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ARTICLE INFO ABSTRACT

The monocationic chloro complexes containing chelating NnN ligands: [(#°-p-cymene)Ru(L1-4)Cl]* (1-4),
where L1 = 4-methyl-1,10-phenantroline, L2 = dipyrido[3,2-a:2’,3’-c]phenazine, L3 = 11-chloro-dipyrido[3,2-
a:2’,3’-c]phenazine, L4 = 11-nitro-dipyrido[3,2-a:2’,3’-c]phenazine; p-cymene = 1-methyl-4-isopropylbenzene)
have been prepared and characterized as the hexafluorophosphate salts. The biological activity of 1-4 has been
investigated in selected 2D monolayer cell cultures (A549, PANC-1, MDA-MB-231, MRC-5). All investigated
ruthenium complexes showed similar or even better cytotoxicity to cisplatin. However, there was no significant
reduction in growth of PANC-1 cells in a 3D cell culture of multicellular tumor spheroids (MCTS) after treatment
with 2-4, while the cisplatin treatment induced retardation in MCTS growth. Flow cytometry analysis of the cell
cycle of PANC-1 cells shows that 3 caused changes of cell cycle phase distribution characterized by slight ac-
cumulation of cells in the G2-M phase. Absence of the Sub-G1 phase in the cell cycle of the treated cells indicated
that there was no fragmentation of DNA for the analyzed time intervals (48 and 72 h treatment). Fluorescent
microscopy, after acridine orange/ethidium bromide staining, revealed that the investigated ruthenium com-
plexes induced some characteristics of apoptotic morphology (shrinking and condensation of chromatin) with
notably preserved integrity of the plasma membrane. Investigation of cellular uptake and DNA - fraction ac-
cumulation performed by inductively coupled plasma mass spectrometry in PANC-1 cells with equimolar con-
centrations (5 M) of 2—4 and cisplatin showed more efficient cellular uptake and DNA - fraction accumulation of
complex 3 compared to complexes 2 and 4.
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1. Introduction (nausea, vomiting, nephro-, neuro- and ototoxicity) are frequently ob-

served in clinical application of the mentioned drugs [3]. The major

A modern era of metal-based anticancer drugs began with
Rosenberg's discovery of cisplatin (CDDP) [1]. Thousands of platinum
complexes have been synthesized in attempt to discover more effective
anti-tumor drugs, however only a small number of these compounds
have entered clinical trials. Nowadays, CDDP, carboplatin and ox-
aliplatin are used in about 50% of all cancer treatments [2-4]. A main
limitation of these platinum drugs is development of resistance to their
action, due to the multiple mechanism including inactivation in tumor
cells by small molecules (e.g. glutathione) and ejection from the cells or
due to malfunction of cellular deoxyribonucleic acid (DNA) damage
response or apoptotic mechanisms [5,6]. Also, numerous side effects
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task in metal-based anticancer drug design nowadays is surpassing
CDDP effectiveness and overcoming CDDP resistance. Because of the
complexity of this issue and the number of affecting factors, this has led
to a large number of different approaches to the problem. One that has
been attractive in the previous three decades is the design of ruthenium
based anticancer complexes [7-10]. Unlike the platinum complexes
which have shown to some extent uniformity and predictability in their
biological behavior, structural diversity of ruthenium compounds has
yielded different families of ruthenium antitumor agents, with different
mode of actions governed by their redox potential and their relative
lipophilicity/hydrophilicity, which determines their cellular uptake
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[11-18]. Even Ru complexes which are belonging to the same family
with very similar structure may have totally different biological prop-
erties, so that generalization related to their mode of actions should be
avoided [19]. In the literature, there are many proposed mechanisms
which describe antitumor activity of ruthenium complexes: interaction
with DNA [20], inhibition of kinases [21] or topoisomerases [22] in-
hibition of the cell cycle [23], and induction of mitochondrial dys-
function pathways [24]. Several ruthenium drugs display promising
antitumor activity combined with lower toxicity in relevant in vivo
models. The first ruthenium complexes, which have reached the
farthest in biological investigations and entered clinical trial, are Ru(III)
complexes: imidazolium-trans-tetrachloro(dimethylsulfoxide)imidazo-
leruthenium(III) (NAMI-A) and sodium trans-[tetrachloridobis(1H-in-
dazole)ruthenate(III)] (KP1339, currently IT-139) [25]. Ruthenium (II)
polypyridyl complexes of structural formula [Ru(bpy).dppz]®*
(bpy = 2,2-bipyridine, dppz = dipyrido[3,2-a:2’,3’-c]phenazine) or
[Ru(phen)2dppz]2+ (phen = 1,10-phenanthroline), with different
functional groups on the dppz ligand, demonstrated potential ability for
the medical application, as photosensitizers [26,27]. The most suc-
cessful photodynamic therapy (PDT) photosensitizer to date is [Ru(4,4’-
dimethyl-2,2’-bipyridine)»(2-(2’,2”:5”,2"*-terthiophene)-imidazo[4,5-
fD] Cl, (TLD-1433) which phase Ib clinical trials was completed last
year [28]. Ruthenium complexes containing heterocyclic base mole-
cules have shown promising antitumor properties. For example, it was
found that the complex [Ru(bpy)(phpy)(dppz)]* (phpy = 2-phe-
nylpyridine) (Fig. 1a) was rapidly taken up by cancer cells with 90% of
the complex accumulated in the nuclei of cancer cells [29,30], while
[Ru(dppz)-(CppH)1?>*  (CppH = 2-(2-pyridyl)pyrimidine-4-carboxylic
acid) (Fig. 1b) specifically targeted mitochondria and exhibited cyto-
toxicity comparable to CDDP in HeLa cells [30,31]. Also, it has been
observed that the cytotoxicity of [Ru(bpy)o(N—N)ICl, complexes,
where N—N is bpy (Fig. 1¢) or phen (Fig. 1d) or dpq = pyrazino[2,3-f]
[1,10]phenanthroline (Fig. 1le) or dppz (Fig. 1f) or dppn (4,5,9,16-tet-
raaza-dibenzo[a,c] naphthacen) (Fig. 1g), was increasing with the size
of the aromatic moiety, with drastically lowering ICso value for [Ru
(bpy)2(dppn)1** complex [32].

Organoruthenium complexes of the type [(;°-arene)Ru™(XY)Z]™*
(where XY is an N,N-, N,0-, O0,0- or S,0-chelating ligand, and Z is a
monoanionic ligand) are highly cytotoxic and reduce tumor growth in
vivo. The arene ligands are strongly coordinated to the ruthenium,
stabilize this metal in oxidation state +2 and provide a hydrophobic
side for the passive transport through cell membranes [33-36]. Co-
ordination of N,N’-chelating ligands to organoruthenium(Il)- species,
resulted in cytotoxicity comparable to that of CDDP in a number of cell
lines, including CDDP-resistant cell lines [37].

