration (black
lines) is close to zero, as required by symmetry. Data are
shown for (a) e-gravity for different values of Ry (with R, =
16.23, 3.16,19.53,18.37, 30.10 from top to bottom), (b) adap-
tive gravity, (c¢) adaptive gravity with repulsion, and (d) ob-
servational data.

Appendix F: Kinetic energy in the simulation

The kinetic energy of each midge in the laboratory
measurements is approximately constant and does not
depend on the density or the size of the swarm. In the
simulations, since we are interested only in the mutual
forces, we do not require constant speed for the parti-
cles, and therefore the kinetic energy per individual is
different for various numbers of particles and initial con-
ditions. We chose initial conditions that give us approxi-
mately the same kinetic energy per individual in the case
of simulations with adaptivity and adaptivity with repul-
sion (within about 10%). Without adaptivity, we could
not change significantly the kinetic energy by varying the
initial conditions, and so it was determined mainly by the
number of particles in the simulation.

Appendix G: The simulation with softened gravity
(“epsilon-gravity”)

In order to avoid high accelerations due to close en-
counters (“slingshots”) and thus evaporation of the clus-
ter, we included a softening parameter € to the gravita-
tional force (Eq. (1)). The particles in the simulation still

10

developed high accelerations in close encounters relative
to simulations with adaptivity since adaptivity itself con-

tributed to the decrease of accelerations by €?/(RZ2,+€?),
a b
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FIG. 11. The standard deviation of the speed (oy) normal-
ized by the average speed in the swarm as a function of the
distance from the center of mass normalized by the swarm
size Rs. Data are shown for (a) laboratory observations, (b)
simulation ofe-gravity (note that the brown curves correspond
to a family of King solutions computed numerically according
to Eq. (A28)), (c) adaptive gravity, and (d) adaptive gravity
with repulsion.
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FIG. 12. (a) Mean speed (normalized by the speed at the
swarm center) and (b) its standard deviation (normalized by
the average speed) as functions of the distance from the swarm
center for simulations with adaptvity and repulsion. For r >
2 R, the velocities can become up to two times larger and the
standard deviation can become two times lower. At the same
time, the density is less than 10> of the density at the center
(Fig. 1). Therefore, this regime likely describes particles that
were repelled out of the swarm at high velocities (higher than
the escape velocity).

and in order to compare the simulations in the two cases
(with and without adaptivity) we have to reduce the ac-
celerations in the “e-gravity” case by this constant fac-
tor. The results in Fig. 15 were obtained in this way.
In Fig. 15(a) density profiles for various sizes of clusters
are given (where €2 = 15) and in Fig. 15(b)-(d) we show
three characteristic quantities of the clusters: the number
of particles, the density at the center and the kurtosis.
Here and throughout the paper we truncated the tails at
r ~ 3 R, in the calculation of the kurtosis.
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FIG. 13. The kinetic energy as a function of the size of the
swarm R, for cases with adaptivity (Fig. 2). Here the size of
the swarm does not change much but the number of individ-
uals changes from 12 to 48 (Fig. 2).
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FIG. 14. The kinetic energy as a function of the number of in-
dividuals N in the simulation for the cases without adaptivity
(Fig. 15).
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FIG. 15. (a) Density profiles of simulated clusters with the
softened-gravity (“epsilon gravity”) model. Data are shown
for cases with N = 48, R; = 9.29 (black); N = 27, R, = 26.08
(green); N = 16, Ry = 30 (red); and N = 12, R, = 16.4
(blue). (b)-(d) The total number of midges, the density at
the center, and the kurtosis as functions of the size of the
swarm for the “epsilon gravity” model (using €2 = 15).
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