Traditional research on the efficacy of anticancer drugs is most often
performed in two-dimensional (2-D) cell cultures, which may not be a
genuine indicator of the in vivo effectiveness [38]. Some experimental
drugs may be exclusively effective in cancer cell monolayers but not-
effective in solid tumors [39,40]. The multicellular tumor spheroids
(MCTS) are micro-sized cellular aggregates that have been widely used to
assemble 3D culture models of different cancer types in vitro and are able
to mimic various features of solid tumors [41]. Recently, investigation of
the mechanism of action of half-sandwich Ru(ll)-arene complexes of the
type [(n°-p-cymene)Ru(Me,dppz)Cl]PFs, (p-cymene = 1-methyl-4-iso-
propylbenzene, Me,dppz = 11,12-dimethyldipyrido[3,2-a:2’,3’-c]phena-
zine) has revealed that this compound acts as strong cytotoxic agent with
potential of efficient cellular accumulation and ability of binding nuclear
DNA with a much higher affinity than CDDP [42]. In this study, we
synthesized a class of organoruthenium complexes with derivatized 1,10-
phenanthroline ligands, studied their structure-activity relationship and
revealed the changes in biological activity resulting from structural
modifications of the synthesized Ru(II) complexes.

The MCTS more accurately provide insight into the metabolic
properties similar to solid tumor profiles such as nutrient and oxygen
gradients, hypoxic/necrotic regions, cell-cell interactions and gene
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expression [39,43-45]. Hence, a 3D model was introduced in our re-
search to investigate the efficacy of novel ruthenium complexes.

2. Materials and methods
2.1. Chemistry

RuCl3xH,0, 4-methyl-1-(1-methylethyl)-1,3-cyclohexadiene, 4-me-
thyl-1,10-phenanthroline (L1), potassium-bromate, o-phenylenedia-
mine, 4-nitro-o-phenylenediamine, 4-chloro-o-phenylenediamine and
NH,4PF¢ were purchased from Sigma-Aldrich, while the solvents were
obtained from different commercial sources and used as received. 1,10-
Phenanthroline-5,6-dione [46] and the ligands dipyrido[3,2-a:2’,3’-c]
phenazine (L2) [47], 11-chlorodipyrido[3,2-a:2’,3’-c]phenazine (L3)
[48] and 11-nitrodipyrido[3,2-a:2’,3’-c]phenazine (L4) [48] and were
synthesized according to literature procedures with slight modifica-
tions.

Elemental analysis (C, H, N) was carried out with a Thermo
Scientific Flash 2000 Series CHNS/O Analyzer. Nuclear magnetic re-
sonance (NMR) spectra were recorded on a Bruker Avance 500 MHz
and all chemical shifts are given relative to tetramethylsilane (TMS).
Standard liquid chromatography-mass spectrometry (LC-MS) analysis
was performed on an Agilent 1100 series (high-performance liquid
chromatography) HPLC equipped with quaternary pump and ultra-
violet- diode array detector (UV-DAD), directly coupled to an Agilent
G1956B single quadrupole mass spectrometer (MS) detector equipped
with an electrospray ionization (ESI) source. High resolution mass
spectrometry (HRMS) was performed on an Agilent 1100 series HPLC
equipped with a quaternary pump and UV-DAD detector directly cou-
pled to an Agilent 6220A series Time-of-Flight MS detector, equipped
with an ESI/APCI (atmospheric pressure chemical ionization, multi-
mode) ionization source. Infrared (IR) spectra were recorded from 4000
to 650 cm ™, on a Thermo Scientific Fourier-transform infrared (FT-IR)
spectrometer (type Nicolet 6700), using KBr as a non-absorbing matrix.

Single-crystal X-ray diffraction measurements were performed on a
Rigaku Oxford Diffraction Supernova Dual Source (Cu at zero) dif-
fractometer equipped with an Atlas CCD detector using w scans and
CuKa (A =1.54178 A) radiation. Samples were cooled during the
measurement by an Oxford Instruments Cryojet5 LN2 cryocooling at
100 K. All images were interpreted and integrated with the program
CrysAlisPro (Rigaku Oxford Diffraction) [49]. Using Olex2 [50], the
structures were solved by direct methods using the ShelXS structure
solution program [51] and refined by full-matrix least squares on F?
using the ShelXL program [51,52].

2.2. Biology

2.2.1. Cell culture

The human lung carcinoma cells (A549), human pancreatic carci-
noma cells (PANC-1), breast cancer cells (MDA-MB-231) and human
fetal lung fibroblast cells (MRC-5) were maintained as monolayer cul-
ture in the Roswell Park Memorial Institute (RPMI) 1640 nutrient
medium (Sigma Chemicals Co, USA). The human myelogenous leu-
kemia cells (K562) were maintained in suspension culture. RPMI 1640
nutrient medium was prepared in sterile ionized water, supplemented
with penicillin (1001U/mL), streptomycin (200 ug/mL), 4-(2-hydro-
xyethyl)piperazine-1-ethanesulfonic acid (HEPES) (25mM), i-gluta-
mine (3mM) and 10% of heat-inactivated fetal calf serum (FCS)
(pH 7.2). The cells were grown at 37 °C in a humidified atmosphere
containing 5% CO».

2.2.2. MTT assay

The cytotoxicity of the investigated complexes (1-4), and CDDP (as
reference compound) was determined using the 3-(4,5-dy-
methylthiazol-yl)-2,5-diphenyltetrazolium bromide (MTT, Sigma) assay
as previously described [53]. Briefly, 24 h after seeding the cells into
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Fig. 1. Structures of some ruthenium complexes with heterocyclic aromatic base as ligands: a) [Ru(bpy)(phpy)(dppz)]™ (bpy = 2,2"-bipyridine, phpy = 2-phe-
nylpyridine, dppz = dipyrido[3,2-a:2’,3’-c]phenazine); b) [Ru(dppz)z(CppH)]2+ (CppH = 2-(2-pyridyl)pyrimidine-4-carboxylic acid); c) [Ru(bpy)g]”; d) [Ru

(bpy)z(phen)]2+ (phen = 1,10-phenanthroline); e) [Ru(bpy)z(dpq)]“ (dpq = pyrazino[2,3-f]

(bpy)2(dppn)]1** (dppn = 4,5,9,16-tetraaza-dibenzo[a,c] naphthacen).

96-well cell culture plates (Thermo Scientific Nunc™), the cells were
exposed to the investigated complexes. The complexes were dissolved
in dimethyl sulfoxide (DMSO) at a concentration of 10 mM and after-
wards diluted in culture medium to the desired concentrations. The
final DMSO concentration never exceeded 1% (v/v). After an incuba-
tion period of 72h, 20 uL of MTT solution (5mg/mL in phosphate
buffer, pH 7.2) was added to each well. Samples were incubated for 4 h
at 37 °C in a humidified atmosphere of 5% CO,, and then 100 pL of 10%
sodium dodecyl sulfate (SDS) was added. Absorbance was recorded
after 24 h, on an enzyme linked immunosorbent assay (ELISA) reader

[1,10]phenanthroline); f) [Ru(bpy).(dppz)]®**; g) [Ru

(Thermo Labsystems Multiskan EX 200-240 V), at the wavelength of
570 nm. The ICs, value, defined as the concentration of the compound
causing 50% cell growth inhibition, was determined from the cell via-
bility diagrams.

2.2.3. Cell cycle analysis

Analysis of the cell cycle phase distribution of PANC-1 cells after
treatment with complexes (2-4), showing the most prominent cell
growth inhibitory activity, was performed by flow-cytometric analysis
of the DNA content after staining with propidium iodide (PI) [54]. The
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cells were seeded at a density of 2 x 10° cells per well, into 6-well
plates (Thermo Scientific Nunc™), in the nutrition medium. The cells
were continually exposed to the investigated ruthenium complex 2-4 or
CDDP at concentrations corresponding to ICsg, 72 h. Control cells were
incubated only in a nutrient medium or nutrition medium with DMSO.
After 24h or 48h of growth, the cells were collected, washed twice
with ice-cold phosphate-buffered saline (PBS), and fixed overnight, in
70% ethanol. After fixation, the cells were washed with PBS, and in-
cubated with Ribonuclease A (RNaseA, 1 mg/mL) for 30 min, at 37 °C.
Immediately before flow-cytometric analysis, the cells were stained
with PI, at a concentration of 400 pg/mL. Samples were analyzed using
a fluorescence activated cell sorter (FACS), by Calibur Becton Dickinson
flow cytometer, at 488 nm excitation line (Argon-ion laser). The data
were analyzed by Cell Quest computer software.

2.2.4. Morphological analysis of cell death by fluorescent microscopy

The PANC-1 cells (1 x 10 [5]) were seeded on coverslips into 6-well
plates (ThermoScientific Nunc™) in 2 mL of the nutrient medium. After
24 h of growth, the cells were treated with the investigated complexes
or CDDP, at 0.5 x ICsq or 1 X ICsq concentrations. Following 48 h and
72 h of treatment, the cells were stained with ethidium bromide (3 pug/
mL) and acridine orange (5 pg/mL), according to standard procedures
[55,56], and immediately after, observed under the fluorescent mi-
croscope — Carl Zeiss PALM MicroBeam with Axio Observer.Z1 using
AxioCam MRm (filters Alexa Fluor 489 and Alexa Fluor 546) using the
Zeiss Fluar 10 X /0.50 or LD Plan-NeoFluar 20 x /0.4 objectives. Images
were obtained with multidimensional acquisition using digital imaging
software (AxioVision Version 4.7; Carl Zeiss Imaging Solutions).

2.2.5. Generation and analysis of MCTSs

The multicellular tumor spheroids (MCTS) comprised exclusively of
PANC-1 cells were cultured using the low attachment U96-well plate
Thermo Scientific Nunclon Sphera (Nunclon Sphera 96 well U bottom
plates). PANC-1 cells in the exponential growth phase were dissociated
by a trypsin/ethylenediaminetetraacetic acid (trypsin/EDTA) solution
to gain single-cell suspensions. A number of 500 cells/well (1000 cells/
well) were transferred to 96-well plates with 200 uL of Dulbecco's
Modified Eagle Medium (DMEM) containing 10% serum. The single
cells formed MCTS aggregates approximately 500 ym (or minimum
500 um) in diameter after five days with 5% CO, and 20% O at 37 °C.
The formation and growth of spheroids were examined using an
Invitrogen™ EVOS FLC™imaging system. The PANC-1 spheroids pre-
selected for homogeneous volume and shape were treated by carefully
replacing 50 uL. of the medium with drug-supplemented standard
medium. Three PANC-1 MCTSs were treated per condition and drug
concentration.

The live/dead analysis of PANC-1 cells MCTSs was performed using
two types of dual fluorescent staining: 1) Calcein-AM (Sigma-Aldrich)
and PI (Sigma-Aldrich) staining and 2) the Thermo Fisher LIVE/DEAD
(Blue/Green). In Calcein-AM and PI dual staining the live cells were
distinguished by the presence of ubiquitous intracellular esterase ac-
tivity, as determined by enzymatic conversion of the virtually non-
fluorescent cell-permeant Calcein- AM to the intensely fluorescent
Calcein. PI enter only cells with damaged membranes and show fluor-
escence upon binding to nucleic acids, thereby producing a red fluor-
escence in dead cells. Briefly, after treatment with the complexes, the
MCTSs were incubated with Calcein-AM (3 uM) and PI (5 uM) solutions
for 30min and imaged directly using an Invitrogen™ EVOS
FLC™imaging system.

In a separate experiment using another type of staining Thermo
Fisher LIVE/DEAD (Blue/Green) after treatment with the complexes,
the MCTSs were incubated with staining solution, which was made
according to the manufacturer's procedure. Briefly, 2 drops of each at
room temperature, stable NucBlue® Live reagent (Hoechst 33342) and
NucGreen® Dead reagent were added to 1 mL of cell growth media.
NucBlue® Live reagent stains the nuclei of all the cells and it was
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detected with a standard 4’,6-diamidino-2-phenylindole (DAPI) filter.
NucGreen® Dead reagent stains only the nuclei of cells with compro-
mised plasma membrane integrity and was detected using a standard
green fluorescent protein (GFP) (green) filter.

2.2.6. Cellular uptake and DNA-binding by ICP-MS

The cellular uptake of ruthenium complexes (2-4) and CDDP after
24 h treatment of PANC-1 cells was investigated by measuring the in-
tracellular ruthenium or platinum level by inductively coupled plasma
mass spectrometry (ICP-MS), using a Thermo Scientific iCAP Qc ICP-MS
(Thermo Scientific, Bremen, Germany) spectrometer with operational
software Qtegra. The instrument was optimized and the external stan-
dards for the instrument calibration were prepared according to the
previously described procedure [42]. PANC-1 cells (1.5 x 10 [6]) were
seeded into 75 cm? dishes (Thermo Scientific Nunc™), and at the ex-
ponential phase of growth, the cells were treated with complexes 2—4 or
CDDP at equimolar concentrations of 5uM. After 24 h of drug treat-
ment, the cells were rinsed with PBS, detached with trypsin and
counted. The cell pellet was collected by centrifugation at 2000 rpm,
10 min.

Likewise, PANC-1 cells were prepared, and the cell pellet collected
using the same procedure as described above for the measurement of
DNA-binding using ICP-MS. The total DNA was isolated using TRI
Reagent® (Sigma Aldrich), according to the manufacturer's procedure
and concentrations were determined spectrophotometrically by mea-
suring absorbances (Eppendorf BioPhotometer 6131).

3. Experimental part
3.1. General procedure for the synthesis of complexes 1—

To a suspension of [(n6-p-cymene)Ru(u-Cl)Cl]2 in a mixture of me-
thanol/chloroform (15 mL, 1:1), a solution of ligand (L1 or L2 or L3 or
L4) in methanol (5 mL) was added and the reaction mixture was stirred
at 40 °C during 4 h. Then, the orange solution was concentrated under
reduced pressure to ca. 7 mL, solid NH4PF¢ was added and the mixture
was stirred at room temperature for 1 h. A yellow-orange precipitate
appeared after cooling the solution overnight at 4 °C, was collected with
filtration and washed with methanol (2 X 2.5 mL).

3.1.1. [(p-cymene)Ru(L1)Cl]PFs (1)

37 mg (0.06 mmol) [(n°-p-cymene)Ru(u-C1)Cl],, 23 mg (0.12 mmol)
4-methyl-1,10-phenanthroline, 29 mg (0.18 mmol) NH,4PF¢. Orange
crystals, suitable for X-ray diffraction, were obtained from the mother
liquor at room temperature. Yield: 53 mg. HRMS: [M]* caled. for.
Co3H24CINoRu ™, 465.0666; found: 465.0645. IR (KBr): 3066.2, 2974.7,
2935.5, 2880.0, 1628.9, 1603.0, 1585.9, 1573.1, 1541.9, 1508.6,
1466.0, 1432.3, 1382.2, 1229.8, 1141.0, 1094.3, 1057.2, 1030.3,
1012.5, 908.1, 875.3, 820.4, 775.8, 728.7. 'H NMR (500 MHz, DMSO-
de) 6 ppm: 0.90 (dd, J = 6.9, 3.4 Hz, arene-CH(CH3),, 6H), 2.18 (s,
arene-CHj3, 3H), 2.61 (sept, J = 6.9 Hz, arene-CH(CH3),, 1H), 2.98 (s,
Me(phen), 3H), 6.09 (t, J = 6.1 Hz, arene-CH3, 2H), 6.32 (t, J = 6.2 Hz,
arene-CH(CH3),, 2H), 8.03 (d, H® J=5.5Hz, 1H), 8.16 (dd,
J = 5.5Hz, H'%, 1H), 8.31 (d, J = 9.0 Hz, H’, 1H), 8.35 (d, J = 9.0 Hz,
H® 1H), 8.93 (d, J = 8.2, 5.2 Hz, H, 1H), 9.77 (d, J = 5.5 Hz, H', 1H)
and 9.92 (d, J = 5.4 Hz, H?, 1H). '3C NMR (125 MHz, DMSO-ds) & ppm:
18.7, 22.1, 30.8, 84.1, 84.2, 86.3, 86.4, 103.1, 104.2, 124.9, 126.7,
127.4, 127.5, 130.1, 130.3, 139.1, 145.2, 145.8, 149.7, 155.7, 156.5.

3.1.2. [(p-cymene)Ru(L2)Cl]PFs (2)

24 mg (0.04 mmol) [(qﬁ-cymene)Ru(u-Cl)Cl]2, 23 mg (0.08 mmol)
dipyrido[3,2-a:2",3’-c]phenazine (dppz), 20 mg (0.12mmol) NH4PF,.
Orange crystals, suitable for X-ray diffraction, were obtained by slow
diffusion of diethyl ether into the mother liquor at room temperature.
Yield: 34 mg (61%) Anal. Calcd. for C28H24C1F6N4PR11, %: C 4818, H
3.47, N 8.03. Found, %: C 48.05, H 3.14, N 7.71. HRMS: [M]* calcd.



A. Savié, et al.

for. CagHo4CIN4Ru™, 553.0728; found: 553.0733. IR (KBr): 3083.0,
2966.0, 1604.3, 1497.3, 1470.8, 1447.3, 1422.9, 1390.9, 1357.3,
1342.8, 1139.1, 1093.5, 1079.7, 1052.5, 879.0, 859.0, 818.0, 802.5,
767.4, 727.9. 'TH NMR (500 MHz, DMSO-dg) 8: 1.01 (d, J = 6.9 Hz,
arene-CH(CH3),, 6H), 2.23 (s, arene-CHj3, 3H), 2.71 (sept, J = 6.9 Hz,
arene-CH(CHs),, 1H), 6.17 (d, J = 6.2 Hz, arene-CH;, 2H), 6.40 (d,
J = 6.2 Hz, arene-CH(CH3),, 2H), 8.14 (dd, J = 6.3, 3.3Hz, H'® and
H! 2H), 8.31 (dd, J = 8.2, 5.3 Hz, H® and H'#, 2H), 8.44 (dd, J = 6.3,
3.4Hz, H® and H'?, 2H), 9.71 (d, J = 8.2Hz, H* and H'3, 2H), and
10.02 (d, J = 5.4 Hz, H? and H?®, 2H). '3C NMR (125 MHz, DMSO-d,) §
ppm: 18.7, 22.2, 30.9, 84.7, 86.4, 103.2, 105.3, 128.1, 129.9, 129.9,
133.0, 135.8, 139.7, 142.4, 148.5, 157.8.

3.1.3. [(p-cymene)Ru(L3)Cl]PFs (3)

25 mg (0.04 mmol) [(n6-p-cymene)Ru(u-Cl)Cl] 2, 25 mg (0.08 mmol)
11-chloro-dipyrido[3,2-a:2’,3’-c]phenazine (Cl-dppz), 21 mg
(0.13mmol) NH4PF¢. Orange crystals, suitable for X-ray diffraction,
were obtained by slow diffusion of diethyl ether in the mother liquor at
room temperature. Yield 34mg (58%). HRMS: [M]* calcd. for.
CusHo5ClLLN,Ru™, 587.0338; found: 587.0322. IR (KBr): 3125.4,
2964.6, 1597.7, 1494.6, 1473.1, 1445.4, 1414.3, 1391.4, 1354.0,
1141.4, 1080.9, 1062.1, 933.1, 841.8, 779.1, 742.6, 726.8. 'H NMR
(500 MHz, acetone-dg) § ppm: 1.14 (d, J = 7.0 Hz, arene-CH(CH3)a,
6H), 2.36 (s, arene-CH3, 3H), 2.90 (sept, J = 6.9 Hz, arene-CH(CH3),,
1H), 6.21 (d, J = 6.3 Hz, arene-CHs, 2H), 6.44 (d, J = 6.4 Hz, arene-CH
(CHs),, 2H), 8.17 (dd, J = 9.2, 2.3Hz, H!!, 1H), 8.38 (ddd, J = 8.2,
5.4, 2.0 Hz, H® and H'2, 2H), 8.40-8.54 (m, H® and H*,, 2H), 9.83 (ddd,
J=8.2, 2.1, 1.3Hz, H* and H'3, 2H), and 10.02 (ddd, J = 5.5, 2.2,
1.4 Hz, H? and H'®, 2H). 3C NMR (125 MHz, acetone-dg) § ppm: 18.9,
22.3, 31.9, 85.5, 87.1, 104.3, 106.9, 128.6, 129.1, 132.3, 134.1, 136.6,
138.7, 141.2, 149.7, 158.2.

3.1.4. [(p-cymene)Ru(L4)Cl]PFs (4)

31 mg (0.05 mmol) [(n6-p-cymene)Ru(u-Cl)Cl] 2, 33 mg (0.10 mmol)
11-nitro-dipyrido[3,2-a:2’,3’-c]phenazine (NO»-dppz), 24 mg
(0.15mmol) NH4PFs. Yield 40mg (54%). Anal. Calcd. for
CosHo3CIFgNsO,PRu, %: C 45.26, H 3.12, N 9.43. Found, %: C 45.45, H
2.86, N 9.59. HRMS: [M] ™" calcd. for. CogHasCINsOoRu™, 598.0573;
found: 598.0573. IR (KBr): 3093.5, 2970.6, 1608.5, 1523.8, 1495.3,
1419.3, 1349.1, 1073.6, 1051.7, 877.2, 844.3, 745.0, 738.5, 729.4. 'H
NMR (500 MHz, DMSO-dg) § ppm: 1.00 (d, J= 6.9Hz, arene-CH
(CH3),, 6H), 2.22 (s, arene-CHj3, 3H), 2.70 (sept, J = 6.8 Hz, arene-CH
(CHs),, 1H), 6.17 (d, J = 6.3 Hz, arene-CH,, 2H), 6.41 (d, J = 6.2 Hz,
arene-CH(CHs),, 2H), 8.33 (dt, J = 8.2, 5.3 Hz, H® and H'#, 2H), 8.66
and 8.78 (d, J = 9.3Hz, 1H and dd, J = 9.4, 2.6 Hz, H? and H'2, 1H),
9.24 (s, H'1, 1H), 9.72 (d, J = 8.1 Hz, H? and H?3, 2H), and 10.05 (dd,
J=5.5, 1.4Hz, H? and H'®, 2H). '*C NMR (125 MHz, DMSO-dg) &
ppm: 20.3, 23.8, 32.5, 86.3, 87.0, 104.0, 106.0, 127.4, 129.0, 131.2,
133.5, 137.9, 142.5, 143.0, 145.7, 150.6, 160.0.

4. Results and discussion
4.1. Synthesis and characterization of the complexes 1-4

By exploring the u-chlorido-bridge splitting reaction of [(;°-p-
cymene)RuCl,], with L1-L4 in methanol/chloroform at 40 °C, with
subsequent addition of ammonium hexafluorophosphate, complexes
(1-4), general formula, [(nﬁ-p-cymene)Ru(L)Cl] *PFq", have been pre-
pared in good yields (Scheme 1).

Complex 2 has already been described in the literature, however,
antitumor activity and crystal structure for 2 have not been reported
yet. All complexes were characterized by elemental analysis, mass
spectrometry, IR and NMR spectroscopy. Additionally, complexes 1, 2
and 3 were characterized by X-ray crystallography.

The IR spectra of all complexes showed characteristic bands at the
following positions of wave numbers: around 3100cm~! (C—H
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stretching vibrations), 1600-1585 and 1500-1400cm ™~ 1 (c—C and
C—N stretching vibrations in the ring, respectively) and 900-675 cm ™!
(out-of-plane bands).

The 'H NMR and '*C NMR spectra of the complexes showed char-
acteristic resonances of n°-p-cymene and the heterocyclic base moiety.
Upon complexation to the metal, the symmetry of the ligand environ-
ment is lowered. This is observed in the cymene ring protons which
appear as two doublets in the range of 6.09-6.44 ppm, in contrast to the
one signal observed in [(4°-p-cymene)RuCl,],. The characteristic septet
at 2.70 or 2.90 ppm is assigned to one proton from the isopropyl group
of the p-cymene moiety. Signals in the range of 0.90-1.14 ppm and
2.18-2.36 ppm correspond to protons from —CH(CH3), and CH3z(arene)
of the p-cymene. All signals originated from the heterocyclic base
moiety were found in the region of 8.03-10.05 ppm.

The mass spectra of 1-4 recorded in acetonitrile contain peaks as-
signed to the [M* — PF¢~] ions, which agrees with their calculated
molecular mass. Molecular ions of the complexes were detectable with
m/z at 465.0645 for 1, m/z at 553.0733 for 2, m/z at 587.0322 for 3
and m/z at 598.0573 for 4.

X-ray diffraction studies for 1-3 showed a common “piano-stool
geometry”, with coordination of the heterocyclic base ligands through
the nitrogen donor atoms (see Fig. 2).

Compound 1 and 2 both crystallized in the monoclinic centrosym-
metric space group P2, /c. The asymmetric unit of 1 consists of one [(#°-
p-cymene)Ru(L.1)Cl] * complex and one PFs~ counterion, while for 2,
the asymmetric unit contains two [(né—p—cymene)Ru(LZ)Cl] * com-
plexes, two PF¢~ counterions and one co-crystallized diethyl ether
solvent molecule. Compound 3 crystallized in the non-centrosymmetric
orthorhombic space group Pnc2 with three [(nﬁ-p-cymene)Ru(LS)Cl] *
complexes, two complete PFs~ and two half's of PF¢~ (both on a 2-fold
axis) counterions in the asymmetric unit.

For all three complexes, the Ru(I) center shows a pseudo-tetra-
hedral coordination by the p-cymene in a ;° mode, one Cl~ anion and
the N,N’-chelating L ligands. The complexes all adopt the typical ‘piano’
stool conformation, which is illustrated by the N-Rul-Cl1 angles of the
complexes being in the range of 83.0(4)-86.28(7)".

4.2. Cell sensitivity to ruthenium complexes

The cytotoxic activity of the investigated ruthenium complexes, and
CDDP (as reference compound), against a panel of human cancer cell
lines (K562, A549, PANC-1 and MDA-MB-231) and one normal cell line
(MRC-5), was determined by an MTT assay. The activity was measured
after 72h incubation with the investigated complexes and the results
are presented in Table 1, and Fig. 3. The remarkably high cell growth
inhibitory activity, with ICsy values ranging from 5 to 9 uM, was re-
vealed for complexes 2—4, against PANC-1 and MDA-MB-231 cells. The
activity of these complexes was about 2 to 3 times higher than that of
CDDP. Human myelogenous leukemia cells (K562) showed high sensi-
tivity to all tested complexes with ICs, values being lower than CDDP
(up to 7 uM). Our results indicated that minor changes in the dppz li-
gand, like the introduction of a strongly electron-withdrawing group
—NO,, (4) or a weakly electron-withdrawing group —Cl group (3), were
not sufficient to induce important differences in the cell growth in-
hibitory activity, compared to the complex with unsubstituted dppz
ligand (2). The complex with substituted phen ligand (1) also had no-
table activity on MDA-MB-231 cells (ICso up to 7 uM, see Table 1). It
should be noted that in the present study cisplatin as referent com-
pound, only showed higher cell growth inhibitory activity and se-
lectivity, toward lung adenocarcinoma cells (A549). While most of the
tested complexes (2-4), had nearly two times higher activity in leu-
kemia cell (K562), or pancreatic adenocarcinoma (PANC-1), or breast
adenocarcinoma (MDA-MB-231), than in normal human fibroblasts
cells (MRC-5), thus showing greater potential for selective action in
tumor cell lines, than CDDP.
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Scheme 1. Synthesis of the complexes 1-4.

4.3. Analysis of cell cycle perturbations

The effect of complexes 2—4 and CDDP on the cell cycle progression
of PANC-1 cells was examined using PI staining and flow cytometry
analysis. The results of the cell cycle analysis after treatment with
concentrations corresponding to IC5072 h values (see Table 1) are de-
termined at two points of time (48 h and 72 h) and presented in Fig. 4.

After 48 h incubation, only complex 3 caused minor change of the cell
cycle phase distribution, characterized by accumulation of cells in the
G2-M phase (52.09% vs control 42.01%). After prolonged treatment
(72h), complex 3 caused further accumulation of cells in the G2 phase.
Minor accumulation of cells in the Sub-G1 phase, as characteristic of
discontinuous fragmentation of nuclear DNA, was noticed only for
CDDP-treated cells. CDDP, after 48 h, induced blocking of the cell cycle

o

Fig. 2. Molecular structures of 1 (a), 2 (b) and 3 (c), showing thermal displacement ellipsoids at the 50% and 30% probability levels for 1 and 2, and 3, respectively.
Only one molecule of the asymmetric units is shown. PFs~ counterions and the diethyl ether solvent molecule for compound 3 are omitted for clarity.
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Table 1

The cytotoxic activity of complexes 1-4 and CDDP as reference compound determined after 72h treatment by the MTT assay.
Compound ICso (UM)

K562 A549 PANC-1 MDA-MB-231 MRC-5

1 6.65 = 0.07 26.85 + 7.67 21.26 = 0.98 7.44 = 2.75 4.23 = 0.63
2 6.23 * 2.26 19.45 + 3.37 5.49 + 0.64 5.60 + 0.03 8.62 = 3.61
3 6.35 = 1.51 9.23 = 1.40 8.47 = 2.21 9.06 = 4.48 13.92 + 4.04
4 6.77 = 1.86 18.89 = 2.08 5.66 = 0.37 5.41 = 0.57 9.98 = 1.85
CDDP 10.86 + 0.55" 5.93 + 0.66" 16.44 = 1.56 14.54 = 0.05 10.54 = 0.21

ICsp values were calculated as mean values obtained from two to three independent experiments and presented with their standard deviations. Results of activity

previously reported [57]%, [58]°.

in the S phase, which led to further increase of the percentage of cells in
the sub-G1 phase determined after 72 h treatment.

Unique properties of transition metal complexes may allow specific
interactions with DNA [59]. These interactions can arise due to cova-
lent/coordinative or subtle non-coordinative interactions such as elec-
trostatic attraction, groove binding and intercalation as well as com-
binations all these modes [59]. The dppz ligand in 2 allows extensive
intercalative stacking in DNA base pairs. With few exceptions, most of
the Ru-dppz complexes interact strongly to the DNA duplex through
intercalation [60].

In a recent study in HeLa cells, flow cytometry analysis of cell cycle
perturbation induced by a very similar ruthenium complex [(n®-p-
cymene)Ru(Me,dppz)Cl]PFg, revealed concentration- and time-depen-
dent arrest of the cell cycle in G2-M and S phases. This event is followed
by the accumulation of cells in sub-G1 phase after 48 h, in levels higher
than CDDP [42]. These changes in the cell cycle of HeLa cells strongly
suggested direct DNA binding of this complex. While in the present
study, absence of notable cell cycle perturbations (complexes 2 and 4),
and absence of Sub-G1 peak (complex 3), in PANC-1 cells, may be ex-
plained by drug resistant and very complicated nature of pancreatic
cancer cells [61]. Resistance mechanisms probably prevented DNA
fragmentation characteristic for an apoptotic type of cell death. Results
of morphological analysis of PANC-1 cell death, induced by complexes
2-4, confirmed that only few characteristics of apoptosis were detected,
and that further analysis is necessary for defining the accurate type of
cell death.

4.4. Results of cellular uptake and DNA-binding by ICP-MS

Nowadays, cellular uptake studies are becoming an essential part of
the development and investigations of novel metal-based drugs. As DNA
is being generally accepted as the critical target for platinum-based
antitumor agents, DNA binding studies have become an integrative part
of this type of research [62].

Cellular uptake and DNA binding of PANC-1 cells of the investigated
ruthenium complexes 2-4 and CDDP was determined by ICP-MS after
24 h treatment with 5uM concentrations of complexes (~ICso) and
CDDP.

ICP-MS analysis revealed surprisingly more efficient cellular uptake
of complex 3, compared to complexes 2 and 4 (Fig. 5A). Intracellular
accumulation of complex 3 (6492.90 ngRu/10° cells) exceeded, six and
ten times respectively, the level of intracellular accumulation of com-
plex 2 (1069.97 ngRu/ 10° cells), and complex 4 (675.06 ngRu/ 10°
cells). The results of the DNA binding demonstrated a similar trend,
showing three to four times higher DNA binding of complex 3
(1.6 ngRu/ugDNA), compared to complex 2 (0.6 ngRu/ugDNA) and
complex 4 (0.4 ngRu/ugDNA) (Fig. 5B). Enhanced intracellular uptake
and DNA binding of complex 3, apparently, are not directly propor-
tional to its cell growth inhibitory activity, in the 2D model system (see
section results of MTT assay, Table 1). Complexes 2 and 4 showed ra-
ther similar level of intracellular uptake and slightly higher level of
DNA binding, compared to CDDP. Interactions of ruthenium complexes
2-4 with the DNA, are anticipated to be intercalative, due to the (un)
substituted dipyrido[3,2-a:2’,3’-c]phenazine ligand, which would be
different to the known mechanism of CDDP action [63].

CDDP showed considerably lower cellular uptake (653.93 ngPt/10°

35

30
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K562 A549

@1 B2 @3 O4 ECDDP

PANC-1

MDA-MB-231

MRC-5

Fig. 3. Graphical representation of ICs, values (uM) of the investigated ruthenium complexes and CDDP on a panel of cell lines; each ICs, value is the mean of two to

three independent experiments with their corresponding standard deviation (SD).
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Fig. 4. Cell cycle phase distribution of PANC-1 cells, treated with complexes 2—4 or CDDP after A) 48 h and B) 72 h. Bar graphs show representative experiments of at

least three independent experiments.

cells) and DNA binding (0.2 ngPt/ugDNA), which is consistent to its
poor cytotoxicity in PANC-1 cells, compared to ruthenium complexes
2-4. Still, despite that fact, CDDP action was demonstrated by induc-
tion of cell cycle arrest in the S phase, and appearance of sub-G1 peak
(Fig. 4). Knowing that only 5-10% of CDDP eventually form DNA-ad-
ducts in the cell, this allowed us to conclude that the poor CDDP-ac-
tivity in PANC-1 cells is mainly due to the lower cellular uptake.

Our previous study of structurally related ruthenium complex ([(n®-
p-cymene)Ru(Me,dppz)ClI]PF¢), showed its ability to accumulate in
HeLa cells more efficiently than CDDP. Results of the present study in
CDDP-resistant PANC-1 cells, clearly demonstrate significantly higher
intracellular uptake of ruthenium complex 3.

4.5. Morphological analysis of cell death

The morphological characteristics of cell death of PANC-1 cells in-
duced with the investigated complexes and CDDP were analyzed by
fluorescent microscopy and acridine orange/ethidium bromide dual
staining [64]. After 48 h of treatment with ICs, concentrations, the cells

started to lose their normal morphology and become rounded, in par-
ticular after treatment with complex 3 and CDDP (Supplementary Fig.
SI1). In case of the other complexes (2 and 4), the majority of the cells
were still with the morphology like the cells in the control, light green
colored and elongated with an epithelial morphology. After 72h of
treatment, the number of cells was reduced compared to the control,
again particularly after treatment with complex 3 and CDDP (Fig. 6).

The investigated complexes induced a similar effect on the mor-
phology of cells, i.e. the cells become rounded. Some characteristics of
apoptotic morphology are also present, like highly condensed chro-
matin that is uniformly fluorescent, in the crescents or spherical beads
form around the periphery of the nucleus particularly after 72 h treat-
ment. Other morphological characteristics of apoptosis are not present.
The majority of cells are with preserved plasma membrane since cells
incorporated only acridine orange (AO, green fluorescence). The mor-
phological characteristics of secondary apoptosis and necrosis cells like
orange to red colored chromatin, due to disrupted cell membrane in the
individual cells are present.

Morphological criteria are often used to define the different types of
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Fig. 5. Representative result of ICP-MS analysis of ruthenium/platinum intracellular accumulation and DNA binding, in PANC-1 cells, after 24 h treatment, with 5 pM
of the investigated ruthenium complexes/CDDP. Bar graphs represent an average values ( = SD), of three independent measurements. A) Ru(II) or Pt(I) metal (M)
intracellular accumulation expressed as the ng M/10° cells; B) Ru(II) or Pt(I) metal (M) in cellular DNA, expressed as the ng M/ug DNA.

cell death [65]. According to morphological appearance, cell death can
be classified to apoptotic, necrotic, autophagic or associated with mi-
tosis. Moreover, it should be pointed out that the term ‘apoptosis’ hides
a major degree of biochemical and functional heterogeneity [66]. Based
on our results and having in mind morphological criteria for defining
types of cell death, we cannot say for sure what type of cell death is
induced by the investigated complexes, but we can emphasize that the
integrity of the plasma membrane of the treated cells was preserved,

some characteristics of apoptotic morphology are present and that there
was no extensive necrosis.

4.6. Analysis of the efficacy of the investigated complexes in the 3D MCTS
model

Traditional research on the efficacy of anticancer drugs is usually
performed in two-dimensional (2-D) cell cultures, which may not be a
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Fig. 6. Fluorescent micrographs of PANC-1 cells treated with the investigated ruthenium compounds or CDDP at concentrations corresponding to ICso after 72h

treatment. Untreated cells were used as control.

Control
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Fig. 7. Growth inhibition monitoring of drug-treated PANC-1 MCTSs. The PANC-1 cells were seeded at a density of 500 cells per well, into low attachment U96-well
plate Thermo Scientific Nunclon Sphera. After 5days of culture (spheroidization time) the PANC-1 MCTS approximately 500 um in diameter, pre-selected for
homogeneous volume and shape, were treated with complexes 2—-4 and CDDP (with 2 X ICso concentrations). Brightfield images obtained using an Invitrogen™ EVOS

FLC™imaging system. Scale bar: 1000 um.

true indicator of the in vivo effectiveness of cancer treatments. Cells in a
3D culture environment differ morphologically and physiologically
from the cells in a 2D culture environment. In the 3D cultures, the
spatial organization of the cell surface receptors engaged in interactions
with surrounding cells is achieved [66]. The physiological state of
spheroids depends on the spheroid size, the individual and cell-type-
specific behavior, the cell density, and also the culture time. In contrast
to the 2D model systems where the cells are uniformly exposed to
oxygen and nutrients, the cells in the 3D model systems are exposed to
gradients of chemical and biological signals [67]. Hence, a 3D model, or
multicellular tumor spheroids (MCTS) of PANC-1 cancer cells, was in-
troduced in this research to investigate the efficacy of the reported
ruthenium complexes on the growth kinetics of MCTSs over a period of
time. We incubated the spheroids for 5 days either with CDDP or in-
vestigated ruthenium complexes (2-4). Unlike to their effect in a 2D
cell culture, after treatment with complexes 2-4 there was no sig-
nificant reduction in growth of PANC-1 cells MCTSs. The sizes of the
PANC-1 MCTSs which were untreated (control) or treated with the
investigated Ru(II) complexes (2 X ICso concentrations) continuously
increased with time (Fig. 7). In contrast, the MCTSs treated with CDDP
(2 X ICsp concentration ~30 uM) didn't change in size over time. Their
growth is stopped, which becomes evident already after 2days of
treatment. Brightfield images (Fig. 7) show an increase in dark (dead)
cells in the center of CDDP treated MCTS. These observations demon-
strated that the investigated ruthenium complexes 2-4, although ef-
fectively inhibited cell proliferation and killed PANC-1 cancer cells in a
2D cell culture system, even more efficiently than CDDP according to

10

ICso values (see Table 1), were not efficient in a 3D culture model as
MCTSs continued to growth.

The live/dead viability analysis was performed as a two-color
fluorescence staining using Calcein-AM and PI. The non-fluorescent
cell-permeant Calcein-AM is converted into green fluorescent Calcein
by intracellular esterases within living cells. In contrast, PI can only
enter dead cells and emits red fluorescence upon binding to nucleic
acids [42].

Further dual staining of MCTS with Calcein-AM and PI (Fig. 8 and
Fig. 9) or with Thermo Fisher Live/Dead (Blue/Green) staining (Figure
SI2) confirmed that most of the cells after treatment with the in-
vestigated ruthenium complexes were still alive. Complex 3 shows a
slightly higher number of dead cells in MCTS of 500 um diameter,
compared to the other two complexes. The spheroids compactness is
apparently disturbed, since it appears that the structure of MCTS is
distorted (especially around the perimeter) and spheroids gradually
decay. While MCTS treated with CDDP totally disintegrated and
staining confirmed majority of dead cell. It seems that the spheroid
structure was sensitive to the mechanical disturbances caused by ad-
dition of dyes (Fig. 7 vs. Fig. 8 and Fig. 9, SI2). When working with
MCTS we must consider that an important variable in MCTS is their size
since it is correlated with cell function, as well as drug penetration and
transport. The various spheroid sizes gives us different information.
Smaller spheroids (~200 pm) are a good model system to recapitulate
cell-cell and cell-matrix interactions but are not large enough to re-
capitulate oxygen gradients with hypoxic regions or proliferation gra-
dients [68]. The spheroids between 200 and 500 um are generally
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Control 2 3 CDDP

Fig. 8. Calcein-AM (green-live) and PI (red-dead) dual-staining on drug-treated PANC-1 cells MCTSs. The PANC-1 cells were seeded at a density of 500 cells per well,
into low attachment U96-well plate Thermo Scientific Nunclon Sphera. After 5 days of culture (spheroidization time) the PANC-1 MCTS approximately 500 pm in
diameter, pre-selected for homogeneous volume and shape, were treated with complexes 1-3 and CDDP (2 X ICs, concentrations). Presented images were obtained

using an Invitrogen™ EVOS FLC™imaging system. A: bright field; B: Calcein-AM channel; C: PI channel. Scale bar: 1000 um. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

not efficient in the 3D culture model without distinction based on the
size of MCTSs as only disintegration of the spheroids compactness is

sufficiently large to develop gradients of oxygen, nutrients and cata-
bolites [69]. Above a size of 400-600 um, spheroids develop a central

secondary necrosis where the innermost cells die of apoptosis or ne-
crosis [68-70]. Larger spheroids generally have a viable cell rim that is
100-300 pm thick around the necrotic core [70]. Therefore, in our re-
search we treated MCTS with a diameter up to 500 um (Fig. 7, Fig. 8
and Fig. SI2) and with a diameter over 500 um (Fig. 9). Unfortunately,

apparently observed in the spheroids rim in both cases.

A number of studies with DNA damaging drugs as well as with
microtubuli interacting agents has shown that when tumor cells are
grown as MCTS their sensitivity to anticancer chemotherapeutic drugs
generally decreases [43-45,71].

our results show that the investigated ruthenium complexes (2-4) were

Control

Fig. 9. Calcein-AM (green-live) and PI (red-dead) dual-staining on drug-treated PANC-1 cells MCTSs. The PANC-1 cells were seeded at a density of 1000 cells per
well, into low attachment U96-well plate Thermo Scientific Nunclon Sphera (Nunclon Sphera 96 well U bottom plates). After 5 days of culture (spheroidization time)
the PANC-1 MCTS aggregates diameter over 500 um pre-selected for homogeneous volume and shape were treated with complexes 2-4 and CDDP (2xICs, con-
centrations). Presented images were obtained using an Invitrogen™ EVOS FLC™imaging system. A: bright field; B: Calcein-AM channel; C: PI channel Scale bar:
1000 um. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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5. Conclusion

The previous study of the mechanism of action of half-sandwich Ru
(I)-arene complexes of the type [(n°-p-cymene)Ru(Me,dppz)Cl]PFs,
has revealed that this compound acts as strong cytotoxic agent, due to
an efficient cellular accumulation and its ability to reach and bind
nuclear DNA with a much higher affinity than CDDP [42]. Based on
these studies, we synthesized a class of novel Ru complexes containing
1,10-phenantroline derivatives to study their structure-activities re-
lationship and reveal the changes in biological activity resulting from
small structural modifications of the four Ru(II) complexes. The results
of the screening of cell growth inhibitory action in a 2D model system,
on the panel of cancer cell lines, indicated the high activity, even higher
than CDDP, with ICs, values ranging from 5 to 9 uM in CDDP resistant
cell lines PANC-1 and MDA-MB-231. Based on the ICsq values, we can
state that minor changes in dppz ligand, like the introduction of a
strongly electron-withdrawing group -NO, (4) or a weakly electron-
withdrawing group —Cl group (3) were not sufficient to induce im-
portant changes in the biological activity, compared to complexes
without substituents on the dppz ligand (2). As complexes 2-4 had
significantly high growth inhibitory activity in PANC-1 and MDA-MB-
231 cells, further investigation of the mechanism of action was ne-
cessarily. Studies in a 3D cell culture of multicellular tumor spheroids
(MCTS) of PANC-1 cells showed no significant retardation or reduction
in growth, after treatment with the investigated ruthenium complexes.
Disintegration of the spheroids compactness is observed only in the
spheroids rim and majority of the cells is found alive, in contrast to
CDDP treatment, which induced retardation in MCTS growth. MCTS
treated with CDDP, disintegrated after adding stains, and staining
confirmed the majority of dead cells. Having in mind the complexity of
a 3D model system and our results further investigations in this model
system are needed, varying time and concentrations, as well as ex-
perimental conditions, for more accurate understanding of the effect of
the investigated complexes. ICP-MS analysis in PANC-1 cells, revealed
surprisingly more efficient cellular uptake of complex 3 compared to
complexes 2, 4 and CDDP. The DNA binding followed the same trend,
meaning that concentration of complexes that reached cellular DNA,
decreased in the following order: 3 > 2 > 4 < CDDP. Still, ICP-MS
results did not show clear correlation to the cytotoxic activity of com-
plexes in the present study, as cytotoxicity decreased as following:
2 > 4 > 3 > CDDP. We may conclude that higher intracellular ac-
cumulation of ruthenium complexes 2-4, comparing to CDDP and
higher DNA binding, perhaps by intercalation, certainly contributed to
their activity in PANC-1 cells. Additionally, action of 2-4 was devoid of
notable cell cycle perturbations. Only complex 3 caused minor cell
cycle arrest, characterized by accumulation of cells in the G2-M phase
(52.09% vs control 42.01%). Absence of the Sub-G1 peak in cell cycle
analysis indicates that there was no fragmentation of DNA. This is a
completely different effect of that observed with CDDP, which induced
accumulation of cells in the S phase and increase of Sub-G1 peak. Taken
together, this study provides important information for further devel-
opment and investigation of Ru(II)-arene complexes with dipyr-
idophenazine type ligands, as anticancer agents.
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